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Abstract

SBP is a probabilistic promise class located between MA and AM ∩ BPPpath. The first
part of the paper studies the question of whether SBP has many-one complete sets. We relate
this question to the existence of uniform enumerations. We construct an oracle relative to
which SBP and AM do not have many-one complete sets. In the second part we introduce the
operator SB·. We prove that, for any class C with certain properties, BP·∃·C contains every
class defined by applying an operator sequence over {U·, ∃·, BP·, SB·} to C.

1 Introduction

Probabilistic Computations. In the 1970’s, Rabin [Rab76] and Solovay and Strassen [SS77]
developed fast probabilistic algorithms for problems like primality test. These algorithms find
the correct answer (e.g., “the input is prime” or “the input is not prime”) with high probability.
Even though at that time no deterministic polynomial-time algorithm for primality test was known,
probabilistic algorithms provided a feasable way to perform primality tests in practice. This was
new: problems that are not known to be solvable in deterministic polynomial time could be handled
in practice.

Probabilistic Turing machines introduced by Gill [Gil72, Gil77] formalize probabilistic algo-
rithms. A Turing machine is called probabilistic if each step depends on the outcome of an unbi-
ased coin toss. Such machines accept an input if and only if the probability of acceptance is greater
than 1

2 . The restriction to polynomial-time computations leads to PP, the class of languages rec-
ognizable by polynomial-time probabilistic Turing machines. However, PP is too powerful: It
even covers computations where the probabilities of acceptance and rejection are very close. The
probabilistic algorithms for primality test do not need such a fine distinction. A suitable restriction
of PP that covers these probabilistic algorithms is called BPP [Gil72, Gil77]. This is the class
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of languages recognizable by bounded-error probabilistic polynomial-time Turing machines. For
such machines one additionally demands a probability gap. This means that the acceptance prob-
ability must never belong to some interval around 1

2 (e.g., [ 14 , 3
4 ]). Recently, Agrawal, Kayal, and

Saxena showed that primality can be tested deterministically in polynomial time [AKS02], but
BPP is still considered to be an important complexity class.

PP is most likely not contained in the polynomial-time hierarchy [Tod91]. In contrast, BPP
belongs to ΣP

2 [Lau83, Sip83] and by its closure under complement also to ΠP
2 . Moreover, the

class BPP allows probability amplification [Sip83]: the size of the probability gap (i.e., size
of the interval) can be increased to any fixed value arbitrarily close to 1. Thus, a probabilistic
computation in this sense almost always results in the correct answer.

The Class SBP. SBP is a probabilistic complexity class that is located between BPP and PP
[BGM03]. This class generalizes BPP in the following way. The probability limit of BPP is
1
2 . This means that an input is accepted if and only if the acceptance probability is at least 1

2 .
Additionally, BPP computations respect a probability gap. In the definition of SBP we still
demand a probability gap, but now we allow probability limits that are exponentially small. So, a
small acceptance probability already suffices to accept the input.

Babai [Bab85] introduced the Arthur-Merlin classes MA and AM. Languages in these classes
can be decided by a game between the two players Arthur and Merlin. MA is a subset of AM.
SBP is located exactly between MA and AM [BGM03]. With respect to oracles, these three
classes are different. Han, Hemaspaandra, and Thierauf [HHT97] define BPPpath to be the class
of languages accepted by polynomial-time threshold machines with ratio gap at 1

2 . They show
BPP ⊆ BPPpath ⊆ PP. SBP is located between BPP and BPPpath [BGM03]. SBP can be
defined as the class of sets A for which there exist f ∈ FP, g ∈ #P, and ε > 0 such that for all x,

x ∈ A −→ g(x) > (1 + ε) · f(x)

x /∈ A −→ g(x) < (1− ε) · f(x).

If we allow f to be a #P-function, we capture exactly the languages in BPPpath [BGM03].

Promise Classes and Completeness. Classes like BPP and SBP share an important property
stressing their difference to classes like P and NP. BPP and SBP are promise classes. Usual
(nonpromise) complexity classes are defined via machines. However, for BPP and SBP we addi-
tionally assume that all computations respect the probability gap. So, we make assumptions about
the computation process.

Machines with certain resources can be enumerated recursively. This enumeration gives a way
to construct complete problems. In contrast, because of the additional assumptions about the com-
putation process, we do not know recursive enumerations for most of the known promise classes.
As a consequence, we cannot easily construct complete sets. So, for promise classes it is always a
challenging question whether complete problems exist. NP∩SPARSE is one of the rare examples
of a promise class that has complete sets although only with respect to Turing reducibility [HY84].
However, for most of the promise classes we do not expect complete problems to exist.

Paper Outline. In this paper we study the question of whether SBP has many-one complete sets.
This relates to the question of whether SBP is recursively enumerable. We show that SBP allows
an enumeration in a weak sense. This may be considered the best possible case since we can show
that SBP is enumerable in a stronger sense if and only if SBP has many-one complete sets, what
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we do not expect. For the weak enumeration we utilize a method by Buhrman, Fenner, Fortnow,
and van Melkebeek [BFFvM00]. For the result regarding the stronger enumeration we make use
of a method introduced by Hartmanis and Hemachandra [HH88].

The main result in this first part of the paper gives evidence against the existence of many-
one complete sets for SBP. BPP is contained in several subclasses of AM. In this sense BPP
is a restriction of AM. We construct an oracle relative to which AM does not have a set that
is many-one hard for BPP. So, any single set in AM does not seem to be powerful enough to
solve arbitrary problems in BPP. As a consequence, relative to this oracle, SBP does not have
many-one complete sets and is therefore not uniformly enumerable (in the stronger sense).

In the second part of this paper we investigate a new operator. Coming from BPP, Sch öning
defined the operator BP· [Sch89]. Similarly, we start from SBP, capture the main ingredients of
its definition, and define the operator SB·. We show closure properties of classes defined with this
and other operators and study their inclusion structure. Our main result in this part shows that
BP·∃·C contains all complexity classes defined by arbitrary application of the operators U·, ∃·,
BP·, and SB· in any order and number to a complexity class C, if C fulfills some basic properties.

2 Preliminaries

For basics we refer to textbooks such as [WW86] or [Pap94]. We fix the alphabet Σ = {0, 1}; each
input is a word over Σ, and each set (or language) is a subset of Σ∗. The characteristic function of
a set A ⊆ Σ∗ is denoted by cA. For two words x, y ∈ Σ∗, xy and x · y denote the concatenation of
x and y. The injective function 〈· , ·〉 maps two words to one word in the following way. For two
words x, y ∈ Σ∗, x = x1 . . . xk, y = y1 . . . y`, k, ` ≥ 0, let 〈x, y〉 df

=0x1 · . . . · 0xk1y1 · . . . · 1y`.
Thus, the length of 〈x, y〉 is twice that of xy. Similarly, we extend this pairing function to higher
arties such that |〈x1, . . . , xk〉| = k · |x1 · · · xk|. For every n ∈ Σ∗, let id(n) df=n. We require
every complexity class C to contain one non-empty set that is a proper subset of Σ∗. We call
such classes non-trivial. With a non-deterministic or probabilistic computation, we associate a
computation tree that represents all possible computation paths. Let B be some computable set,
let x ∈ Σ∗ and q be some polynomial. We define

countq
B(x) =

∣
∣
{
y : |y| = q(|x|) ∧ 〈x, y〉 ∈ B

}∣
∣.

For all polynomials p that we use in this report, we assume p(N) ⊆ N.

2.1 Reducibilities

All reducibilities in this paper are polynomial-time computable. A is polynomial-time many-one
reducible to B (A≤P

mB) if there is a function f ∈ FP such that for all x ∈ Σ∗,

x ∈ A ←→ f(x) ∈ B.

Ladner, Lynch, and Selman [LLS75] introduced several other polynomial-time bounded re-
ducibilities. For any two reducibilities ≤a and ≤b , they defined ≤a to be stronger than ≤b if for
each two computable sets A and B, A≤aB implies A≤bB. A complexity class C is closed under
reducibility ≤a if for every set A with A≤aB where B ∈ C, A is contained in C. If we denote the
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set of all sets that are ≤a -reducible to some set in C by Ra(C), then C is closed under ≤a if and
only ifRa(C) = C.

Definition 2.1 Let A and B be two sets. A is conjunctive reducible to B, A≤P
c B, if and only if

there is some function f ∈ FP such that for all x ∈ Σ∗ there is a positive integer k such that

x ∈ A ←→ f(x) = 〈x1, . . . , xk〉 and cB(x1) ∧ . . . ∧ cB(xk) = 1.

A is disjunctive reducible to B, A≤P
d B, if and only if there is some function f ∈ FP such that for

all x ∈ Σ∗ there is a positive integer k such that

x ∈ A ←→ f(x) = 〈x1, . . . , xk〉 and cB(x1) ∨ . . . ∨ cB(xk) = 1.

A is majority reducible to B, A≤P
maj B, if and only if there is some function f ∈ FP such that for

all x ∈ Σ∗ there is a natural k such that

x ∈ A ←→ f(x) = 〈x1, . . . , xk〉 and cB(x1) + . . . + cB(xk) >
k

2
.

For example, P is closed under all three of the reducibilities defined above. Without loss
of generality, we can always assume that the number of questions computed by f is given by
some polynomial s, i.e., f(x) = 〈x1, . . . , xk〉 and k = s(|x|) for every x ∈ Σ∗. Moreover, we
may assume that the questions are of equal length, even |x1| = . . . = |xk| = r(|x|) for some
polynomial r. Finally, if A is majority reducible to B via some reducing function f ∈ FP, there
is always g ∈ FP that majority reduces A to B with an odd number of questions: We can fix a
word w 6∈ B and define g(x)df=〈x1, . . . , xk, w〉 where f(x) = 〈x1, . . . , xk〉 for x ∈ Σ∗ and k even.
Therefore, we will henceforth assume that all functions used in majority reductions calculate an
odd number of values. We observe that ≤P

m is stronger than ≤P
c , ≤P

d [LLS75], and ≤P
maj , and ≤P

c

itself is stronger than ≤P
maj which can be seen by a construction that duplicates question w often

enough.
We can define bounded variants of the above defined reducibilities: We say that A is k-

conjunctive reducible to B, denoted by A≤P
kcB, if the number of questions computed by the

reducing function f is bounded by k. As we have seen in previous discussions, this is equivalent
to the notion where we require f to compute exactly k questions. We will show that, for two
natural numbers k1 and k2 greater than 1, a complexity class C is closed under ≤P

k1 c if and only if
C is closed under ≤P

k2 c . We say that C is closed under bounded conjunctive reducibility, ≤P
bc , if for

every reducing function f there is k such that f is a k-conjunctive reducting function. To prove
that C is closed under ≤P

bc , it is sufficient to show that C is closed under ≤P
2c , which implies the

claim.

Lemma 2.2 A complexity class C is closed under ≤P
bc if and only if C is closed under ≤P

2c .

Proof: Let A be some set and B ∈ C, let A≤P
bcB via function f ∈ FP. There is a natural k such

that A≤P
kcB via f . We assume that k is some power of 2 and k > 2. We show that A≤P

k ′cB
′ for

k′ = k
2 and some set B ′ ∈ C. Define B′ as

B′ df={x1x2 : x1 ∈ B ∧ x2 ∈ B ∧ |x1| = |x2|}.
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B′ 2-conjunctive reduces to some set in C, hence B ′ ∈ C. Let f(x) = 〈x1, . . . , xk〉, then

f ′(x) = 〈x1x2, . . . , xk−1xk〉

for every x ∈ Σ∗. Therefore, A is bounded conjunctive reducible to B ′ via f ′. Repeated appli-
cation of this construction shows that A is 2-conjunctive reducible to some set in C. Since C is
closed under 2-conjunctive reducibility, A ∈ C, and C is closed under ≤P

bc . 2

2.2 Operator Classes and the Arthur-Merlin Hierarchy

We repeat some results about operators and start with the operator ∃·. In connection with the
operator ∀·, both operators applied alternately on P yield a characterization of the classes ΣP

k and
ΠP

k of the polynomial-time hierarchy [Sto77, Wra77].

Definition 2.3 Let C be a complexity class and let A be some set. A ∈ ∃·C if and only if there are
B ∈ C and a polynomial q such that for every x ∈ Σ∗,

x ∈ A ←→ countq
B(x) ≥ 1.

Observe that NP = ∃·P. Furthermore, ∃·∃·P = ∃·P = NP, which can be generalized as we
will see later. A slight modification of the definition of ∃· leads to the related operator U·.

Definition 2.4 Let C be a complexity class. A ∈ U·C if and only if there are B ∈ C and a
polynomial q such that for all x ∈ Σ∗,

x ∈ A←→ countq
B(x) = 1 and countq

B(x) ≤ 1.

Clearly, U·P = UP.

Lemma 2.5 If C is non-trivial and closed under ≤P
m , then C ⊆ U·C ⊆ ∃·C.

Proof: Let A ∈ C. We define B df={〈x, x〉 : x ∈ A}. If A ⊂ Σ∗, then B ≤P
m -reduces to A.

If A = Σ∗, then B ≤P
m -reduces to any non-trivial set in C. In both cases, it holds that B ∈ C.

For every x ∈ Σ∗, we obtain countid
B(x) ≤ 1. Therefore, A ∈ U·C. The second inclusion is by

definition. 2

This proof is the only one where we explicitly distinguish the cases A 6= Σ∗ and A = Σ∗. It
illustrates the need of a class to be non-trivial. For trivial classes, we cannot conclude B ∈ C for
every A ∈ C. It follows that if C is non-trivial and is closed under ≤P

m , then U·C and ∃·C are also
non-trivial, which is true for all opertators in this paper.

In [HH88], the authors give evidence that not all sets in NP belong to UP. In fact, it is
very unlikely that any NP-complete set is in UP. We cannot decide whether a non-deterministic
polynomial-time Turing machine behaves in the sense of UP. We can only trust the promise that
a given machine behaves in the right way. Therefore, classes like UP are called promise classes.
U·C is a promise class, and the promise is the limited number of accepting computation paths.
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Another kind of complexity classes are probabilistic classes. The main idea is to equip each
probabilistic computation with two probability values. If an input should be accepted, the proba-
bility that it is actually accepted by the computation is bounded below by one of the values. If it
is to be rejected, a small number of computation paths can err, which means that the probability
to find a path with the wrong result is bounded above by the second probability value. For further
discussions on this concept, we refer to [Gil77]. Gill introduced several probabilistic complexity
classes such as PP or BPP. Sch öning [Sch89] derived the following operator from BPP.

Definition 2.6 Let C be a complexity class and let A be some set. A ∈ BP·C if and only if there
are B ∈ C, a polynomial q, and ε ∈

(
0, 1

2

)
such that for every x ∈ Σ∗,

x ∈ A −→ countq
B(x) >

(1

2
+ ε

)

· 2q(|x|) and

x /∈ A −→ countq
B(x) <

(1

2
− ε

)

· 2q(|x|).

For convenience, we gave a definition of BP· in terms of the number of accepting paths. It
holds that BP·P = BPP.

Lemma 2.7 ([Sch89]) If C is closed under ≤P
m , then C ⊆ BP·C.

Proof: Let A ∈ C and define B df={〈x, z〉 : x ∈ A ∧ z ∈ Σ∗}. It is easy to see that B ≤P
m -reduces

to A, hence B ∈ C. Now, if x 6∈ A, then countid
B(x) = 0. If x ∈ A, then countidB(x) = 2|x|.

Therefore, A ∈ BP·C via B, id, and any ε ∈
(
0, 1

2

)
. 2

All three operators, ∃·, U·, and BP·, are monotonic with respect to inclusion. This means that
for an operator O and complexity classes C and D, C ⊆ D implies OC ⊆ OD. If C is a complexity
class closed under ≤P

m , then U·C, ∃·C, and BP·C are closed under ≤P
m . We draw the following

observation from Lemmata 2.5 and 2.7 and the monotonicity of the operators.

Lemma 2.8 If C is closed under ≤P
m , then ∃·C ⊆ ∃·BP·C and BP·C ⊆ ∃·BP·C.

Babai [Bab85] introduced Arthur-Merlin games and corresponding complexity classes MA
and AM.

Definition 2.9 Let A be some set. A ∈ MA if and only if there are B ∈ P, polynomials q1 and
q2, and ε ∈

(
0, 1

2

)
such that for every x ∈ Σ∗,

x ∈ A −→
∨

y∈Σ∗

(

|y| = q1(|x|) ∧ countq2

B (〈x, y〉) >
(1

2
+ ε

)

· 2q2(|〈x,y〉|)

)

and

x 6∈ A −→
∧

y∈Σ∗

(

|y| = q1(|x|) −→ countq2

B (〈x, y〉) <
(1

2
− ε

)

· 2q2(|〈x,y〉|)

)

.
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Note that ∃·BPP is contained in MA, but both classes do not seem to be equal by an oracle
construction [FFKL93]. The class AM can be defined as AM

df
=BP·NP = BP·∃·P. It is known

that MA ⊆ AM [Bab85, Sch89]. One can continue the alternating application of BP· and ∃· to
obtain classes in the style . . . ∃·BP·∃· . . . P which build the Arthur-Merlin hierarchy. However,
Babai showed that this hierarchy collapses to its second level, i.e., to AM.

In connection with operators, we are interested in the question whether closure of some com-
plexity class with respect to a specified reducibility entails the same closure after application of an
operator.

Lemma 2.10 If C is closed under ≤P
c , then U·C is closed under ≤P

c .

Proof: Let A be some set, let B ∈ U·C such that A≤P
c B via some function f ∈ FP. As discussed

above let, f(x) = 〈x1, . . . , xk〉, k = s(|x|), and |x1| = . . . = |xk| = r(|x|) for all x ∈ Σ∗ and
polynomials r and s. Let B ∈ U·C via some set C ∈ C and a polynomial q. We define a new
set C ′ as

C ′ df
=

{

〈x, y1 · . . . · yk〉 : f(x) = 〈x1, . . . , xk〉 ∧
∧

1≤i≤k

(
〈xi, yi〉 ∈ C ∧ |yi| = q(|xi|)

)

}

.

C ′ is conjunctive reducible to some set in C, therefore C ′ ∈ C. Let q′ = s · q(r). There is at most
one word y of length q′(|x|) for every x ∈ Σ∗ such that 〈x, y〉 ∈ C ′, and exactly one, if x ∈ A.
Therefore, A ∈ U·C. 2

It is an open question whether UP is closed under ≤P
maj if C is closed under ≤P

maj . Equivalently,
which closure properties of a class C are required such that U·C is closed under ≤P

maj ?

Lemma 2.11 Let C be a complexity class. If C is closed under ≤P
m , then U·U·C = U·C and

∃·∃·C = ∃·C. If C is closed under ≤P
maj , then BP·BP·C = BP·C.

Proof: The proofs of the cases U· and ∃· follow the same scheme. Let A ∈ U·U·C via some
set B ∈ C and polynomials p1 and p2. For every x ∈ Σ∗,

x ∈ A ←→
∣
∣
{
y : |y| = p1(|x|) ∧ countp2

B (〈x, y〉) ≥ 1
}∣
∣ ≥ 1.

We define B′ as

B′ = {〈x, y1y2〉 : 〈〈x, y1〉, y2〉 ∈ B ∧ |y1| = p1(|x|) ∧ |y2| = p2(|〈x, y1〉|)}.

By assumption, B ′ ∈ C. Let q = p1 +p2(2 ·(id+p1)). If x 6∈ A, then countq
B′(x) = 0; otherwise,

countq
B′(x) ≥ 1. To show ∃·∃·C = ∃·C, it suffices to replace U· by ∃·.

The statement for BP· follows by amplification [Sch89]. 2

As remarked, UP does not seem to be closed under ≤P
maj . It is an interesting question whether

BP·BP·UP ⊆ BP·UP. In other words, does the successive application of BP· to UP produce an
infinite hierarchy? At least, these classes are all contained in AM.
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3 Completeness

Usual complexity classes are defined via machines. When considering promise classes, one ad-
ditionally makes assumptions about the computation process of these machines. For example for
UP, we use the resources of a non-deterministic polynomial-time Turing machine, and addition-
ally we assume that for all inputs there is at most one accepting path. Machines having certain
resources can be enumerated recursively. This enumeration gives a way to construct complete
problems. For example,

{0i10t1x : the i-th NP machine accepts x within t steps}

is a many-one complete set for NP. In contrast, because of the additional assumption about the
computation process, most of the known promise classes do not admit a recursive enumeration.
As a consequence, we cannot construct complete sets in this way.

This section studies the question of whether SBP has many-one complete sets. This question
is related to whether SBP is recursively enumerable. We show that SBP allows an enumeration
in a weak sense (i.e., the enumeration does not tell us its probability gap). In contrast, we show
that SBP is enumerable in a stronger sense if and only if SBP has many-one complete sets. The
section ends with the construction of an oracle relative to which SBP does not have many-one
complete sets. Even more, it does not contain a set that is many-one hard for BPP.

We fix enumerations {fi}i≥0 of all FP-functions and {gj}j≥0 of all #P-functions. Let Fi be
a deterministic polynomial-time Turing machine that computes fi in time ni + i and let Gj be a
non-deterministic polynomial-time Turing machine that computes gj in time nj + j.

3.1 Uniform Enumerations

We want to consider enumerations of SBP. First, we state precisely what an SBP-machine is. The
definition is based on SBP’s characterization via FP- and #P-functions [BGM03, Proposition 2].

Definition 3.1 An SBP-machine is a triple of natural numbers (i, j, n) where n ≥ 2 such that for
all words w, either

gj(w) >
(
1 + 1

n

)
· fi(w) or

gj(w) <
(
1− 1

n

)
· fi(w).

Definition 3.2 The language accepted by the SBP-machine (i, j, n) is defined as

LSBP(i, j, n) df={w : gj(w) > fi(w)}.

Proposition 3.3 A language belongs to SBP if and only if it is accepted by an SBP-machine.

Proof: Follows from SBP’s characterization via FP- and #P-functions [BGM03, Proposition 2].
2

For promise classes like UP it is clear how to define the notion of uniform enumeration. Since
the promise is “one accepting path”, we only need an enumeration of machines. However, for
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classes like BPP, NP ∩ SPARSE, and SBP, there is some freedom in the definition. Here the
promise (i.e., census function for NP ∩ SPARSE and probability gap for BPP and SBP) varies.
Should the enumeration tell us just machines or both, machines and promises? We consider both
notions and start with the stronger one.

Definition 3.4 We call SBP uniformly enumerable if there is a recursive function h : N → N
3

such that

1. every (i, j, n) ∈ range(h) is an SBP-machine, and

2. for all sets A ∈ SBP there exists an SBP-machine (i, j, n) ∈ range(h) that accepts A.

Function h uniformly enumerates SBP.

The first statement demands LSBP(h) ⊆ SBP and the second statement demands SBP ⊆ LSBP(h)
for a function h uniformly enumerating SBP.

Lemma 3.5 SBP is uniformly enumerable via h such that range(h) ⊆ N
2 × {2}.

Proof: This follows by amplification [BGM03, Proposition 3]: We start with an enumeration h′

and define an enumeration h that simulates h′. If h′ outputs (i, j, n), then h amplifies this machine
and outputs the amplified machine (i′, j′, 2). 2

Hartmanis and Hemachandra [HH88] investigated uniform enumerations for UP and BPP.
The following proposition shows that we defined “uniform enumeration for SBP” in their sense.

Proposition 3.6 SBP is uniformly enumerable if and only if for every 0 < ε < 1
2 there is a

recursive function hε : N→ N
2 such that the following holds.

1. For every (i, j) ∈ range(hε) and every x ∈ Σ∗,

gj(x) > (1 + ε) · fi(x) or

gj(x) < (1− ε) · fi(x).

2. For every A ∈ SBP there exists (i, j) ∈ range(hε) such that

x ∈ A ←→ gj(x) > fi(x).

Proof: “⇐=” Let h be the enumeration for ε = 1
3 and define h′(m)

df
=(i, j, 3) where h(m) = (i, j).

We show that SBP is uniformly enumerable via h′. If (i, j, n) ∈ range(h′), then n = 3 and
(i, j) ∈ range(h). Hence for x ∈ Σ∗,

gj(x) > (1 + 1
3) · fi(x) or

gj(x) < (1− 1
3) · fi(x).
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Hence (i, j, n) is an SBP-machine. This shows item 1 in Definition 3.4.
Let A ∈ SBP. There exist (i, j) ∈ range(h) such that

x ∈ A −→ gj(x) > (1 + 1
3) · fi(x) and

x /∈ A −→ gj(x) < (1− 1
3) · fi(x).

Hence (i, j, 3) ∈ range(h′) is an SBP-machine that accepts A. This shows item 2 in Defini-
tion 3.4.

“=⇒” Assume SBP is uniformly enumerable via h. By Lemma 3.5, we may assume that for
all (i, j, n) ∈ range(h), n = 2. Let 0 < ε < 1/2 and define h′ to be the projection of h that
neglects the last component of h.

If A ∈ SBP, then there exists an SBP-machine (i, j, 2) ∈ range(h) that accepts A. Therefore,
for all words x,

x ∈ A −→ gj(x) > (1 + 1
2) · fi(x) −→ gj(x) > (1 + ε) · fi(x) and

x /∈ A −→ gj(x) < (1− 1
2) · fi(x) −→ gj(x) < (1− ε) · fi(x).

Since (i, j) ∈ range(h′), this shows 3.6.2.
Let (i, j) ∈ range(h′) and x ∈ Σ∗. Hence (i, j, 2) ∈ range(h) and therefore,

gj(x) > (1 + 1
2) · fi(x) or

gj(x) < (1− 1
2) · fi(x).

We obtain 3.6.1. 2

Hartmanis and Hemachandra [HH88] showed that UP is uniformly enumerable if and only if
UP has many-one complete sets. The same technique shows similar results for NP∩coNP, BPP,
and BQP [BFFvM00]. We apply this technique to SBP. Interestingly enough, this technique does
not show a similar result for NP ∩ SPARSE [BFFvM00]. Intuitively, NP ∩ SPARSE is quite
close to complexity classes that have no promise, since its promise aims at the accepted language
and not at the computation process. As shown by Hartmanis and Yesha [HY84], NP ∩ SPARSE
has a Turing-complete set.

Theorem 3.7 SBP is uniformly enumerable if and only if it has many-one complete sets.

Proof: “=⇒”: Let H be a deterministic Turing machine that computes the enumeration h. By
Lemma 3.5, we can assume that for all (i, j, n) ∈ range(h), n = 2. We define the following set
that we will prove to be ≤P

m -complete for SBP.

L
df
={〈x, 0n, i, j, w〉 : |w|i+j + i + j ≤ n, H(x) outputs (i, j, 2) within n steps, gj(w) ≥ fi(w)}

Containment in SBP. Define the following functions.

f(z)
df
=







fi(w) : if z = 〈x, 0n, i, j, w〉 such that |w|i+j + i + j ≤ n
and H(x) outputs (i, j, 2) within n steps

1 : otherwise

g(z)
df
=







gj(w) : if z = 〈x, 0n, i, j, w〉 such that |w|i+j + i + j ≤ n
and H(x) outputs (i, j, 2) within n steps

0 : otherwise
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Note that the conditions in these definitions can be tested in time polynomial in |z|. Assume we
are given some z = 〈x, 0n, i, j, w〉 that satisfies these conditions. The value fi(w) is computed by
Fi in time at most |w|i + i ≤ n ≤ |z|. Hence f ∈ FP. Likewise, gj(w) is the number of accepting
paths of Gj(w). The running time of Gj(w) is at most |w|j + j ≤ n ≤ |z|. This shows g ∈ #P.

Observe that for all z ∈ Σ∗,

z ∈ L ←→ g(z) ≥ f(z). (1)

Assume that there exists z such that

(1− 1
2) · f(z) ≤ g(z) ≤ (1 + 1

2) · f(z). (2)

From the definition of f and g it follows that z = 〈x, 0n, i, j, w〉 such that |w|i+j + i + j ≤ n and
H(x) outputs (i, j, 2) within n steps. Therefore, f(z) = fi(w) and g(z) = gj(w).

(1− 1
2) · fi(w) ≤ gj(w) ≤ (1 + 1

2) · fi(w). (3)

Hence, h(x) = (i, j, 2) is not an SBP-machine. This contradicts our assumption. Together with
equation (1) this implies for all z ∈ Σ∗,

z ∈ L −→ g(z) >
(
1 + 1

2

)
· f(z) and

z /∈ L −→ g(z) <
(
1− 1

2

)
· f(z).

This shows L ∈ SBP.

Hardness for SBP. Let L′ ∈ SBP. There exists an x such that h(x) = (i, j, 2) and the SBP-
machine (i, j, 2) accepts L′. Let t be the computation time of H(x) and let

s(w) df=〈x, 0max{t,|w|i+j+i+j}, i, j, w〉.

Since in this definition x, t, i, and j appear as constants, s ∈ FP. From the definition of L it
follows that L′≤P

mL via reduction function s.

“⇐=”: Let L be an SBP-complete set accepted by SBP-machine (i, j, 2). For k ≥ 0, let

h(k) df=(i′, j′, 2)

where i′ is the index of fi ◦ fk ∈ FP and j′ is the index of gj ◦ fk ∈ #P. Since these indices can
be determined effectively, h is a recursive function.

If (i′, j′, 2) ∈ range(h) and (i′, j′, 2) is not an SBP-machine, then (i, j, 2) is not an SBP-
machine, either. Hence, every (i′, j′, 2) ∈ range(h) is an SBP-machine.

If A ∈ SBP, then A≤P
mL via some polynomial-time reduction function fk. We obtain:

w ∈ A −→ fk(w) ∈ L −→ gj(fk(w)) > (1 + 1
2) · fi(fk(w)) −→ gj′(w) > (1 + 1

2) · fi′(w)

w /∈ A −→ fk(w) /∈ L −→ gj(fk(w)) < (1− 1
2) · fi(fk(w)) −→ gj′(w) < (1− 1

2) · fi′(w)

Hence there is an SBP-machine (i′, j′, 2) ∈ range(h) that accepts A. 2
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In Theorem 3.12 below we will construct an oracle relative to which SBP does not have
many-one complete sets. Relative to this oracle, SBP is not uniformly enumerable. Hence we
do not expect SBP to be uniformly enumerable. However, SBP is uniformly enumerable in the
following weaker sense. Here we do not demand that the enumeration function outputs the size
of the probability gap (i.e., parameter n in Definition 3.4). Buhrman, Fenner, Fortnow, and van
Melkebeek consider a similar weak enumeration for NP ∩ SPARSE [BFFvM00].

Definition 3.8 SBP is uniformly enumerable without gap if there is a recursive function h : N→
N

2 such that

1. for every (i, j) ∈ range(h) there exists an n ≥ 2 such that (i, j, n) is an SBP-machine, and

2. for all A ∈ SBP there exists an SBP-machine (i, j, n) that accepts A and (i, j) ∈ range(h).

Theorem 3.9 SBP is uniformly enumerable without gap.

The enumeration is based on a trick (also called cheat) which was used by Buhrman, Fenner,
Fortnow, and van Melkebeek [BFFvM00] to obtain a weak enumeration for NP ∩ SPARSE.
However, for SBP an additional hurdle appears. The machine model for NP ∩ SPARSE has the
following property: Every machine that accepts a finite language, is a valid machine (since we can
choose the bounding polynomials to be arbitrarily large). However, for SBP this does not hold. If
there exists some x such that fi(x) = gj(x), then for all n, (i, j, n) is not a valid SBP-machine.
Our proof prevents that this happens.

Proof: We start from an enumeration of all pairs (i′, j′) of natural numbers. For every (i′, j′)
define the following functions.

f(x)
df
=







2 · fi′(x) + 1 : if fi′(x) > 0

1 : otherwise

g(x) df=







2 · gj′(x) : if for all y, |y| ≤ log log |x|,
either gj′(y) < 1

2 · fi′(y) or gj′(y) > 3
2 · fi′(y)

0 : otherwise

Note that f ∈ FP and g ∈ #P (the condition in g’s definition can be tested deterministically in
time polynomial in |x|). This definition ensures that for all x, f(x) 6= g(x), yet the change in the
ratio of f and g is insignificant. Determine i and j such that f = fi and g = gj . Output the pair
(i, j). So the new enumeration consists of all pairs (i, j).

If A ∈ SBP, then there exists an SBP-machine (i′, j′, 2) that accepts A. We may assume
fi′ > 0. The pair (i, j) appears in the enumeration. If x ∈ A, then gj′(x) − 1 ≥ 3

2 · fi′(x) and
therefore,

gj(x) = 2 · gj′(x) ≥ 3
2 · 2 · fi′(x) + 2 > 3

2 · fi(x).
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If x /∈ A, then gj′(x) < 1
2 · fi′(x) and therefore,

gj(x) = 2 · gj′(x) < 1
2 · 2 · fi′(x) < 1

2 · fi(x).

It follows that (i, j, 2) is an SBP-machine that accepts A and (i, j) appears in the enumeration.
This shows statement 2 of Definition 3.8.

Suppose that (i, j) appears in the enumeration. If (i, j, 2) is an SBP-machine, then we are
done. Otherwise, by definition of gj , for at most finitely many x, gj(x) 6= 0.

n
df
=2 + max({gj(x) : x ∈ Σ∗} ∪ {fi(x) : x ∈ Σ∗ ∧ gj(x) > 0})

We know that for all x, fi(x) 6= gj(x). If gj(x) > fi(x), then

gj(x) ≥ fi(x) + 1 > (1 + 1
n
) · fi(x).

If gj(x) < fi(x), then
gj(x) ≤ fi(x)− 1 < (1− 1

n
) · fi(x).

Therefore, (i, j, n) is an SBP-machine. This shows statement 1 of Definition 3.8. We conclude
that SBP is effectively enumerable without gap. 2

3.2 Oracle Construction

This subsection gives evidence that SBP does not have many-one complete sets. Similar results are
known for other promise classes: Sipser [Sip82] proved that R and NP∩ coNP have no many-one
complete sets relative to oracles. By Gurevich [Gur83], it follows that NP∩ coNP has no Turing-
complete sets in a relativized world. Hartmanis and Hemachandra [HH88] show that relative to
oracles, UP and BPP do not have many-one complete sets. By Ambos-Spies [AS86], it follows
that there is an oracle relative to which BPP does not have Turing-complete sets. Hemaspaandra,
Jain, and Vereshchagin [HJV93] improve these results and show that ZPP, R, UP and FewP do
not have Turing complete sets relative to oracles.

We construct an oracle relative to which AM does not contain any many-one hard set for BPP.
Hence SBP does not have many-one complete sets relative to this oracle. Since BPP ⊆ SBP ⊆
AM ⊆ ΠP

2 , our oracle is optimal in the sense that ΠP
2 contains complete sets that are many-one

hard for BPP.
Using amplification, AM can be characterized in the following way.

Proposition 3.10 A set A is in AM if there are B ∈ NP and a polynomial r such that for all
x ∈ Σ∗,

x ∈ A −→ countr
B(x) > 3

4 · 2
r(|x|) and

x /∈ A −→ countr
B(x) < 1

4 · 2
r(|x|).

We fix an enumeration of pairs of natural numbers (i, j) where i stands for the i-th polynomial qi
and j for the j-th non-deterministic polynomial-time Turing-machine Mj . For every set A ∈ AM
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there is a tuple in this enumeration such that A is characterized by B = L(Mj) and r = qi

(Proposition 3.10). We call such a pair (i, j) an AM-calculation. Let

LAM(i, j)
df
={x : countqi

L(Mj)
(x) > 1

2 · 2
qi(|x|)}

be the language accepted by (i, j).
We start the construction with a lemma providing the main argument. The idea is typical for

oracle constructions dealing with promise classes: Either the machine does not accept a given
language (items (i) and (ii)), or we can destroy the promise of the machine (item (iii)).

Lemma 3.11 Let M be a non-deterministic polynomial-time oracle Turing machine with running
time p and let q be a polynomial. Let n ≥ 1, O ⊆ Σ<n, and F ⊆ Σn such that ‖F‖ ≤ 2n−3. For
every x ∈ Σ∗ where p(|x| + q(|x|)) ≤ 2n−4, there exists an X ⊆ Σn − F such that one of the
following holds:

(i) ‖X‖ ≤ 1
4 · 2

n and the number of y ∈ Σq(|x|) such that MO∪X(x, y) accepts is greater than
3
42q(|x|).

(ii) ‖X‖ ≥ 3
4 · 2

n and the number of y ∈ Σq(|x|) such that MO∪X(x, y) accepts is less than
1
42q(|x|).

(iii) The number of y ∈ Σq(|x|) such that MO∪X(x, y) accepts belongs to the interval
[142q(|x|), 3

42q(|x|)].

Proof: Assume there exists x such that for all X ⊆ Σn − F , the statements (i), (ii), and (iii)
do not hold. Choose an X ⊆ Σn − F of minimal cardinality such that there are more than
3
42q(|x|) words y ∈ Σq(|x|) such that MO∪X accepts (x, y). Such a set X exists, since (i), (ii), and
(iii) do not hold. ‖X‖ > 1

4 · 2
n, since otherwise (i) holds. Choose pairwise different elements

x0, x1, . . . , x2p(|x|+q(|x|)) ∈ X . For every i, 0 ≤ i ≤ 2p(|x| + q(|x|)), we argue as follows: Since

X is minimal and since (iii) does not hold, there are less than 1
42q(|x|) words y ∈ Σq(|x|) such that

MO∪X−{xi} accepts (x, y). Hence, for at least one half of all y ∈ Σq(|x|) it holds that MO∪X(x, y)
accepts and xi is queried on all accepting paths. By pigeon hole principle, there is a y ∈ Σq(|x|)

such that MO∪X(x, y) accepts and every accepting path asks more than p(|x|+ |y|) queries. This
contradicts the running time of M . 2

Theorem 3.12 There exists an oracle relative to which AM does not contain a set that is≤P
m -hard

for BPP.

Proof : Fix an enumeration of all triples (i, j, k) of natural numbers where (i, j) represents a
possible AM-calculation and k stands for the k-th FP-function fk. For every oracle Z and every
i and j, let

WZ
i,j

df={0n : n is a power of the 〈i, j〉-th prime number and ‖Z ∩ Σn‖ ≥ 1
2 · 2

n}

be our witness languages. We construct the oracle O and consider fk as a possible many-one
reduction function that reduces W O

i,j to the language accepted by the AM-calculation (i, j). The
construction ensures one of the following:
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• Either W O
i,j is in BPP but not many-one reducible to LAM(i, j)

• or (i, j) is not an AM-calculation.

We construct the oracle in stages such that in each stage we diagonalize against one triple (i, j, k).
Let (i, j, k) be the next triple on our list, and let O be the oracle constructed so far. Let q = qi and
M = Mj , and let p be the running time of M . Let n be a power of the 〈i, j〉-th prime number. We
choose n large enough such that O ⊆ Σ<n and adding words of length n to the oracle does not
effect diagonalizations made in previous steps.

Let x
df
= fO

k (0n). F denotes the set of all queries of length n that are asked during computation
fO

k (0n). We may assume that n was chosen large enough such that ‖F‖ ≤ 2n−3 and p(|x| +
q(|x|)) ≤ 2n−4. We apply Lemma 3.11 and obtain an X ⊆ Σn − F such that (i), (ii), or (iii)
holds. Let O := O ∪ X . This finishes the diagonalization against (i, j, k) and we can proceed
with the next triple on our list.

It remains to show that relative to O, AM does not have a set that is ≤P
m -hard for BPP.

Assume that there exists a set A in AMO such that A is ≤P
m -hard for BPPO. There must be an

AMO-calculation (i, j) that accepts A. Let q = qi and M = Mj , and let p be the running time of
M .

Case 1: There exists k′ ≥ 0 such that in the diagonalization against the triple (i, j, k ′), state-
ment (iii) of Lemma 3.11 holds. We obtain

#{y ∈ Σq(|x|) : M accepts (x, y)} ∈
[

1
4 · 2

q(|x|), 3
4 · 2

q(|x|)
]

.

This contradicts our assumption that (i, j) is an AMO-calculation. Hence Case 1 is not possible.
Case 2: For all k′ ≥ 0, during the diagonalization against the triple (i, j, k ′), either statement

(i) or statement (ii) of Lemma 3.11 holds. It follows that for all n, if n is a power of the 〈i, j〉-th
prime number, then either ‖O ∩ Σn‖ ≤ 1

4 · 2
n or ‖O ∩ Σn‖ ≥ 3

4 · 2
n. Hence W O

i,j ∈ BPPO.

Since A is ≤P
m -hard for BPPO, there exists k such that W O

i,j≤
P
mA via fO

k . Consider the stage
in the construction where we treated the triple (i, j, k). By our assumption, either statement (i)
or statement (ii) of Lemma 3.11 holds. Therefore, 0n ∈ W O

i,j ←→ x = fO
k (0n) /∈ A. This

contradicts our assumption and shows that relative to O, AM does not have a set that is ≤P
m -hard

for BPP. 2

Corollary 3.13 There exists an oracle relative to which neither SBP nor AM have many-one
complete sets.

4 The Operator SB·

The complexity class PP is the largest class of languages acceptable by polynomial-time proba-
bilistic Turing machines [Gil77]. An input is accepted by a probabilistic Turing machine if and
only if an accepting computation appears with probability more than 1

2 . A threshold machine
looks only on the rate of accepting paths with respect to the total number of computation paths
and accepts an input if and only if more than half of the paths are accepting. Hence, the difference
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to probabilistic machines is, that we do not require balanced computation trees. Nevertheless, in
case of polynomial-time Turing machines, the notions of threshold and probabilistic machines co-
incide [Sim75]. If we modify both definitions by demanding a probability gap at 1

2 this results, for
probabilism, in BPP and, in case of threshold machines, in BPPpath. By loosening the definition
of BPP, we obtain SBP, which is located between BPP and BPPpath [BGM03]. To understand
SBP as a probabilistic class, we modify the definition of a probabilistic Turing machine so that an
input x is accepted if the probability of an accepting computation is more than some polynomial
power of 1

2 , i.e., 2−p(|x|) for some polynomial p; and x is not accepted if the probability of an
accepting path is at most 2−p(|x|). It is not hard to see that the class of languages acceptable in the
sense of this more general model is still equal to PP. Applying the same modification, i.e., requir-
ing a probability gap, leads to the definition of SBP. In this section we introduce and investigate
the operator SB· which is derived from SBP in the same manner as BP· is derived from BPP.

Definition 4.1 Let C be a complexity class. For every set A, A ∈ SB·C if and only if there exist
B ∈ C, polynomials p and q, and ε ∈ (0, 1) such that for every x ∈ Σ∗,

x /∈ A −→ countq
B(x) < (1− ε) · 2p(|x|) and

x ∈ A −→ countq
B(x) > (1 + ε) · 2p(|x|).

If A ∈ SB·C, then we also say that A is in SB·C via some set B, polynomials p and q, and ε.
The first polynomial always refers to the exponent of 2 and the second to that being involved in
function count.

The property of each language in SB·C is that there is a computation such that a small interval
of possible numbers of accepting paths of a computation is forbidden, and this gap separates the
numbers that entail rejection and acceptance. Note that the gap varies in size and position relative
to the number of computation paths and the size of the input in contrast to the fixed relative size
and position of the gap in case of BP·. As we will see later, for inputs of growing size, the gap
of size 2ε · 2p(|x|) becomes smaller relative to the number of computation paths if q − p is not a
constant (we will show that we can assume p < q). We verify SB·P = SBP. In [BGM03] it is
shown that SBP can be characterized equivalently in different ways. We want to mention that each
of these characterizations could serve as the foundation of the definition of the operator SB·, but
we would obtain operators of different power. The reason is that amplification was used to prove
these equivalences—a technique that is not applicable in general.

We observe that SB· is monotonic with respect to inclusion. Before we look closer at the
power that SB· provides, we show basics about of the choice of both the polynomials p and q.

Lemma 4.2 Let C be a complexity class, and let A ∈ SB·C via some B ∈ C and polynomials p
and q in the sense of Definition 4.1.

1. BP·C ⊆ SB·C, and if C is closed under ≤P
m , then ∃·C ⊆ SB·C.

2. If C is closed under ≤P
bc , p is constant, and q is unbounded, then A ∈ ∃·C.

3. If there is a natural n0 such that for all n ≥ n0, q(n) ≤ p(n), then A is finite.

4. If C is closed under ≤P
maj , p < q, and q is constant, then A ∈ C.
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5. If C is closed under ≤p
m, then there are B ′ ∈ C and polynomials p′, q′ where p′(n) > 0 for

all n ∈ N, such that A ∈ SB·C via B ′, p′, and q′.

Proof:

1. Let A ∈ BP·C via some set B ∈ C, some ε ∈ (0, 1), and polynomial p. Hence A ∈ SB·C
via set B, the polynomials p − 1 and p, and 2ε. Let A ∈ ∃·C via some set B ∈ C and a
polynomial p. Define a new set B′ as

B′ df=0B ∪ 1B ∪B ′′

where B′′ = {e, 0, 1} if B is non-empty and B ′′ = ∅ otherwise (e denotes the empty word).
B′ many-one reduces to B and is therefore contained in C. Hence A ∈ SB·C in the sense of
Definition 4.1 via B′, the polynomials 0 and p + 1, and any ε ∈ (0, 1).

2. We define a new set B′. Fix some x ∈ Σ∗ and let k = 2p(|x|) and

B′ df=

{

〈x, y1 · . . . · yk〉 :
k∧

i=1

(

〈x, yi〉 ∈ B ∧ |yi| = q(|x|) ∧
∧

1≤j<i

yi 6= yj

)
}

.

Obviously, B ′≤P
bcB, and therefore B ′ ∈ C. For any x ∈ Σ∗ that is not from A, there are less

than k words z ∈ Σq(|x|) such that 〈x, z〉 ∈ B. Hence, there is no y ∈ Σk·q(|x|) such that
〈x, y〉 ∈ B′. Otherwise, if x ∈ A, there are at least k different z ∈ Σq(|x|) with 〈x, z〉 ∈ B,
which means that there is at least one y ∈ Σk·q(|x|) such that 〈x, y〉 ∈ B ′. Hence, A ∈ ∃·C.

3. Since 2q(|x|) < (1 + ε) · 2p(|x|) for every ε ∈ (0, 1) and every x ∈ Σ∗ with length at least
n0, A does not contain any word of length at least n0. Hence it is finite.

4. Observe that p must also be constant. We show that A≤P
maj B, which entails A ∈ C. Let

w ∈ Σ∗ such that w ∈ B (we can assume that B 6= ∅). Let x ∈ Σ∗; let p = p(|x|),
q = q(|x|). Our reducing function f computes the following sequence of questions. Let
k = 2q − 2p+1 − 1, or k = 1 in case of q = p + 1.

f(x) df=〈〈x, 0q〉, . . . , 〈x, 1q〉
︸ ︷︷ ︸

2q

, w, . . . , w
︸ ︷︷ ︸

k

〉

If q = p + 1 and x ∈ A, then more than half of the computed queries 〈x, z〉, z ∈ Σq, are
contained in B, and the number of queries that are accepted is at least 2 plus the number of
queries that are not accepted. Hence more than half of the queries computed by f on input x
are accepted. If x 6∈ A, then more than half of the queries of f(x) are rejected, so that we
obtain A≤P

maj B in this case. Similar arguments hold in case of q > p + 1.

5. Let
B′ df

={〈x, ay〉 : a ∈ {0, 1}, 〈x, y〉 ∈ B, |y| = q(|x|)},

let q′(n)
df
= q(n) + 1, and p′(n) = p(n) + 1. If x /∈ A, then countq′

B′(x) < (1− ε) · 2p′(|x|),

and if x ∈ A, then countq′

B′(x) > (1+ ε) · 2p′(|x|). Since B′≤P
mB and C is closed under ≤P

m

it follows that B ′ ∈ C.
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2

Lemma 4.2 gives reason enough to assume p < q henceforth. Besides, we observe in this case
that the gap between the allowed numbers of accepting computations for rejection and acceptance
gets closer to 0 relative to the number of computation paths with growing computation length.

One of the major properties of complexity classes defined by application of SB· is the ability
to reduce errors, which means reducing the ratio between the number of accepting paths and the
number of all paths for inputs that are to be rejected, while maintaining the ratio of accepting paths
and all paths for inputs that are to be accepted. More formally, the gap of width 2ε · 2p(|x|) for the
number of accepting paths in the rejecting and accepting case can be extended to every desired
value. In the case of BPP this is well-known as probability amplification.

Lemma 4.3 (Amplification 1) Let C be a complexity class closed under ≤P
c , and let A ∈ SB·C.

For every polynomial r, there exist some set B ′ ∈ C and polynomials p′ and q′ such that for every
x ∈ Σ∗,

x ∈ A −→ countq′

B′(x) ≥ 2r(|x|) · 2p′(|x|) and

x /∈ A −→ countq′

B′(x) ≤ 2p′(|x|).

Proof: Let A ∈ SB·C via some set B ∈ C, polynomials p and q, and ε > 0 in the sense of
Definition 4.1. Observe that there is a natural constant a such that both of the following properties
hold for an appropriate natural number b:

(1 + ε)a > 4 · (1− ε)a and
1

2b
> (1− ε)a ≥

1

2b+1

For convenience, we assume a to be as small as possible even though there is no need to any
limitation of the size of a. We define a new set B′ as

B′ df
=

{

〈x, y1 · . . . · yk〉 : k = a · r(|x|) ∧
∧

1≤i≤k

(
〈x, yi〉 ∈ B ∧ |yi| = q(|x|)

)
}

.

Obviously, B ′≤P
c B. Let q′ = a · r · q and p′ = ap− b. We conclude the proof with the following

argumentation, where n df= |x|.

x ∈ A −→ countq
B(x) > (1 + ε) · 2p(n)

−→ countq′

B′(x) = (countq
B(x))ar(n)

> (4 · (1− ε)a)r(n) · 2ap(n)r(n)

≥
2r(n)

2br(n)
· 2ap(n)r(n)

= 2r(n) · 2p′(n)

x /∈ A −→ countq
B(x) < (1− ε) · 2p(n)

−→ countq′

B′(x) = (countq
B(x))ar(n)

<
1

2br(n)
· 2ap(n)r(n)

= 2p′(n).
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2

The main idea of the proof is to concatenate computation paths. Every such path is accepting if
and only if all partial computations along this path are accepting. Since we cannot assume a fixed
machine model, we express the concatenation in terms of reducibility. The number of accepting
paths in the accepting and rejecting case are bounded above and below by powers of the original
bounds.

In some cases it suffices to amplify the acceptance probability by only a constant factor. In
these cases we can formulate a similar amplification lemma for classes that are closed under the
stronger bounded conjunctive reduction.

Corollary 4.4 (Amplification 2) Let C be a complexity class closed under≤P
bc , and let A ∈ SB·C.

For every natural number a, there exist some set B ∈ C and polynomials p and q such that for
every x ∈ Σ∗,

x ∈ A −→ countq
B(x) > a · 2p(|x|) and

x /∈ A −→ countq
B(x) < 2p(|x|).

5 Closure Properties

In this section we investigate the closure properties of classes that are derived from a basic class C
by application of operators.

Lemma 5.1 If C is closed under ≤P
m , then SB·C is closed under ≤P

m .

Proof: Let A be some set, B ∈ SB·C such that A≤P
mB via function f ∈ FP. Let r be a polynomial

such that |f(x)| = r(|x|) for every x ∈ Σ∗. We have to show that A ∈ SB·C. Let B ∈ SB·C
via some set C ∈ C, polynomials p and q, and ε > 0 in the sense of Definition 4.1. Define a new
set C ′ as

C ′ df=
{
〈x, y〉 : 〈f(x), y〉 ∈ C ∧ |y| = q(r(|x|))

}
.

C ′≤P
mC , hence C ′ ∈ C. Let q′ = q(r). Since countq′

C′(x) = countq
C(f(x)), for all x ∈ Σ∗,

A ∈ SB·C. 2

A result similar to Lemma 5.1 holds for U·, ∃·, and BP·. This means that for a complexity
class C closed under ≤P

m , U·C, ∃·C, and BP·C are all closed under ≤P
m . In fact, the proof of

Lemma 5.1 states the closure under ≤P
m for all complexity classes whose acceptance behavior

depends only on the number of accepting paths of a computation. Unfortunately, it is not clear
whether there are other reducibilities such that the closure of a complexity class C under such
a reducibility entails the same closure for SB·C. In particular we do not know whether SBP is
closed under ∩, which impedes its closure under ≤P

c . For U·, ∃·, and BP· again, the statement of
Lemma 5.1 is even true if we replace ≤P

m by ≤P
c .

SBP is closed under ∪ [BGM03]. A related result can be shown for complexity classes that
are definable by application of SB·.
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Lemma 5.2 If C is closed under ≤P
c and ≤P

d , then SB·C is closed under ≤P
d .

Proof: Let A be a set, B ∈ SB·C such that A≤P
d B via function f ∈ FP. There are polynomials r

and s such that for every x ∈ Σ∗, f(x) = 〈x1, . . . , xk〉, k = s(|x|), and |x1| = . . . = |xk| =
r(|x|). We assume s to be non-decreasing. If A is finite, then A conjunctive reduces to some set
in C, and therefore is in C and SB·C. Now, let A be infinite. If r is constant, f generates queries
from a finite set of words. A conjunctive reduces to some set in C and therefore is in SB·C. Let r
be unbounded. Applying Lemma 4.3, let B ∈ SB·C via some set C ∈ C and polynomials p and q
such that for every x ∈ Σ∗,

x ∈ B −→ countq
C(x) ≥ 2s(|x|)+2 · 2p(|x|) and

x /∈ B −→ countq
C(x) ≤ 2p(|x|).

By Lemma 4.2, there is a natural number n0 such that for all n > n0, p(n) < q(n). We define a
new set C ′ as

C ′ df
=

{

〈x, y1 · . . . · yk〉 : f(x) = 〈x1, . . . , xk〉 ∧

∨

i∈{1,...,k}

〈xi, yi〉 ∈ C ∧ y1, . . . , yk ∈ Σq(r(|x|))

}

\

{

〈x, y〉 : r(|x|) ≤ n0 ∧ x 6∈ A ∧ y ∈ Σs(|x|)·q(r(|x|))

}

.

If x ∈ Σ∗ is not contained in A and r(|x|) ≤ n0, then there is no y such that 〈x, y〉 ∈ C ′. Since
the set of words x ∈ Σ∗ such that x 6∈ A and r(|x|) ≤ n0 is finite, C′ disjunctive reduces to some
set in C and therefore is in C. Let q′ = s · q(r). For x ∈ Σ∗, we have to count the number of
words y of length q′(|x|) such that 〈x, y〉 ∈ C ′. Let k

df
= s(|x|) and `

df
= q(r(|x|)). If x ∈ A, then

there are at least 2s(r(|x|))+2 · 2p(r(|x|)) · 2(k−1)·` such words. If x 6∈ A, the number of these words
is at most

2k·` −
(
2` − 2p(r(|x|))

)k
=

k∑

i=1

−(−1)i ·

(
k

i

)

· 2i·p(r(|x|)) · 2(k−i)·`.

For every x ∈ Σ∗, r(|x|) > n0, and every i ∈ {1, . . . , k} it holds that

2i·p(r(|x|)) · 2(k−i)·` ≤ 2p(r(|x|)) · 2(k−1)·`.

Replacing the term−(−1)i by 1 this shows that the sum is bounded above by 2k ·2p(r(|x|)) ·2(k−1)·`.
Let p′ = s + 1 + p(r) + (s−1) · q(r). Hence A ∈ SB·C via C ′, p′, q′, and some ε ∈ (0, 1). 2

Let us reconsider the proof of Lemma 5.2. Instead of demanding closure of C under ≤P
c and

≤P
d , we can loosen the requirements to closure of C under ≤P

bc and ≤P
bd . Applying lemma 4.4, the

rest of the proof would show that SB·C is closed under ≤P
bd , too. The class BH(NP), the Boolean

closure of NP, is closed under bounded truth-table reducibility [KSW87]. So we can conclude
that SB·BH(NP) is closed under ≤P

bd . Furthermore, ΘP
2 , the truth-table closure of NP, is closed

under truth-table reducibility [Wag90]. Hence SB·ΘP
2 is closed under ≤P

d .
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Lemma 5.3 If C is closed under ≤P
c , then ∃·C is closed under ≤P

maj .

Proof: Let A be a set that majority reduces to some set B ∈ ∃·C via reduction function f ∈ FP.
There are polynomials s and r such that for every x ∈ Σ∗,

f(x) = 〈y1, . . . , yk〉, k = s(|x|) and |y1| = . . . = |yk| = r(|x|).

Remember that for every n, s(n) is odd. Let B ∈ ∃·C via some set C ∈ C and polynomial p.
Define a new set C′ as

C ′ df=

{

〈x, ϕ · z1 · . . . · z`〉 : f(x) = 〈y1, . . . , yk〉 ∧ k = s(|x|) ∧ ` =
k + 1

2
∧

∧

1≤i≤`

(

〈yϕ(i), zi〉 ∈ C ∧ |zi| = p(r(|x|))
)

∧

ϕ : {1, . . . , `} → {1, . . . , k} injective

}

.

For simplicity, we say that the representation of ϕ is of length dlog ke·`. Obviously, C ′ conjunctive
reduces to some set in C. So it is contained in C. Let p′ = 1

2 · (s +1) ·
(
dlog se+ p(r)

)
. We obtain

A ∈ ∃·C via C ′ and p′. 2

Sch öning proved the following amplification lemma.

Lemma 5.4 ([Sch89]) Let C be a complexity class closed under ≤P
maj . For any set A ∈ BP·C

and any polynomial r there is some set B ∈ C and a polynomial q such that for every x ∈ Σ∗,
∣
∣
∣

{

y ∈ Σq(|x|) : 〈x, y〉 ∈ B ←→ x ∈ A
}∣

∣
∣ >

(

1−
1

2r(|x|)

)

· 2q(|x|).

The following lemma is well-known. For the sake of completeness we include the proof.

Lemma 5.5 If C is non-trivial and closed under ≤P
maj , then BP·C is closed under ≤P

maj .

Proof: Let B ∈ BP·C and A≤P
maj B. There are a function f ∈ FP and polynomials p and s such

that for all x ∈ Σ∗

f(x) = 〈y1, . . . , y2p(|x|)+1〉

and |yi| = s(|x|) for i ∈ {1, . . . , 2p(|x|) + 1} and x ∈ A if and only if

#{i : 1 ≤ i ≤ 2p(|x|) + 1 and yi ∈ B} ≥ p(|x|) + 1.

Let
Fx

df
={yi : 1 ≤ i ≤ 2p(|x|) + 1 and f(x) = 〈y1, . . . , y2p(|x|)+1〉}.

By lemma 5.4, there is a set C ∈ C and a polynomial q such that the following holds for a
polynomial r, r ≥ 3 + log p(|x|), and all x ∈ Σ∗:

x ∈ B −→ countq
C(x) >

(

1−
1

2r(|x|)

)

· 2q(|x|)

x /∈ B −→ countq
C(x) <

1

2r(|x|)
· 2q(|x|).
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Now define a set C′ as

C ′ df
={〈x, z〉 : z ∈ Σq(s(|x|)) and #{y : y ∈ Fx and 〈y, z〉 ∈ C} ≥ p(|x|) + 1}.

C ′ majority reduces to C . Note that in the case that yinB the probability for 〈y, z〉 ∈ C is very
high and therefore the probability that for yi1, . . . , yik ∈ B there is a single z with 〈yij, z〉 ∈ C
for all 1 ≤ j ≤ k is still very high. This leads to the following argumentation, for which we fix
x ∈ Σ∗, and let n

df
= |x|. If x ∈ A, then Fx ∩B ≥ p(n) + 1 and for each y ∈ Fx ∩B it holds that

countq
C(y) >

(
1− 1

2r(|y|))

)
· 2q(|y|). Therefore, we have

x ∈ A −→ count
q(s)
C′ (x) > 2q(s(n)) −

p(n) + 1

2r(s(n))
2q(s(n))

≥

(
1

2
+

1

4

)

2q(s(n)).

On the other hand, if x /∈ A, then Fx ∩B ≤ p(|x|) and therefore,

x /∈ A −→ count
q(s)
C′ (x) <

p(n) + 1

2r(s(n))
2q(s(n)) ≤

(
1

2
−

1

4

)

· 2q(s(n)).

Hence, A is in BP·C. 2

6 Inclusion Properties of Classes with SB·

In this section, we want to investigate the power of SB· in connection with the operators ∃·, BP·,
U·, and SB· itself. We show that not all combinations of operators will lead to new complexity
classes. In fact, SB· is powerful enough to assimilate some operators to its left or right side. Before
we start, we note that if a complexity class C is closed under some reducibility ≤a , then C is also
closed under each reducibility which is stronger than ≤a .

We obtain our final results by a sequence of inclusion results. The following table gives an
overview of these results.

C is closed under result obtained in

≤P
c C ⊆ BP·C ⊆ BP·U·C ⊆ SB·C ⊆ BP·∃·C 6.2
≤P

c SB·∃·C = BP·∃·C 6.3
≤P

c ∃·SB·C = SB·C 6.4
≤P

c ∃·BP·C ⊆ SB·C 6.5
≤P

c U·SB·C = SB·U·C = SB·C 6.6
≤P

maj SB·BP·C = SB·C 6.7
≤P

c SB·SB· . . . SB·C = SB·SB·C = BP·∃·C 6.8
≤P

c BP·SB·C = BP·∃·C 6.9

Before combining SB·with other operators we first locate a complexity class SB·C with regard
to other operators applied to C. The special case of SB·C = SBP is already known to lie between
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BP·UP and AM [BGM03]. This result can be generalized. To prove this, we have to provide
some additional definitions and two results from [Sip83]. A linear hash function h : Σm → Σk

is given by a Boolean k ×m-matrix M . A word x = x1 · . . . · xm is mapped to y = y1 · . . . · yk

if and only if y = M · xT (the inner product modulo 2). For X ⊆ Σm and a family H of k hash
functions h1, . . . , hk , the predicate Collision(X,H) is true if and only if

∨

x,y1,...,yk∈X

∧

i∈{1,...,k}

(
x 6= yi ∧ hi(x) = hi(yi)

)
.

We say that X has a collision with respect to H . The set of all families of ` hash functions from
Σm to Σk is denoted by H(`,m, k).

Theorem 6.1 ([Sip83]) (i) Let X ⊆ Σm be a set of at most 2k−1 elements. If we choose a hash
family H uniformly at random from H(k,m, k), then the probability of a collision of X with
respect to H is at most 1

2 .
(ii) For any hash family H ∈ H(k,m, k) and any set X ⊆ Σm of cardinality at least k · 2k,

X must have a collision with respect to H .

Proposition 6.2 If C is closed under ≤P
c , then C ⊆ BP·C ⊆ BP·U·C ⊆ SB·C ⊆ BP·∃·C.

Proof: The first inclusion is due to Lemma 2.7, the second inclusion is immediate by the monotony
of BP· and Lemma 2.5. Let us look at the third one. Let A ∈ BP·U·C via some set B ∈ U·C, a
polynomial q, and ε ∈

(
0, 1

2

)
, and let B ∈ U·C via some set C ∈ C and a polynomial p. We define

a new set C ′ as
C ′ df

=
{
〈x, y · z〉 : 〈〈x, y〉, z〉 ∈ C

}
.

C ′ many-one reduces to C and therefore is in C. A ∈ SB·C via C ′, q − 1, p + q, and ε.
Finally we consider the fourth inclusion. Let A ∈ SB·C. By Lemma 4.3, there are B ∈ C and

polynomials p and q such that for every x ∈ Σ∗,

x ∈ A −→ countq
B(x) ≥ 2|x|+1 · 2p(|x|) and

x /∈ A −→ countq
B(x) ≤ 2p(|x|).

Let Xx
df
=

{
y : y = q(|x|) ∧ 〈x, y〉 ∈ B

}
for every x ∈ Σ∗. |Xx| = countq

B(x). Define a new
set D as

D
df
=

{
〈x,H〉 : x ∈ Σ∗ ∧ k = p(|x|) + 1 ∧ H ∈ H(k, q(|x|), k) ∧ Collision(Xx,H)

}
.

Note that D ∈ ∃·C by the closure of C under≤P
c . Let x ∈ Σ∗ such that 2|x| ≥ k and k = p(|x|)+1.

If x 6∈ A, then |Xx| ≤ 2k−1. If x ∈ A, then |Xx| ≥ 2|x|+k. So we can apply Theorem 6.1 and
obtain the following for a suitable polynomial r and all x ∈ Σ∗:

x ∈ A −→ countr
D(x) ≥ 2r(|x|)

x /∈ A −→ countr
D(x) ≤

1

2
· 2r(|x|).

To achieve the error-bound requirements of BP·, we use D ′ instead of D, where D′ is defined as

D′ =
{
〈x,H ·H ′〉 : 〈x,H〉, 〈x,H ′〉 ∈ D

}
.
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Since D′ conjunctive reduces to D, D′ ∈ C. Let r′ = 2 · r. We obtain for every x ∈ Σ∗,

x ∈ A −→ countr′

D′(x) ≥ 2r′(|x|) and

x /∈ A −→ countr′

D′(x) ≤
1

4
· 2r′(|x|).

It follows that A ∈ BP·∃·C. 2

If we let C = P, which is obviously closed under ≤P
c , we obtain inclusions for the class SBP

that have already been shown in [BGM03]. This example illustrates, that we can always replace
C by P to get a feeling for the statements. The following corollary, for example, states in case of
C = P that SB·NP = AM.

Corollary 6.3 If C is non-trivial and closed under ≤P
c , then SB·∃·C = BP·∃·C.

Proof : By Lemma 5.3, ∃·C is closed under ≤P
c . Applying Proposition 6.2 to ∃·C, we obtain

BP·∃·C ⊆ SB·∃·C ⊆ BP·∃·∃·C. By Lemma 2.11, BP·∃·∃·C = BP·∃·C. 2

This corollary is the starting point of an investigation dealing with the operators ∃·, BP·, and
SB·. Let Q be a word of length k over the alphabet {∃·,BP·,SB·}. The i-th letter of Q is denoted
by Qi. Let C be a complexity class. We define

QC = Q1

(
. . . Qk−1(QkC) . . .).

Can we determine, only by looking at the quantifier prefix Q, the shortest prefix Q′ such that
QC = Q′C? A similar result is known in the context of Arthur-Merlin games. In fact, if C = P and
Q only contains the operators ∃· and BP·, QP is an Arthur-Merlin class and is always contained
in AM.

Proposition 6.4 If C is non-trivial and closed under ≤P
c , then ∃·SB·C = SB·C.

Proof: By Lemmata 2.5 and 5.1, SB·C ⊆ ∃·SB·C. Let A ∈ ∃·SB·C via some set B ∈ SB·C and
polynomial q1. We apply Lemma 4.3 to B. There are some set C ∈ C, polynomials p and q2 such
that for every x ∈ Σ∗,

x ∈ A −→
∨

z
|z|=q1(|x|)

countq2

C (〈x, z〉) ≥ 2q1(|x|)+2 · 2p(|x|) and

x /∈ A −→
∧

z
|z|=q1(|x|)

countq2

C (〈x, z〉) ≤ 2p(|x|).

Define a new set C′ as

C ′ =
{
〈x, zy〉 : 〈〈x, z〉, y〉 ∈ C ∧ |z| = q1(|x|) ∧ |y| = q2(|〈x, z〉|)

}
.

Obviously, C ′ many-one reduces to some set in C. Let r = q1 +q2

(
2 ·(id+q1)

)
. For every x 6∈ A,

it holds that
countr

C′(x) ≤ 2q1(|x|) · 2p(|x|),
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since there are only 2q1(|x|) possible words of length q1(|x|). On the other hand, if x ∈ A, then

countr
C′(x) ≥ 2q1(|x|)+2 · 2p(|x|).

Letting p′ = q1 + p + 1, we conclude that A ∈ SB·C via the set C ′, the polynomials p′ and r, and
any ε ∈ (0, 1). 2

The proof of Proposition 6.4 shows a slightly stronger result than stated. If x ∈ A, then we
demand the existence of only one y ∈ Σ∗ of defined length such that the condition is true. For
all the other words y′ 6= y of same length, we do not need to restrict the number of accepting
paths of the computation deciding whether 〈x, y ′〉 ∈ B. The proof states that even this putatively
slightly more powerful model is contained in SB·C. In case of C = P, we would obtain a new
class ∃·SBP∗ that may be more powerful than ∃·SBP, similar to the relation of ∃·BPP to MA.
Fenner et al. [FFKL93] showed that there is an oracle that separates ∃·BPP and MA. The proof
of Proposition 6.4 states that ∃·SBP∗ ⊆ SBP.

Corollary 6.5 If C is non-trivial and closed under ≤P
c , then ∃·BP·C ⊆ SB·C.

Proof: By Lemma 4.2, monotony of ∃·, and Proposition 6.4, it holds that ∃·BP·C ⊆ ∃·SB·C =
SB·C. 2

As a byproduct, we obtain the well-known inclusion ∃·BP·C ⊆ BP·∃·C for any non-trivial
complexity class C that is closed under ≤P

c .
For the operator U·, we show that it cannot bring new power to SB· at all, neither to its left nor

its right hand side. The proof uses the fact that the number of accepting paths of a computation is
bounded for sets in U·C. Note that, if C is closed under ≤P

c , then U·C is closed under ≤P
c , too.

Proposition 6.6 If C is closed under ≤P
c , then U·SB·C = SB·U·C = SB·C.

Proof: By Lemmata 5.1, 2.5, and Proposition 6.4, we obtain U·SB·C = SB·C. By Lemma 2.5 and
the monotony of SB·, it holds that SB·C ⊆ SB·U·C.

Let A ∈ SB·U·C; we show A ∈ SB·C. By amplification, we obtain a set B ∈ U·C and
polynomials p and q1 such that for every x ∈ Σ∗,

x ∈ A −→ countq1

B (x) ≥ 4 · 2p(|x|) and

x /∈ A −→ countq1

B (x) ≤ 2p(|x|).

Let B ∈ U·C via some set C ∈ C and a polynomial q2. Define a new set C′ as

C ′ df=
{
〈x, y1 · y2〉 : |y1| = q1(|x|) ∧ |y2| = q2(|〈x, y1〉|) ∧ 〈〈x, y1〉, y2〉 ∈ C

}
.

Let q = q1 + q2

(
2 · (id + q1)

)
. We obtain

x ∈ A −→ countq
C′(x) ≥ 4 · 2p(|x|) and

x /∈ A −→ countq
C′(x) ≤ 2p(|x|).

This shows A ∈ SB·C via C ′, p + 1, q, and any ε ∈ (0, 1). 2

25



Proposition 6.7 If C is closed under ≤P
maj , then SB·BP·C = SB·C.

Proof : Obviously, SB·C ⊆ SB·BP·C. Let A ∈ SB·BP·C. BP·C is closed under ≤P
maj by

Lemma 5.5, and we can apply Lemma 4.4 on A. So there are some set B ∈ BP·C and polynomi-
als p and q such that for all x ∈ Σ∗,

x ∈ A −→ countq
B(x) ≥ 16 · 2p(|x|) and

x /∈ A −→ countq
B(x) ≤ 2p(|x|).

By Lemma 4.2, we can assume p(n) > 0 for all n ∈ N. Let t be some monotonic polynomial such
that for every n ∈ N, t(n) > q(n) and t(n) > p(n). By Lemma 5.4, there are some set C ∈ C and
a polynomial q′ such that for all x, y ∈ Σ∗, |y| = q(|x|),

〈x, y〉 ∈ B −→ countq′

C(〈x, y〉) ≥

(

1−
1

2t(|〈x,y〉|)

)

· 2q′(|〈x,y〉|) and

〈x, y〉 /∈ B −→ countq′

C(〈x, y〉) ≤
1

2t(|〈x,y〉|)
· 2q′(|〈x,y〉|).

Define a new set C′ as

C ′ df
=

{
〈x, y · z〉 : 〈〈x, y〉, z〉 ∈ C ∧ |y| = q(|x|) ∧ |z| = q ′(|〈x, y〉|)

}
.

We have to count the number of accepting paths at the end of the computation for some input x ∈
Σ∗. Let r

df
= q′

(
2 · (id + q)

)
and s

df
= q + r and |x| df

=n. We remark that in the following equations,
both bounds are less tight than they would be if we used the precise values (we use t(n) instead of
t(2 · (n + q(n)))).

x ∈ A −→ counts
C′(x) ≥ 16 · 2p(n) ·

(

1−
1

2t(n)

)

· 2r(n)

> 16 ·
(
2p(n) · 2r(n) − 2r(n)

)

≥ 16 · 2p(n)−1 · 2r(n)

= 8 · 2p(n) · 2r(n)

> 6 · 2p(n) · 2r(n)

=

(

1 +
1

2

)

· 2p(n)+r(n)+2

x /∈ A −→ counts
C′(x) ≤ 2p(n) · 2r(n) +

(
2q(n) − 2p(n)

)
·

1

2t(n)
· 2r(n)

≤ 2p(n) · 2r(n) +
2q(n)+r(n)

2t(n)

< 2p(n) · 2r(n) + 2r(n)

≤ 2 · 2p(n) · 2r(n)

=

(

1−
1

2

)

· 2p(n)+r(n)+2

Hence, A is in SB·C. 2
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Corollary 6.8 If C is non-trivial and closed under ≤P
c , then SB· . . . SB·C = SB·SB·C = BP·∃·C.

Proof: We first prove the easy case SB·SB·C = BP·∃·C. We know the inclusions ∃·C ⊆ SB·C ⊆
BP·∃·C. We apply SB· on every class, which preserves the inclusion structure by monotony:
SB·∃·C ⊆ SB·SB·C ⊆ SB·BP·∃·C. Remember that ∃·C is closed under ≤P

maj by Lemma 5.3.
We observe

BP·∃·C ⊆ SB·∃·C ⊆ SB·SB·C ⊆ SB·BP·∃·C ⊆ SB·∃·C ⊆ BP·∃·C.

Now, let us look at SB·SB·SB·C. We conclude SB·SB·SB·C ⊆ SB·BP·∃·C ⊆ BP·∃·C. The
proposition follows by induction. 2

Proposition 6.9 If C is closed under ≤P
c , then BP·SB·C = BP·∃·C.

Proof: Since ∃·C is closed under ≤P
maj by Lemma 5.3, we observe BP·BP·∃·C = BP·∃·C by

Lemma 2.11. By Lemma 4.2 and Proposition 6.2, we know ∃·C ⊆ SB·C ⊆ BP·∃·C. Applying the
BP·-operator on each class yields our result: BP·∃·C ⊆ BP·SB·C ⊆ BP·BP·∃·C = BP·∃·C. 2

7 Collapse of a Hierarchy

In this final section we summarize the computational power of complexity classes that are defined
by means of the four operators that have been used in this paper. We see that the computational
power of any class defined by application of U·, ∃·, BP·, and SB· in any order and number does
not exceed the simple combination BP·∃·.

Theorem 7.1 Let C be a complexity class that is closed under ≤P
c . Let Q be a word over the

alphabet {∃·,BP·,SB·}. If Q contains one of the four words BP·∃·, SB·∃·, BP·SB·, or SB·SB·
as a factor, then QC = BP·∃·C.

Proof: By results of the previous sections, it holds that BP·∃·C ⊆ QC. If C is not closed un-
der ≤P

maj , replace C by ∃·C. From right to left we replace every occurrence of SB· by the sub-
word BP·∃·, and each such replacement yields a superclass of the previous one. By Proposi-
tions 6.2, 6.4 and Lemma 4.2, we replace ∃·BP· by BP·∃· at the rightmost occurrence and always
obtain superclasses. Now, only BP· and ∃· appear, and every ∃· appears to the right of every
BP·. The rightmost letter is ∃·. By Lemmata 5.3 and 2.11, we obtain that QC ⊆ BP·∃·C, which
concludes the proof. 2

Corollary 7.2 Let C be non-trivial and closed under ≤P
c . If Q is a word over the alpha-

bet {U·,∃·,BP·,SB·}, then QC ⊆ BP·∃·C.

Proof: From right to left replace every occurrence of U· by ∃·, and we obtain a superclass Q ′C of
QC. Now, BP·∃·Q′C is a superclass of Q′C and contained in BP·∃·C by Theorem 7.1. 2
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