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Abstract

We study private computations in information-theoretical settings on net-
works that are not 2-connected. Non-2-connected networks are “non-private”
in the sense that most functions cannot privately be computed on them. We re-
lax the notion of privacy by introducing lossy private protocols, which generalize
private protocols. We measure the information each player gains during the com-
putation. Good protocols should minimize the amount of information they lose to
the players. Throughout this work, privacy always means 1-privacy, i.e. players
are not allowed to share their knowledge. Furthermore, the players are honest but
curious, thus they never deviate from the given protocol.

By use of randomness by the protocol the communication strings a certain
player can observe on a particular input determine a probability distribution. We
define the loss of a protocol to a player as the logarithm of the number of different
probability distributions the player can observe. For optimal protocols, this is
justified by the following result: For a particular content of any player’s random
tape, the distributions the player observes have pairwise fidelity zero. Thus the
player can easily distinguish the distributions.

The simplest non-2-connected networks consists of two blocks that share one
bridge node. We prove that on such networks, communication complexity and
the loss of a private protocol are closely related: Up to constant factors, they are
the same.
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Then we study one-phase protocols, an analogue of one-round communica-
tion protocols. In such a protocol each bridge node may communicate with each
block only once. We investigate in which order a bridge node should commu-
nicate with the blocks to minimize the loss of information. In particular, for
symmetric functions it is optimal to sort the components by increasing size. Then
we design a one-phase protocol that for symmetric functions simultaneously min-
imizes the loss at all nodes where the minimum is taken over all one-phase pro-
tocols.

Finally, we prove a phase hierarchy. For any k there is a function such that
every (k − 1)-phase protocol for this function has an information loss that is
exponentially greater than that of the best k-phase protocol.

1 Introduction

Consider a set of players, each knowing an individual secret. They want to compute
some function depending on their secrets. But after the computation, no player should
know anything about the secrets of the other players except for what he is able to de-
duce from his own secret and the function value. This is the aim of private computation
(also called secure multi-party computation). To compute the function, the players can
send messages to each other using secure links.

An example for such a computation is the “secret voting problem”: The members
of a committee wish to decide whether the majority votes for yes or no. But after the
vote nobody should know anything about the opinions of the other members, not even
about the exact number of yes and no votes, except for whether the majority voted for
yes or no.

If no group of at most t players can infer anything about the input bits that cannot
be inferred from the function value and their own input bits, we speak of t-privacy.

Any Boolean function can privately (in the following we identify privately with
1-privately) be computed on any 2-connected network. Unfortunately, there are many
Boolean functions, even simple ones like parity, disjunction, or conjunction, that can-
not privately be computed if the underlying network is not 2-connected [6].

However, many real-world networks are not 2-connected and private computation
is not possible. If the players in the network have to compute something but do not
trust each other, there is a natural interest of the players in privacy. What can we do?
We relax the notion of privacy: One cannot require that any player learns only what
he is able to deduce from his own secret and the function value. Instead we require
that any player learns as little as possible about the secrets of the other players (in an
information-theoretical sense) while it is still possible to compute the function.

Bridge nodes are important when considering non-2-connected networks. For all
non-bridge players we can guarantee that they do not learn anything except for what
they can deduce from their own bit and the function value. Thus, the bridge players
are the only players that are able to learn something more. The question is, how much
the bridge players need to learn such that the function can be computed. The simplest
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setting is a network of two blocks with one bridge node in common. (A block is a max-
imal 2-connected subnetwork.) This reminds one of communication complexity with
a man in the middle: Alice (one block) and Bob (another block) want to compute a
function depending on their input while preventing Eve (the bridge node) from learning
anything about their input. Unfortunately, Eve listens to the only communication chan-
nel between Alice and Bob. In terms of communication complexity, this problem had
been examined by Modiano and Ephremedis [15, 16] and Orlitsky and El Gamal [19]
under cryptographic security. In contrast, we deal with information-theoretical secu-
rity, i.e. the computational power of the players is unrestricted. Furthermore, we are
not interested in minimizing communication but in minimizing the information learned
by any player. It turns out that there is a close relation between communication and
privacy, at least in this special case.

1.1 Previous Results

Private computation was introduced by Yao [22]. He considered the problem under
cryptographic assumptions. Private Computation with information-theoretical security
has been introduced by Ben-Or et al. [3] and Chaum et al. [8]. Kushilevitz et al. [14]
proved that the set of Boolean functions that have a circuit of linear size equals the set
of functions that can privately be computed using only a constant number of random
bits. Some of the simulation techniques used in this paper are based on their work.

Kushilevitz [12] and Chor et al. [9] considered private computations of integer-
valued functions. They examined which functions can privately be computed by two
players.

Franklin and Yung [11] used directed hypergraphs for communication and de-
scribed those networks on which every Boolean function can privately be computed.

While all Boolean functions can privately be computed on any undirected 2-con-
nected network, Bl äser et al. [6] completely characterized the class of Boolean func-
tions that can still privately be computed, if the underlying network is connected but
not 2-connected. In particular, no non-degenerate function can privately be computed
if the network consists of three or more blocks. On networks with two blocks, only a
small class of functions can privately be computed.

Chaum et al. [8] proved that any Boolean function can privately be computed,
if at most one third of the participating players are dishonest, i.e. they are cheating.
We consider the setting that all players are honest, i.e. they do not cheat actively but
try to acquire knowledge about the input bits of the other players only by observing
their communication. For this model, Ben-Or et al. [3] proved that any n-ary Boolean
function can be computed

⌊
n−1

2

⌋
-private. Chor and Kushilevitz [10] showed that if a

function can be computed at least n
2
-private, then it can be computed n-private as well.

The idea of relaxing the privacy constraints has been studied to some extend in
a cryptographic setting. Yao [22] examined the problem where it is allowed that the
probability distributions of the messages seen by the players may differ slightly for
different inputs, such that in practice the player should not be able to learn anything.
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Leakage of information in the information-theoretical sense has been considered
only for two parties yet. Bar-Yehuda et al. [2] studied the minimum amount of infor-
mation about the input that must be revealed for computing a given function in this
setting.

1.2 Our Results

We study the leakage of information for multi-party protocols, where each player
knows only a single bit of the input.

Our first contribution is the definition of lossy private protocols, which is a gener-
alization of private protocols in an information-theoretical sense (Section 2.3). Here
and in the following, private always means 1-private. Throughout this work, we re-
strict ourselves to non-2-connected (in the sense of non-2-vertex-connected) networks
that are still 2-edge-connected. Every block in such a network has size at least three
and private computation within such a block is possible. We measure the information
any particular player gains during the execution of the protocol in an information-
theoretical sense. This is the loss of the protocol to the player. The players are as-
sumed to be honest but curios. This means that they always follow the protocol but try
to derive as much information as possible.

We divide lossy protocols into phases. Within a phase, a bridge player may ex-
change messages only once with each block he belongs to. Phases correspond to
rounds in communication complexity but they are locally defined for each bridge
player.

In the definition of lossy protocols, the loss of a protocol to a player is merely the
logarithm of the number of different probability distributions on the communication
strings a player can observe. We justify this definition in Section 3.2: For a protocol
with minimum loss to a player P and any particular content of P ’s random tape, the
different distributions P observes have pairwise fidelity zero, i.e. the support of any
two probability distributions is disjoint. Thus, in order to gain information, P can
distinguish the distributions from the actual communication he observes and does not
need to sample.

The simplest non-2-connected network consists of two blocks that share one bridge
node. In Section 4 we show that the communication complexity of a function f and
the loss of a private protocol for f are intimately connected: Up to constant factors,
both quantities are equal.

Then we study one-phase protocols. We start with networks that consist of d blocks
that all share the same bridge player P . In a one-phase protocol, P can communicate
only once with each block he belongs to. However, the loss of the protocol may depend
on the order in which P communicates with the blocks. In Section 5, we show that
the order in which P should communicate with the blocks to minimize the loss equals
the order in which d parties should be ordered on a directed line when they want
to compute the function with minimum communication complexity. Particularly for
symmetric functions, it is optimal to sort the components by increasing size.
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Then we design a one-phase protocol (Theorem 5.9), which has the remarkable
feature that it achieves minimal loss at any node for symmetric functions. Hence, it
simultaneously minimizes the loss for all nodes where the minimum is taken over all
one-phase protocols.

In Section 6, we prove a phase hierarchy. For any k there is a function for which
every (k− 1)-phase protocol has an exponentially greater information loss than that of
the best k-phase protocol.

We conclude with two examples. The first example shows that even for symmetric
functions, the order of the communication may have an exponentially large influence
on the loss of the protocol. The second example is a non-symmetric function computed
on a network with two bridge nodes. We show that it is impossible to minimize the
information loss simultaneously by one protocol for both bridge players. This observa-
tion shows that, in contrast to symmetric functions, there are non-symmetric functions
that do not have optimal one-phase protocols.

1.3 Comparison of Our Results with Previous Work

One of the important features of the two-party case is that at the beginning each party
has knowledge about one half of the input. In the multi-party case each player knows
only a single bit of the input.

Kushilevitz [12] examined which integer-valued functions can privately be com-
puted by two players. He showed that requiring privacy can result in exponentially
larger communication costs and that randomization does not help in this model, not
even to improve on the number of rounds. Chor et al. [9] considered multi-party com-
putations of functions over the integers. They showed that the possibility of privately
computing a function is closely related to its communication complexity, and they
characterized the class of privately computable Boolean functions on countable do-
mains. Neither Kushilevitz [12] nor Chor et al. [9] examined the problem how func-
tions that cannot privately be computed can still be computed while maintaining as
much privacy as possible.

Leakage of information in the information-theoretical sense has been considered
only for two parties, each holding one n-bit input of a two-variable function. Bar-
Yehuda et al. [2] investigated this for functions that are not privately computable. They
defined measures for the minimum amount of information about the individual inputs
that must be learned during the computation and proved tight bounds on these costs
for several functions. Finally, they showed that sacrificing some privacy can reduce
the number of messages required during the computation and proved that at the costs
of revealing k extra bits of information any function can be computed using O(k ·
2(2n+1)/(k+1)) messages.

The counterpart of the two-party scenario in the distributed setting that we con-
sider is a network that consists of two complete networks that share one node connect-
ing them. Simulating any two-party protocol on such a network allows the common
player to gain information depending on the deterministic communication complex-
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ity of the function that should be evaluated. Hence and in contrast to the two-party
case, increasing the number of bits exchanged does not help to reduce the knowledge
learned by the player that is part of either block. An important difference between the
two-party scenario, where two parties share the complete input, and a network con-
sisting of two 2-connected components connected via a common player (the bridge
player) is that in the latter we have somewhat like a “man in the middle” (namely the
bridge player) who can learn more than any other player in either component, since he
can observe the whole communication.

2 Preliminaries

2.1 Notations

For i ∈ N, let [i] := {1, . . . , i}. We define B = {0, 1}.
Let x = x1x2 . . . xn ∈ {0, 1}n be a string of length n. Throughout the paper, we

often use the string operation xI←α defined as follows: For x ∈ {0, 1}n, I ⊆ [n], and
α ∈ {0, 1}|I|, xI←α is defined by

(xI←α)i =

{
xi if i 6∈ I ,

αj if i ∈ I and i is the jth smallest element in I ,

for all i ∈ [n]. In case I = {q} is a singleton, we write xq←α. For a function
f : {0, 1}n → {0, 1}, a set of indices I ⊆ [n], and a string α ∈ {0, 1}|I|, fI←α :
{0, 1}n−|I| → {0, 1} denotes the function obtained from f by specializing the posi-
tions in I to the values given by α, i.e. for all x ∈ {0, 1}n−|I|,

fI←α(x) = f((0n
I←α)I←x) ,

where I = [n] \ I . For a string x ∈ {0, 1}n and a set I ⊆ [n], we define xI ∈ {0, 1}|I|

as follows: For all j ≤ |I|, (xI)j = xi if i is the jth smallest element in I .
An undirected graph G = (V,E) is called 2-connected, if the graph obtained from

G by deleting an arbitrary node is still connected. For a set U ⊆ V , let G|U :=
(U,E|U) denote the graph induced by U , where E|U = {{x, y} ∈ E | x, y ∈ U}.
A subgraph G|U is called a block of G, if G|U is 2-connected and there is no proper
superset U ′ of U such that G|U ′ is 2-connected. We here consider a graph with two
nodes and one edge connecting these two nodes as 2-connected. A graph is called
2-edge-connected if after removal of one edge, the graph is still connected. Note that
a graph is 2-edge-connected if it is connected and has no block of size 2. A node
belonging to more than one block is called a bridge node. The other nodes are called
internal nodes. The blocks of a graph are arranged in a tree structure. For more details
on graphs, see e.g. Berge [4].

A Boolean function is called symmetric, if the function value depends only on the
number of 1s in the input. See for instance Wegener [21] for a survey on Boolean
functions.
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2.2 Private Computations

We consider the computation of Boolean functions f : {0, 1}n → {0, 1} on a network
of n players. In the beginning, each player knows a single bit of the input x. Each
player Pi is equipped with a random tape Ri. The players can send messages to other
players via point-to-point communication using secure links where the link topology
is given by an undirected graph G = (V,E). When the computation stops, all players
should know the value f(x). The goal is to compute f(x) such that no player learns
anything about the other input bits in an information-theoretical sense except for the
information he can deduce from his own bit and the result. Such a protocol is called
private.

Definition 2.1 Let Ci be a random variable of the communication string seen by
player Pi, and let c be a particular string seen by Pi. A protocol A for computing
a function f is private with respect to player Pi if for any pair of input vectors x and y
with f(x) = f(y) and xi = yi, for every c, and for every random string r provided to
Pi,

Pr[Ci = c | Ri = r, x] = Pr[Ci = c | Ri = r, y] ,

where the probability is taken over the random strings of all other players. A protocol
A is private if it is private with respect to every player Pi.

In the following, we use a strengthened definition of privacy of protocols: We allow
only one player, say Pi, to know the result. The protocol has to be private with respect
to Pi according to Definition 2.1. Furthermore, for all players Pj 6= Pi, for all inputs
x, y with xj = yj, and for all random strings r we require Pr[Cj = c | Rj = r, x] =
Pr[Cj = c | Rj = r, y], independently of f(x) and f(y). In such a protocol, Pi is the
only player that learns the function value. The other players do not learn anything.

This definition does not restrict the class of functions computable by private pro-
tocols according to Definition 2.1. Every function f in this class can be computed by
a protocol A fulfilling the conditions above. To achieve this additional restriction, Pi

generates a random bit r. Then we use a private protocol for computing r ⊕ f(x).
Since the protocol used is private, no player except for Pi learns anything about the
function value that cannot be derived from its own input bit.

2.3 Information Source

The definition of privacy basically states the following: The probability that a player
Pi sees a specific communication string during the computation does not depend on
the input of the other players. Thus, Pi cannot infer anything about the other inputs
from the communication he observes.

If private computation is not possible since the graph is not 2-connected, it is natu-
ral to weaken the concept of privacy in the following way: We measure the information
player Pi can infer from seeing a particular communication string. This leads to the
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concept of lossy private protocols. The less information any player can infer, the better
the protocol is.

In the following, c1, c2, c3, . . . denotes a fixed enumeration of all communication
strings seen by any player during the execution of A. (We could also use a fixed
standard enumeration of all strings. In the latter case, we would get probability dis-
tributions with a finite support on countable probability spaces instead of probability
distributions on finite spaces. The concepts arising would be completely the same.)

Definition 2.2 Let Ci be a random variable of the communication string seen by
player Pi while executing A. Then for a, b ∈ {0, 1} and for every random string r
provided to Pi, define the information source of Pi on a, b, and r as

SA(i, a, b, r) := {(µx(c1), µx(c2), . . .) | x ∈ {0, 1}n ∧ xi = a ∧ f(x) = b}

where µx(ck) := Pr[Ci = ck|Ri = r, x] and the probability is taken over the random
strings of all other players.

Basically SA(i, a, b, r) is the set of all different probability distributions on the
communication strings observed by Pi when the input x of the players varies over all
possible bit strings with xi = a and f(x) = b and Pi’s random tape is fixed to r.

The loss of a protocol A on a, b with respect to player Pi is

` = max
r

log |SA(i, a, b, r)| .

Thus the protocol looses ` bits of information to Pi. We call such a protocol `-lossy on
a, b with respect to Pi.

If a uniform distribution of the input bits is assumed, then the self-information of
an assignment to the players P1, . . . , Pi−1, Pi+1, . . . , Pn is equal to n− 1 [20]. In this
case the maximum number of bits of information that can be extracted by Pi is n− 1.
If A is 0-lossy for all a, b ∈ {0, 1} with respect to Pi, then we say that A is lossless
with respect to Pi. A is lossless to Pi if and only if A is private to Pi. Thus the notion
of lossy private protocols generalizes the notion of private protocols.

Next we treat the loss to each player.

Definition 2.3 A protocol A computing a function f in a network G is `A-lossy, with
`A : [n] × {0, 1}2 → R+

0 , if for all a, b ∈ {0, 1},

`A(i, a, b) = max
r

log |SA(i, a, b, r)| .

Let f be an n-ary Boolean function and let G = (V,E) be a network with |V | = n.
We define `G : [n] × {0, 1}2 → R+

0 by

`G(i, a, b) := min
A

{`A(i, a, b) | A is an `A-lossy protocol for f in G} .
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The loss of a protocol A is bounded by λ ∈ N, if `A(i, a, b) ≤ λ for all i, a, and
b. `G(i, a, b) is obtained by locally minimizing the loss to each player Pi over all
protocols. It is a priori not clear whether there is one protocol with `G(i, a, b) =
`A(i, a, b) for all i, a, b. We show that this is the case for symmetric functions and
one-phase protocols (as defined in Section 2.4).

Sometimes we will use the size of the information source instead of `A. Therefore,
for a protocol A, we define

sA(i, a, b, r) = |SA(i, a, b, r)| ,
sA(i, a, b) = maxr sA(i, a, b, r) , and
sA(i, a) = sA(i, a, 0) + sA(i, a, 1) .

By definition, À(i, a, b) = log sA(i, a, b). If the underlying protocol is clear from
the context, we omit the subscript A. Let f be an n-ary Boolean function. For a
network G = (V,E) with |V | = n, we define sG(i, a, b) := minA sA(i, a, b) and
sG(i, a) := minA sA(i, a) If a player Pi is an internal node of the network, then it
is possible to design protocols that are lossless with respect to Pi (see Section 3.1).
Players that are bridge nodes are in general able to infer some information about the
input.

2.4 Phases in a Protocol

Without loss of generality we will assume that for any protocol the players communi-
cate with each other in rounds such that in every round each player Pq may send one
bit to one of its neighbors in the underlying communication network, or may receive
one bit from one of its neighbors, or Pq may be idle. We call such protocols syn-
chronous. The fact that each player receives or sends at most one bit per round is only
made to simplify some of the following definitions. (If a player sends or receives more
than one bit in a single round in a given protocol, then we can design a new protocol
that fulfills this restriction by simulating this one round by several rounds and sending
bits consecutively.) For a player Pq we encode a complete communication string as
a sequence c = c[1], c[2], . . . , c[t] such that every item c[i] completely describes the
i-th communication round performed by Pq (in particular c[i] encodes the name of the
player Pq has communicated with in the i-th round and the content of the message).

We say that Pq who corresponds to a bridge node makes an alternation if he fin-
ishes the communication with one block and starts to communicate with another block.
(This is well-defined, since each player receives or sends at most one bit per round.)
Formally, we say that Pq makes an alternation between the round i and i + 1, if there
exists a subsequence c[i − h], . . . , c[i], c[i + 1], with h ≥ 0, such that c[i − h] and
c[i+ 1] encode Pq’s communication with players belonging to different blocks and, in
case h > 0, the internal items c[i − h + 1], . . . , c[i] encode Pq’s idle communication
period. During such an alternation, information can flow from one block to another.

The alternations of a communication string c = c[1], c[2], . . . , c[t] partition in a
natural way the sequence into blocks: c[1..i1], c[(i1 + 1)..i2], . . . , c[(it−1 + 1)..t]. In
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this paper c[i..j] denotes subsequence c[i], c[i + 1], . . . , c[j]. Formally we define by

blockj(c) := c[(ij−1 + 1)..ij]

a subsequence of c such that

• ij−1 = 0 or Pq makes an alternation between the rounds ij−1 and ij−1 + 1,

• ij = t or Pq makes an alternation between the rounds ij and ij + 1, and

• Pq makes no alternation inside blockj(c).

Next we partition the work of Pq into phases as follows. Pq starts at the beginning
of the first phase and it initiates a new phase when, after an alternation, it starts to
communicate again with a block it already has communicated with previously in the
phase.

Definition 2.4 A protocol A is a k-phase protocol for a bridge node Pq if for every
input string and contents of the random tapes of all players, Pq works in at most k
phases. A is called a k-phase protocol if it is a k-phase protocol for every bridge
node.

The start and end round of each phase does not need to be the same for each player.
Of particular interest are one-phase protocols. In such a protocol, each bridge player
may only communicate once with each block he belongs to. Such protocols seem to
be natural, since they have a local structure. Once the computation is finished in one
block, the protocol will never communicate with this block again.

For k-phase protocols we define `kG(i, a, b) and sk
G(i, a, b) in a similar way as `A

and sG in the general case, but we minimize over all k-phase protocols.
During each phase a player communicates with at least two blocks. The order in

which the player communicates within a phase can matter. The communication order
σq of a bridge node Pq specifies the order in which Pq communicates with the blocks
during the whole computation. Formally, σq is a finite sequence of (the indices of)
blocks Pq belongs to and the length of σq is the total number of alternations made
by Pq plus one. We say that a protocol is σq-ordered for Pq if for all inputs and all
contents of the random tapes, the communication order of Pq is consistent with σq. Let
Pq1

, . . . , Pqk
with q1 < q2 < . . . < qk be an enumeration of all bridge players of a

network G and σ = (σq1
, . . . , σqk

) be a sequence of communication orders. We call a
protocol σ-ordered if it is σqj

-ordered for every Pqj
. Finally, define

sG(i, a, b, σ) := min{sA(i, a, b) | A is a σ-ordered protocol for f on G} .
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2.5 Communication Protocols

For comparing the communication complexity of a certain function with the loss of
private protocols while computing this function, we need the following definitions.
For more about communication complexity, see e.g. Kushilevitz and Nisan [13].

Definition 2.5 Let f : Bm1 ×Bm2 → B be a Boolean function. Let x ∈ Bm1 , y ∈ Bm2 .
Then x is the input for the first party, Alice, and y is the input for the second party,
Bob.

Let B be a deterministic two-party communication protocol for computing f ac-
cording to the distribution described above. Then DC(B, x, y) is the total number of
bits exchanged by Alice and Bob when executing B on x and y. The deterministic
communication complexity of B is

DC(B) = max
(x,y)∈Bm1+m2

DC(B, x, y) .

CP(B) denotes the number of different communication strings that occur, i.e. the pro-
tocol partition number. Finally,

DC(f) = minB for f DC(B) and
CP(f) = minB for f CP(B) .

The protocol partition number is the number of leaves in the protocol tree. The
messages sent so far determine whether Alice or Bob sends the next message, i.e.
we require that in every round of communication the set of all possible messages is
prefix-free.

We also consider multi-party communication with a referee, which is a gener-
alization of two-party communication. Therefore, we consider Boolean functions
f : Bm1 × Bm2 × . . . × Bmk → B. Let A1, . . . , Ak be k parties and R be a ref-
eree, all with unlimited computational power. For computing f(x1, . . . , xk) for and
xi ∈ Bmi , the parties and the referee proceed as follows:

• Initially, Ai only knows xi (i ∈ [k]). The referee R does not know anything
about any xi.

• The protocol proceeds in rounds. In a single round, R can communicate (i.e.
receive or send a message) only with a single player.

• After finishing the communications, R computes the result of f(x1, . . . , xk).

Definition 2.6 Let B be a deterministic communication protocol for computing f with
k parties and a referee as described above. Then DC(B, x1, . . . , xk) is the total number
of bits exchanged by the parties and the referee when executing B on x1, ldots, xk. The
deterministic communication complexity of B

DCR(B) = max
(x1,...,xk)∈B

m1+...+mk

DC(B, x1, . . . , xk) .
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CPR(B) denotes the number of different communication strings that occur, i.e. the pro-
tocol partition number. DCR(f) and CPR(f) are defined analogously to Definition 2.5
by minimizing over all protocols for computing f .

3 The Suitability of the Model

The aim of this section is to justify the definitions given in Section 2. We have re-
stricted ourselves to considering networks that are 2-edge-connected. Thus, any block
has size at least three. Every Boolean function can be computed with three or more
players [3]. Hence, it is possible to compute functions privately within any block.

In the next subsection, we argue that it is sufficient to consider bridge players
when talking about the loss of a protocol. In Subsection 3.2, we prove that in optimal
protocols, the probability distributions observed by any player have pairwise fidelity
zero. Thus, any player can easily distinguish the different probability distributions he
observes.

3.1 Internal Players do not Learn Anything

Throughout this paper, we restrict ourselves to considering the loss of protocols to
bridge players. The aim of this section is to justify this restriction. We prove that any
protocol can be modified without increasing the loss to each bridge player such that no
internal player (i.e. player who is not a bridge player) learns anything.

Theorem 3.1 For any protocol A on an 2-edge-connected G there exists a protocol
A′ on G computing the same function as A such that

1. the loss of A′ to each internal player is zero and

2. the loss of A′ to each bridge player is at most the loss of A to this bridge player.

Proof: We assume that A is synchronous. Thus, the communication string a player
receives in any round depends on the input bits, the random tapes, and the communi-
cation prior to this round of all players. Let Ci,t denote the communication received
by Pi up to round t. We have

Ci,t+1 = fi,t(C1,t, . . . , Cn,t, x1, . . . , xn, r1, . . . , rn)

for some suitable function fi,t. Since we only consider graphs where each block has
size at least three, we can compute fi,t privately according to the protocol of Kushile-
vitz et al. [14] such that for any i ∈ [n] and any round t we have the following proper-
ties:

• If Pi is an internal player, then he knows Ci,t masked by sufficiently many ran-
dom bits while some other player knows these random bits.

12



• If Pi is a bridge player, he knows Ci,t.

The protocol A′ presented is clearly lossless with respect to any internal player. Fur-
thermore, the loss to any bridge player is the same as in the protocol A. ut

3.2 Extracting Information from Probability Distributions

We consider arbitrary 1-connected networks. Let f be a Boolean function and A be a
protocol for computing f on a 1-connected network G. Let Pq be a bridge player of
G, a, b ∈ B, and rq be the random string provided to Pq. We define

X = {x ∈ Bn | xq = a ∧ f(x) = b}

and for any communication string c

ψ(c) = {x ∈ X | µx(c) > 0} ,

where µx(c) = Pr[Cq = c | Rq = rq, x]. For every communication string c that
can be observed by Pq on some input x ∈ X , Pq can deduce that x ∈ ψ(c). If
sA(q, a, b) = sG(q, a, b) = 1, then we have either ψ(c) = X or ψ(c) = ∅. Thus Pq

does not learn anything in this case.

Theorem 3.2 If sG(q, a, b) > 1, then for any protocol A and every communication
string c that can be observed by Pq on input x ∈ X , ψ(c) is a non-trivial subset of X ,
i.e. ∅ 6= ψ(c) ( X , and there exist at least sG(q, a, b) different such sets. Hence, from
seeing c on x ∈ X , Pq always gains some information and there are at least sG(q, a, b)
different pieces of information that can be extracted by Pq on inputs from X .

The next result says that sG(q, a, b) is a tight lower bound on the number of pieces
of information: the lower bound is achieved when performing an optimal protocol
on G. Let µ and µ′ be two probability distributions over the same set of elementary
events. The fidelity is a measure for the similarity of µ and µ′ (see e.g. Nielsen and
Chuang [17]) and is defined by

F (µ, µ′) =
∑

c

√
µ(c) · µ′(c) .

Theorem 3.3 If A is an optimal protocol for player Pq on a and b, i.e. sA(q, a, b) =
sG(q, a, b), then for every random string rq and all probability distributions µ 6= µ′ in
SA(q, a, b, rq) we have F (µ, µ′) = 0.

Theorem 3.2 follows directly from the Lemmas 3.4 and 3.5 below. Theorem 3.3
follows from Lemma 3.6.

Lemma 3.4 Assume A is a protocol for computing f . Then we have the following
implications for every communication string ĉ:

13



(i) if ψ(ĉ) = ∅, then for all x ∈ X we have µx(ĉ) = 0 and

(ii) if ψ(ĉ) = X , then sG(q, a, b) = 1.

Proof: Item (i) follows from the definition of ψ in a straight-forward way. To prove
Item (ii) assume that there exists a communication string ĉ with ψ(ĉ) = X . From
Lemma 4.7, for w = ĉ we can construct a communication protocol B for computing
fq←a such that B on every x ∈ X generates the same communication string. Using the
simulation presented in the proof of Lemma 4.6 we get sG(q, a, b) ≤ 1. ut

Lemma 3.5 Let SA(q, a, b, rq) = {µ1, µ2, . . . , µm}. Let M = {ĉ1, ĉ2, . . . , ĉm} be a
set of communication strings such that for every i ∈ [m], ĉi is the lexicographically
first string in {c | µi(c) > 0}. Then |M| ≥ sG(q, a, b) and for every pair of different
ĉi, ĉj we have ψ(ĉi) 6= ψ(ĉj).

Proof: Let Γ denote the alphabet for the communication strings and let γ ∈ Γ be the
lexicographically first symbol in Γ. Denote by τ the maximum length of communi-
cation strings c1, c2, c3, . . .. From Lemma 4.7, we get that for w = γτ , we obtain the
communication protocol B for computing fq←a such that the number of different com-
munication strings of B on all x ∈ X is equal to |M|. Using the simulation presented
in the proof of Lemma 4.6 we get sG(q, a, b) ≤ |M|.

To prove the second part of the lemma, note that for any ĉi we have ψ(ĉ) 6= ∅.
Now assume that ĉi, ĉj are two different communication strings with ψ(ĉi) = ψ(ĉj). It
follows that for all x, x′ ∈ X we have µx(ĉi) > 0 if and only if µx′(ĉi) > 0. Hence

ĉi, ĉj ∈ {c | µi(c) > 0} ∩ {c | µj(c) > 0} .

Because we have chosen ĉi as the lexicographically first element in {c | µi(c) > 0} and
ĉj as the lexicographically first element in {c | µj(c) > 0}, by the property above we
have both ĉi≤lexĉj and ĉj≤lexĉi, where ≤lex means lexicographically smaller. Hence
ĉi = ĉj , a contradiction. ut

Lemma 3.6 Let SA(q, a, b, rq) = {µ1, µ2, . . . , µm} and assume that for some i 6= j ∈
[m] we have F (µi, µj) > 0. Then sG(q, a, b) < m.

Proof: Assume that for some i 6= j ∈ [m] we have F (µi, µj) > 0 and let ĉ be
such a communication string with µi(ĉ), µj(ĉ) > 0. From Lemma 4.7 we get that for
w = ĉ we can construct a communication protocol B for fq←a such that the number of
different communication strings of B on all x ∈ X is smaller or equal to m− 1. Using
the simulation presented in the proof of Lemma 4.6 we get sG(q, a, b) ≤ m− 1. ut
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4 Communication Complexity and Private Computa-
tion

In this section we investigate the relations between deterministic communication com-
plexity and the minimum size of an information source in a connected network with
one bridge node. To distinguish between protocols in terms of communication com-
plexity and protocols in terms of private computation, we will call the former commu-
nication protocols.

4.1 Two-Party Model

The communication complexity of two-party protocol and the protocol partition num-
ber are closely related.

Lemma 4.1 (Kushilevitz and Nisan [13]) log(CP(f)) ≤ DC(f) ≤ 3 · log(CP(f)).

In this subsection we investigate the relation between the protocol partition number
and the size of an information source on graphsG of n nodes that consist of two blocks
sharing one bridge node Pq. Let m1 + 1 be the size of the first block and m2 + 1 be
size of the second one.

Let f : Bn → B be an arbitrary function. We will relate the minimum size of
an information source sG(q, a) for f and the optimum partition number for function
fq←a, for any a ∈ B. In the model of private computation the input bits are distributed
among n players whereas the input bits in a communication protocol are distributed
among the two parties. We identify the input ~a of Alice with the m1 input bits known
by players of the first block of the network and the input~b of Bob with the m2 input
bits known by the players of the second block. Additionally, we assume that the value
of Pq’s input bit xq is known by both Alice and Bob, so they know which function to
compute: fq←0 or fq←1.

Lemma 4.2 For a ∈ B, we have sG(q, a) ≤ CP(fq←a).

Proof: Consider an optimal deterministic protocol for computing fq←a. Then there
are two functions A : Bm1 × B? → B? and B : Bm2 × B? → B? that describe the
messages sent by Alice and Bob, respectively:

wi =





λ if i = 0,

wi−1A(y1, wi−1) if i > 0 is odd, and

wi−1B(y2, wi−1) if i > 0 is even.

By an appropriate encoding, we can assert that all messages sent are of equal length
and that the number of rounds is the same for all inputs. This does not increases the
communication size.
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To compute f player Pq first broadcasts the value of xq to the remaining players to
inform them which functions should be computed next. Note that both A and B may
depend on a. Then Pq computes the values wi iteratively using A and B. The both
functions can privately be computed in the first and second block, respectively, while
Pq is the only player who knows the wis. Pq computes finally the result. The number
of different probability distributions observable by Pq on the different inputs equals
CP(fq←a) by construction.

Broadcasting the value of the input bit seems to be very unusual in the context of
private computations. In fact, this implies that the above protocol is not private with
respect to the internal players. However, using Theorem 3.1, one can easily modify our
protocol in such a way that it becomes private with respect to all internal players. ut

Lemma 4.3 For a ∈ B, we have CP(fq←a) ≤ sG(q, a).

Proof: Let P1, . . . , Pq and Pq, . . . , Pn be the players of the first and second block,
respectively. Let A be a protocol for computing f that is private with respect to all
players except for Pq and such that the size sA(q, a) is minimal.

We construct a communication protocol by simulating A and searching the lexico-
graphical minimal communication sequence for Pq that has positive probability.

Let c = c[1], c[2], . . . , c[k] be the communication Pq has sent so far, where c[i] for
odd i is received by the first block and c[i] for even i is received by the second block.
Let r1, . . . , rn be the content of the random tape of player P1, . . . , Pn, respectively.
Without loss of generality, we fix Pq’s random tape to some fixed value. Thus,

c[i] =

{
B(c[1], . . . , c[i− 1], xq, . . . , xn, rq−1, . . . , rn) if i is even and

A(c[1], . . . , c[i− 1], x1, . . . , xq, r1, . . . , rq−1) if i is odd,

where A and B can be evaluated by Alice and Bob, respectively.
Let R0

A and R0
B be the sets of possible contents ofR1, . . . , Rq−1 andRq+1, . . . , Rn,

respectively. We iteratively restrict these sets. Therefore, let Ri
A and Ri

B be the possi-
ble contents after receiving or sending c[i].

We simulate the private protocol as follows: For odd i, Alice computes c[i] as

c[i] = min{A(c[1], . . . , c[i− 1], x1, . . . , xq, r1, . . . , rq−1) | (r1, . . . , rq−1) ∈ Ri−1
A } .

Thus, c[i] is the lexicographical minimal communication string that can occur on the
given input while the previous communication has been observed. Then Alice com-
putes Ri

A ⊆ Ri−1
A as the set of possible contents of the random tapes that result in c[i].

Furthermore, we have Ri
B = Ri−1

B .
For even i, Bob computes c[i] as

c[i] = min{B(c[1], . . . , c[i− 1], xq, . . . , xn, rq+1, . . . , rn) | (rq+1, . . . , rn) ∈ Ri−1
B } .

and Ri
B ⊆ Ri−1

B as the set of possible contents of the random tapes that result in c[i].
Furthermore, we have Ri

A = Ri−1
A .
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After computation, the message c[i] is sent to the other party.
If a party eventually knows the function value, the party sends it to the other party.

Then the communication stops. This last message will be marked appropriately. Thus,
the messages observed are prefix-free.

It remains to show that whenever Alice and Bob generate two different commu-
nication sequences on two inputs x and x′, then Pq observes two different probability
distributions on x and x′. Assume that we observe c and c′ on x and x′, respectively.
Then there exists some k such that c[k] 6= c′[k]. Without loss of generality, we assume
that c[k] < c′[k]. Then the probability of sending c[k] after c[1], . . . , c[k − 1] on x′

must be zero, since otherwise our protocol would favor c[k] over c′[k]. Thus, the two
probability distributions differ. ut

Due to the construction, we obtain from a communication protocol acting in k
rounds a private protocols that needs at most d k+1

2
e phases. Analogously, we obtain

from a k-phase private protocol a communication protocol that needs at most 2k − 1
rounds.

From the above lemmas, we immediately get the following theorem.

Theorem 4.4 Let f : Bm1 × B × Bm2 → B be a function, f(x, z, y) and let a ∈ B be
arbitrary.

• Assume that Alice knows x and a and Bob knows y and a. Assume that fq←a

can be computed by a communication protocol with protocol partition number
C. Then f can be computed on a graph consisting of two blocks of size m1 + 1
and m2 + 1, where x and y are distributed among the first and second block,
respectively, and the common bridge player Pq knows a. This can be done with
sG(q, a) ≤ C.

• Consider a graph consisting of two blocks of size m1 + 1 and m2 + 1. The
bits x and y are distributed among the nodes of the first and second block, re-
spectively, while the common bridge node knows a. If f can be computed with
sG(q, a) ≤ C, the fq←a can be computed by a communication protocol with
protocol partition number bounded by C.

From the above theorem and Lemma 4.1, we get the following corollary.

Corollary 4.5 Let f : Bm × B × Bn → B be a function, f(x, z, y). Let a ∈ B be
arbitrary. If, in the models described in the above theorem, fq←a can be computed
with communication complexity c, then f can be computed with sG(q, a) ≤ c. If f
can be computed with s(q, a) = λ, then fq←a can be computed with communication
complexity bounded by 3 · λ.
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4.2 Multi-Party with Referee

In this section we generalize our previous results to multi-party communication. We
generalize Lemmas 4.2 and 4.3 by showing that similar bounds hold if we compare
the information source of a bridge player that is connected to more than two blocks
with the size of a communication protocol that makes use of a referee. Through the
section we assume that graph G of n nodes consist of k blocks sharing the bridge node
Pq. Let m1, . . . , mk, with 1 + m1 + m2 + . . . + mk = n, be the sizes of connected
subgraphs G1, . . . , Gk obtained from G after removing Pq and let f : Bn → B be an
arbitrary function. We will relate sG(q, a) for f and the optimum partition number
CPR for function fq←a, for any a ∈ B. In the model of private computation the input
bits are distributed among n players and the input bits in a communication protocol
are distributed among the k parties. We identify the input ~vi of the ith party with the
mi input bits known by players of Gi. We assume that the value of the input bit xq is
known by all parties.

Lemma 4.6 For a ∈ B we have sG(q, a) ≤ CPR(fq←a).

Proof: Let B be a deterministic communication protocol for fq←a. We construct a pro-
tocol that is private with respect to all players except for bridge players. Furthermore,
we show that the size of the information source of Pq is bounded by CPR(B).

Since B is deterministic, there exist k functions Ti : Bmi × B? → B? for i ∈ [k]
and a function B : B? → [k] such that the messages exchanged in successive rounds
between R and A1, . . . , Ak according to B can be computed by evaluating Ti and B as
follows:

wj :=

{
λ if j = 0 ,

wj−1TB(wj−1)(xB(wj−1), wj−1) if j > 0 .

B(wj−1) determines the party Ai the referee wants to talk to in round j after receiving
the communication string wj−1. Ti(xi, wj−1) determines the corresponding communi-
cation string exchanged in round j between R and AB(wj−1) .

The functionB can always be evaluated by the bridge player Pq and TB(wj−1) can be
computed on the B(wj−1)-th block and the players that are reachable from the players
in the B(wj−1)-th block without passing Pq such that only Pq knows the result of the
computation and no internal player learns anything. By iterating these computations,
Pq can generate the complete communication sequence and finally compute the result.

The distribution of the communication seen by Pq is uniquely determined by the
communication sequence of the communication protocol, since it does not depend on
the random strings of the players. From this observation, the lemma follows. ut

Next we show how we can simulate the computation of a protocol A by a commu-
nication protocol B with a referee. The simulation works analogously to the simula-
tion in Lemma 4.3. Additionally, the simulation allows us to specify one distinguished
communication string w to be used, if this string has positive probability for the input
of A.
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For a communication string w we define the weighted lexicographic order ≤w
lex as

follows. Let c1, c2 be arbitrary communication strings. Without loss of generality we
assume that any protocol sends as a last message a unique message indicating the end
of the computation. Hence, particularly neither w can be a prefix of ci nor ci a prefix
of w. Denote by t, `1, `2 the numbers of blocks of w, c1, and c2, respectively. Let
` = min{t, `1, `2}. Define

c1≤
w
lexc2 ⇐⇒





c1 = w or

∃i ≤ ` [∀j ≤ i : blockj(c1) = blockj(w) = blockj(c2)] and

[blocki+1(c1) = blocki+1(w) 6= blocki+1(c2) or

blocki+1(c1) 6= blocki+1(w) 6= blocki+1(c2) or

blocki+1(c1)≤lexblocki+1(c2)] ,

where ≤lex is the common lexicographical ordering of two strings. Note, the commu-
nication string w is always the minimum string with respect to the order ≤w

lex.

Lemma 4.7 For every a ∈ B and every protocol A for computing a function f there
exists a communication protocol B computing fq←a with

CPR(B) ≤ sA(q, a) .

Additionally, B has the following properties. Let X = {x ∈ Bn : xq = a}. Then B
starting with parameters w and rq, where w is an arbitrary communication string, and
rq is Pq’s random bit string, simulates A such that

1. if µx(w) > 0 for some x ∈ X then for every x′, with µx′(w) > 0, the com-
munication string of B during the simulation on x′ is the same as during the
simulation on x;

2. for any x, x′ ∈ X if ĉ is the minimum communication sequence with respect
to the order ≤w

lex in both sets {c : µx(c) > 0} and {c : µx′(c) > 0} then the
communication string of B during the simulation on x is the same as during the
simulation on x′.

Proof: Let V1, . . . , Vk be a partition of all players except for Pq into subsets of maxi-
mum cardinality, such that for each set Vk and every pair Pi, Pj ∈ Vk the player Pi is
reachable from Pj without passing Pq. Let rq be Pq’s random bits and w be an arbi-
trary communication string. We construct a communication protocol by simulating A
and searching the minimal communication sequence according to ≤w

lex for Pq that has
positive probability.

Let c be the communication string observed by Pq for a fixed content r1, . . . , rn of
the random tapes and input x. Every block sequence blockj(c) of c is associated with
a subset Vk and can deterministically be computed from the contents of the random
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tapes of the players in Vk ∪ {Pq}, the input of these players, and blocki(c) with i < j.
Analogously, the index d of the subset Vd that is associated to the block sequence
blockj+1(c) can be determined from rq, xq, and the subsequences blocki(c) with i ≤ j.
Let h(rq, xq, block1(c) . . .blockj(c)) be the function that determines this index.

We say that a string c′ is a valid prefix, if it can be extended to a communication
string c, i.e. c = c′u for some string u such that µx(c) > 0 and Pq makes an alternation
in c between c′ and u.

Let R0
i be the sets of all possible contents of the random tapes of the players in Vi

and let α0 = λ be the empty string. Furthermore, let xi be the input of the players in
Vi. We simulate the private protocol A as follows: Initially, referee R sends rq and xq

to all parties A1, . . . , Ak. Then we do the following iteratively for j = 1, 2, . . .:

1. R computes index ij = h(rq, xq, (α0, . . . , αj−1)) and sends α0, . . . , αj−1 to the
party Aij .

2. The party Aij determines the set Hj of all strings α such that α is a block and
α0, . . . , αj−1, α is a valid prefix of a communication string where the content of
the random tapes of the players in Vij is in Rj−1

ij
, the inputs of these players are

given by xij , the content of Pq’s random tape is rq, and Pq’s input is xq. Aij

chooses αj ∈ Hj such that for any α ∈ Hj

α0, . . . , αj−1, αj ≤
w
lex α0, . . . , αj−1, α

and Rj
ij

⊆ Rj−1
ij

as the set of all possible contents of the random tapes of the
players in Vij such that the prefix of the communication string observed by Pq is
α1, . . . , αj−1, αj. Finally, Aij sends αj to the referee R.

3. Each party Ak 6= Aij chooses Rj
k = Rj−1

k .

To get a communication protocol, the parties A1, . . . , A`, and R iteratively compute
ij , αj, and Rj

i until R determines the end of the simulation. The correctness of this
protocol follows from the correctness of the private protocol.

It remains to show that wheneverA1, . . . , Ak, andR generate two different commu-
nication strings for two different inputs x = (x1, . . . , xk) and x′ = ((x′)1, . . . , (x′)k),
then the two corresponding inputs x and x′ for the protocol A instantiate two different
distributions µx and µx′ where the lexicographically minimal string according to the
ordering ≤w

lex with positive probability in µx differs from the corresponding string with
positive probability in µx′ .

Let c = α1, . . . , α` be the communication string computed during the simulation on
x and analogously let c′ = α′1, . . . , α

′
`′ be the communication string computed during

the simulation on x′. Note that we can assume that neither c is a prefix of c′ nor c′ is a
prefix of c.

Let i0 be minimal such that αi0 6= α′i0 and for all i < i0 αi = α′i. In the following
we assume that c<w

lexc
′. We distinguish two cases:
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1. Assume that αi0 is not a prefix of α′i0 . By our construction of the substrings
αi0 and α′i0 , it follows that if µx′(α1, . . . , αi0 , u) > 0 for some u such that there
is an alternation between α1, . . . , αi0 and u, then our algorithm would prefer to
use αi0 on input x′, too. Hence, µx′(α1, . . . , αi0, u) = 0 for all such u. On the
other hand, for u = αi0+1, . . . , α` we have µx(α1, . . . , αi0 , u) > 0 and there is
an alternation between α1, . . . , αi0 and u. Thus, the lexicographically minimal
string according to the ordering ≤w

lex with positive probability in µx differs from
the corresponding string with positive probability in µx′ .

2. Assume that αi0 is a prefix of α′i0 . Note that we have i0 < `. Then

α1, . . . , αi0αi0+1<
w
lexα

′
1 . . . , α

′
i0
.

By our construction of c, it follows that if µx′(α1, . . . , αi0, αi0+1, u) > 0 for
some u such that there is an alternation between α1, . . . , αi0 and u, then our al-
gorithm prefers to use αi0 , αi0+1 on x′, too. Hence µ′x(α1, . . . , αi0, αi0+1, u) =
0 for all such u. On the other hand, for u = αi0+2, . . . , α` it is true that
µx(α1, . . . , αi0, αi0+1, u) > 0 and there is an alternation between α1, . . . , αi0

and u. Thus, the lexicographically minimal string according to the ordering ≤w
lex

with positive probability in µx differs from the corresponding string with posi-
tive probability in µx′ .

ut

From Lemmas 4.6 and 4.7, we get the following theorem.

Theorem 4.8 For a ∈ B we have sG(q, a) = CPR(fq←a).

5 One-Phase Protocols

We start our study of one-phase protocols with considering networks that consist of
one bridge player who is incident with d blocks. For the case that the order in which
the bridge player communicates with the blocks is fixed for all inputs, we show a rela-
tionship between the size of the information source of one-phase protocols and com-
munication size of multi-party one-way protocols. We prove that for some Boolean
functions there exists no fixed order that minimizes the loss of information of one-
phase protocols. On the other hand we prove that for every symmetric Boolean func-
tion one-phase protocols can minimize the loss of information when the bridge player
sorts the blocks by increasing size. Then we present a simple one-phase protocol on
arbitrarily connected network that is optimal for every symmetric function.

5.1 Orderings

It is easy to see that in any 2-party communication protocol, the party that starts send-
ing messages to the other party is independent of the input. Analogously, we can show
the following lemma.
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Lemma 5.1 Let G be a connected network with one bridge player Pq and let A be
a one-phase protocol on G. Then the block Pq starts to exchange messages with is
independent of the actual input xi of all other players Pi 6= Pq.

Nevertheless, the communication order of Pq can depend on the input of Pq.
A natural extension of the two-party scenario for one-way communication is a

scenario in which the parties use a directed chain for communication. Hence, we
consider parties A1, . . . , Ad that are connected by a directed chain, i.e. Ai can only
send messages to Ai+1. For a communication protocol B on G and i ∈ [d] let S 7→i (B)
be the number of possible communication sequences on the subnetwork of A1, . . . , Ai.
Each communication protocol B can be modified without increasing S7→i (B) (i ∈ [d])
in the following way: Every partyAi first sends the messages it has received fromAi−1

to Ai+1 followed by the messages it has to send according to B. In the following we
restrict ourselves to communication protocols of this form.

If the network G consists of d blocks Bi with i ∈ [d] and one bridge player Pq,
we consider a chain of d parties A1, . . . , Ad. For a σ-ordered one-phase protocol A,
we assume that the enumeration of the blocks reflects the ordering σ. Analogously
to our simulation in Section 4, we have to determine the input bits of the parties in
the chain according to the input bits of the players in the protocol. In the following
we will assume that Ai knows the input bits of the players in Bi. Thus, each party
Ai has to know the input bit x[q] of the bridge player Pq. Therefore, we will inves-
tigate the restricted function fq←a whenever we analyze the communication size of a
communication protocol.

For a σ-ordered protocol A define

S
[i]
A (q, a, b, rq) := {µ̂x | x[q] = a and f(x) = b},

where
µ̂x(ĉk) :=

∑

c with bck = block1(c) . . .blocki(c)

Pr[Cq = c | rq, x]

and ĉ1, ĉ2, ĉ3, . . . is a fixed enumeration of all strings describing the communication of
Pq in the first i block sequences.

Let Ii be the set of input positions known by the players in Bi except for Pq. Then
for a fixed input a ∈ B of player Pq define Y0

u = B? and

Y i
0 := {x ∈ Y i−1

u | (fq←a)Ii←x[Ii]
≡ 0} ,

Y i
1 := {x ∈ Y i−1

u | (fq←a)Ii←x[Ii]
≡ 1} , and

Y i
u := Bn−1 \

⋃i
j=1(Y

j
0 ∪ Yj

1)

Lemma 5.2 For a ∈ B let B be a d-party one-way communication protocol comput-
ing fq←a on a chain network. Then there exists a σ-ordered one-phase protocol A
computing f such that for all i ∈ [d− 1] and for every content rq of Pq’s random tape

S 7→i (B) = |S
[i]
A (q, a, 0, rq) ∪ S

[i]
A (q, a, 1, rq)| .
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Proof: We use a simulation analogously to the simulation in Lemma 4.2. According
to our observations above we can conclude for any input x ∈ Bn with x[q] = a:

• If x ∈
⋃i

j=1 Y
j
0 , then the resulting distribution is in S

[i]
A (q, a, 0, rq) but not in

S
[i]
A (q, a, 1, rq).

• If x ∈
⋃i

j=1 Y
j
1 , then the resulting distribution is in S

[i]
A (q, a, 1, rq) but not in

S
[i]
A (q, a, 0, rq).

• If x ∈ Y i
u, then the resulting distribution is in S

[i]
A (q, a, 1, rq) ∩ S

[i]
A (q, a, 0, rq).

Each possible communication sequence on the subnetwork of A1, . . . , Ai+1 results in
exactly one distribution in S

[i]
A (q, a, 0, rq)∪S

[i]
A (q, a, 1, rq). Thus, the lemma is proved.

ut

Lemma 5.3 Let A be a σ-ordered one-phase protocol for computing f on a network
as described above. Then for every a ∈ B and every content rq of Pq’s random tape
there exists a one-way communication protocol B for computing fq←a such that for all
i ∈ [d− 1]

S 7→i (B) ≤ |S
[i]
A (q, a, 0, rq) ∪ S

[i]
A (q, a, 1, rq)| .

Proof: Analogously to our simulation in Lemma 4.3 the parties Ai compute the lexi-
cographically minimal block sequences describing the communication of Pq with the
players inBi on input x[Ii] and x[q] where the block sequences for the communication
of Pq with the players of the blocks B1, . . . , Bi−1 are determined by the communi-
cation string on the subnetwork of A1, . . . , Ai. Each distribution gives at most one
communication sequence on the subnetwork on A1, . . . , Ai+1. The lemma follows di-
rectly. ut

The simulations above give us even more.

Proposition 5.4 Let a ∈ B and B be a communication protocol as described above for
computing fq←a on a chain network. Then there exists a σ-ordered one-phase protocol
A for computing f such that for all b ∈ B, every j ∈ [d − 1], and every content rq of
Pq’s random tape the following holds:

If we restrict the inputs to x ∈ Bn−1 with fq←a(x) = b, the number of pos-
sible communication sequences on the subnetwork A1, . . . , Ai+1 is given
by |S

[i]
A (q, a, b, rq)|.

Furthermore, let A be a σ-ordered one-phase protocol for computing f on a network
as described above. Then for every a ∈ B, every content rq of Pq’s random tape, and
every b ∈ B there exists a one-way communication protocol B for computing fq←a

such that the following properties hold for all i ∈ [d− 1]:
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If we restrict the inputs to x ∈ Bn−1 with fq←a(x) = b, the number of
possible communication sequences on the subnetwork of A1, . . . , Ai+1 is
bounded from above by |S

[i]
A (q, a, b, rq)|.

Let us now focus on the structure of the possible communication sequences of
an optimal communication protocol on a chain. Such a protocol has to specify the
subfunction

fi,x := (fq←a)Si
j=1 Ij←x[

Si
j=1 Ij ]

for any input x for any i < d by the corresponding communication string on the link
(Ai, Ai+1). As we have seen above, we do not increase the number of communication
strings in the subnetwork A1, . . . , Ai+1, if the message sent by Ai specifies all sub-
functions f1,x, . . . , fi,x. Hence, the number of possible communication sequences on
the network A1, . . . , Ad is at least the number of different sequences f1,x, . . . , fd−1,x

where we vary over the different inputs x.
The knowledge about these sequences must also be provided to the bridge player by

the probability distribution of a σ-ordered one-phase protocol. Hence, for every fixed
rq and b ∈ B the number of distributions in S

[d−1]
A (q, a, b, rq) is at least the number

of different sequences f1,x, . . . , fd−1,x for inputs x with x[q] = a and f(x) = b. This
implies the following lemma.

Lemma 5.5 For a ∈ B let B be a communication protocol for computing fq←a on a
chain network. Then there exists a σ-ordered one-phase protocol A for computing f
such that for all i ∈ [d− 1] and every content rq of Pq’s random tape

S 7→i (B) = |S
[i]
A (q, a, 0, rq) ∪ S

[i]
A (q, a, 1, rq)| .

Furthermore, for any b ∈ B it holds: If we restrict the inputs to x ∈ Bn−1 with
fq←a(x) = b, the number of possible communication sequences on the subnetwork

A1, . . . , Ai+1 is given by |S [i]
A (q, a, b, rq)|.

5.2 Quasi-Ordered Protocols

We can show that there exist functions, for which no ordered one-phase protocol mini-
mizes the size of the bridge players’ information source. Thus, we generalize the class
of ordering that we consider to achieve such a property.

We call a protocol A quasi-ordered if for every a, b ∈ B, for every content rq for
Pq’s random tape, and for every distribution µ ∈ SA(q, a, b, rq) there exists a one-
phase ordering σ such that every communication string c with µ(c) > 0 the string c is
σ-ordered. Note that this ordering is not necessarily the same for all inputs. However,
given any input, the ordering is fixed.
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Lemma 5.6 Let G be a connected network with one bridge player Pq and d blocks.
Then for every one-phase protocol A there exists a quasi-ordered one-phase protocol
A′ such that for all a, b ∈ B and every content rq of Pq’s random tape

sA(q, a, b, rq) ≥ sA′(q, a, b, rq) .

Proof: We prove this lemma by induction in the number of blocks of the graph. The
lemma follows from Lemma 5.1 for every function and every connected network G
with one bridge player Pq and 2 blocks.

Let us now assume that the claim holds for every function and every connected
network with one bridge player Pq and d − 1 blocks. Let G be a connected network
with one bridge player Pq and d blocks, let f be the function we want to compute on
G, and A be a one-phase protocol for computing f on G.

According to Lemma 5.1 the block where Pq starts to exchange messages is inde-
pendent of the actual input x[i] of all other players Pi 6= Pq. Thus the index i1 of the
block can be determined by a, b ∈ B and the content rq of Pq’s random tape. For every
input x ∈ Bn with x[q] = a and f(x) = b the first block sequence has to determine
the type of the subfunction f1,x. If two input strings x, y with x[q] = y[q] = a and
f(x) = f(y) = b have different subfunction f1,x 6= f1,y, then these inputs result in dif-
ferent distributions over the possible communication strings in the first block sequence
as well. If for two inputs x 6= y with x[q] = y[q] = a and f(x) = f(y) = b we have
f1,x = f1,y then there exists a protocol that uses the same distribution over the possible
communication strings in the first block sequence for x and y.

Let F1,x be the set of all different subfunctions f1,x (x ∈ B with x[q] = a and
f(x) = b). Let t = |F1,x|. For every subfunction h ∈ F1,x let xi be an input with
h = f1,xi

and ĉi be a string that describes the communication between Pq and Bi1

on input x with positive probability. Let Ai be the part of the protocol in which A
continues its computation after seeing ci. Then the following inequality holds:

sA(q, a, b, rq) ≥
t∑

j=1

sAj
(q, a, b, rq) .

By the induction hypothesis for every j ∈ [t] there exists a quasi-ordered protocol A′j
that computes the same function fj on the same network as Aj and

sAj
(q, a, b, rq) ≥ sA′

j
(q, a, b, rq) .

On the other hand, for every input x the bridge player Pq can compute the subfunctions
fi,x on the blockBi1 privately by a protocol A′0. Let A′ be the quasi-ordered one-phase
protocol that we get by combining the protocols A′0,A

′
1, . . . ,A

′
t. Then

sA(q, a, b, rq) ≥
t∑

j=1

sAj
(q, a, b, rq) ≥

t∑

j=1

sA′
j
(q, a, b, rq) = sA′(q, a, b, rq) .

The claim follows, since both A and A′ are one-phase protocols for computing the
same function. ut
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5.3 Orderings for Symmetric Functions

If we restrict ourselves to symmetric Boolean functions f , we can show even more.
Arpe et al. [1] have proved the following for symmetric Boolean functions with a fixed
partition of the input bits: for all i, S 7→i (B) can be minimized, if the number of bits
known by the parties in the chain corresponds to the position of the party, i.e. the first
party knows the smallest number of input bits, the second party knows the second
smallest number, and so on.

This observation is also valid, if we count the number of communication sequences
in a chain network for inputs x with f(x) = 1 and if we count the number of commu-
nication sequences in a chain network for inputs x with f(x) = 0. By combining these
observations with Lemma 5.5, we obtain the following lemma.

Lemma 5.7 Let G be a connected network with one bridge player Pq and d blocks.
Let σ be a one phase ordering that enumerates the blocks of G according to their
size. Then for every ordered one-phase protocol A′ there exists a σ-ordered one-phase
protocol A such that for all a, b ∈ B, for all i ≤ d − 1, and every content rq of P ′q
random tape

|S
[i]
A (q, a, b, rq)| ≤ |S

[i]
A′(q, a, b, rq)| .

On the other hand, after finishing the computation steps with the players of the
first d − 1 blocks, Pq can start a protocol for computing the final function value by
exchanging messages with the players of the last block. According to the definition of
protocols in 2-connected graphs, no player can learn anything about the inputs of the
other players that cannot be derived from its own input and the result of the function.
This observation implies that for all a, b ∈ B and every content rq of P ′q random tape

|S
[d−1]
A (q, a, b, rq)| = |SA(q, a, b, rq)| .

To prove that a one-phase protocol A that uses an order like in Lemma 5.7 is optimal
with respect to the size of the information source of the bridge player Pq, it remains to
show that the information source of such a protocol is also smaller than the information
source of every non-ordered one-phase protocols A′.

Lemma 5.8 Let G be a connected network with one bridge player Pq and d blocks.
Let σ be a one-phase ordering that enumerates the blocks of G according to their size.
Then for every one-phase protocol A′ there exists a σ-ordered one-phase protocol A
such that for all a, b ∈ B

sA(q, a, b) ≤ sA′(q, a, b) .

Proof: If A′ is an ordered protocol then the claim follows directly from Lemma 5.7.
In the following we will assume, that π is a one-phase ordering that enumerates the

blocks of G according to their size and fulfills the following additional property:

26



If G has a two blocks of the same size, then the block are ordered in π
according to there indices.

Note that given a ordering of the blocks, this ordering is well-defined.
By contradiction let us assume, that there exists a non-ordered one-phase protocols

A′ such that for every ordered one-phase protocols A we have

sA(q, a, b) > sA′(q, a, b) .

By Lemma 5.6 we can assume that A′ is quasi-ordered.
For any one-phase communication string c of the bridge player Pq let ∆(c) denote

the number block sequences blocki(c) in c such that the suffix

blocki(c) . . .blockd(c)

violates the ordering of π, i.e. there are two blocks Bj, Bk such that

• according to the ordering π, Bj is ranged before Bk,

• each block has its corresponding block sequences in the suffix blocki(c) . . .
blockd(c) of c, and

• according to the ordering of this suffix, Bk is ranged before Bj.

We call ∆(c) the degree of disorder of c. For a distribution µ all communication strings
of Pq, we define

∆(µ) := max
c with µ(c)>0

∆(c) .

For a quasi-ordered protocol the orderings for all communication strings c with µ(c) >
0 are identical.

Finally for a one-phase protocol A, a, b ∈ B, and a content rq of Pq’s random tape
define

∆A(a, b, rq) :=
∑

µ∈SA(q,a,b,rq)

∆(µ) and

∆A(a, b) :=
∑

rq

∆A(a, b, rq) .

We call ∆A(a, b) the degree of disorder of the protocol A.
Let A′ be a quasi-ordered one-phase protocols A′ such that

• A′ has a minimum degree of disorder ∆A(a, b) over all quasi-ordered one-phase
protocols fulfilling Equation 1 and

• for every ordered one-phase protocols A we have

sA(q, a, b) > sA′(q, a, b) . (1)
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We will now show, that such an optimal quasi-ordered one-phase protocols A′ does
not exist.

Let rq be a possible content of Pq’s random tape such that ∆A′(a, b, rq) > 0 and
µx ∈ SA′(q, a, b, rq) be a distribution such that ∆(µx) is maximal. Furthermore, let
σx = Bi1 , . . . , Bid be the ordering of µx and choose k maximal, such that there exists
a block Bij with j > k and Bij is ranged before Bik in π.

Note that for each quasi-ordered one-phase protocol the first block of each com-
munication string is always fixed. The index of the second block depends only on the
type of the subfunction of f when we fix the input bits of the players in the first block.
This subfunction is called f1,x. In general the index of the `th block depends only on
the type of the sequence f1,x, . . . , f`−1,x, where fj,x is the subfunctions of f where we
fix the input bits of the players in the first j blocks.

Let A′′ be the part of the protocol of A′ that determines the behavior of Pq after
receiving the information f1,x, . . . , fik−1,x from the first ik − 1 blocks. Note that A′′

computes fik−1,x on the subgraph of G that consists of the blocks Bik , . . . , Bid only.
Since µx has a maximum value of the degree of disorder the protocol A′′ is ordered.

Then we have

sA′(q, a, b, rq) = |{µy | f1,x, . . . , fik−1,x differs from f1,y, . . . , fik−1,y}|

+sA′′(q, a, b, rq) ,

where µy describes the probability distribution over the communication strings on
input y. Since A′′ is ordered and fik−1,x is a symmetric function, we can apply
Lemma 5.7 and modify A′ by replacing A′′ with an ordered one-phase protocol A′′o
for fik−1,x that communicates with the blocks Bik , . . . , Bid according to their size.
Note that the resulting protocol A′o for f is still quasi-ordered and by Lemma 5.7 we
can chose A′′ such that

sA′′(q, a, b, rq) ≥ sA′′
o
(q, a, b, rq)

and
∆A′(a, b, rq) ≥ ∆A′

o
(a, b, rq) .

This contradicts our assumption that A′ has a minimum degree of disorder over all
quasi-ordered one-phase protocols fulfilling Equation 1. ut

5.4 An Optimal One-Phase Protocol for Symmetric Functions

The result of the previous section can also be generalized to networks with more than
one bridge player. Let G1, . . . , Gk be the connected subgraphs obtained by deleting
the bridge player Pq with |Gi| ≤ |Gi+1|. We say that Pq works in increasing order, if it
starts communicating withG1, then withG2 and so on. We call a one-phase protocol A
increasing-ordered, if every bridge player works in increasing order. This generalizes
the ordering of A chosen in Lemma 5.8.
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For a graph G let G = {G1 = (V1, E1), . . . , Gh = (Vh, Eh)} be the set of blocks
and Q = {q1, . . . , qk} be the set of bridge nodes of G. Every graph G induces a tree
TG = (VG, EG) defined as follows: VG = VQ ∪ VG with VQ = {u1, . . . , uk} and
VG = {v1, . . . , vh} and EG = {{ui, vj} | qi ∈ Vj}.

For every one-phase communication order σ = (σq1
, . . . , σqk

) and every bridge
node qi the order σqi

defines an ordering of the nodes vj ∈ VG adjacent to the tree-node
ui. Let Gσqi

(1), . . . , Gσqi
(ki) denote the ordering of blocks adjacent to qi with respect

to σqi
and rootσ(ui) := vσqi

(ki). If σ is an increasing communication order, then there
exists a single tree-node vj ∈ VG , such that vj = rootσ(ui) for all ui ∈ VQ adjacent to
vj . Let us call this node the root of TG. For a tree-node w ∈ VG let TG[w] denote the
subtree of TG rooted by w and let V [w] denote the nodes of G located in the blocks Gj

with vj ∈ TG[w].
For computing a symmetric function f we use the following protocol. Let σ be an

increasing communication order. Then for an input x every bridge player qi computes a
sequence of strings y1, . . . , yki−1 as follows: Let Xj =

⋃
e∈[j] V [vσqi

(e)] and `j = |Xj|.
Then yj ∈ B`j such that for all j ≤ ki−1 the function obtained from f by specializing
the positions in Xj to yj is equal to the function obtained from f by specializing the
positions to xXj

, where xI for I ⊆ [n] denotes the input bits with indices in I . Finally,
a node of the block that corresponds to the root of TG computes the result f(x). This
can be implemented such that no player gains any additional information except for
the strings y1, . . . , yki−1 learned by the bridge nodes qi.

Theorem 5.9 Let G be a 2-edge-connected network and f be a symmetric Boolean
function. Then there exists an increasing-ordered one-phase protocol A for f on G
such that for every one-phase protocol A′ for f on G, for every player Pi, and for all
a, b ∈ B, we have

sA(i, a, b) ≤ sA′(i, a, b) .

Proof: To prove this theorem we will present a protocol for computing f on G that
simultaneously minimizes the size of the information source of each player ofG. Thus,
the protocol is optimal with respect to the size of the information source of each player,
if the function is symmetric and the network is 2-edge-connected.

Let G be a network and Pq be any bridge node in G. B1, . . ., Bdq
are the blocks

incident with Pq and Gi = (Vi, Ei) is the connected subgraph of G that contains Bi

after deleting Pq. Finally, let Ii be the set indices of the players in Vi ∪ {q} and
#q =

∣∣⋃dq−1
i=1 Ii

∣∣. We assume that Gi covers the players of Bi (except for Pq) and
|Ii| ≤ |Ii+1| for 1 ≤ i < dq. Recall, that x[I1], . . ., x[Idq

] are the actual inputs for I1,
. . ., Idq

, respectively.
For easier notion let I0 = ∅ and x[I0] be the empty string. The protocol for Pq

proceeds in dq stages as follows:

1. In the first dq − 1 stages the protocol Pq computes fi,x = fSi
j=1 Ij←x[

Si
j=1 Ij ]

iteratively for 1 ≤ i < dq on Bi. Therefore, Pq chooses an arbitrary string
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αi ∈ B|
Si−1

j=1 Ij | such that fSi−1
j=1 Ij←αi

= fi−1,x and cooperates with the players in
Bi as a player with input αi.

2. In the last stage, Pq chooses an arbitrary string αdq
∈ B|

Sdq−1

j=1
Ij | such that

fSdq−1

j=1 Ij←αdq

= fdq−1,x

and cooperates with the players inBdq
as a player with input αdq

. We distinguish
three cases:

(a) If |Idq
| ≤ #q, then Pq privately computes fdq ,x = fdq−1,xIdq←x[Idq ]

on Bdq
.

(b) If |Idq
| > #q, #q = max{#q′ | Pq′ is a bridge player}, and q < q′ for

all bridge player Pq′ with #q′ = #q, then Pq privately computes fdq ,x =
fdq−1,xIdq←x[Idq ]

on Bdq
.

(c) Otherwise, Pq proceeds in Bdq
as a non-bridge player with input αdq

.

Now we prove that the size of the information source of every player is minimal. Every
non-bridge player does not learn anything, not even the function value. Hence, the
protocol is lossless with respect to any non-bridge player and it remains considering the
bridge players. The only information a bridge player Pq can derive from the messages
exchanged with the players of its incident blocks Bi with 1 ≤ i ≤ dq − 1 are the
subfunctions fi,x. This sequence gives the minimum communication size S 7→i in a
communication protocol on a chain where the parties are ordered according to the
ordering chosen by our protocol. If the function computed is symmetric, we can apply
Lemmas 5.5 and 5.8 to show that the ordering of the blocks for computing the sequence
is optimal with respect to the size of the information source. ut

Corollary 5.10 The protocol presented in this section is optimal for one-phase com-
putations of symmetric functions with respect to the size of the information source.

6 A Phase Hierarchy

In this section we show that there are functions for which the size of the information
source of some player for a (k − 1)-phase protocol is exponentially larger than for a
k-phase protocol. The natural candidate for proving such results is the pointer jumping
function pj: Our network G has two blocks A and B, one of size n logn and the other
of size n logn + 1, sharing one bridge player Pi. For simplicity we assume that A
and B are complete subgraphs. The input bits represent two lists of n pointers, each
of length logn bits. The input bit of Pi belongs to the list of the smaller component.
Starting with some predetermined pointer ofA, the task is to follow these pointers, find
the jth pointer and output the parity of the bits of the jth pointer. We get the following
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upper bound for k-phase protocols. (Recall that k-phase protocols can simulate 2k− 1
rounds, since each phase except for the first one can simulate two communication
rounds.)

Theorem 6.1 For p2k−1, sk
G(i, a, b) = 2O(k log n) for all a, b.

Proof: We get a lower bound via the relation between communication size and infor-
mation source shown in Lemmas 4.2 and 4.3.

The players holding the bits of a particular pointer send their bits to Pi. (If A or
B is not a complete graph, then the protocol can be modified such that it is private for
the players other than Pi as follows: Each player sends his bit masked with a random
bit on one path to Pi and the random bit on another path. This is possible since A and
B are blocks. Furthermore, all other players of the block do the same, but with two
random bits. This is done to prevent players from learning something by not getting
a message.) Then Pi informs the players to which the received pointer points. The
informed players send their bits to Pi and so on. After 2k − 1 iterations, Pi simply
computes the parity of the last pointer received. In this way, Pi learns O(k logn) bits.
In the worst-case, all pointers involved point from A to B and vice versa. In this case,
the number of phases is k. ut

Define CSj and CCj in the same manner as CS and CC, but by minimizing over
j-round communication protocols instead of arbitrary communication protocols.

Theorem 6.2 Let A be a protocol for computing p2k−1. Then sk−1
A (i, a, b) = 2Ω( n

k log k
)

for all a, b.

Proof: By Lemmas 4.2 and 4.3 we have sk−1
A (i, a, b) = Θ(CS2k−3(p2k−1)). By the

following Lemma 6.3, CS2k−3(p2k−1) ≥ 2Ω(CC2k−3(p2k−1)/k). Now the result follows
by the lower bound CC2k−2(p2k−1) = Ω(n/ log k) for p2k−1 proved by Nisan and
Wigderson [18]. ut

Using more elaborate techniques, one should be able to get rid of this extra k. It
remains to show the following lemma.

Lemma 6.3 For any Boolean function f , we have log(CSj(f)) ≥ Ω(CCj(f)/j).

Proof: Consider a protocol tree T for f with j rounds that has a minimal number of
leaves. We modify T as follows: Consider the subtree S induced by nodes belonging
to the first round. We can replace S by a balanced tree without changing the outcome
of the protocol. Then we change all subtrees corresponding to the second round in
the same manner and so forth. Call the resulting tree T ′. By construction, T ′ has
still j rounds and the number of leaves of T and T ′ are the same. But each subtree
corresponding to a particular round is balanced.

Consider a longest path P in T ′ and let h1, . . . , hj be the length of the subpaths
of P corresponding to the rounds 1, . . . , j, respectively. The number of leaves of T ′
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is at least
∑j

i=1 2hi−1, since we balanced all subtrees belonging to a particular round.
In particular, CSj(f) ≥

∑j
i=1 2hi−1. On the other hand, the height of T ′ is h =

h1 + . . . + hj . Therefore h ≥ CCj(f). The value
∑j

i=1 2hi−1 attains its minimum
if h1 = . . . = hj . In this case

∑j
i=1 2hi−1 = j · 2h/j−1. Therefore, log CSj(f) ≥

h/j − 1 + log j, which proves the claim. ut

7 Conclusions and Open Problems

We have considered distributed protocols in “non-private” environments: networks
that are connected but not 2-connected. Since private computation of arbitrary Boolean
functions is impossible on such networks, we have introduced a new measure for the
information that can be inferred from seeing particular communication strings and
discussed some general properties of protocols with respect to this measure. A natural
question that arises is finding optimal protocols for some concrete functions.

For common Boolean functions like e.g. threshold (fn0
(x1, . . . , xn) = 1 if and

only if
∑n

i=1 xi ≥ n0, particularly disjunction (n0 = 1), conjunction (n0 = n), and
majority (n0 = dn+1

2
e)) and counting modulo p (i.e. gp(x1, . . . , xn) = 1 if and only if∑n

i=1 xi ≡ 0 (mod p)), we can prove that the information loss to any player does not
depend on the ordering in which a one-phase protocol computes any of these functions,
if each block has size at least n0 and p, respectively.

Proposition 7.1 Let a network be given on which we want to compute fn0
or gp. Each

block of the network has size at least n0 or p − 1, respectively. Then the loss to each
bridge player in an optimal one-phase protocol does not depend on the ordering in
which the bridge players communicate with their incident blocks.

Proof: It suffices to prove the proposition for networks consisting of a single bridge
player Pq incident with k blocks (k ≥ 2).

We start with considering gp. Since any block has size at least p− 1, there have to
be p different strings Pq can receive from k− 1 of its incident block (all but the one he
communicates with last). This is independent of the ordering, in which he communi-
cates with his incident blocks. The claim of the proposition follows immediately.

Now let us consider fn0
. For the first block Pq communicates with, there are exactly

n0 + 1 possibilities that have to be distinguished: 0 ones, 1 one, . . . , n0 − 1 ones, and
n0 ones (which means that the result is one independently of the input bits hold in the
other blocks). If Pq receives m ∈ [n0] ∪ {0}, there remain n0 + 1 − m possibilities
to distinguish and so on. None of the considerations depends on the ordering in which
Pq communicates with his incident blocks, since any of these blocks has size at least
n0. The proposition follows. ut

If we have blocks consisting of less than p−1 nodes, there can be a difference in the
size of Pq’s information source depending on the order. Consider a network consisting
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of one block of size, say, k < p−1 and another block of size n−k ≥ p−1. Our aim is
to find out, whether the number of ones is 0 (mod p). If Pq starts his communication
with the smaller block, the size of his information source is clearly k+1. On the other
hand, if he starts his communication with the larger block, the size of his information
source is k + 2: For any 0 ≤ i ≤ k we have a string saying “the result is 1 if there are
exactly k ones in the smaller block” plus one string saying “result 1 cannot be achieved
anymore”. This observation can easily be modified for threshold functions.

In general, the size of the information source while communicating in one order
can be exponentially larger than the size obtained by communication in another order.
This is true, even if we restrict ourselves to symmetric functions.

Proposition 7.2 There is a symmetric function f , a network G with one bridge player
Pq, and two orderings σ and σ′ such that sG(q, 1, 1, σ) = Θ(log sG(q, 1, 1, σ′)).

Proof: For ` ∈ N, let n = 2` − 1. For x1, . . . , xn ∈ B, let

y =
∑n

i=1 xi =
∑`−1

i=0 yi2
i .

For simplicity, we call the binary string of length that represents y again y. We split
y into two parts: a = yd−1 . . . y0 and z = y`−1 . . . yd. We choose d maximal with
2d ≤ `− d. Note that (by abusing notation) we also have a =

∑d−1
i=0 yi2

i. Then

f(x1, . . . , xn) = ya+d+1 .

Thus, we use the lower part of the sum y of the inputs bits to address a bit in the higher
part of y.

The network we use will be quite simple. We have two blocks consisting of 2d and
n− 2d − 1 nodes, respectively. (Note that n = Θ

(
22d)

) Furthermore, we have a bridge
player Pq which is part of both blocks. If Pq starts communication with the smaller
block, we can easily achieve that the size of his information source is at most 2d + 1.

It remains to show that the size of Pq’s information source is at least 2`−d−1, thus
exponentially larger. If the size of his information source is smaller, there are at least
two different indistinguishable input strings w and w′ for the larger block with #w and
#w′ ones such that #w ≡ 0 (mod 2)d+1 and #w ≡ 0 (mod 2)d+1. Let v be an input
string with #v ones for the smaller block such that the d+1+#v’s bit of #w and #w ′

is different. The function value on w and w′ together with v is different. But since w
and w′ are indistinguishable and v is fixed, the protocol computes the same result for
either input, a contradiction. ut

For one-phase protocols for symmetric Boolean functions, we have been able to
minimize the number of bits a player learns for all players simultaneously. An obvious
question concerns minimizing the loss of more than one bridge player simultaneously
for general functions. For one-phase protocols, the answer is negative: Consider the
function f given by

f(~x0, ~x1, ~y0, ~y1, z1, z2, z3) =

{
1 if z1 ⊕ z2 ⊕ z3 = ξ and ~xξ = ~yξ and

0 otherwise.
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Here ~x0, ~x1, ~y0, and ~y1 are bit vectors of length n and z1, z2, and z3 are single bits. We
compute f on the following network: ~x0 and ~x1 are distributed within one block (BX ),
~y0 and ~y1 are distributed within another block (BY ). z1, z2, and z3 build a third block
(BZ), while z1 is shared with the BX and z3 is shared with the BY .

In any one-phase protocol for f , either Pz1
or Pz3

learns at least 2n bits, the other
one learns at least n+ 1 bits.

Now we want to prove that this is optimal: The sum of bits learned by Pz1
and Pz3

is
always at least 3n+1. There are three different possibilities of one-way communication
for this graph: all communication goes from left to right or from right to left or both
blocks BX and BY send to BZ . Due to symmetry, we restrict ourselves to considering
the first and third case.

We first consider the case that all communication goes from left to right. Assume
that Pz1

learns less than 2n bits while z1 = 0. Then there are at least two different
inputs ~x0, ~x1 and ~x′0, ~x

′
1 that are indistinguishable for the middle and the right compo-

nent. Assume w.l.o.g. that ~x0 6= ~x′0. Choose z2 and z3 such that ` = 0. Then either
for ~y0 = ~x0 or for ~y0 = ~x′0 we get a wrong function value. We can argue similarly to
prove that Pz3

has to learn n + 1 bits. Otherwise, either ` is unknown in BY or there
are at least two different possible strings to compare with. In either case we obtain a
contradiction.

Now we consider the case that both blocks BX and BY send to the BZ . We can
argue similarly as in the previous case: If Pz1

learns less than 2n bits, there are at least
two different inputs for BX that cannot be distinguished. The same holds for the right
component. Thus, both Pz1

and Pz3
must learn at least 2n bits each.

On the other hand, using two phases we can achieve the minimum loss of n + 1
bits to each bridge player. Compute ` and send it to both blocks BX and BY . Then
these blocks send x` and y`, respectively, to BZ , which finally computes f .

It is open whether there exist functions and networks that do not allow to minimize
the loss to each bridge player simultaneously. If such functions exist, it would be
interesting trying to minimize some function depending on the information loss to each
player instead of minimizing the loss to each player separately. One simple example
one might want to examine is the sum of loss to each player.

Other future work is to generalize the model to t-privacy: How much information
does any group of at most t players learn while computing the function.
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