Electronic Collogquium on Computational Complexity, Report No. 72 (2003)

Algorithms for SAT based on search in Hamming balls

Evgeny Dantsin* Edward A. Hirschf Alexander Wolpert?

September 10, 2003

Abstract

We present a simple randomized algorithm for SAT and prove an upper bound on its running
time. Given a Boolean formula F' in conjunctive normal form, the algorithm finds a satisfying
assignment for F' (if any) by repeating the following: Choose an assignment A at random and
search for a satisfying assignment inside a Hamming ball around A (the radius of the ball depends
on F). We show that this algorithm solves SAT with a small probability of error in at most
2n=0.T12v/n steps. where n is the number of variables in F. We also derandomize this algorithm
using covering codes instead of random assignments. The deterministic algorithm solves SAT
in at most 27 2V"/1982™ gteps. To the best of our knowledge, this is the first non-trivial bound
for a deterministic SAT algorithm.

1 Introduction

The propositional satisfiability problem (SAT) can be solved by an obvious algorithm in 2" steps
where n is the number of variables in the input formula. During the past decade there was a
significant progress in proving better upper bounds for the restricted version of SAT (known as
k-SAT) that allows clauses of length at most k. Both deterministic and randomized algorithms
were developed for k-SAT; the currently best known bounds are as follows:

e poly(n) (2 — kiﬂ)” for a deterministic k-SAT algorithm [DGHS00, DGH*02];

e poly(n) 9(1=721)n+o(M) for 4 randomized k-SAT algorithm, where k > 4 and pj — %2 ask — 00
[PPSZ98];

e 0(1.324™) for a randomized 3-SAT algorithm and O(1.474™) for a randomized 4-SAT algo-
rithm [IT03]; these bounds and other recent bounds for 3-SAT, e.g., [BS03, HSSW02, Rol03],
are based on Schoning’s local search algorithm [Sch99, Sch02] or on the randomized DPLL
approach of Paturi, Pudldk, Saks, and Zane [PPZ97, PPSZ98].

*School of Computer Science, Roosevelt University, 430 S. Michigan Ave., Chicago, IL 60605, USA. Email:
edantsin@roosevelt.edu

tSteklov Institute of Mathematics, 27 Fontanka, St. Petersburg 191023, Russia. Email: hirsch@pdmi.ras.ru.
Supported in part by RAS program of fundamental research “Research in principal areas of contemporary mathemat-
ics”, RFBR grant #02-01-00089, and by Award No. RM1-2409-ST-02 of the U.S. Civilian Research & Development
Foundation for the Independent States of the Former Soviet Union (CRDF).

School of Computer Science, Roosevelt University, 430 S. Michigan Ave., Chicago, IL 60605, USA. Email:

awolpert@roosevelt.edu

ISSN 1433-8092

However, the progress for SAT without the restriction on the clause length is much more modest.
Pudlak gives a randomized algorithm (based on [PPSZ98]) that solves SAT in time poly (n) m 2" <V®
where 7 is the number of variables, m is the number of clauses, and ¢ is a positive constant [Pud98].
The most recent bound for a randomized SAT algorithm is given by Schuler in [Sch03]: his algorithm

(using the algorithm of [PPSZ98]) runs in time poly(n) m 2" Togm There are also bounds that
are “more” dependent on the number of clauses or other input parameters, e.g., poly(n)m 20-30897m
[Hir00] for a deterministic SAT algorithm.

In this paper, we give a randomized algorithm that solves SAT in time poly(n)m? on—0.712/n

and a deterministic algorithm that solves SAT in time poly (n) m? 2"~2V"/19827 To the best of our
knowledge, the latter is the first non-trivial bound for a deterministic SAT algorithm. The bound
for the randomized algorithm is worse than Schuler’s bound [Sch03]. However, our randomized
algorithm uses another idea (the approach of [DGH'02] based on covering the search space by
Hamming balls) and has a derandomized version (our deterministic algorithm).

Both our algorithms are based on the multistart local search approach that proved a success
in randomized and deterministic algorithms for k-SAT [Sch02, DGH*02]. Similarly to other lo-
cal search algorithms, our algorithms choose some assignment of truth values to variables and
then modify it step by step; sometimes the algorithm is restarted. There are two versions of this
approach: “randomized” search [Sch02] where the algorithm performs a random walk and “deter-
ministic” search [DGH02] where the algorithm recursively examines several possibilities to change
the current assignments. In both versions, the random walk or the recursion is terminated after
a specified number of steps, and the algorithm is restarted. We use the “deterministic” approach
[DGH*02] for both deterministic and randomized algorithms: they search for a satisfying assign-
ment inside a Hamming ball of a certain radius R around the initial assignment. More exactly, the
search implementation either uses a minor modification of the procedure in [DGH102] or examines
all assignments in the Hamming ball, whichever is faster.

The analysis of a randomized algorithm based on the multistart local search usually contains two
parts: the estimation of the probability that the initial assignment is close enough to a satisfying
assignment, and the estimation of the time needed to perform the search started from the initial
assignment. In the analysis of a deterministic algorithm based on the same approach, the first part
is replaced by the estimation of the number of initial assignments that are needed to guarantee that
all 2" assignments (the points of the Boolean cube {0,1}") are covered by Hamming balls of radius
R around the initial assignments!. In both cases, R is chosen to tradeoff between the number of
initial assignments and the running time inside each ball. Our analysis follows this general scheme
and, in addition, takes into account the fact that the time needed to find a solution inside a ball
varies from one initial assignment to another. Our key lemma (Lemma 5) estimates the probability
that this time is small enough, i.e., the lengths of clauses used by the algorithm are bounded by a
certain function of n.

Organization of the paper. Sect. 2 defines basic notions and notation used in the paper. The

randomized algorithm and its analysis are given in Sect. 3. This algorithm is derandomized in
Sect. 4.

!For example, the paper [DGH+O2] gives two constructions of such coverings; we use the one that finds the set of
assignments for n/6 variables by a greedy algorithm for the Set Cover problem, and then takes the direct product of
6 instances of the constructed set. The construction is optimal both in time and the number of assignments; however,
the algorithm uses exponential space.

2 Definitions and notation

Formulas and assignments. We deal with Boolean formulas in conjunctive normal form (CNF).
By a wariable we mean a Boolean variable that takes truth values T (true) or L (false). A literal
is a variable z or its negation —z. If [is a literal then =/ denotes the opposite literal, i.e., if [is z
then —[denotes —z, and if [is -z then —[denotes z. Similarly, if v denotes one of the truth values
T or L, we write —v to denote the opposite truth value. A clause is a disjunction C of literals such
that C contains no opposite literals. The length of C' (denoted by |C|) is the number of literals in
C. A formula is a conjunction of clauses.

An assignment to variables z1, ..., z, is a mapping from {z1,...,z,} to {T, L}. This mapping
is extended to literals: each literal —z; is mapped to the truth value opposite to the value assigned
to z;. We say that a clause C is satisfied by an assignment A if A assigns T to at least one literal
in C. Otherwise, we say that C' is falsified by A. The formula F' is satisfied by A if every clause in
F is satisfied by A. In this case, A is called a satisfying assignment for F'.

Let F be a formula and [be a literal such that its variable occurs in F. We write F|,_1 to
denote the formula obtained from F' by assigning the value T to [. This formula is obtained from
F as follows: the clauses that contain [are deleted from F', and the literal —[is deleted from the
other clauses. Note that F|;—T may contain the empty clause or may be the empty formula. Let
A and A’ be two assignments differ only in the values assigned to a literal [. Then we say that A’
is obtained from A by flipping the value of [.

Covering by balls. We identify T and 1 with 1 and 0 respectively. Then any assignment
to variables z1,...,z, can be identified with a point in Boolean cube {0,1}". Let A and A’
be assignments to z1,...,zy, i.e., A, A" € {0,1}". The Hamming distance between A and A’ is
the number of variables z; such that A and A’ assign different values to z;, i.e., the number of
coordinates where A and A’ are different. The Hamming ball (or simply ball) of radius R around
an assignment A is the set of all assignments whose Hamming distance to A is less than or equal
to R. The assignment A is called the center of the ball. The volume of a ball is the number of
assignments that belong to the ball. We write V(n, R) to denote the volume of a ball of radius R
in {0,1}™. It is well known that the volume of a Hamming ball can be estimated in terms of the
binary entropy function:

H(z) = —zlogox — (1 —) logy(1 — z).

Let Aj,...,A; € {0,1}". Consider the balls of radius R around Aj,..., A;. We say that these
balls cover {0,1}" if any point in {0,1}" belongs to at least one of these balls. The centers of the
balls that cover {0,1}" are then called a covering code of length n and radius R, see e.g., [CHLL97].
The number ¢ of the code words is called the size of the covering code.

Notation. Here is a summary of the notation used in the paper.

e F denotes a formula; n denotes the number of variables in F'; m denotes the number of clauses
in F'; k denotes the maximum length of clauses in F';

e C denotes a clause; |C| denotes its length;
e A denotes an assignment;

e F|;—7 denotes the formula obtained from A by assigning T to literal [;

e R denotes the radius of a ball; V(n, R) denotes the volume of a ball of radius R in {0, 1}";

e H(z) denotes the binary entropy function.

3 Randomized Algorithm

In this section we desribe our randomized algorithm for SAT and analyze its probability of error and
running time. The algorithm is called Random-Balls, it invokes procedures called Ball- Checking
and Full-Ball-Checking. We start with the definition of these procedures. Given a formula F', an
assignment A, and a radius R, each of the procedures searches for a satisfying solution to F' in the
Hamming ball of radius R around A.

Procedure Ball-Checking(F, A, R)

Input: formula F', assignment A, number R.
Output: satisfying assignment or “no”.

1. If all clauses in F' are true under A then return A.

2. If R <0 then return “no”.

3. If F contains an empty clause then return “no”.

4. Choose a shortest clause I1 V...V [in F that is falsified by A.

5. Fori <+ 1tok
Invoke Ball-Checking(F;, A;, R — 1) where F; is F|;,—1 and A; is obtained from A by flipping

the value of I;. If this call returns an assignment S, return S.

6. Return “no”.

This procedure differs from its counterpart in [DGH02] only in the choice of an unsatisfied
clause at step 4: the procedure above chooses a shortest unsatisfied clause, while [DGH"02] allows
choosing any unsatisfied clause.

Lemma 1. If Ball-Checking(F, A, R) returns an assignment S then S satisfies F' and belongs to
the Hamming ball of radius R around A. If Ball-Checking(F, A, R) returns “no” then F has no
satisfying assignments in the ball of radius R around A.

Proof. The same as the proof of Lemma 2 in [DGH102]. O

The following lemma gives a natural upper bound on the worst-case running time of Procedure
Ball- Checking.

Lemma 2. The running time of Ball- Checking(F, A, R) is at most poly(n)m k¥, where k is the
maximum length of clauses occurring at steps 4 in all recursive calls.

Proof. The recursion tree has at most k% leaves because the maximum degree of branching is &
and the maximum depth is R. O

The next procedure Full-Ball- Checking searches a satisfying solution in a ball using a “less
intellegent” method: this procedure simply checks the input formula on all points of the ball.

4

Procedure Full-Ball-Checking(F, A, R)

Input: formula F' over variables z1,...,x,, assignment A, number R.
Output: satisfying assignment or “no”.

1. For j < 0to R

For all subsets {i1,...,3;} C{1,...,n}
(a) Flip the values of variables z;,...,z;; in A. Let A’ be the new assignment obtained

from A by these flips.
(b) If A" satisfies F, return A’'.

2. Return “no”.

Clearly, Full-Ball- Checking runs in time at most poly(n) mV(n, R).

Next we define Algorithm Random-Balls. Given a formula F', this algorithm either returns a
satisfying assignment for F' or replies that F' is unsatisfiable. In addition to F, the algorithm takes
two numbers as input: R (radius of balls) and ! (“threshold length” of clauses). The algorithm
generates a certain number of random assignments step by step. For each such assignment A, the
algorithm searches for a satisfying solution in the ball of radius R around A. To do it, the algorithm
invokes either Procedure Ball- Checking or Procedure Full-Ball- Checking. The first one is executed
if all clauses that would occur at its steps 4 are shorter than the specified “threshold” I. Otherwise,
the algorithm invokes Procedure Full-Ball- Checking.

Algorithm Random-Balls(F, R,1)

Input: formula F over n variables, numbers R and [such that 0 < R <[< n.
Output: satisfying assignment or “no”.

1. N =[/8R(1 — R/n) 2r(—H(E/n)],
2. Repeat N times the following:

(a) Choose an assignment A uniformly at random.

(b) If F' contains a clause that has at least [literals falsified by A and at most R literals satis-
fied by A, invoke Full-Ball- Checking(F, A, R). Otherwise invoke Ball- Checking(F, A, R).
If the invoked procedure finds a satisfying assignment, return it.

3. Return “no”.

Obviously, if the algorithm Random-Balls returns an assignment S then S satisfies the input
formula, but the answer “no” may be incorrect. Thus, the algorithm is a one-sided error Monte
Carlo algorithm that makes no mistake on unsatisfiable formulas, but may err on satisfiable ones.
The following theorem estimates its probability of error.

Lemma 3. For any R and [, the following holds:

1. If an input formula F' is unsatisfiable then Algorithm Random-Balls returns “no” with prob-
ability 1.

2. If F is satisfiable then Algorithm Random- Balls finds a satisfying assignment with probability
at least 1/2.

Proof. The first part follows from Lemma 1. Consider the second part: F' has a satisfying assign-
ment S, but all N trials of the algorithm return “no”. This is possible only if for each of the N
random assignments (chosen at step 2a), its Hamming distance from S is greater than R. There-
fore, the probability of error does not exceed (1 — p)V where p is the probability that a random
assignment belongs to the Hamming ball of radius R around S. To estimate p, we observe that
p = V(n,R)/2"™ where V(n, R) is the volume of a Hamming ball of radius R in the Boolean cube
{0,1}". For R < n/2, the volume V(n, R) can be estimated as follows, see e.g. [CHLLY7, Lemma
2.4.4):

1 . 2H(R/n)n < V(n,R) < 2H(R/n)n
8R(1 — R/n)
Therefore p > 2"(H(R/”)*1)/ 8R(1 — R/n). Using this lower bound on p, we get the required upper
bound on the probability of error: (1 —p)V <e PN < 1/2. O

The following lemma, is needed to estimate the running time of the algorithm Random- Balls.

Lemma 4. Counsider the execution of Random-Balls(F, R, 1) that invokes Procedure Ball- Checking.
For any input R and [/, the maximum length of clauses chosen at steps 4 of Procedure Ball- Checking
is less than .

Proof. The proof follows from the condition of step 2(b) of Random-Balls. More formally, let C be a
clause of length at least [occurring in step 4 in some recursive call of Ball- Checking(F, A, R). Then
C is a “descendent” of some clause D in F i.e., C is obtained from D by removing |D|—|C| literals
where |D| — |C| < R. The removed |D| — |C| literals must be true under the initial assignment A;
the remaining |C| literals must be false under it. O

Lemma 5. For any input R and [, let p be the probability (taken over random assignment A) that
Random- Balls invokes Procedure Ball-Checking at step 2(b). Then we have the following bound
on p:

D <m 2l(H(l+LR)_1)
Proof. We estimate the probability that a clause D in formula F' meets the condition of step 2(b).
If this condition holds, at least max(l, |D| — R) literals must be false under A. There are

D)

> ('?') = V(|D|,min(|D| — 1, R))
)

i=max(l,|D|—R

such assignments to the variables of D. Since min(|D| — [,R) < %L, this volume is at most
2H(min([D[-LR)/ID)IDI 1f |D| — I < R, the exponent transforms to

H(-U/|DN)|D| < H(1 - 1/(l + R))|D| = H(R/(R+1))|D|.

Otherwise, the exponent transforms just to H(R/|D|)|D| < H(R/(R+1))|D|. Therefore, there are
at most 2H(B/(B+1)ID| guch assignments to the variables of D and at most

o1 (3f) DI n-1] _ (i1 (sfia))il o gi{i1(sfty)=1)

assignments to the variables of F. Multiplying this bound by the number of clauses in F' and
dividing by the total number 2" of assignments, we get the claim. U

Theorem 1. For R = 0.339y/n and | = 1.87/n, the expected running time of Random- Balls(F, R,1)

is at most

poly (n) m2 2n—0.712\/ﬁ'

Proof. We need to estimate N - T, where N is the number of random balls used by the algo-
rithm Random-Balls and T is the expected running time of search inside a ball (i.e., of either
Ball-Checking(F, A, R) or Full-Ball-Checking(F, A, R)). Using Lemma 5 and the upper bound on
V(n, R), we get the following upper bound on T

T < poly(n) m ((’TL,) +()ZR)
poly(n) m (pV (n, R) + I7)
poly () m (m 2D DEIEe gnY

IAN A

Hence we have

N.T

IA
%

m - poly(n) - on—H(3)n . ((H () -1)+H(5)m 4 lR)
m - poly(n) . <m 2n+l(H(RL;—l)_1) + QR*H(%)nJrRlogzl)

m? . poly(n)-2" - (27¢ +27Y)

¢:l(1—H(Ri+l)> and 1 = H(R>n—Rlog21

Thus, we need to minimize 27% 4 27%. Let us estimate ¢ and 1 taking R = ay/n and | = by/n
where a < b. In the estimation we use the fact that In(1 + z) = z + o(z) for small z:

o - o)

IN

where

a+b b a+b
= 1 — 1 — 1
b\/ﬁ(+b0g2 a cH—bOg2 b)
alogy a + blog, b)
= b 1-1 b .
\/ﬁ(ogs(a + b) + >

b = H(%)n—mlogxwm

= (%lo \2_ + \/_\/% log, \/%/? a) n — ay/nlogy(byv/n)

= av/nlog, ? + v/n(v/n —a)(logy e) In (1 + \/ﬁa_ a) — av/nlogy(by/n)

= av/nlog, @ + ay/nlogy e — av/nlogy(by/n) + o(v/n)
= a\/_logg— + o(v/n).

Taking a = 0.339 and b = 1.87, we get ¢,v > 0.7124/n, which gives us the required overall upper
bound. 0

4 Derandomization

In this section we describe the derandomization of our algorithm. The only place of the randomized
algorithm where random bits are used is the choice of initial assignments. Our deterministic algo-
rithm (Algorithm Deterministic- Balls described below) chooses initial assignments from a covering
code (see Sect. 2). Such code can be, for example, constructed by a greedy algorithm, as formulated
in the following lemma.

Lemma 6 ([DGH7'02]). Let d > 2 be a divisor of n > 1, and 0 < R < n/2. Then there is
a polynomial g4(n) such that a covering code of length n, radius at most R, and size at most

qa(n) - 20-HE/M)" can be constructed in time gq(n) (23"/d + 2(1_H(R/"))”).
Algorithm Deterministic-Balls(F, R,1)

Input: formula F over n variables, numbers R and [such that 0 < R <1 < n.
Output: satisfying assignment or “no”.

1. Let C be a covering code of length n and radius R constructed in Lemma 6. For each
assignment A € C do the following:

If F contains a clause that has at least [literals falsified by A and at most R literals satis-
fied by A, invoke Full- Ball- Checking(F, A, R). Otherwise invoke Ball- Checking(F, A, R).
If the invoked procedure finds a satisfying assignment, return it.

2. Return “no”.

Theorem 2. For R = —2— " and ! = logT?e\/nlogQ n, Algorithm Deterministic- Balls runs on

log, e\/ logy,
poly(n) m? 9" 2V Togyw

Proof. For each ball, the algorithm invokes either Full-Ball-Checking or Ball- Checking. Let by
be the number of balls where Full-Ball-Checking is called and by be the number of balls where
Ball- Checking is called. Lemma 5 gives the upper bound on b;:

F, R, and [in time at most

bl < p2n = m2l(H(RL+l)_1)+n.

In each of these b; balls, the algorithm examines at most V(n, R) assignments. The number by is
obviously not greater than the size of C, i.e., by < poly(n) 2" /V (n, R). In each oh these by balls, the
algorithm examines at most /% assignments. Therefore, the total number of examined assignments
can be estimated as follows:

b -V(n,R) + by 1% < m WH () 1) +nt+H () poly (n) gn+Rlogy I—H(Z)n
= m25 + poly(n) 25
We now estimate the exponents S; and So taking R = %\/ﬁ and [= Ay/n where A is a function

of n such that A > /2 for sufficiently large n. Due to this condition on A, we have [> 2R and
therefore H(R/(R+1)) < H(R/l). We get

s = (1 () 1) e (B)
< l(H(IZ—%)—1>+n+H<%>n
= A\/E(H($> >+n+H(A\/_>n
= n—\/ﬁ-(—%log2A+A+A(1_$>10g2(1_$>

_%mgg(A\/ﬁ) + (\/ﬁ— %) log, (1 - A%/ﬁ))
- n_\/ﬁ.(—%]ogQA-l-A—A(l_%) A12

1 1 1
2Alog2n (x/ﬁ)A\/_logze—l-o(A))
3 1
= n—ﬁ-(—zlong—l-A 2Alogn+ O(A))'
Substituting A = §/logy n, we get
logs m 1
S = n—+/n ((5 loan—%\/gl;Zg7 o(1)) = n—\/nloan(é—Q—é—i-o(l))

For § > 1/+/2, we have S; < n — cy/nlog, n, where c is a positive constant.
We now estimate Sy as follows:

log, e

S = n—l—RlogQI—H(E)n
n

nt Y logy(AVA) — W' logy(AVR) — VA (%) log (%)

Ay/n—1 1
= n_\/ﬁ<T) 10g26 1n<1+m>
vnlogy e (1)
A vn-o(g
Taking A = §/logy n, we have Sy < n — ((logy e)/§)\/n/logsn. Since So dominates S1, the total

number of examined assignments is at most

_log e T
m 251 + poly(n)2%2 < poly(n) m 2" £/ sz
where § > 1/+/2. If we take § = (1/2)log, e > 1/+/2, we get the claim. O

Remark 1. In the proof of Theorem 2 one could take § arbitrarily close to 1/4/2 getting the bound
n—(v2log, e—¢) L

logo n

poly(n) m? 2

for any € > 0. To improve the bound even more, one could construct a code with proportion O(p)
of balls where Full-Ball- Checking is invoked. Such a code exists; however, we leave constructing it
as an open question.

References

[BS03]

[CHLL7]

[DGH*02]

[DGHS00]

[Hir00]

[HSSW02]

[1T03]

[PPSZ98]

[PPZ97]

[Pud9s]

[Rol03]

[Sch99]

S. Baumer and R. Schuler. Improving a probabilistic 3-SAT algorithm by dynamic search
and independent clause pairs. Electronic Colloquium on Computational Complexity,
Report No. 10, February 2003.

G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein. Cowvering Codes, volume 54 of
Mathematical Library. Elsevier, Amsterdam, 1997.

E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schoning. A deterministic (2 — k%_l)” algorithm for k-SAT based
on local search. Theoretical Computer Science, 289(1):69-83, October 2002.

E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schoning. Deterministic algorithms for
k-SAT based on covering codes and local search. In U. Montanari, J. D. P. Rolim,
and E. Welzl, editors, Proceedings of the 27th International Colloquium on Automata,
Languages and Programming, ICALP’2000, volume 1853 of Lecture Notes in Computer
Science, pages 236-247. Springer, July 2000.

E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated Reasoning,
24(4):397-420, 2000.

T. Hofmeister, U. Schoning, R. Schuler, and O. Watanabe. A probabilistic 3-SAT
algorithm further improved. In H. Alt and A. Ferreira, editors, Proceedings of the 19th
Annual Symposium on Theoretical Aspects of Computer Scienceq, STACS’02, volume
2285 of Lecture Notes in Computer Science, pages 192-202. Springer, March 2002.

K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. Electronic Colloquium
on Computational Complexity, Report No. 53, July 2003.

R. Paturi, P. Pudlék, M. E. Saks, and F. Zane. An improved exponential-time algorithm
for k-SAT. In Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science, FOCS’98, pages 628—637, 1998.

R. Paturi, P. Pudldk, and F. Zane. Satisfiability coding lemma. In Proceedings of the
38th Annual IEEE Symposium on Foundations of Computer Science, FOCS’97, pages
566-574, 1997.

P. Pudldk. Satisfiability — algorithms and logic. In L. Brim, J. Gruska, and J. Zlatuska,
editors, Proceedings of the 23rd International Symposium on Mathematical Foundations
of Computer Science (MFCS’98), volume 1450 of Lecture Notes in Computer Science,
pages 129-141. Springer-Verlag, 1998.

D. Rolf. 3-SAT in RTIME(0O(1.32793")) — improving randomized local search by
initializing strings of 3-clauses. Electronic Colloquium on Computational Complexity,
Report No. 54, July 2003.

U. Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, FOCS’99, pages 410-414, 1999.

10

[Sch02] U. Schoning. A probabilistic algorithm for k-SAT based on limited local search and
restart. Algorithmica, 32(4):615-623, 2002.

[Sch03] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal
form. Manuscript, 2003.

11

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

