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Sixtors and Mod 6 Computations

Vince Grolmusz *

Abstract

We consider the following phenomenon: with just one multiplication we can compute
(Bu+2v)(3z +2y) = 3ur +4vy (mod 6), while computing the same polynomial modulo
5 needs 2 multiplications. We generalize this observation and we define some vectors,
called sixtors, with remarkable zero-divisor properties. Using sixtors, we also generalize
our earlier result (Computing Elementary Symmetric Polynomials with a Sub-Polynomial
Number of Multiplications, ECCC Report TR02-052) for fast computation of much wider
classes of multi-variate polynomials, modulo composites.

1 Introduction

It is an old question whether computations modulo non-prime-power composite numbers can
be considerably faster than modulo primes or prime powers. One applicable property of the
non-prime-power composites m can be the presence of zero-divisors in ring Z,,.

The zero divisors can speed up the computations as follows: Suppose that we want to
compute the 4-variable polynomial z1y1 + z2y2. Instead of the obvious 2 multiplications it is
enough to do just one if we accept that some coefficients will not be computed exactly. That is,
if we need that monomials with 0 coefficients should have 0 coefficients in our representation,
but monomials with non-zero coefficients should be non-zero in the representation - say -
modulo 6, then we can compute such a representation of this polynomial with only one
multiplication modulo 6:

(221 + 322)(2y1 + 3y2) = 4z1y1 + 3z2y2  (mod 6).

It is easy to see that one can compute an a similar representation of the product of two
2 x 2 matrices with only 4 multiplications (instead of 8), applying four times this idea.

Clearly, these savings in the number of multiplications were based on the 0-divisors 2 and
3. But what can we do if we want to compute a similar representation of polynomial

1<iZj<n

or the dot-product z -y = Y| z;y;?

A straightforward solution were the following: Take u1,us, ..., u, and v1,v2, ..., v, such
that u;v; =0 (mod 6) <= i = j, then just one multiplication would suffice for computing
such a representation of S2(z,v):

(z1u1 + zoug + -+ - + Tpuy) (Y101 + Yov2 + - -+ + YnUp)- |SSN 14338092
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Unfortunately, it is easy to see that for n > 3 no such u}s and v}s exist in Zg. However, we
will still be able to define such u}s and v}s, called siztors (from the words siz and vector) in
the next section (see Definition 5).

Here we would like to give a simple but non-trivial example for the demonstration of our
results without lengthy definitions:

Suppose, that our goal is to compute the polynomial

1<i#5<6

It is obvious that one can do this with 6 multiplications. But how can we save some mul-
tiplications if we were satisfied with some representation in a way that non-zero coefficients
should be non-zero, and zero coefficients should be zero in the representation? The following
example gives such a representation with only 2 multiplications:

Example 1 Consider the following formal product:

(D) e (D) e () () mar (2) o (5) )
(@) ()oe (2w () (5)se (5)w)

It is easy to see, that if the coefficient of x; is vector u; and the coefficient of y; is vector v;
then u;-v; =0 (mod 6) <= i = j (where u;-vj denotes the dot-product of vectors u; and
’Uj).

How can we translate this remarkable zero-divisor property to the actual computation of
the polynomials? As it will turn out in the remainder of the paper, the correct translation
s as follows: We should compute the sum of two products: in the first product, we multiply
the sum of the x;’s with coefficients in the first coordinate of the vectors with the sum of y;’s
with coefficients in the first coordinate of the vectors; in the second product we should do the
same with the second coordinate of the vectors; that is:

(221 + 5z9 + 223 + 2x4 + x5 + 3w6) (5yr + Y2 + 3yz + ya + 2ys + ye )+

(561 + 9 + 35(73 + 2.7,'4 + 2.T5 + 5:1:6)(2y1 + Y2 + 2y3 + 5y4 + 5y5 + 3y6)

It is easy to wverify that the coefficients of monomials x;y; are zeroes modulo 6. For com-
pleteness, we list in the following matriz the modulo 6 reduced coefficients of x;y; in position

(i,4):
0321335
3 05 4 3 2
450515
2 440 2 2
3315 0 1
1 21430

The length-2 vectors (with some more demanding properties) will be called sixtors in the
next section.

Note, that in this example, the number of multiplications used corresponded to the length
of the vectors.
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1.1 Preliminaries

In [Gro02b] we have found a definition of a sort of representation of polynomials modulo
non-prime power composite numbers (say 6), and we also have found that this representation
of some polynomials can be computed much faster modulo composites than modulo primes.
In [Gro03] we generalized that definition.

Note, that for prime or prime-power moduli, polynomials and all types of their represen-
tations (defined below), coincide. That may be the reason that these representations were
not defined before.

Definition 2 ([Gro03]) Let m be a composite number m = p§'p$® ---p;*. Let Zy, denote
the ring of modulo m integers. Let f be a polynomial of n variables over Z,,, such that the
degree of each variables is bounded by d:

flzy,z0,...,2,) = Z asxs,

6e{0,1,2,...,d}»
where a5 € Zpm, x5 = 11— :1:;5Z Then we say that

g($1,$2,---,$n): Z bJ-TJ
0€{0,1,2,...,d}"

18 an
e alternative representation of f modulo m, if

V6 €{0,1,2,...,d}Y" 3j €{1,2,...,8}: a;=b; (modp;);

e (-a-strong representation of f modulo m, if it is an alternative representation, and,
furthermore, if for some i, a5 #Zbs (mod pi'), then by =0 (mod pi’);

e l-a-strong representation of f modulo m, if it is an alternative representation, and,
furthermore, if for some i, a5 #bs (mod p{’), then as =0 (mod m);

Example 3 Let m =6, and let f(x1,%9,%3) = x1T2 + Toxs + 123, then
9(z1, T2, , x3) = 31172 + 42273 + T123
s a 0-a-strong representation of f modulo 6;
g(x1, o, ,T3) = T1T9 + Tox3 + T123 + 372 + 4y
is a 1-a-strong representation of f modulo 6;
g(x1, 20, ,23) = 3x129 + 493 + T123 + 322 + 4y

18 an alternative representation modulo 6.
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In other words, for modulus 6, in the alternative representation, each coefficient is correct
either modulo 2 or modulo 3, but not necessarily both.

In the 0-a-strong representation, the 0 coefficients are always correct both modulo 2 and
3, the non-zeroes are allowed to be correct either modulo 2 or 3, and if they are not correct
modulo one of them, say 2, then they should be 0 mod 2.

In the 1-a-strong representation, the non-zero coefficients of f are correct for both moduli
in g, but the zero coefficients of f can be non-zero either modulo 2 or modulo 3 in g, but not
both.

We considered elementary symmetric polynomials

si- ¥ s

IC{1,2,...,n} 4€]
[T|=k

in [Gro02b]. Elementary symmetric polynomials are known to be the building-blocks of
symmetric polynomials. Moreover, their computational complexity were widely studied in
the arithmetic circuit model of computation, e.g.: [RSV00], [Shp], [NW97].

We proved in [Gro02b] that for constant k’s, 0-a-strong representations of elementary
symmetric polynomials S¥ can be computed dramatically faster over non-prime-power com-
posites than over primes: we gave an algorithm with n°) multiplications, and, moreover,
the algorithm was suitable to be implemented in the depth-3 multilinear arithmetic circuit
model. We note, that over fields or prime moduli computing these polynomials on depth-3
multilinear circuits needs polynomial (i.e., (1)) multiplications [NW97].

The goal of the present work is to generalize the results of [Gro02b] for a wider set of
polynomials and for a matrix operation of fundamental importance: matrix multiplication;
further demonstrating the effectiveness of computations modulo composite numbers.

2 A Result for the Matrix Product

It is a long-time open question whether one can compute the product of two n x n matrices
with using only n?T°() multiplications.

We note, that the naive algorithm uses n3 multiplications. The famous result of Strassen
[Str69] uses 23! multiplications. The best known algorithm today was given by Coppersmith
and Winograd [CW90], requires only n?-37% multiplications.

In [Gro03] we have given an algorithm for computing the 1-a-strong representation of
the matrix product with n2t°() multiplications. That algorithm also can be described as
computation involving sixtors.

3 Sixtors

Definition 4 Let A = {a;;} and B = {b;j} two u x v matrices over a ring R with unit
element 1. Their Hadamard-product is an u x v matriz C = {c¢;;}, denoted by A® B, and
is defined as c;; = a;;b;;, for 1 <1 <wu, 1 < j<w. Let k > 2. The k-wise dot product of
vectors of length n, aV,a® ... a®) is computed as

where 1 denotes the length n all-1 vector.
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Definition 5 Let n, k, m be positive integers. Then a collection of length-t vectors
S(n,k,m) = (51, SQ, e ,Sk)

where S; = {Ufl),vz@, ... ,vfn)}, vfe) € {0,1,...,m — 1}!, are called (n,k, m)-sixtors, if the
following holds:

1)91) @véjz’) ... @v,(cj’“) O©1=0 (modm) <= Fu#v:jy = Jo- (1)
An (n,k,m)-siztor is a proper sixtor, if the value of
v%jl) ® vgjz) ©...0 U,(cj’”) ®1 (mod 6)

does not depend on the particular order of the pairwise different indices ji,jo,...,jk (i.e.,
it is constant). Let t(n,k, m) denote the minimum length t such that S(n,k,m) is a proper
siztor. Let t*(n,k,m) denote the minimum length t such that S(n,k,m) is a siztor.

(4)
7

of sets Vi(j ) of the t-element base-set, then for their intersection the following holds:

()

are 0-1 vectors, then v;”’ can be seen as characteristic vectors

In particular, if vectors v

k ,
|ﬂv;(”)|50 (mod m) <= Ju#v: jy = Jp. (2)
i=1

Note, that (n,2,m)-sixtors were called co-orthogonal codes in [Gro02a).

Note, that from this point on, instead of the more correct notation for vectors v with
upper index i: v(", we will write simply v'.
3.1 Some algebraic remarks

Let R = Z,|z1,x2,...,T,] denote the ring of n-variable polynomials over Z,,. The we are
interested in a module M over R, generated by vectors of Z! . All the elements of this module
can be written into the form of

Zfi’l)i, fi € R,’Ui S an.
We also need to use Hadamard-products on module M; it is easy to see that
i 1 1]
3.2 Using sixtors for fast computing of polynomials

In [Gro02b] we have shown how to compute a 0-a-strong representation of the second el-
ementary symmetric polynomial, S2 with only exp(O(y/lognloglogn)) multiplication in
the most restricted depth-3 arithmetic circuit model of computation. In the terms of
sixtors, we can re-formulate that algorithm as follows: Consider (n,2,m) proper sixtors
((v1,v%,...,07), (v3,v2,...,v})), and take the following Hadamard-product:

(2101 + zov} + - + 2,07) © (w103 + 2903 + -+ TWH) O 1 =
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Yo ziviovie1)+2) zizi(vi ©v) ©1). (5)
1 1#]

Here the first sum is 0, and for any odd m, each coefficient of the second sum is non-zero

(here we used that our sixtor is proper), so this is really a 0-a-strong representation of S2.

How many multiplications were used? For answering this question, let us denote v(¢) € Z,,

the £'* coordinate of vector v%, s = 1,2. Then from the distributive law, quantity (5) is equal

to
t

> (2101 ) + 2901 (0) + - + 207(0) (2103(0) + 2203(0) + - + 203 (0) . (6)
=1
Clearly, (6) contains t = t(n, 2, m) multiplications.
For computing an a-strong representation of the k' elementary symmetric polynomial
Sk we take proper (m,k,m)-sixtors (S1,S2,...,Sy,), such that S; = {v},v2,...,v"}, and
compute

é(xluzl+x21]z?+...+xn1}?)®l:O-I-k! > (ij) o(I), (7)

i=1 1c{1,2,..n} \jeI
|I]=k

Where v(I) stands for the value
'u{l @’U%2 @---@vi’” © 1, where I = {j1,J2,---, 7k}

Note, that — because of the proper sixtor property — the value of v(I) is independent of
the particular choice of vectors v*, it depends only on set I.

If m and k! are relative primes then (7) is a 0-a-strong representation of S¥ and it contains
only t = t(n, k,m) products (or (k — 1)¢ multiplications), since (7) can be written in a similar
form as (6).

3.3 Further applications of sixtors for computing polynomials

Example 6 For two integers d and d', for computing an 0-a-strong representation of a sum
of z;y; products, where i and j are incongruent modulo d, and exactly one of them is a
multiple of d', can be easily computed with siztors. For example, for d = 2,d = 3 this means
that the parities of © and j differs and exactly one of i and j is a multiple of 3. Now we can
write

(z1v] ®@ V3 + 20} © v3 + z3v] @ v§ + x40} O V3 + z5V] © V3 + zev? O V3)O

@(yw% ® ’Ui’ + ygv§ ® Uff + ygvé ® vff + y4v§ ® vff + y5v§ ® vff + y6v§ ® vi) o1

and this product will give us an a-strong representation of

T1Ye + T2y3 + T3Y2 + T3Y4 + T4Y3 + T5Ys + TeY1
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3.4 A construction of sixtors
k

A

Let M = {mj, j, ...} be an nxnxnx---xn (k-dimensional) matrix, with elements
My jo,.njr- A for index-sets I; C {1,2,...,n} we define the k-dimensional box (or simply, a
box) as the set of entries

R(I1, Iy, ..., Ix) = {mj, j,,...j, * Ji € Li}.

Clearly, the intersection of any finite set of boxes is a (possibly empty) box.
We have proved implicitly the following theorem in [Gro02b]. We show here how these
results follow from that paper.

Theorem 7 Let m be a positive integer with r different prime divisors. Then there exists an
k

ezplicitly constructible boz-cover Ry, Ra,...,Ry of the n xn xn x -+ xn (k-dimensional)
matric M = {m;, j, .. i}, such that the following properties hold:

(i) Those and only those matriz-entries mj, j, . j. has covering multiplicity different from
0 modulo m whose indices are pairwise different numbers: j, # ju if u £ v.

(ii) The multiplicity of covering the element myj, j, . i with pairwise different indices de-
pends only on the set I = {j1,jo,---,Jk}, and not on the particular order of the indices.
w = exp(exp(O(k))(log n)'/" loglog n).

Note, that this circuit-size is sub-polynomial (that is, n"(l)) in n for any constant k and
for large enough n. Moreover, the sub-polynomiality holds while k < cloglogn, for a small
enough ¢ > 0.
Note, that higher dimensional matrices are called tensors sometimes. We avoided that term
since we have not used anything from tensor-algebra.
Proof: In [Gro02b] we defined polynomial

Sﬁ(x(l),:c@), o ,:v(k)) — Z xz(ll)x@) e xz(k)’

12 k
21,22,k

where the summation is done for all k! orders of all k-element-subsets I = {i1,12,...,%} of
{1,2,...,n}, and z0) = (ng),xgj), . ,w,(f)), for j =1,2,...,k. Then we proved the following
Theorem 8 ([Gro02b], Theorem 3.4) Let m = p{'p5?---pt. Then there exists an 0-a-
strong representation of S’ﬁ(m(l),x(z), ..., 2% modulo m,
1) (2 k
Z ail,i2,---,ik$§1)$§2) e ‘,L.Z(k)’
11502400yl

which can be computed on a homogeneous multi-linear X113 circuit of size

exp ( exp(O(k))V/log nloglog n) .

Moreover, coefficients a;, 4,....;, depend only on set a{iy,ia,...,ix}, and not on the particular
order of indices i1,%2,...,1k.
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We proved in [Gro02b] that the homogeneous circuit contains products which, in turn,
corresponds to the box-cover of the non-diagonal elements of the k-dimensional matrix with
entries :cz(ll)mg) e ng) The same box-cover will satisfy the requirements of Theorem 7 if
applied to the k-dimensional matrix M.

O

Based on Theorem 7, we construct proper (n, k, m)-sixtors as follows:

Theorem 9 Let m be a positive integer with r different prime divisors. Then
there exists an explicitly constructible proper (n,k,m)-siztor with length t(n,k,m) =
exp(exp(O(k))(log n)*/" loglogn). In particular, there are proper (n,2,m)-siztors of length

exp(O(yv/1lognloglogn)).

Proof: = We do not prove here the stronger statement for (n,2,m)-sixtors, it is implicit in
[Gro02b).

For proving the statement for (n,k,m)-sixtors, first let us consider the box-
cover of k-matrix M, given in Theorem 7. Note, that this cover contains
exp(exp(O(k))(log n)'/" log log n) boxes.

We show that from this box-cover one can easily get sets of vectors (51, S2,...,Sk), where
S; = {'ugl),fuf), . ,UZ(”)}, vge) € {0,1}!, where ¢ is exactly the cardinality of the box-cover,
that is, t = exp(exp(O(k))(log n)'/" loglogn). Moreover, these vectors have the following
property: ' ' '

v' 0v O QU 01
is just the box-covering multiplicity of m;,j,..j.-

First assume that kK = 2. Then for any box we correspond a 0-1 matrix, with 1’s exactly
in the points (or elements) of the box.

For example,

1

S O © O o o o o o

0
0
0
1
1
1
1
1
1

00
00
00
11
11
11
11
11
11

S O O o o o o o o o
o O O O o o o o o o
o O O O o o o o o o

o O © o o o o o O

0 0
0 0
0 0
1 1
1 1
1 1
1 1
1 1
1 1
0 0

0 0 0 00

This 0-1 matrix (of rank 1) can be got from the diadic product of two 0-1 vectors: u =
(0,0,0,1,1,1,1,1,1,0) and v = (0,0,0,0,1,1,1,1,1,0). Similarly, the matrix-sum of the
rank-1 matrices, corresponding to the members of the box-cover of cardinality ¢ can be got
from the product of an n x ¢ 0-1 matrix U and a ¢t x n 0-1 matrix V. In this case, the vectors
of set S7 will be the rows of U and the vectors of set Sy will be the columns of V. It is obvious
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from the properties of the box cover (see Theorem 7), that the sixtor-properties (together
with the properness) are satisfied.

A similar construction works for k-dimensional boxes: Now the (k-dimensional) 0-1 ma-
trix, corresponding to box R([1,2,...,I) is the k-times diadic product of the following & 0-1
vectors of length n: w’, where w’ is just the characteristic vector of set I;. We have t boxes,
each defines a k-tuple of vectors. Now, if we take vectors w’/ as column-vectors, then the
elements of S; will be the rows of the matrix, constructed from the ¢ vectors w! as columns
(we have one w’ for each box), j = 1,2,...,k.0

3.5 A remark on tensor-rank

Upper bounds to the rank of the matrix-product tensor [Str73] is of utmost importance in
finding fast matrix multiplication algorithms. Here we also find covers with a small number
of rectangles/boxes, that is, we also bound the rank of certain tensors. We have chosen to
use the k-dimensional matrix (that is, k-dimensional array) terms because we thought that
the geometric intuition helps in the description of our results.

3.6 An application for matrix-product

Take (n,2,m) sixtors of length ¢ = #(n, 2, m) = exp(O(/lognloglogn)), and compute

n n
C;j = (Z azk)(z bkg) — (aﬂv% +CIIZ'2’U% +---+ G,m’l)?) ®© (blj’U% + ijU% +---+ bnj’l)g') o1 (10)
k=1 k=1

each with ¢ multiplications. Since
(@101 + @i} + -+ + aipv}) @ (bijvs + bojvs + -+ + byjv) @ 1

gives a O-a-strong representation of S2(a’,b’), (10) gives the 1-a-strong representation of
(Xt air) (Xh=1 bej) — S2(a,b7), that is, the l-a-strong representation of the dot product

n
D aikbrj-
k=1

2 1>

be computed with n

s, it follows that a 1-a-strong representation of the matrix-product can
240(1)

Since we have n

multiplications.

4 A Lower Bound for the Length of Sixtors
We proved the following theorem in [Gro02b]:
Theorem 10 ([Gro02b]) Let
n
f($17$27' <9 TnyY1,Y2, - - - ;yn) = leyl
i=1

the inner product function. Suppose that a XIIY circuit computes an a-strong representation
of f modulo 6. Then the circuit must have at least (n) multiplication gates.
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a

It is not difficult to prove a lower bound to the length of (2,2[logn],6) sixtors, using
Theorem 10:

Corollary 11
t*(2,2[logn],6) = Q(n).

Proof: Let £ = [logn]. Let us consider a (2,24, 6)-sixtor. Then the product

n—1 n—1
' ' ' 1—i 1—i 1
(Z Tip1 (v QUE @ -+ O ’Ué‘) (Z Yir1 (v 1 Oy’ O+~ Oy, ”)
i=0 i=0

where 7179 . .. 1y denote the binary form of index %, computes an a-strong representation of the
dot-product of length n vectors z and y with ¢*(2,2logn, 6) multiplications; consequently,
from Theorem 10, t*(2,2logn, 6) = Q(n).

O

The Corollary above holds for all moduli m instead of 6.

5 Open problems

It would be interesting to compute a 0-a-strong representations of the matrix product or the
matrix-vector product using fewer multiplications than the currently best known algorithms
for computing the exact values.
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