Electronic Collogquium on Computational Complexity, Report No. 75 (2003)

A Tutorial on the Deterministic
two-party Communication Complexity

Agostino Capponi

Thales Nederland B.V.* University of Twente (EEMCS) |
September 7, 2003

Abstract

Communication complexity is concerned with the question: how much
information do the participants of a communication system need to ex-
change in order to perform certain tasks? The minimum number of bits
that must be communicated is the deterministic communication complex-
ity of f. This complexity measure was introduced by Yao [1] to focus
attention on the cost of information transfer associated with a given dis-
tributed computation. Subsequently the model has been studied for its
own sake as an interesting abstract model of computation. Here we present
a tutorial on the two-party deterministic communication complexity. First
we illustrate the basic algebraic and combinatorial tools used in this the-
ory. Then we discuss the communication complexity of specific functions
and some of the many applications that the theory of communication
complexity has. We also dedicate one paragraph to briefly mention some
variants of the basic model of the deterministic two-party communication
complexity.

1 Introduction
Consider a two argument Boolean function f :{0,1}" x {0,1}" — {0,1}. Let

Alice and Bob be the two communicating parties. Alice is given an input = €
{0,1}™ and Bob is given an input string y € {0, 1}". Both know the definition

*Thales Nederland B.V., Zuidelijke havenweg 40, PO box 42 - 7550 GD Hengelo(Ov), The
Nederlands, e-mail: agostino.capponi@nl.thalesgroup.com

fFaculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Univer-
sity of Twente, P.O. Box 217, 7500 AE Enschede, The Netherland

ISSN 1433-8092

of the function f, but each of them does not know the input of the other.
They wish to compute the value of f(x,y) cooperatively. The computation
of the value f(z,y) is done using a communication protocol. During the
execution of the protocol, the two parties alternate roles in sending messages.
Each message is a string of bits. The protocol specifies if the execution has
terminated (in this case it also specifies what is the output). If the execution
has not terminated , the protocol specifies what message the sender (Alice or
Bob) should send next, as a function of its input and of the communication so
far. A communication protocol computes the function f, if for every input pair
(z,y) € {0,1}" x {0,1}" the protocol terminates with the value f(z,y) as its
output. It is worth noting that every function can be computed by the following
trivial protocol: Alice sends her input x to Bob (n bits of computation) and then
Bob who now knows both z and y can compute the bit f(z,y) and then send
this bit to Alice. However, if we think of large n, this is very expensive. In many
cases much more efficient protocols can be designed and we will show some of
them. The study of communication complexity aims at identifying the minimum
number of bits that can be used to compute a function f. More precisely the
complexity measure for a protocol P is the number of bits exchanged by the
two parties in the worst case. Formally, let sp(z,y) = (m1,ma,...,m;,) be
the sequence of messages exchanged on input (z,y) during the execution of P,
where m; denotes the i-th message sent in the protocol. From here on we will
call each sequence of messages a conversation. Then denote by [m;| the length
(number of bits) of m; and let |sp(2,y)| = Y_;_, [mi|. At this point, we define
the communication complexity of P as the worst case number of bits exchanged
by the protocol. In formal settings we have:

D(P) £ max(; y)e{0,1}»x{0,1}=| P (2, Y)|-

The (deterministic) communication complexity of a function f is the communi-
cation complexity of the best protocol that computes f, that is

D(f) é rninP:P computes fD(P)
As discussed earlier, it is obvious to see that

Proposition 1.1. For any Boolean function f : {0,1}" x {0,1}" — {0,1},
D(f) <n+1.

Proof. Alice sends all her input to Bob (requiring n bits using an appropriate
encoding). Bob computes f(z,y) privately (with his unlimited computational
power) and then he sends the answer back to Alice (only one bit). (|

The rest of the paper is organized as follows. In the next section we illustrate
the most known combinatorial methods used to approximate (in some cases cal-
culate) the deterministic communication complexity of a function. In Section
3 we discuss algebraic methods used to work out bounds for the deterministic
communication complexity of a function. In Section 4 we apply the results illus-
trated in the previous sections to determine the communication complexity of

some functions. Section 5 discusses some variants of the basic model of the two-
party communication complexity. Finally in the last section we describe some
applications of the communication complexity theory, basically to distributed
computation, networks and VLSI circuits.

2 Combinatorial approaches

Let us focus our attention on arbitrary functions (not necessarily Boolean func-
tions). It is rather intuitive to see that fixed a Boolean function f: X XY — Z
it is not possible to use less than the number of bits needed to represent all
the possible values of z that the function can assume. In fact the parties must
exchange different sequences of messages to compute different values of z. For-
mally:

Proposition 2.1. Let f : X XY — Z be a non Boolean function. Then

D(f) > log, [Range(f)| where
Range(f) ={z € Z : J(z,y) €e X xY : f(z,y) = z}.

Proof. If f(z,y) # f(x1,y1), then any communication protocol must use dif-
ferent sequences of messages on (x,y) and (z1,y1) to compute the exact value
of f. That means that at least |Range(f)| different conversations are possible,
therefore at least log, |[Range(f)| bits are needed to represent them all. O

The inequality above is not very informative when we consider Boolean func-
tions. In this case it simply states that more than one bit must be used to com-
pute functions that are not boolean. The success in proving good lower bounds
on the communication complexity of Boolean functions comes from the analysis
of the combinatorial structure imposed by protocols. The basic element in the
study of the combinatorics of the protocols is a rectangle.

A rectangle is a subset of {0,1}" x {0,1}" of the form A x B, where each
of A and B is a subset of {0,1}". It is said to be f-monochromatic if, for
every ¢ € A and y € B, the value f(z,y) is the same. If the value is 0, we call it
an (f,0)-monochromatic rectangle. It it is 1, we call it an (f, 1)-monochromatic
rectangle. It is true that:

Proposition 2.2 ([1]). Let P be a protocol that computes a function f and
(m1,...,m,;) be a sequence of messages. The set of inputs for which sp(x,y) =
(ma,...,m,;) is an f-monochromatic rectangle.

Proof. First, something stronger is proved. By induction on ¢ it is showed that
the set of inputs (z,y) for which the conversation starts with (mq,...,m;) is a
rectangle (we are not requiring that is f-monochromatic).

Basic step. Suppose that m; is sent by Alice. Let A be the set of inputs z
on which Alice starts the conversation with m4. Then the rectangle A x {0,1}"
is the set of inputs (x, y) on which the conversation between Alice and Bob starts

with m;. We can repeat a similar reasoning if it is Bob to start the conversation.

Inductive step. Let the rectangle R = A x B be the set of inputs on which
the conversation between Alice and Bob starts with (mq, ..., m;). At this point
m;y1 can be sent by Alice or Bob. Suppose that the message m;y; is sent by
Alice. Consider the set A; C A such that given the input z and the sequence
of messages (my,...,m;), Alice sends the message m;y1. It is obvious that the
rectangle A; x B is the set of inputs on which the conversation starts with
ma,...,M;+1. Again we can repeat an analogous reasoning if m;; is sent by
Bob.

It remains now to show that the rectangle is f-monochromatic when the
communication ends. This is true because the protocol P computes f, so all
the inputs in the rectangle obtained at the end of the conversation must have
the same f-value. O

Note that each rectangle corresponds to a different conversation between
Alice and Bob.

Given a function f : {0,1}" x {0,1}" — {0,1}, denote by CF(f) the min-
imum number of f-monochromatic rectangles needed to partition the space of
inputs {0,1}" x {0,1}". Then it is true that:

Proposition 2.3 ([2]). For every function f: {0,1}" x {0,1}" — {0, 1},

D(f) > 1og,C*(f).

Proof. Every protocol P partitions the space of inputs {0,1}" x {0,1}" into
f-monochromatic rectangles by the Proposition 2.2. The number of these rect-
angles is at most 2P(F) and D(f) < D(P), therefore CF(f) < 2P(f). O

The proposition 2.3 tells us that in order to prove lower bounds on the com-

munication complexity of f, one can prove lower bounds on the minimum num-
ber of f-monochromatic rectangles needed to partition the space of inputs. Note
that in some cases, lower bounds only on the number of (f,0)-monochromatic
or (f,1)-monochromatic rectangles allow us to deduce tight lower bounds on the
communication complexity of f. We will see this in detail in the fourth section
of this paper.
Another interesting method to prove lower bounds on CF(f) is the fooling set
method. This method was implicited used in [1] and appeared explicitly in [4].
It is based on exhibiting a large set of inputs such that each of them must be
in a different f-monochromatic rectangle. More precisely a set of input pairs
{(z1,11), (T2,¥2), - .-, (z1, 1)} is called an (f, 2) fooling set (z € {0,1}) if:

e For all i, f(z;,y;) = 2.

e For all ¢ # j, either f(z;,y;) # bor f(zj,y;) # 2.

A very challenging problem is to decide whether or not D(f) = O(log, CT(f)).
This question was posed by Lovasz and Saks [7]. So far, it is only known that
D(f) = O(log, C*(f))?).

The following proposition [2], which we only mention, provides with another
tool to prove lower bounds on the communication complexity of f.

Proposition 2.4. Given an (f,0) and an (f,1) fooling set of size | and Iy
respectively, then D(f) > logy(l +11).

We now discuss methods used to prove upper bounds on the communication
complexity of a function. Before illustrating the results, we give some useful
definitions. Let f : X xY — {0,1}. The protocol partition number,
denoted by CZ(f), is the minimum number of different conversations that Alice
and Bob must have when f is the given function. The cover number of
f, C(f), is the minimum number of f-monochromatic rectangles needed to
cover X X Y (note that intersections between f-monochromatic rectangles are
possible). If z € {0,1}, C*(f) is the minimum number of f-monochromatic
rectangles needed to cover the z-inputs of f (i.e (z,y) such that f(z,y) = 2). It
can be immediately deduced from the definitions that C(f) < C¥(f) < CE(f)
and that C(f) = C°(f) + C'(f). In [2] it is stated:

Proposition 2.5. For every Boolean function f : X xY — {0,1} and z €
{0,1}, D(f) < C*(f) + 1.

Proof. Set k to |C*(f)|. Alice and Bob agree on a family .# = {R;, R»,..., R}
of (f, z)-monochromatic rectangles covering all the z-inputs of f. Then they use
the following two-phase protocol P to compute f:

e Alice sends to Bob a binary string p = (a1, a2, ..., ax) such that for every
i€{l,...,k}, a; =1if z € R; and 0 otherwise.

e Bob checks if there exists a rectangle R; such that y € R; and a; = 1. If
so, then he sends to Alice the bit z. If such a rectangle does not exist then
he sends to Alice the complement of the bit z.

We now prove that the protocol is correct i.e if P(z,y) = k, then f(z,y) = k.
If k = 2, then there exists a rectangle R; such that (z,y) € R;. Since R; is an
(f, z)-monochromatic rectangle, we get that f(x,y) = 2. If K = Z (complement
of the bit z), there is not any rectangle R; such that (z,y) € R;. Thus (z,y) is
not a z-input of f, i.e f(z,y) = z. O

The proposition just proved allows us to assert that:

log, (C*(f)) <log, (CT(f)) < D(f) < C*(f) + 1.

It is possible that a certain protocol induces a small number of f-monochromatic
rectangles to partition its input space, yet requires the players to exchange a
large number of bits (in the worst case). In other words it has a small number of
conversations, but the longest one requires much more bits than the logarithm

of the number of all the possible conversations. J.Sgall [8] noted that D(f) <
3log, CL(f). Before discussing it, we observe that a protocol for f can be seen
as a labeled binary tree where:

e The label of an edge is 0 if it connects a vertex with his left son and 1 if
it connects a vertex with his right son.

e Each conversation (my,ma, ..., m,) to compute f(z,y) (note that m; is a
sequence of bits) corresponds to a path labeled mims ... m, of the tree.
The last vertex of the path is a leaf associated with the value f(z,y).

Note that there is one to one correspondence between conversations and leaves
of a protocol tree for f.

Proposition 2.6. For every Boolean function f, D(f) < 3log, C¥(f).

Proof. The basic idea is that a protocol tree for f with a certain number of
leaves can be converted into a balanced protocol in which the depth is about
the logarithm of the number of leaves. Before describing the protocol, we show:

Combinatorial Fact. Let T be a binary tree with ¢ leaves. For every node w
of the tree denote by t,, the number of leaves of the subtree rooted in w. If t # 1,
there exists a node v of T such that t, > t/2, tiefyp) < /2 and trigpi) < /2,
where left(v) and right(v) denote respectively the left and the right son of v.

Verify. We design an algorithm to detect a node that verifies the property
given above. The recursive algorithm Find(zx,t) goes as follows:

o If tjo4(2) > t/2 then Find(left(z),t);
o If t,ignt(2) > t/2 then Find(right(x),t);
o If tjcpi(p) < t/2 and t,igps(s) < t/2 then return z

The input of the algorithm is the root of T. The algorithm always stops
because T contains a finite number of nodes. Note that the algorithm cannot
return a leaf. If by absurd it should return a leaf [, then it would mean that
t; > t/2 (just look at how the algorithm works). But ¢; = 1 because [is a leaf of
the tree. Hence the previous inequality can be true only if ¢ = 1, but that con-
tradicts the hypothesis of the combinatorial fact. The node v returned from the
algorithm is such that t, > /2, tjcf4(v) < /2 and t,igns(v) < t/2. We only need
to show that both #,74(,) and #,4p¢(v) are greater than 0 and therefore they both
exist (t, is different from 0 for any vertex v). But #j.f¢(v) + tright(v) = to for any
node v which is not a leaf of the tree and this is just our case. Since both #;¢f¢(.)
and t,;gns(y) are not greater than ¢/2 the equality can be verified only when both
tiefe(v) and trigns(v) are greater than 0. |

The protocol P makes its computation on a tree protocol T for f with
CL(f) leaves. In order to make clearer the protocol P, we introduce some

symbols: given a protocol tree for f with C*(f) leaves and a vertex v of the
tree, R, denotes the set of all input pairs (z,y) such that the computation of
f(z,y) passes through the node v of T. We call z an X-representant in R,
if (2,y) € R, for some y € {0,1}". We will say that z is an Y-representant
in R, if (z,2) € R, for some z € {0,1}". As follows, we present the protocol

P(z,y).

e Alice and Bob run the algorithm Find(root(T),CY(f)) (root(T) denotes
the root of T'). If the algorithm does not return any node, the combinato-
rial fact tells us that t = 1, i.e T consists of a single leaf node. Alice and
Bob consider the value associated with that leaf as their output. If the
algorithm returns a node v, then Alice sends to Bob a string of two bits
(4,7) defined as follows. The bit 4 is set to 1 if z is an X-representant of
R,y and 0 otherwise. The bit j is set to 1 if is an X-representant of
R,y and 0 otherwise.

e Bob sends 1 either if i = 1 and y € Ry, orif j = 1 and y € Ry(,). He
sends 0 either if i = 1 and y ¢ Ry, or if j =1 and y ¢ Rgy(,). Bob does
not send any bit if i = j = 0.

e If Bob sent 1, they both execute the protocol on Ty, if i = 1 or on Ty,
if j =1 (for a node w, T, denotes the subtree of T rooted in w). If Bob
sent 0 or no bit, then they both execute the protocol on T, where T is
obtained from T by substituting 7T, with a leaf associated with the value
0.

It is trivial to see that if [is the leaf of the tree T such that R; contains the
input pair (z,y), then all the new trees on which the protocol P is executed
contain the leaf [associated with the same value f(z,y). Alice and Bob consider
as their output the value associated with the leaf of the tree on which the
protocol is executed for the last time. That leaf will certainly be [(just look
at how the protocol works and consider that each input pair is associated with
only an R,, where n is a leaf of the tree). Since the value associated with the
leaf [has never been modified in the previous iterations, it is still associated
with the value f(z,y). Hence the protocol is correct.

It remains now to calculate the computational cost of the protocol. Let ¢
be the number of the leaves of the tree on which the protocol is executed in a
generic iteration and v the node returned from the algorithm Find in the same
iteration. In the next iteration the protocol P can be executed on:

o Ty In that case ty,) < t/2.
o Tye- In that case t4¢,) < /2.

e T obtained by substituting T, with a leaf. Then T has t —t, + 1 leaves.
But t —t, +1<t—1t/24 1 < t/2 because any vertex v returned from the
algorithm Find is such that ¢, > ¢/2.

Considering also that at each iteration Alice sends to Bob two bits and Bob
replies by sending at most one bit. We can deduce that the worst case number
of bits exchanged by both parties can be described by the following recursive
relation L(1) = 0,L(t) < 3+ L(t/2). It is satisfied when L(t) < 3log, t. Since
the protocol starts its computation on a tree with CL(f) leaves, we can conclude
that the communication complexity of f is D(f) < 3log, CE(f). O

3 Algebraic approaches

In the previous section we have illustrated methods based upon combinatorial
theory. In this section we show methods of algebraic nature that have been
used to provide bounds on the communication complexity of boolean functions.
Before discussing these methods we illustrate how the problem of the deter-
mistic communication complexity of boolean functions can be formalized in an
algebraic way in terms of matrices. In fact we can associate with every function
f:{0,1}"x {0,1}™ — {0,1} a matrix My of dimensions |X| x |Y|. The rows of
M are indexed increasingly by the elements of X (the index of the first row is
21 = 0™, that of the second row is £ = 0 '1 and so on) and so are the columns
by the elements of Y. The (z,y) entry of My is simply defined as f(z,y). We
define rank(f) as the linear rank of the matrix My over the field of reals. The
argument of the rank is very useful to prove lower and upper bounds on the
communication complexity of Boolean functions. The rank lower bound shown
in the following proposition was presented in [3].

Proposition 3.1. For any Boolean function f, D(f) > log, (2rank(f) —1).

Increasing gaps between this lower bound and the communication complex-
ity were demonstrated in [10], [11] and [12]. Another interesing gap is due to
Nisan and Widgerson [13]. They exhibit a function f such that
log (2rank(f)-1) is O(n°%3!), while the communication complexity of f is Q(n).

Let us consider now upper bounds to the communication complexity of
boolean functions. The best known is illustrated in the next proposition.

Proposition 3.2. Let f : X xY — {0,1} be a Boolean function. Then D(f) <
rank(f) + 1.

Proof. Consider the following matrix:

211 Z212 ... 2190

221 Z29 ... 299
My =

Zon1 R9n9 ...R29n9on

where 2z, , = f(z,y)

We can always find a 2" x p submatrix M*(f) of My, p = rank(f), where the
p column vectors of M} constitute a base of the column vectors of M.

2151 21jg . lep
22741 224 .. Zgjp
- .
My =
Ronjy R2mjy, ... R27j,
Note that, for every column vector z of My, there exists a vector a = (a1, as, ... ,ap)

of scalars such that matrix product of M } and a is z.

We can always extract a square submatrix M} of M; whose dimension is p,
where both the set of rows and of columns constitute a linearly independent
set. This must be true because the row rank and the column rank of a matrix
are the same.

zi1j1 zi1j2 . zi1jp
Rigj1 Rigja - - - Riajp
5 . .
Mf =
zipjl Zz'ij . zipjp
Note that, for any string z € {0,1}?, there exists a vector a = (a1, a2, ... ,ap)

of scalars such that matrix product of Mf2 and a is z. Moreover, such a vector
a is unique because MJ% is a p * p matrix and its rank is p.

At this point, we are ready to design the protocol P for f. It consists of two
stages:

e Bob sends to Alice the string z;,y, 2iyy, - - - » Zi,y-

e Alice calculates the vector a of p scalars such that the matrix product of
MJ% and a is the vector (2i,y, Ziyy,-- -, 2i,y)- Then he calculates the full
column vector 21y, 22y, . . - , 22y as matrix product of M } and the vector a.
It is not possible that 21y, 22y, - . - , 22y is given by the product of M } and a
vector b different from a. If it were so, then the product of Mf2 and b would
be the vector of p components (2;,y, Ziyy, - - -, Zi,y)- That contradicts the
fact that, for any string z € {0,1}?, there is only one vector v such that
the matrix product of M]% and v is the vector z. Finally Alice sends to
Bob the 2z, entry of Mjy.

It is quite obvious that this protocol uses p bits (sent by Alice) plus 1 bit
(sent by Bob) and it computes the function correctly. Since p is the rank of f
the proof is complete.

O

Another interesting bound for the commmunication complexity of Boolean
functions is obtained using the argument of the rank combined with the one of
monochromatic rectangles. This approach is evident in the following

Proposition 3.3 ([2]). Let f : X xY — {0,1} a function. Then D(f) =
O(log, C°(f) log, rank(f))

Proof. Let C be a minimum covering of the O0-inputs of f with (f, 0)-monochromatic
rectangles. Clearly, |C| = C°(f). Let A be the largest (f,0)-monochromatic
rectangle of My in C. Then A induces in a natural way a partition of M
into 4 submatrices A, B,C,D with B sharing the rows of A and C sharing
the columns of A. Clearly, rank(B) + rank(C) < rank(My) 4+ 1. Assume that
rank(B) < rank(C). That implies that the submatrix A|B has rank at most
2+rank(f)/2. The protocol used by Alice and Bob is the following. Alice sends
to Bob a bit saying whether or not his input z belongs to the rows of A. The
players then continue recursively with a protocol for the submatrix A|B if the
input y of Bob belongs to the columns of A, or for the submatrix C|D if it does
not. If rank(B) < rank(C), it only needs to change the protocol in this way:
Bob sends his input saying whether or not his input y belongs to the columns of
A. The players then continue recursively with a protocol for the submatrix A|C,
or for the submatrix B|D, according to the bit communicated. If we carefully
examine the protocol, we see that at each step Alice and Bob exchange one bit.
Then they both continue the execution of the protocol either on a matrix whose
rank is less than the previous rank plus two or on a matrix where one (f,0) rect-
angle has been eliminated. Therefore the number of different conversations is de-
scribed by the following recurrence relation L(r,m) < L(r/242,m)+L(r,m—1)
starting with r = rank(f) and m = |C°(f)| (note that r must necessarily be dif-
ferent from 0). The basic steps of the recurrence are L(1,m) = L(r,1) = 1. By
induction on k and I, we get that L(r,m) < (m+ 1)"°8(") | By substituting r and
m respectively with rank(f) and C°(f), we obtain that the number of conversa-
tions is L(rank(f), C°(f)) < (CO(f)+1)'e8: rank(f) Note that each conversation
is coded by a different sequence of bits. Hence, we can assert that the number
of bits used by Alice and Bob with this protocol is log, (CO(f) 4 1)!082 rank(f),
Since D(f) is the minimum number of bits used by any protocol, we get that

D(f) = O(log, C°(f) log, rank(f)). .

Similarly it is possible to prove that D(f) = O(log,C(f) logyrank(f))). A
very challenging open problem has been posed in [7] and asks:

Open Poblem: Does D(f) = log,(rank(f))°(), for all boolean functions
f?

Any improvement of either the lower bound for the gap 3.1 or the upper
bound 3.2 is very interesting.

10

4 Communication complexity of particular func-
tions

In this section we apply the combinatorial and algebraic approaches described
in the two previous sections to determine the communication complexity of
specified functions. The first two functions that we examine, Eq and Gt, were
first defined and discussed by Yao in the seminal paper [1].

Let us start with the equality function Eq : {0,1}" x {0,1}" — {0,1}:

1 ifx=y
0 otherwise

Eq(z,y) £ {

An (Eq,1) fooling set of size 2" is {(a, @) : a € {0,1}"} (because for every
a, Eq(a,a) = 1), whereas for every a # 8, Eq(a,8) = 0. It follows from
Proposition 2.4 that D(Eq) > n.

A tighter bound is obtained considering the rank of Eq. Since Mg, is the
identity matrix its rank is 2". If we apply the proposition 3.1, we obtain that
D(Eq) > log,(2"*t! — 1) i.e D(Eq) > n + 1. Since it is trivially true that
D(Eq) < n+ 1 (proposition 1.1), we can assert that D(Eq) = n + 1.

Consider now the function Gt : {0,1}" x {0,1}" — {0,1} so defined:

1 ifx>y
0 otherwise

Gt(o.y) 2 {

We will determine D(Gt) both using a combinatorial approach and an alge-
braic approach.

Proposition 4.1. (combinatorial proof). D(Gt) = n+ 1.

Proof. We state that Sy = {(z,y) : x = y} and S; = {(z,y) : ¢ —y = 1} are
respectively a (Gt,0) and a (Gt,1) fooling set. As regards to Sy, we show as
follows that two necessary conditions for it to be a fooling set are verified:

o Y(z,y) € So, Gt(z,y) = 0 because x = y.

e If (z,y) and (x1,y1) are in Sp, suppose w.l.o.g that < x1. Then x1 > y,
hence Gt(z1,y) = 1.

It is easy to see that |So| = 2™.
Let us see now that also S; verifies the two conditions to be a fooling set.
In fact:

o V(z,y) € S1, Gt(z,y) = 1 because x = y + 1, hence z > y.

e If (z,y) and (z1,y1) are in Sy, suppose w.l.o.g that > z;. Then z; <y,
hence Gt(z1,y) =1

11

It is easy to see that |S1| = 2™ — 1.
At this point, if we apply the proposition 2.4, we obtain that D(Gt) > n.
Since the proposition 1.1 tells us that D(Gt) < n+1, we get D(Gt) =n+1. O

Proposition 4.2. (algebraic proof). D(Gt) =n + 1.

Proof. Consider the matrix Mg;.

0 0 0 ...0

1 00 ...0

1 1 0 .. 0

1 1 1 .. 0
Mgy =

1 1 1 ...1

Note that this matrix has 2™ rows. If we consider a set containing all the rows
of the matrix except the first one, we immediately see that this set is linearly
independent. Therefore, we can conclude that rank(Gt) = 2™ — 1. Applying
now the proposition 3.1 we obtain that D(Gt) > n. Finally applying the trivial
proposition 1.1, we get D(Gt) =n + 1. O

Babai, Frank and Simon [23] considered the inner product function Ip :
{0,1}" x {0,1}™ — {0, 1} defined by

Ip(@,y) = D T(a,iT(y.i) mod 2,

i=1

where (. ;) denotes the projection of z with respect to its ith coordinate (i.e
the ith coordinate of z). It is known that:

Proposition 4.3. Any (Ip,0)-monochromatic rectangle covers at most 2" of
the input pairs.

This proposition implies [2]:

Proposition 4.4. D(Disj) = Q(n), where Disj : {0,1}" x {0,1}" — {0,1} is
defined by

. a | 0 if there exists i m(g 5 = T(ys
Disj(w,y) = { 1 otherwise

Proof. We begin by noting that if D is a (Disj, 1)-monochromatic rectangle,
then D is also an (Ip,0)-monochromatic rectangle. This is true because if
(z,y) € D, then by definition of Disj, m, ; # 7y, for every i € {1,...,n}.
Hence, by definition of Ip, Ip(z,y) = 0. By proposition 4.3, we know that any
(Ip, 0)-monochromatic rectangle covers at most 2" of the input pairs. From this,
we can deduce that the size of any (Disj, 1)-monochromatic rectangle is at most

12

2". Now, let us count all the 1-inputs of Disj with the following method: for
every i, consider all the strings having exactly a number of ones equal to . For
any such string z, we count how many strings have zero’s in the positions where
z has ones. In this way, we get that there are Z?:O (?)2”_" = 3™ ones. Since
the size of any (Disj,1)-monochromatic rectangle is at most 2", we get that
at least (3/2)" (Disj,1)-monochromatic rectangles are needed to partition the
1-input pairs of Disj. At this point, we apply the proposition 2.3 and obtain
that D(f) > log, (3/2)"™ = Q(n). O

The functions studied so far attain the worst communication complexity
for a Boolean function. We will exhibit now a function whose communication
complexity is better. This is the function Maz : {0,1}" x {0,1}" — {0,1}
[2], where both z and y are respectively the characteristic vectors of a set X C
{1,...,n}and aset Y C {1,...,n}:

Maz(z,y) 2 1 the maximum in X is not smaller than the maximum in Y
9771 0 otherwise

A simple protocol to compute Maz(x,y) is the following: Alice sends to Bob
the maximum number in z (log, n bits are needed to code it). Bob compares
this number with the maximum number in y. If his number is greater then he
sends to Alice the output 0, otherwise he sends to Alice the output 1. Thus we
have that D(Maz) <log, n + 1.

5 Variants of the two party model

In this section we briefly describe some variants of the two-party model. For
each variant we give a short description and pointers to the literature.

Non deterministic protocols. Lipton and Sedgewick [4] defined the non
deterministic protocols. They allow the two parties to choose the messages that
they send in a non deterministic way. The only important thing is that there is
an execution of the protocol that leads to the correct answer. The combinatorial
objects used are coverings, i.e we relax the need to partition the space X xY into
f monochromatic rectangles by allowing intersections between monochromatic
rectangles. A fundamental result due to Aho et Al. [14] relates the deterministic
communication complexity of a function to its non deterministic communication
complexity.

Rounds. In the definition of communication complexity we are interested
only in the number of bits exchanged between Alice and Bob and we ignore
the number of rounds, i.e the number of messages exchanged. We may ask how
many rounds are really necessary to obtain a low cost communication protocol.
For instance, maybe it always suffices for Alice to send one message (containing
several bits) to Bob and then Bob can compute the answer by himself. Such

13

a protocol is said to be a one-round protocol. The one round communication
complexity of a function, i.e the minimum number of bits exchanged by Alice
and Bob when only one round is allowed is easily characterized as the number
of different rows in the matrix M, associated with f. In a seqeunce of results
by Papadimitriou and Sipser [15], Duris et al. [16], Nisan and Widgerson [17] it
was proved that for every k > 1 there are functions such that computing them
with a k-round protocol is exponentially more expensive than computing the
same functions with a k 4+ 1-round protocol.

Randomized protocols. In the basic model of communication complexity
described in the introductive section, Alice and Bob are deterministic. This
means that in any stage, when one of the two players needs to send a bit, the
value of the bit is a deterministic function of the player’s input and the com-
munication so far. In the randomized model, we allow Alice and Bob to ”toss
coins” during the execution of the protocol and take into account the outcome
of the coin tosses when deciding what messages to send. This implies that the
communication on a given input (z,y) is not fixed any more, but becomes a
random variable. Similarly the output computed by a randomized protocol on
input (z,y) is also a random variable. Roughly randomized protocols can fall
into two categories. The first category incudes only protocols that always out-
put the correct value. The second category includes protocols that may err, but
for every input (z,y) they are guaranteed to compute the correct value f(x,y)
with high probability. Also the cost of a randomized protocol can be defined
in two ways. We can analyze the worst case behaviour of a protocol or we can
analyze the average case behaviour. Randomized communication complexity
was defined by Yao [1] in his seminal paper.

Amortized Communication Complexity. One can ask whether comput-
ing a function f on ! instances can be done more efficiently than just computing
f on each of the I instances separately. For instance, suppose you want to
compare [files (each file is a string of length n) z1,zs,...,2; which are stored
in a site with other [files y;,y2,...,y; which are stored in another site. It is
interesting to decide whether this can be done using less than In bits, that is
the number of bits required by using the protocol of the function Eq on each
of the [files (z;,y;). It seems very interesting to answer the following question:
”Can we solve [problems simultaneously in a way that is better than solving
each of the [problems separately was raised in the work of [18].

Relations. In this paper we concentrated in computing functions. We can
generalize it to the task of computing relations. In this generalized model, given
an input (z,y), Alice and Bob need to find an output z such that z,y and =
satisfy some relation R. For instance they may want to know an index 4 such
that the i-th components of x and y are different. This generalization of com-
munication complexity to the case of relations was first discussed in [19]. Their
motivation was the connection between the communication complexity of a cer-
tain type of relations and the complexity of Boolean circuits.

14

Multiparty protocols. In the models considered so far there were only
two parties. We can extend the model to the case where there are k > 2 parties
that want to compute f(x1,2a,...,2;). The natural extension is to consider k
players Py, P, ..., Py, such that P; only knows z;. The exact form of commu-
nication between the k players must be specified. One possibility is to assume
that every message sent by one of the players is seen by all the others (broadcast
transmission). Another possiblily is to assume that the message sent by one of
the players is seen only by a limited number of other players (in a very restricted
model we can assume that the message of P; can be seen only by P;11). Several
models for multiparty communication were studied in the literature. See for
instance [20]. Also see [21], [22] for applications of this model.

Variable partition models. In the standard two-party model the input
(z,y) is partitioned in a fixed way, i.e Alice always gets = and Bob always gets
y. In the variable partition model the input (x,y) is seen as a string of 2n
bits (n bits of and n bits of y) and the two parties are allowed to choose
the partition of the 2n bits. This partition is chosen based on f, regardless of
the specific input. We have seen in the previous section that Eq(z,y) requires
n + 1 bits of communication in the worst case. On the other side if Alice gets

Tls--, TRSYL,- - Yn and Bob gets TRy g5 T YRy -5 Y, then they can

compute Fq(z,y) by exchanging only two bits with the following protocol. Alice
checks that the first half of the string z is equal to the first half of the string
y. If they are different she sends the bit 1 to Bob and they stop to interact.
If they are equal she sends the bit 0 to Bob that checks if the second half of
2 is equal to the second half of y. After checking, Bob sends to Alice the bit
0 if they are equal and the bit 1 if they are different. The best case partition
model introduced in [14] defines D%5!(f) as the deterministic communication
complexity of the best protocol for computing the function f with respect to the
best partition of the bits of the input pair (z,y). Obviously, D**¢(f) < D(f).
The best case partition model is useful in many cases that we may choose the
locations in that input variables are accessed.

6 Applications

In this last part of the paper we show some applications of the results about com-
munication complexity. A first and immediate application is to the management
of a distributed system. In such a system it is often required to check whether
two copies of a file that reside in two differents sites are the same. Clearly, this
is just computing the function Eq whose communication complexity has been
studied in the previous section. The two parties of the communication are the
programs residing in the two different sites. Their inputs can be imagined as an
agreed binary codification of the respective files.

Another application of the communication complexity is to prove time lower
bounds for networks. Suppose to have a network consisting of k processors. Each

15

processor P; of the network gets as an input some value z; and together they wish
to compute the value of f(x1,a,...,x). There are essentially two lower bounds
tecniques for such networks. The first is the network diameter lower bound. It
states that information must travel from one end of the network to the other
hand, thus the computation time requires (diameter of the network) time.
The other method makes use of communication lower bounds. Kutshilevitz
and Nisan described this method in [2]. The method consists of two stages.
First we partition the network into two large parts such that the number of the
edges connecting the two parts (sometimes called bandwidth) is small. A known
result of [5] states that any planar network of p processors can be partitioned
in two parts, each containing at least p/3 processors, such that the number
of edges connecting the two parts is O(p'/?). In the second stage we view
the computation done by the network as a two party communication problem,
where the input of each party is all the inputs given to the processors in one of
the parts of the network. If the two party communication problem requires to
submit at least d bits, then this implies that the time it takes for the network to
complete this computation is at least d divided by the bandwidth (the time it
takes to submit a single bit over an edge is the time unit). Leighton [6] applied
this method to prove lower bounds in various types of networks.

We have just considered the time it takes to compute the function f on the
network, ignoring the number of bits transmitted in each time step. It maybe
also interesting to ask what is the total number of bits exchanged between the
processors of the network. This question was first posed by Tiwari in [9]. Of
a particular interest among researchers is the line network, consisting of k + 1
processors Py, Pi, ..., P, with edges only between P; and P;yq, for 0 < i <
k — 1. The processors wish to compute a function f(z,y) where z is stored in
Py and y is stored in Pj. The complexity of a protocol is the total number
of bits exchanged on all edges. Denote such number by Dg(f). It is easy
to see that Dy(f) < kD(f). This is true if we think that the processor Py
can simulate Alice, the processor Pj can simulate Bob, and the intermediate
processors behave as a relay, i.e they simply propagate the messages they receive.
The main question is whether we can do better: is it true that for every function
£, Du(f) = QkD(f))?

Another interesting and well studied application of communication complex-
ity is to VLSI chips. This was also the first motivation for studying communi-
cation complexity [24]. A VLSI chip can be viewed as an a x b grid which has n
input ports and one output port. There are gates on some vertices of the grid
and wires connecting gates with other gates or with the ports. The two most
important complexity measures for a VLSI chip are its area A = a x b and the
time T it takes from the time the input is provided in the input ports to the
time the results appear in the output port. The designer of a VLSI chip that
computes a function f(z1,2,...,Zm,) must decide which gates to use, how to
connect them and which input z; should be fed into each input port. A known
result gives a way to prove lower bounds on the quantity AT? using the measure
Db¢st(f) discussed in the previous section. It states that if we have a VLSI chip
with area A and time T, then D%t(f) < \/AT.

16

References

[1] A.Yao. Some complexity questions related to distributive computing. Pro-
ceedings, 11th Annual ACM Symposium on Theory of Computing, 1979,
pag. 209-213.

[2] E.Kushilevitz and N.Nisan. Communication complexity. Cambridge Uni-
versity Press, 1997.

[3] K.Mehlhorn and E.Schmidt. Las Vegas is better than Determinism in VLSI
and Distributed Computing. Proceedings of 14th ACM Symposium on The-
ory of Computing, 1982, 330-337.

[4] R.J.Lipton and R.Sedgewick. Lower bounds for VLSI. Proceedings of 13th
ACM Symposium on Theory of Computing, 1981, 300-307.

[5] R.J.Lipton and R.E.Tarjan. Applications of a Planar Separator Theorem.
Siam J. Computing, Vol.9, pag.615-627, 1980.

[6] F.T.Leighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays, Trees,, Hypercubes. Morgan-Kaufmann, 1991

[7] L.Lovasz and M.Saks. Lattices, Mobius Functions and Communication
Complexity. Journal of Computer and System Sciences 47, 1993, 322-349.

[8] J.Sgall. Private communication to E.Kushilevitz and N.Nisan transmitted
through the book ” Communication Complexity”.

[9] P.Tiwari. Lower bounds on Communication complexity in Distributed
Computer Networks. Journal of ACM 34 (4), 1987, 921-938.

[10] N.Alon and P.D.Seymour. ” A Counterexample to the Rank-Coloring Con-
jecture”. Journal of Graph Theory 13, 1989, 523-525.

[11] A.A.Razborov. ”On the Distributional Complexity of Disjointness”. Theo-
retical Computer Science 106 (2), 1992, 385-390.

[12] R.Raz and B.Spieker. ” On the logrank Conjecture in Communication Com-
plexity”. Combinatorica 15(4), 1995, 567-588.

[13] N.Nisam and A.Widgerson. ”On rank vs. Communication Complexity”.
Combinatorica, 15(4), 1995, 557-566.

[14] A.Aho, J.Ullman and M.Jannakakis. ”On notions of Information transfer
in VLSI Circuits”. Proceedings of 15th STOC, 1983, 133-139.

[15] C.Papadimitriou and M.Sipser. ” Communication complexity”. JCSS, 28,
No.2, 1984, 260-269.

[16] P.Duris, Z.Galil and G.Shnitger. "Lower bounds on Communication Com-
plexity”. Information and Computation, 73, No.1,1987, 1-22

17

[17] N.Nisan and A.Wigderson. "Round in Communication Complexity revis-
ited”. Siam J.Computing, 22, No.1, 1993, 211-219.

[18] M.Karchmer, R.Raz and A.Wigderson. ”On proving super-Logarithmic
Depth Lower Bounds via the Direct Sum in Communication Complexity”.
Proceedings of the 6th IEEE Structure in Communication Complexity The-
ory ,1991, 299-304.

[19] M.Karchmer and A.Wigderson. "Monotone circuits for Connectivity Re-
quire SuperLogarithmic Depth”. Siam J.Discrete Mathematics, 3(2), 1990,
255-265.

[20] D.Dolev and T.Feder. "Multiparty Communication Complexity”. Proceed-
ings of 30th IEEE Symposium on Foundations of Computer Science, 1989,
428-433.

[21] A.K.Chandra, M.L.Furst and R.J.Lipton. ”Multiparty protocols”. Proceed-
ings of 15th STOC, 1983, 94-99.

[22] L.Babai, N.Nisan and M.Szegedy. ”Multiparty protocols, Pseudorandom
Generators for LOGSPACE, and Time-Space Trade-offs”. JCSS, 45, No.2,
1992, 204-232.

[23] L.Babai and P.Frankl and J.Simon. ” Complexity classes in communication
complexity theory”. Proceedings of the 27th IEEE Symposium on Founda-
tions of Computer Science, 1986, 337-347.

[24] C.D.Thompson. ” Area-Time complexity for VLSI”. Proceedings of 11th
ACM Symposium on Theory of Computing, 1979, 81-88.

18

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

