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Abstract

A Ek-uniform hypergraph G of size n is said to be e-far from having an independent set of size
pn if one must remove at least en® edges of G in order for the remaining hypergraph to have an
independent set of size pn. In this work, we present a natural property testing algorithm that
distinguishes between hypergraphs which have an independent set of size > pn and hypergraphs
which are e-far from having an independent set of size pn. Our algorithm is natural in the sense

that we sample ~ c(k)f—: random vertices of G, and according to the independence number of the
hypergraph induced by this sample, we distinguish between the two cases above. Here c(k) depends
on k alone (e.g. the sample size is independent of n).

1 Introduction

A k-uniform hypergraph is a hypergraph G = (V, E) in which each (hyper) edge is of size exactly
k. An independent set I in G, is a subset of vertices that do not include any edges (i.e. there does
not exist an edge {vi,...,vx} € E for which v; € I for alli € {1,...,k}). The size of the maximum
independent set in G is denoted by «(G) (and referred to as the independence number). Consider a
k-uniform hypergraph G of (vertex) size n which does not have an independent set of size pn (i.e.
a(G) < pn). Let H be a random subgraph of G of size s (i.e. H is the subgraph induced by a random
subset of vertices in G of size s). In this work we study the minimal value of s for which a(H) < ps
with high probability.

In general, if our only assumption on G is that a(G) < pn, we cannot hope to set s to be
smaller than n. Hence, we strengthen our assumption on G, to hypergraphs G which not only satisfy
a(G) < pn but are also far from having an independent set of size pn (we defer defining the exact
notion of “far” until later in this discussion). That is, given a hypergraph G which is far from having
an independent set of size pn, we ask for the minimal value of s for which (with high probability)
a random subgraph of size s does not have an independent set of size ps. This question (and many
other closely related ones) have been studied in (2-uniform hyper) graphs in [GGR98] under the title
of property testing.

Property testing Let C be a class of objects, and P a property of objects from C. Property
testing addresses the problem of distinguishing between elements ¢ € C which have the property P
and elements that are far from having the property P. The aim is to construct efficient (randomized)
distinguishing algorithms that sample the given element ¢ in relatively few places. The notion of
property testing was first presented by Rubinfeld and Sudan in [RS96] were the testing of algebraic
properties of functions was addressed. Goldreich, Goldwasser, and Ron [GGRY8] later initiated the
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study of combinatorial objects in the context of property testing. In their work they studied (2-
uniform) graphs and considered several fundamental combinatorial graph properties related to the
independence number, chromatic number, size of maximum cut, and size of the maximum bisection of
these graphs. Since, many papers have addressed the notion of property testing, both in the context
of functions and in the combinatorial setting (e.g. see surveys [Gol98, Ron01, Fis01]).

Property testing of hypergraphs has also been studied in the past. Czumaj and Sohler [CS01]
initiated this line of study when analyzing the property of being ¢ colorable. Colorability, and other
properties of k-uniform hypergraphs (that can be phrased as a Max-k-CNF formula) were also studied
in [AdIVKKO02, AS03]. In this work, we consider testing the independence number of hypergraphs.
To the best of our knowledge, this property has not been addressed in the past (in the context of
hypergraphs).

Testing the independence number Goldreich, Goldwasser, and Ron [GGR98] study property
testing of the independence number of (2-uniform) graphs. In [GGRY8] a graph G of size n is said to
be e-far from having an independent set of size pn if any set of size pn in G has at least en? induced
edges. It was shown in [GGR98| that if G is e-far from having an independent set of size pn then
with high probability a random subgraph of size s = %}ﬁﬁ, for a sufficiently large constant c,
does not have an independent set of size ps. The sample size s was later improved in [FLS02] to
c’g’—: log (g) (again c is a sufficiently large constant). It is not hard to verify that this implies a (two-
sided error) property testing algorithm for the independence number of G. Namely, given a graph
G, one may sample a random subgraph H of G of size s, and exhaustively compute a(H). On one
hand, if G happens to have an independent set of size pn, then with some constant probability p; the
independence number of H will be at least ps (notice that the expected value of a(H) is at least ps).
On the other hand, if G is e-far from having an independent set of size pn then, as mentioned above,
with probability at most p, < p; it is the case that a(H) > ps.

Our results In this work, we extend the analysis of [FLS02] to hypergraphs. Given a k-uniform
hypergraph G = (V, E) of size n, we show that if one must remove at least en® edges of G in order
for the remaining hypergraph to have an independent set of size pn (i.e. G is far from having an
independent set of size pn) then a random subgraph H of G of size s ~ c(k)psi;c satisfies a(H) < ps
with high probability. Here c(k) depends on k alone, which implies that the sample size s is independent

of n. We also show a lower bound for the size of s of value ~ c(k)% (again following the analysis
of [FLS02]).

Definition 1.1. Let A be a subset of V. Define E(A) to be the number of edges in the hypergraph
induced by A.

Definition 1.2. Let p < 1. A k-uniform hypergraph G = (V, E) is said to be (p, €)-connected iff every
subset A of V' of size pn satisfies E(A) > en* (i.e. the number of edges in the subgraph induced by A
is greater than en®).

Theorem 1.3. Let G be a k-uniform hypergraph. Let H be a random sample of G of size s >
2k
chk!pE—3 log (2) for a large constant c.

1. If G has an independent set of size pn, then with probability > 1/4 the subgraph H will have an
independent set of size ps.



2. If G is (p,e)-connected then with probability < 1/20 the subgraph H will have an independent
set of size ps.

A few remarks are in place. First of all, in the above theorem we consider only hypergraphs which
are k-uniform. Theorem 1.3 can be extended to hypergraphs in which any edge is of size at most
k. This follows from the fact that any (p,e)-connected hypergraph with edges of size k and smaller
contains a subgraph (on the same vertex set) which is k-uniform and (p,e/2)-connected. Secondly,
throughout this work we analyze the properties of random subsets H which are assumed to be small.
Namely, we assume that the value of s (as stated in Theorem 1.3) and the parameters p, € and n
satisfy (a) s < ¢y/n and (b) s < cpn for a sufficiently small constant c. Finally, the constants 1/4, and
1/20 presented above are not tight.

Proof techniques We first give a brief overview of the techniques presented in [FLS02] for testing
the independence number of (2-uniform) graphs. Given a graph G with vertex size n which is (p, €)-
connected, the bulk of the work of [FLS02] addresses the study of the minimal value of s for which
a random subgraph H of G satisfies a(H) < ps with high probability. This is done by analyzing the
probability that a random subset H of G satisfies a(H) < ps (as a function of p, ¢, and the sample
size ). The main idea behind their proof is as follows. Given a sample size s, they start by bounding
the probability that a random subset R of G of size £ > ps is an independent set. As any subset R of
H is random in G, one may bound the probability that a(H) > ps using the standard union bound on
all subsets R of H of size > ps. [FLS02], analyze this naive strategy and show that it only suffices to
bound the probability of a slightly stronger condition than the condition a(H) > ps. Namely, using
this scheme, they bound the probability for which a(H) > 4ps (instead of exactly ps). The naive
strategy is then enhanced in order to bound the probability that a(H) > dps as a function of § for
any 0 > 1. This now suffices to bound the probability that a(H) > ps (using a few additional ideas).

In our work, we follow the line of proof presented in [FLS02]. The application of the techniques
presented in [FLS02] for testing the independence number of (2-uniform) graphs to the case of k-
uniform hypergraphs involves several difficulties. Roughly speaking, these are overcome by considering
for each vertex v in the given graph G, all subsets of V' which share an edge with v. Specifically, for
all vertices v we consider the set system A, consisting of sets @ = {u1,...,u;} for which there exists
an edge e in G which includes both the vertex v and the set . Similar ideas have been used in the
past in the study of hypergraphs (e.g. [AS03]).

Structure In Section 2 we prove the first part of Theorem 1.3. In Section 3 (the main section of this
work) we prove the second part of Theorem 1.3. This is done in two steps. In Section 3.1 we analyze
the naive strategy discussed above. In Section 3.2 we refine our scheme and obtain Theorem 1.3 (2).
Finally, in Section 4 we present the lower bound on the sample size s mentioned previously.

2 Proof of Theorem 1.3 (1)

Theorem 1.3 (1) Let G be a k-uniform hypergraph of size n with a(G) > pn. Let H be a random
sample of G of size s, where s is larger than a sufficiently large constant. With probability > 1/4 the
subgraph H will have an independent set of size ps.



Proof (sketch) : Let I be an independent set of G of size pn. Notice that H N I is also an
independent set. The expected size of H NI is ps. For sufficiently large s, it is not hard to verify (via
the central limit theorem, e.g. [Fel66]) that with probability greater than 1/4 the size of the set HN1T
will be greater or equal its expectation. O

3 Proof of Theorem 1.3 (2)

3.1 The Naive scheme

Let G = (V,E) be a (p, e)-connected k-uniform hypergraph. In this section we study the probability
that a random subset R of V' of size £ is an independent set. We then use this result to bound the
probability that a random subset H of G of size s has a large independent set.

We would like to bound (from above) the probability that R induces an independent set. Let
{r1,...,7m¢} be the vertices of R. Consider choosing the vertices of R one by one, such that at each
step the random subset chosen so far is R; = {r1,...,7;} and the vertex r;;; is chosen from V \ R;.
Assume that at some stage R; is an independent set. We would like to show (with high probability)
that after adding the remaining vertices {r;y1,...,7¢} to R;, the final set R will not be an independent
set.

The vertices in V' \ R; that cannot be added to R; are exactly the vertices v that share an edge
with some k£ —1 vertices in R;. Let N(R;) = N; be the set of such vertices in V'\ R;, and let I(R;) = I;
be V' \ N;. Consider the next random vertex r;y1 € R. If r;11 is chosen from N; then it cannot be
added to R;, and we view this round as a success regarding the set R;. Otherwise, ;11 happens to be
in I; and can be added to R;. But if the addition of r;11 to R; happens to add many vertices to Nj,
we also view this round as a successful round regarding R;.

Motivated by the discussion above, we continue with the following definitions. For each subset R;
we define the following weighted set systems of subsets of V. Let RES(R;,1) (for restrict) be the
set of singletons {v} that share an edge with vertices in R;. Namely, {v} € RES(R;,1) iff there
exists vertices {wi,...,wk—1} in R; such that there is an edge {v,w1,...,wg_1} in E. RES(R;,1)
is exactly the set V; defined above. Define the weight of each element in RES(R;,1) as n*~2. Let
RES(R;,2) be the set of pairs of vertices vy, vo which (together) share an edge with vertices in R;.
Namely, {v1,v2} € RES(R;,2) iff there exists vertices {wy,..., w9} in R; such that there is an edge
{v1,v9,w1,...,wx_2} in E. Define the weight of each element in RES(R;,2) as n*~3. Similarly for
each j € {1,...,k—1} let RES(R;, j) be the set of subsets {v1,...,v;} of V of size j that share an edge
with vertices in R;. Define the weight of each element in RES(R;,j) as n*~7~1. Finally let RES; =
RES(R;) be the union of the sets RES(R;,j) where j € {1,...,k —1}. Let ||RES(R;,7)|| (||RES;||)
denote the weight of elements in RES(R;,j) (RES;). Notice that | RES(R;, )| < (?)nk_j_1 < pk-1

and that [|RES;|| < Zf;ll (?)nk_j_1 < knk—1,

Definition 3.1. Let the normalized degree w.r.t. R; of a vertex v € V be the amount on which v
restricts upon R;:

dy(Ri) = |RES(R; U{v})|| — |[RES(R;)|| = |[RES(R; U {v}) \ RES(R;)]|.
In the above notice that RES(R;) C RES(R; U{v}). We call a vertez v in V heavy with respect to

R; (or R;-heavy for short) if dy(R;) > zk(kl_g)!%nkfl.




Each subset R; of V now defines the following partition (LI;, HI;, N;) of V and the set RES;. Let
RES; and N; be as defined as above. Let I; = V' \ N;. I; is now partitioned into two parts: vertices in
I; with low normalized degree (w.r.t. R;), denoted as the set LI;, and vertices with high normalized
degree, denoted as HI;. Namely LI; is defined to be the pn vertices of I; with minimal normalized
degree and HI; is defined to be the remaining vertices of I;. Ties are broken arbitrarily or in favor of
vertices in R; (namely, vertices in R; are placed in I; before other vertices of identical degree). If it is
the case that |I;| < pn then LI; is defined to be I;, and HI; is defined to be empty.

We define the partition corresponding to Ry = ¢ as (LI, HIy, Ny), where LI are the pn vertices
of G of minimal normalized degree, H Iy are the remaining vertices of G, and Ny is empty. RES) is
also defined to be empty.

Notice, using this notation, that the subset R; is an independent set iff R; C I;. Moreover, in
this case R; C LI; (all vertices of R; have normalized degree 0). Furthermore, each vertex r; in an
independent set R = Ry = {r1,...,r¢} satisfies r; € I;_;.

We are now ready to bound the probability that a random subset R = {r1,...,r¢} of G is indepen-
dent. Let R; = {r1,...,7;}, and let (LI;, HI;, N;) be the corresponding partition of V' defined by R;.
Consider the case in which R is an independent set. As mentioned above, this happens iff for every 4
the vertex r; is chosen to be in I; = LI; 1 U HI; ;. We would like to show that this happens with
small probability (if £ is large enough).

Consider the set RES; as we proceed in the choice of vertices in R. Initially, the subset RES| is
of weight 0, and it gets larger and larger as we proceed in the choice of vertices in R. Each vertex in
r; € HI; 1 increases the size of RES;_; substantially, while each vertex in LI;_; may only slightly
change the size of RES;_1. In the following, we show that there cannot be many vertices r; € R that
happen to fall into HI;_1. We thus turn to consider vertices r; that fall in LI;_; (there are almost £
such vertices). The size of LI; is bounded by pn. Hence, the probability that r; € LI; is bounded by
p (by our definitions R;_; C LI; ; and the vertex r; is random in V' \ R;_;). This implies that the
probability that R is an independent set is roughly bounded by pf. Details follow.

Lemma 3.2. Let G be a (p,e)-connected hypergraph. Let R = {r1,...,r¢} be a set in G. The number
of vertices r; which satisfy r; € HI; 1 is bounded by t = &f'ﬂ

Proof : We start with the following claim

Claim 3.3. Let R; be as defined above, and let (LI;, HI;, N;) and RES; be its corresponding partition
and set system. Let I; = LI; UHI;. If G is (p,c)-connected then, every vertex in HI; is R; heavy.

Proof : Assume that LI; = pn (otherwise HI; is empty and the claim holds). By our assumptions
on G we have that LI; induces at least en”* edges. Let E(LI) be the set of these edges, and let m be
the size of E(LI;). To simplify our notation, let LI = LI;, HI = HI;, N = N; and R = R;. Now that
the index i is free, we use it in the following new context. For i € {1,...,k— 1} consider the following
sequence of weighted i-uniform hypergraphs H; = (LI, E;) which all have vertex set LI. The edge set
E; is defined to be all subsets of size i of edges in E(LI) (here and throughout our work we consider
a (hyper) edge of size k as a subset of vertices of size k). For example, each edge in E(LI) induces
(’2“) edges in Ho, (g) edges in H3, and so on. The weight of an edge e; in H; is equal to the number of
edges e in E(LI) which satisfy e; € e.



Recall the sets RES(R,j) and RES(R). Our goal is to prove the existence of a vertex v € LI
which is R-heavy (this will imply our assertion). Namely a vertex v which when added to R will
significantly increase the weight of RES(R). Formally we are looking for a vertex v € LI which
satisfies ||[RES(RU{v})||—||RES(R)|| > m—nk 1. Notice that the weight of a subset of vertices

with respect to RES(R) may (and usually does) differ from its weight with respect to H;. To avoid
confusion we denote the weight of a subset e with respect to RES(R) as wg(e). Recall that every
edge e of size i in RES(R) has weight wg(e) = n*~~1. The weight of an edge e in H; will be marked
as wy; (e).

For each ¢ we now consider the weight (with respect to H;) of the edges in H; which are in RES(R).
Denote this weight as res;. Notice that res; = 0 (by our construction LI NN = ¢, which implies that
singletons {v} C LI are not in RES(R)). We consider the following cases.

Case 1: We start by assuming that resx_; < (k—1)m. As the total weight of edges in Hy_1 is km,
we conclude that the weight of edges in Hj,_; that are not in RES(R) is at least m. Let v be a vertex
in LI. We say that an edge e in Hy_; is a v-edge if there exists an edge in E(LI) consisting of the
union of e and {v}. Notice that an edge e in Hj_; of weight wg, | (e) is actually a v edge for wy,_, (e)
distinct vertices v. As each edge in Hy_1 is a v-edge for some vertex v in LI, we have the existence of
a vertex v in LI with at least 7% (distinct) v-edges that are not in RES(R). The weight of each such
v-edge in RES(R) is 1. Furthermore, each such v-edge appears in RES(R U {v}) implying that

IRES(RU {v})|| - |RES(R)|| > p_n > Epk

b

which in turn implies the v is R-heavy.

Cases 2 to kK —1: Starting at ¢+ = k — 1 and iteratively continuing( unt)il 1 = 2 consider the following
2m (k-1

cases. From the previous step, we may assume that res; > 97 (=)l We now also assume that
resi—1 < it (k(kﬂg), Consider an edge e = (v1,...,v;) in H; of weight wg,(e) which contributes to
res;. Bach such edge induces i edges in H; 1: {€],..., €.} (each edge obtained by removing one vertex

from e). We are interested in bounding (by below) the weight of edges e as above with corresponding
edges e; which are not in RES(R) (here j € {1,...,1}).

By our construction, the weight of any edge €’ in H;_1 equals the number of edges in G that include
€'. Tt is not hard to verify that this equals ﬁ times the weight of edges in H; which include e’. We
conclude that the weight of edges e in H; which are in RES(R) with some corresponding edge €’ in
H,_; which is also in RES(R) is bounded by res;_i(k —i + 1). This leaves us with

m (k—1)

res; — (k—i+ l)resi_1 > 2k=i (k — )]

edges e which contribute to res; for which e} for j € {1,...,4} are not in RES(R).
We now conclude the existence of a vertex v € LI which is adjacent to (i.e. is included in) at

least the weight of "% o ((k 11)), edges in H; which appear in RES(R) such that their corresponding

edges in H; i are not in RES(R). The weight of each edge in H; is bounded by (/") < (pn)*F".

Thus there are at least 5= (p )k T ((k )) distinct edges in H; adjacent to v with corresponding edges
in H; 1 that are not in RES(R).




We will now show that v is R-heavy. Consider one of the distinct edges e = (v,v1,...,v;—1) as
discussed above. By our assumption the set {v1,...,v;_1} is not in RES(R). The edge e appears in
RES(R) implying that there exists vertices {wi,...,wg—;} (in R) such that

(’U,’Ul,... yVj—15 W1y ,wk_i)

is an edge in the original hypergraph G. This in turn implies that {vi,...,v;_1} will be included in

RES(RU {v}). As each set of size i — 1 in RES(R) has weight wg = n*~*, and there are at least

Qk,i(;;’;k,i ==\ ((],::il))! distinct edges of interest adjacent to v, we conclude that

1 (k—1)e ,_
|IRES(RU {v})|| — ||[RES(R)| > W((k_i))!; o

O

Now to prove our lemma, consider the subsets R; = {r1,...,7;} and their corresponding partitions
(LI;, HI;, N;). Let I; = LI;UHI;. We would like to bound the number of vertices r; that are in HI; ;.
Consider a vertex r; in HI;. By Claim 3.3, its normalized degree w.r.t. R; is at least m%nkﬂ.
RES(¢) is initially empty, and for any ¢ RES(R;) is of weight at most Zf:_zl (Mnk—t7t < knkL

]
Each vertex r; € HI;_1 increases | RES(R;_1)| by at least m%nk_l. We conclude that there are
2kklp

at most = vertices r; in R which are in HI; ;. O

Theorem 3.4. Let G be a (p,e)-connected hypergraph. Let t be as in Lemma 3.2. Let £ > 2t. The
probability that ¢ random vertices of G induce an independent set is at most

¢ eé ¢
(%)
Proof : Let R = {r1,...,r¢} be a set of £ random vertices. As mentioned previously, the probability
that 7; € LI;_; is at most p. This follows from the fact that (1) The size of LI;_; is at most pn, (2)
R;_1 C LI;_y (by our definitions), and (3) The vertex r; is random in V' \ R;_;.
Now in order for R to be an independent set, every vertex r; of R must be in the set I; ;.

Furthermore, by Lemma 3.2 all but t vertices r; of R must satisfy r; € LI;_;. Hence, the probability
that R is an independent set is at most

O oo (L' oo et
< (= — (Y .
(7= () = (5

Let 0 be a large constant. We now use Theorem 3.4 to bound the probability that a random subset
H of G of size s has an independent set of size > Jps. The result is the following Corollary 3.5. In
Section 3.2 we refine our proof techniques and get rid of the parameter §. That is, we bound the
probability that a random subset H of G of size s has an independent set of size > ps.

O

Corollary 3.5. Let G be a (p,e)-connected hypergraph. Lett be as in Lemma 3.2. Let H be a random
sample of G of size s. Let 6 > €%, and let ¢ be a sufficiently large constant. If s > ctw then the

probability that o(H) > dps is at most (%)Q(Jps).



Proof : Let { = dps. Using Theorem 3.4 and the fact that a subset R of H is random in G, the
probability that there is an independent set R in H of size k is at most

t ¢
Vot (<) < [(9) 2] < (5)™.
14 tp 6/ tp 0
In the last inequality we use the fact that £ is greater than clog(1/p), and € is smaller than 1/e. O

3.2 An enhanced analysis

Let G = (V, E) be a (p, e)-connected hypergraph, and let H = {hy,...,hs} be a set of random vertices
of size s in V. In the previous section we presented a bound on the probability that a(H) > dps for
large constant values of d. In this section we enhance our analysis, and bound the probability that
a(H) > ps (namely, we get rid of the additional parameter §).

Recall our proof technique from Section 3.1. We started by analyzing the probability that a subset
R of H of size £ is an independent set. Afterwards we bounded the probability that a(H) > dpn by
using the standard union bound on all subsets R of H of size greater than £ = jpn. In this section we
enhance the first part of this scheme by analyzing the probability that a subset R of H of size £ is a
mazimum independent set in H (rather than just an independent set of H). Then, as before, using
the standard union bound on all large subsets R of H, we bound the probability that a(H) > ps. We
show that taking the maximality property of R into account will suffice to prove Theorem 1.3 (2).

Let H = {hi,...,hs} be s random vertices in G. We would like to analyze the probability that a
given subset R of H of size £ is a mazimum independent set. Recall (Section 3.1), that the probability
that R is an independent set is bounded by approximately pf. An independent set R is a maximum
independent set in H only if adding any other vertex in H to R will yield a set which is no longer
independent. Let R = Ry be an independent set, and let (LI;, HIy;, Ny) be the partition (as defined
in Section 3.1) corresponding to R. Consider an additional random vertex h from H. The probability
that R U h is no longer an independent set is approximately |Ny|/n (here we assume that |R| is small
compared to n). The probability that for every h € H \ R the subset RU{h} is no longer independent
is thus ~ (|Ng|/n)*~*. Hence, the probability that a given subset R of H of size £ is a mazimum
independent set is bounded by approximately p (|Ny|/n)® ¢. This value is substantially smaller than
pt iff | Ny| is substantially smaller than n. We conclude that it is in our favor to somehow ensure that
| N¢| is not too large. We do this in an artificial manner.

Let R = {r1,...,r¢} be an independent set, let R; = {r1,...,r;}, let (LI;, HI;, N;) be the partition
(as defined in Section 3.1) corresponding to R; and let RES; be the set system corresponding to R;.
Roughly speaking, in Section 3.1, every time a vertex r; was chosen, the set system RES; and N; was
updated. If r; was chosen in HI; 1, then RES;_; increased substantially and N;_; potentially also
grew substantially, and if r; was chosen in LI; 1, both RES; 1 and N;_; only slightly changed. We
would like to change the definition of the partition (LI;, HI;, N;) and of RES; corresponding to R;
as to ensure that N; is always substantially smaller than n. This cannot be done unless we relax the
definition of N;. Recall that N; was defined (in Section 3.1) to be the set of vertices v which share
an edge with vertices in R;. Specifically, IV; in the set of vertices v for which there exists vertices
{wi,...,wg_1} in R; such that there is an edge {v,w1,...,wx_1} in E. In this section N; will only
include a subset of these vertices (a subset which is substantially smaller than n). Namely, in our new



definitions RES;—1 and N;_; will be changed only if r; was chosen in HI;_;. In the case in which
r; € LI; 1 U N; 1, we do not change N; 1 at all. As we will see, such a definition will imply that
|N;| < (1 — p)s, which will now suffice for our proof.

A new partition and set system Let H = {hy,...,h;} be a subset of V. Let R; = {ry,...,r;}
be a subset of H of size i. In the previous section, the subset R; defined a partition (LI;, HI;, N;)
of V and a set system RES;. In this section, for each i we will define a subset Rz of R;, and a
new partition and set system. The new partition and set system corresponding to R; will be defined
similarly to those defined in the previous section with the exception that R; will play the role that R;
played previously. The set R;, the new partition (LI;, HI;, N;), and the set system RES; are defined
as follows (as before, let I; = LI; U HI;).

1. Initially Ry = ]%0 = ¢, LIy is the pn vertices in V of minimal normalized degree w.r.t. Ri,
HIy = V' \ LIy, and Ny = ¢. In the above, ties are broken by an assumed ordering on the
vertices in V. RESy = RES(Rp) is defined to be empty.

2. Let Ri, (LI;, HI;, N;) and RES; be the sets corresponding to R;, let 7,11 be a new random
vertex. Let Rijy1 = R; U {ri;1}, we now define the sets Rjy1, (LI;1, HI; 11, Niy1) and RES;, ;.
Let N(r;+1) be the set of vertices which share an edge with vertices in R; U ri+1. We consider
the following cases:

e If r,y1 € LI; or i1 € N; then the sets corresponding to R;y; will be exactly those
corresponding to R;. Namely, Rjy1 = Ry, LI;.; = LI;, HI;., = HI;, Ni., = N;, and
RES; 1 will be defined as RES;.

e If r;.1 € HI; then we consider two sub-cases:

— If IN; U N(rit1)| < (1 — p)n, then Ry = R; U {rit1}, RES;11 = RES(R;11), and
LI;i11, HIj11, Niy1, are defined as in Section 3.1. Namely, Nj11 = N; UN(ri41). Liva
is defined to be V' \ N;y1. LI;1; is defined to be the pn vertices of I;11 with minimal
normalized degree w.r.t. Ri+1. Finally, HI;,; is defined to be the remaining vertices
of I;41. Ties are broken by the assumed ordering on V.

— If [IN; U N(riy1)| > (1 — p)n, then let N(rii1) be the first (according to the assumed
ordering on V) (1 — p)n — |N;| vertices in N(r;y1) and set Nipp = N; U N(rip1).
Furthermore, set LI;11 to be the remaining pn vertices of G, and HI; to be empty.

Notice that in this case |[Nji1| is of size exactly (1 — p)n. Finally, let R;;1 = R; and
RES;.1 = RES;.

A few remarks are in place. First of all it is not hard to verify that the definition above implies

Claim 3.6. Let i € {1,...,¢}. The sets corresponding to R; as defined above satisfy (a) I; C I;_1.
(b) Ni-1 € Ni. (¢) [Ni| < (1= p)n. (d) |[LLi| = pn. (e) The set LI; is the pn vertices of minimal
normalized degree in I; (w.r.t. R;).

Secondly, due to the iterative definition of our new partition, the sets corresponding to the subsets
R; depend strongly on the specific ordering of the vertices in R;. Namely, in contrast to the partitions
(set systems) used in Section 3.1, a single subset R with two different orderings may yield two different
partitions (set systems). For this reason, in the remainder of this section, we will assume that the



vertices of H are chosen one by one. This will imply an ordering on H and on any subset R of H.
The partitions we will study will correspond to these orderings only.

Finally, in Section 3.1, an (ordered) subset R = {ri,...,r¢} was independent iff Vi r; € I, 3
(according to the definition of I;_; appearing in Section 3.1). In this section, if R is independent
then it still holds that Vi r; € I;_;. However, it may be the case that Vi r; € I;_1 but R is not an
independent set. In the remainder of this section, we call ordered subsets R for which Vi r; € I;_4
free sets. We analyze the probability that a random ordered subset H of V of size s does not have any
free sets of size larger then ps. This implies, that H does not include any independent sets of size ps.

Definition 3.7. An ordered subset R; = {r1,...,r;} is said to be free if it is the case that rj € I;_4
for all 7 <.

Proposition 3.8. Let H = {h1,...,hs} be an ordered set of vertices in a (p,e)-connected hypergraph
G. If a(H) > ps then the mazimum free set in H (w.r.t. the ordering implied by H ) is of size > ps.

Proof : Let I be an independent set of size > ps in H. It is not hard to verify that I (under the
ordering implied by H) is a free set. a

Proposition 3.8 implies that to prove Theorem 1.3 (2) it suffices to analyze the maximum free
set R C H. Moreover, the only ordered subsets R that we need to consider are those ordered by
the ordering implied by H. We now turn to prove Theorem 1.3 (2). Roughly speaking, we start by
analyzing the probability that a random subset R is a free set. We then analyze the probability that
a given subset R in H is a maximum free set. Finally, we use the union bound on all subsets R of H
of size > ps to obtain our results.

In the remainder of this section, we will assume that the subset H is chosen from G randomly with
repetitions. That is H is a random multi-set of size s. Our results (with minor modifications) apply
also to the case in which H is a random subset of G (and not a multi-set) if the size of H is not very
large (here we assume that |H| << y/n). As in such cases, a set H of size s which is randomly chosen
from V' with repetitions will not include the same vertex twice (with high probability).

We start by stating the following lemmas which are analogous to Lemma 3.2 and Theorem 3.4
from Section 3.1. The main difference between the lemmas below (and their proof), and those of the
previous section is in the definition of the partition (LI;, HI;, N;),the set system RES;, and in the
fact that they address free sets instead of independent sets. Proof of the lemmas is omitted.

Lemma 3.9. Let G be a (p,€)-connected hypergraph. Let R = {r1,...,7¢} be an ordered set in G of
2kklp

size £. The number of vertices r; which satisfy r; € HI;_1 is bounded by t = =

Lemma 3.10. Let G be a (p,e)-connected hypergraph. Let t be as in Lemma 3.9. Let £ > 2t. Let
R={r1,...,r¢} be £ random vertices of G. The probability that R induces a free set is at most

t
el
4 (%)
p
We now address the probability that a random subset R of H is a maximum free set. We will then
use the union bound on all subsets R of H of size > ps to obtain our results.
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Lemma 3.11. Let G be a (p,c)-connected hypergraph. Let t be as in Lemma 3.9. Let £ > 2t. Let H
be an ordered random sample of G of size s > £. The probability that a given subset R of H of size £

is a mazimum free set is at most
t
o (el s—
=) (1=
p ( tp) (1-p)

Proof : Let R = {ry,...,r¢} (ordered by the ordering induced by H). The set R is a maximum
free set in H only if (a) R is free, and (b) For each vertex h € H which is not in R, the ordered set
Rt ={ry,...,7j,h,7j+1,...,7¢} is not free. Here the index j is such that r; appears before h in the
ordering of H, and 7,41 appears after h (i.e. RT is ordered according to the ordering of H).

The probability that R is free has been analyzed in Lemma 3.10. It is left to analyze the probability
that R is not free for every vertex h € R, given that R is free. Consider a vertex h € H which is not
in R, and let Rt = {r1,...,7j,h,7jt1,..., 70}

Claim 3.12. Let R = {ry,...,r¢} be a free set. Let RT = {ry,...,rj,h,7j11,...,7¢}. Let the partition
corresponding to R; = {r1,...,r;} be (LI;, HI;, N;), and the set system corresponding to R; be RES;
If h € LI; then RT is also a free set.

Proof : We will use the following notation. Let R; = {r1,...,r;} denote the first 7 vertices of R, let
R;, (LI;, HI;, N;), and RES; be its corresponding sets. For i > 7, let RZT" ={ri,..., 75, hyrj41,...,7i}
denote the first 4 + 1 vertices of R, and let R;", (LI HI,N), and RES; be its corresponding
sets. Finally let R denote the subset {ri,...,r;,h} and R,’:, (LI HI,},N,f), and RES; be its
corresponding sets.

We would like to prove that RT is free. That is, we would like to show (a) that r; € I;_; for each
i < j, (b) that h € I;, (c) that rj41 € I, and (d) that r; € I;"| for i > j + 2. Recall that R is free
and thus r; € I;_; for all i € {1,...,¢}.

The first assertion follows from the fact that the first j vertices of R and R™ are identical. The
second follows from the assumption that h € LI;. For the third assumption, notice (as h € LI;) that
the sets corresponding to R,’: = {r1,...,rj, h} are equal to the sets corresponding to R; = {ry,...,r;}.
This follows from our definitions. As r;1 € I; we conclude that 711 € I ,‘L" .

For the final assertion, observe that for any 7 > j+ 1, the sets corresponding to Rz* are equal to the
sets corresponding to R;. This can be seen by induction (on 7). We start with the sets corresponding

to Rj;+1 and R;'H. The sets corresponding to R;jy1 are defined uniquely by the sets corresponding
to R; and the vertex r;11. Similarly, the sets corresponding to Rj++1 are defined uniquely by the
sets corresponding to R,i’ and the vertex r;,1. As the sets corresponding to R;: and R; are equal we
conclude that the same hold for the sets corresponding to R;,; and R} ,. The inductive step is done

41t
similarly. O

Claim 3.12 implies that the probability that R = {r1,...,7j,h,7j4+1,...,7¢} is not free given that
R is free is at most (1 — p) (recall that the set LI; is of size exactly pn). This holds independently for
every vertex h in H \ R. We conclude that the probability that R is a maximum free subset of H is
at most the probability that R is free times (1 — p)*~*. O

We now turn to analyze the probability that a random ordered subset H of G of size s has a free set
of size larger than ps. We follow the line of analysis given in Section 3.1 and analyze the probability
that H has a free set of size larger than §ps for any § > 1. We then get rid of the factor § to obtain
our main theorem of this section.
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Corollary 3.13. Let G be a {p,e)-connected hypergraph. Let t be as in Lemma 3.9. Let H be a
random sample of G of size s. Let § > 1, and let ¢ be a sufficiently large constant. LetT' =Ind — ‘STTI.
If s > ,th“ (log(1/p) +1og(1 + 1/T)) then the probability that H has a free set of size > dps is at most

1 Q(dps)
()

Proof : Let £ = dps, let &' > § and let £ = §'ps > £. Using Lemma 3.11, the probability that there
is a maximum free set R in H of size > [ is at most

t t v
S () (&) non < T(L) o
= /! tp - = tp el({’(s_el)sfg/
< (%) %
> = tp 5/2/
r qt
Z eﬁ'( 1 )ZL
pe |t \ o=t
- 1t
< Z eé’(l)é
e P e

1\ 9@) 1190
<Y (&) =(x)

>4

We use the facts that g—’ is greater than both cf log(1 + 1/T) and cf log(1/p) for a sufficiently large
constant c. O

It is left to get rid of the additional parameter § of Corollary 3.13 (namely to analyze the probability
that a(H) > ps).

Lemma 3.14. If G is (p,e)-connected then G is also <p(1 - pik), %>—connected.

Proof : Let A be some subset of G of size p(1 — p%)n Let A€ be any set in V' \ A of size p%pn. It is

known that the number of edges induced by the set AU A° is at least en® (notice that |AU A¢| = pn).
The number of edges (in A U A€) adjacent to vertices in A¢ is bounded by (k”fl) p% on < %nk Hence,

the number of edges induced by vertices in A is at least %nk implying our assertion. O

Theorem 1.3 (2) Let G be a {p,e)-connected hypergraph. Let t be as in Lemma 3.9. Let H be a
2k—1

random sample of G of size s. Let ¢ be a sufficiently large constant. If s > ct?——log (g) then the

probability that H has an independent set of size > ps is at most e~ b,

Proof : By Lemma 3.14, G is <p(1 - %), %>—connected. For technical reasons, we will use the fact

that this implies that G is also <p(1 - m), %>—connected. Let p' = p(1— ﬁ) and &' = £/2. We would
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like to bound the probability that H does not have any independent sets of size ps. Let § = 1 + ﬁ
Notice that dp' < p. Hence, it suffices to bound the probability that a(H) > dp's. This probability,
in turn, is at most the probability that H has a maximum free set of size greater than £ = dp's
(Proposition 3.8).

2

Let T' = In(6) — &L, Tt is not hard to verify that ' = 6((6 — 1)2) = 0 ( 57 ) for our value of §. By
d p

our assumption

2k—1
p p ct
> B> ——
st e? log (6) ~ p(6—1)2
where in the above the constant ¢ may change values from expression to expression.
Now, by Corollary 3.13, for our choice of s, the probability that H has a maximum free set of size

greater than £ = dp's is at most s (e%)ﬂ(dps) < e ), m

(log(1/p') + log(1 + 1/(6 — 1)%)) > p—"r (log(1/p') + log(1 + 1/T))

Roughly speaking, Theorem 1.3 states that given a (p,e)-connected hypergraph G, a random
sample H of G of size s proportional to Qkk!pgi: (or larger) will not have an independent set of size ps
(with high probability). In Section 4 we continue to study the minimal value of s for which a(H) < ps
with high probability, and present a lower bound of ( )2 > on the size of s.

4 Lower bounds for the testing of a(G)

In this section we present k-uniform hypergraphs G which are (p, ¢)-connected, but with probability

> 1/20 a random sample H of G of size s = ( )212 is likely to have an independent set of size greater

k!
than ps.

Lemma 4.1. Letn be a large constant. Let p > 0 and ¢ > 0 satisfy (a) € << 2”—;!, (b) p?=1/e?2 << n
and (c) k* << pn. For n large enough, there exists a graph G on n vertices for which G is {p,¢)-

connected, and with probability > 1/20 a random set H of size s = 4(,:#12 will have an independent

set of size ps.

Proof (sketch) : Consider the k-uniform hypergraph G = (V, E) in which (a) |V| =mn, (b) V
consists of two disjoint sets A and V' \ A, where A is of size ( 2{’: £)pn, and (c) the edge set E of
G consists of all subsets of V' of size k except those included in A (namely, A is an independent set).
On one hand, every subset of size pn in G induces a subgraph with at least en® edges (implying that
G is (p,e)-connected). On the other let H be a random subset of V obtained by picking each vertex

independently with probability 2 . The expected size of H is s = In the following, we

n 4(K! 4!
assume H is exactly of size s, IIllIl(OI‘) modifications in the proof are neede(d )1f this assumption is not
made. The set HN A is an independent set in the subgraph induced by H. The expected size of HN A
is (1 — %:5) ps. Let N(0,1) denote a standard normal variable. It can be seen using the central limit
theorem (for example [Fel66]) that for our choice of parameters, the probability that |H N A| deviates

from its expectation by more than a square root of its expectation is at least

Pr [|HnA|> (1—j—')ps+\/_] >Pr[N(0,1) >3/2] 2 o

In such a case the size of H N A will be greater than (1 — %) ps + /ps = ps for our value of s. Hence
implying the second assertion of the lemma. O
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