
Finding Favorites

Fan Chung ∗† Ron Graham∗ Jia Mao∗ Andrew Yao‡

Abstract

We investigate a new type of information-theoretic identification problem, suggested

to us by Alan Taylor. In this problem we are given a set of items, more than half of

which share a common “good” value. The other items have various other values which

are called “bad”. The only method we have for gaining information about the items’

values is to ask whether two items share the same value. We can assume there is an

oracle which always answers each such query truthfully. Our goal is to identify at least

one good item, i.e., an item which is guaranteed to have a good value, using a minimum

possible number of queries. We will establish upper and lower bounds for the number

of queries needed for both adaptive as well as oblivious strategies.

The practical context in which this problem arose was in connection with trying

to identify a good sensor from a set of sensors in which some are non-operational or

corrupted, for example, where it was desired to minimize the amount of intercommu-

nication used in doing so.

1 Introduction

We imagine a situation in which we are initially given some set S of n elements. Each

element s ∈ S has been assigned some value φ(s) ∈ {0, 1, . . . , R}, with the restriction that
most of the elements of S have been assigned the value 0, i.e., |φ−1(0)| > n/2. These are

called “good” elements; the others are called “bad”. Our goal is to identify at least one

good element. However, the only way we have of gaining information about the values of

elements is to ask whether two elements have the same value, i.e., for s, t ∈ S, we can ask:

∗Department of Computer Science & Engineering, University of California, San Diego
†Research supported in part by NSF Grant DMS 0100472 and ITR 0205061
‡Department of Computer Science, Princeton University; research supported in part by NSF Grant CCR-

0310466

1

Electronic Colloquium on Computational Complexity, Report No. 78 (2003)

ISSN 1433-8092

“Is φ(s) = φ(t)?”. We assume each such query will be answered truthfully by an oracle. In

particular, we would like to use the smallest possible number of queries for which we can be

guaranteed of learning the identity of a good element, no matter how the values φ(s), s ∈ S,

happen to be chosen (subject only to the requirement that |φ−1(0)| > n/2).

We can view our problem as a game played betweeen two players: Q, the Questioner, and

A, the adversary. Q’s role is to ask a sequence of queries Q(s, t) := “Is φ(s) = φ(t)?”. A

must answer each such query truthfully, but is free to change the current values φ(s), s ∈ S,

as long as all previous answers remain true, and of course, so that |φ−1(0)| > n/2. In this

way, A would like to extend the game as long as possible before Q can finally identify a

good element.

We will consider two types of strategies for Q. These are adaptive strategies in which

each query can depend on the answers given to all previous queries, and oblivious (or non-

adaptive) strategies in which all the queries must be specified before A is required to answer

any of them. Clearly, in the oblivious case, A has more opportunity to be evasive. We

will let f(n) denote the minimum number of queries needed by Q to guarantee finding a

good element with some adaptive strategy, and we will let g(n) denote the corresponding

minimum over all oblivious strategies. We will also examine the special case in which there is

only one bad value, i.e., φ : S → {0, 1}. In this case, we denote the corresponding functions
by f1(n) and g1(n), respectively. Clearly, f1(n) ≤ f(n) and g1(n) ≤ g(n) for all n.

2 Adaptive strategies

Theorem 1 Suppose n is odd. Then

n− 2√n ≤ f1(n) ≤ f(n) ≤ n− w2(n) (1)

where w2(n) denotes the binary weight of n, i.e., the number of 1’s in the binary expansion

of n.

2

Proof: (Lower bound for f1(n))

We assume that the Adversary maintains at any time the information revealed so far as a

graph H on n vertices S = {s1, s2, . . . , sn} with an edge {si, sj} corresponding to each query
Q(si, sj), i.e., “ Is φ(si) = φ(sj)?”. The edge is colored blue if the answer is “φ(si) = φ(sj)”,

and is colored red, otherwise. At any time in this process the graph H has a certain number

of connected components, say C1, C2, . . . , Cm. Each component Cr is uniquely 2-colorable

in the sense that its vertices can be uniquely partitioned into two clusters (one of which

may be empty) so that blue edges exist only between vertices in the same cluster, and red

edges exist only between vertices belonging to different clusters. For each component Cr, let

δ(Cr) = |a− b| where a and b are the sizes of the two clusters. Also, let ∆(H) =
∑m

r=1 δ(Cr).

Lemma 1 The number of queries asked so far is at least as large as n−m, where m is the

number of connected components of H.

Proof: The number of queries asked is exactly the number of edges in G, which is at least

as large as
m
∑

r=1

(|Cr| − 1) = n−m.

This proves Lemma 1. ¤

Note that any valid assignment of values φ(si) to the si consistent with H is obtainable

in the following way. For each component Cr, assign 0 to all vertices in one cluster, and

assign 1 to all vertices in the other cluster. Of course, an assignment is valid only if the total

number of 0’s is greater than n/2.

The next lemma gives a characterization for when the current information is sufficient to

identify some si as having φ(si) = 0.

Lemma 2 Let i ∈ {1, 2, . . . , n}. Every assignment consistent with H must assign 0 to si

(i.e., φ(si) = 0), if and only if δ(Cr) ≥ 1
2
∆(H), where si is in the larger cluster of the

component Cr.

3

Proof: First, suppose that δ(Cr) <
1
2
∆(H). For every component Cs where s 6= r, assign

the values of vertices in Cs to be biased in favor of 0. Then no matter which of the two ways

one assigns values to the vertices in Cr, the total number of 0’s minus the total number of

1’s is at least as large as

∑

s6=r

δ(Cs)− δ(Cr) ≥ ∆(H)− 2δ(Cr) > 0,

and will therefore be an acceptable assignment. This contradicts the assumption that φ(si)

must be 0. On the other hand, if δ(Cr) ≥ 1
2
∆(H) and φ(si) = 1 then every element in the

larger cluster (together with si) of Cr must also have the value 1. Thus

|φ−1(0)| − |φ−1(1)| ≤ −δ(Cr) +
∑

s6=r

δ(Cs) ≤ 0

which contradicts the requirement that |φ−1(0)| > n/2. This proves Lemma 2. ¤

Let us now postulate a strategy for the Adversary A which will produce the desired

lower bound for f1(n). Suppose Q(si, sj) is the next query. The adversary answers by

consulting the current auxiliary graph H. Without loss of generality, we can assume that si

and sj come from two different components Ck and Cl. No matter which way this query is

answered, the two components Ck and Cl will be merged into one component Cr. Depending

on the answers, one has either δ(Cr) = δ(Ck) + δ(Cl), or δ(Cr) = |δ(Ck) − δ(Cl)|. Here is
how the Adversary answers the query:

If δ(Ck) ≤
√
n/2 and δ(Cl) ≤

√
n/2 then it is answered so that δ(Cr) = δ(Ck) + δ(Cl);

otherwise it is answered so that δ(Cr) = |δ(Ck)− δ(Cl)|.
Note that with this strategy, all components Cr must satisfy 0 ≤ δ(Cr) ≤

√
n at all

times. Furthermore, δ(Cr) can be zero only when it is obtained from a query with δ(Ck) =

δ(Cl) >
√
n/2, and hence |Cr| >

√
n.

To analyze this Adversary strategy, consider any algorithm for Q, and let G be the

auxiliary graph when this algorithm halts under the specified Adversary strategy. The next

4

two lemmas show that G has at most 2
√
n connected components. By Lemma 1, this

immediately proves the lower bound for f1(n) in Theorem 1.

Lemma 3 G has fewer than
√
n components Cr with δ(Cr) = 0.

Proof: As noted previously, any Cr with δ(Cr) = 0 must contain more than
√
n vertices.

There has to be fewer than n/
√
n =

√
n such components. This proves Lemma 3. ¤

Lemma 4 G has at most
√
n+ 1 components Ck with δ(Ck) > 0.

Proof: By Lemma 2, we must have some component Cr such that δ(Cr) ≥ 1
2
∆(G). Let I

be the set of indices i such that δ(Ci) > 0. Then

2δ(Cr) ≥
∑

i∈I

δ(Ci)

and hence, δ(Cr) ≥ |I| − 1. But δ(Cr) ≤
√
n by the preceding remarks. This implies that

|I| ≤ √n + 1. This completes the proof of Lemma 4 and the proof for the lower bound of
Theorem 1. ¤

We now establish the upper bound for f(n) in (1). We will do this by providing a specific

strategy for Q. As in the preceding proof of the lower bound for f1(n), the current state of

the information revealed so far will be expressed by a graph H, with edges colored blue (if

the corresponding vertices have the same value), or red (if they have different values). Let us

call a connected component Cr of H mixed if it has at least one red edge. Otherwise, we say

that Cr is pure. Note that with this definition, an isolated point is a pure component. Q’s

strategy is simply this: The next query will be any question Q(si, sj) : “Is φ(si) = φ(sj)?”

where si and sj belong to two different pure components having the same size. Since H

initially consists of n pure components of size 1, then in general, any connected component

Cr of H will have |Cr| = 2t for some t ≥ 0.
LetG be the final graph when the process stops, i.e., when all pure components C1, . . . , Cm

of G have distinct sizes, say |Ci| = 2ti with t1 > t2 > . . . > tk ≥ 0. We first observe that

5

k ≥ 1, i.e., G must have at least one pure component. This is because any mixed component
C of G must have been formed from two equal-sized pure components having different values,

and so can have at most half of its points good. Since by hypothesis more than half of the

points are good, then at least one pure component is required to account for the remaining

good points. We now claim that any point si ∈ C1 must be good. For if not, then

n =
k
∑

i=1

2ti +
∑

C mixed

|C| (2)

and

of bad points ≥ 2t1 +
1

2

∑

C mixed

|C| > n/2

(since 2t1 >
∑

i≥2 2
ti) so that |φ−1(0)| < n/2, which is a contradiction.

Finally, if G has m components altogether (pure and mixed), then by (2), n can be

represented as a sum of m powers of 2. If n =
∑p

j=1 2
aj is such a representation with the

minimum possible value of p, then we must have all the aj distinct, since otherwise we can

replace 2aj + 2aj by 2aj+1. Therefore, p = w2(n), the number of 1’s in the binary expansion

of n. Since by the definition of Q’s strategy, all the components of G are trees, then Lemma

2 implies that Q asks at most n− w2(n) queries. This proves Theorem 1. ¤

We remark that the upper bound here was already obtained by Taylor and Zwicker [9].

Computation has verified that f1(n) = n− w2(n) for n odd, 1 ≤ n ≤ 31. For even values of
the argument, we have the following:

Lemma 5 f(n+ 1) ≤ f(n) if n is odd.

Proof: Let S = {s1, . . . , sn+1} be our initial set of items. By hypothesis, |φ−1(0)| > 1
2
|S| =

n+1
2
. Thus, |φ−1(0)| ≥ n+3

2
. Hence, if we remove sn+1 from S to form S− = {s1, . . . , sn}, then

for the elements of S− we have |φ−1(0)| ≥ n+1
2

> n
2
. Therefore, Q can apply any (optimal)

strategy for identifying a good element of S−, and this requires (by definition) at most f(n)

queries. This proves Lemma 5. ¤

In fact, we believe equality should always hold in Lemma 5.

6

3 Oblivious strategies with one bad value

We now consider the situation in which all of Q’s queries must be specified in advance before

the Adversary is required to answer any of them. In principle, this could give the Adversary

a significant advantage compared to the adaptive case. We first deal with the case in which

there is only one bad value, i.e., with the value of g1(n).

Theorem 2 For n ≥ 3,

g1(n) =

{

n− 2 if n is odd,
n− 3 if n is even.

Proof: Suppose the oblivious Adversary still uses the auxiliary graph H to maintain

information. At any time in the game, H consists of a number of connected components

C1, C2, ..., Cm. We say that Ci is odd if the number of vertices in Ci is odd. Otherwise we

say Ci is even.

It is easy to see (by induction on |Ci|) that the Adversary can always assign values of 0
and 1 to the vertices of a component Ci so that δ(Ci) = 1 if Ci is odd, and δ(Ci) = 0 (or

δ(Ci) = 2) if Ci is even.

First, suppose n is odd. Then H must have an odd number t of odd components.

However, if t ≥ 3 then the Adversary could force t values of δ(Ci) to be 1, which contradicts

Lemma 2. Hence we must have t = 1 when n is odd. We now claim that H can have at most

two components. For suppose to the contrary that H has m ≥ 3 components Ci, 1 ≤ i ≤ m.

Then the Adversary can make 0, 1 assignments so that δ(Ci) = 1 for each odd Ci, and

δ(Ci) = 2 for each even Ci. However, this contradicts the conclusion of Lemma 2. Thus, by

Lemma 1, g1(n) ≥ n− 2 if n is odd.
A very similar argument applies to the case that n is even to show that m ≤ 3. Thus,

we can conclude that g1(n) ≥ n− 3 when n is even.
To establish the upper bounds, Q chooses components as follows:

If n is odd, then H = {C1, C2} with |C1| = n− 1, |C2| = 1;

7

If n is even, then H = {C1, C2, C3} with |C1| = n− 2, |C2| = |C3| = 1.
Since δ(C) = 1 if |C| = 1 and δ(C) is even if |C| is even, then in each case we can always
identify a good element once the Adversary answers all the queries. This proves Theorem 2.

¤

4 Oblivious strategies with many bad values

We next consider the case in which element s in S can be assigned some value φ(s) ∈
{1, 2, . . . , R} where R is unrestricted. In principle, this is a more challenging situation for
Q. At least the upper bounds we have on g(n) in this case are weaker than those for g1(n).

Theorem 3 For all n,

g(n) ≤ (1 + o(1))27n.

Proof: Let B denote the set {1, 2, . . . , R}. Thus, s is bad if and only if φ(s) ∈ B. We

will specify the queries of Q by a graph H on the vertex set S, where an edge {si, sj} in H
corresponds to the query Q(si, sj) := “Is φ(si) = φ(sj)?”. As usual, the edge is colored blue

if they are equal, and red if they are not equal. By a valid assignment φ on S we mean a

mapping φ : S → {0, 1, . . . , R} such that:
(i) φ(si) = φ(sj)⇒ {si, sj} is blue,
(ii) φ(si) 6= φ(sj)⇒ {si, sj} is red,
(iii) |φ−1(0)| > n/2.

We are going to use certain special graphs Xp,q , called Ramanujan graphs, which are

defined for any primes p and q congruent to 1 modulo 4 (see [7]).

Xp,q has the following properties:

(i) Xp,q has n = 1
2
q(q2 − 1) vertices;

(ii) Xp,q is regular of degree p+ 1;

(iii) The adjacency matrix ofXp,q has the large eigenvalue λ0 = p+1 and all other eigenvalues

λi satisfying |λi| ≤ 2
√
p.

8

We will use the following discrepancy inequality (see [1, 2]) for a d-regular graph H =

H(n) with eigenvalues satisfying

max
i6=0

|λi| ≤ δ.

For any disjoint subsets X,Y ⊆ V (H), the vertex set of H, we have

| e(X,Y)− d

n
|X| |Y | |≤ δ

n

√

|X|(n− |X|)|Y |(n− |Y |) (3)

where e(X,Y) denotes the number of edges between X and Y .

Applying (3) to Xp,q, we obtain for all X,Y ⊆ V (Xp,q),

| e(X,Y)− p+ 1

n
|X| |Y | |≤ 2

√
p

n

√

|X|(n− |X|)|Y |(n− |Y |) (4)

where n = 1
2
q(q2 − 1) = |V (Xp,q)|.

We will now set S = V (Xp,q) = {s1, . . . , sn}. Let φ be a valid assignment of S to
{0, 1, . . . , R} and consider the subgraph G of Xp,q induced by φ−1(0) (the good vertices of

Xp,q under the mapping φ).

Claim: Suppose p ≥ 41. Then G has a connected component C with size at least c′n, where

c′ >
1

2
− 8p

(p− 1)2

Proof: We will use (4) with X = C, the largest connected component of G, and Y =

φ−1(0) \X. Write |φ−1(0)| = αn and |C| = βn. Since e(X,Y) = 0 for this choice, then by

(4) we have

(p+ 1)2|X| |Y | ≤ 4p(n− |X|)(n− |Y |),

(p+ 1)2β(α− β) ≤ 4p(1− β)(1− α + β),

β(α− β) ≤ 4(1− α)p

(p− 1)2 ,

There are two possibilities:

β ≥ 1
2

(

α +

√

α2 − 16(1− α)p

(p− 1)2

)

or β ≤ 1
2

(

α−
√

α2 − 16(1− α)p

(p− 1)2

)

9

Subcase (a).

β ≥ 1

2

(

α +

√

α2 − 16(1− α)p

(p− 1)2

)

>
1

4

(

1 +

√

1− 32p

(p− 1)2

)

since α ≥ 1/2

≥ 1

2
− 8p

(p− 1)2 since p ≥ 37

as desired.

Subcase (b).

β ≤ 1

2

(

α−
√

α2 − 16(1− α)p

(p− 1)2

)

≤ 8(1− α)p

α(p− 1)2

Thus, we can choose a subset F of some of the connected components whose union ∪F has
size xn = | ∪ F | satisfying

α

2
− 4(1− α)p

α(p− 1)2 ≤ x <
α

2
+
4(1− α)p

α(p− 1)2 (5)

Now we apply the discrepancy inequality (4) again by choosing X = ∪F and Y = φ−1(0)\X.
We have

(p+ 1)2x(α− x) ≤ 4p(1− x)(1− α + x)

or x(α− x) ≤ 4(1− α)p

(p− 1)2 .

However, it is easily checked that because of (5) this is not possible for α ≥ 1/2 and p ≥ 41.
Hence, subcase (b) cannot occur. This proves the claim.

We now prove Theorem 3. Let n = 1
2
q(q2 − 1). Consider an algorithm Q specified by a

graph H = Xp,q where p ≥ 53. We show that a good element can always be identified after
all the queries are answered.

10

Suppose we have an arbitrary blue/red coloring of the edges of Xp,q, and φ : S →
{0, 1, . . . , R} is a valid assignment on S = V (Xp,q). Consider the connected components

formed by the blue edges of Xp,q. By the Claim there is at least one blue component of size

at least (1
2
− 8p

(p−1)2
)n > 1

3
n (since p ≥ 53.). Call any such blue component large.

If there is only one large component then we are done, i.e., every point in it must be

good. Since there cannot be three large blue components, the only remaining case is that

we have exactly two large blue components, say S1 and S2. Again, if either S1 ⊆ φ−1(0) or

S2 ⊆ φ−1(0) is forced, then we are done. So we can assume there is a valid assignment φ1

with S1 ⊆ φ−1
1 (0), S2 ⊆ φ−1

1 (B), and a valid assignment φ2 with S2 ⊆ φ−1
2 (0), S1 ⊆ φ−1

2 (B)

(where we recall that B = {1, 2, . . . , R}).
Let us write S ′i = φ−1

i (0) \ Si, i = 1, 2. Since φ
−1
1 (0) and φ

−1
2 (0) each has more than n/2

elements, we clearly must have A := S ′1∩S ′2 6= ∅. Also note that |A| ≤ n−|S1|−|S2| < 16p

(p−1)2
n.

Define B1 = S ′1 \ A,B2 = S ′2 \ A. Observe that there can be no edge between A and

S1 ∪ S2 ∪ B1 ∪ B2. Now we are going to use (4) again, this time choosing X = A, Y =

S1 ∪ S2 ∪B1 ∪B2.

Note that

n > |Y | = |φ−1
1 (0)| − |A|+ |φ−1

2 (0)| − |A| > n− 2|A|.

Since e(X,Y) = 0, we have by (4),

(p+ 1)2|X| |Y | ≤ 4p(n− |X|)(n− |Y |),

(p+ 1)2|A|(n− 2|A|) ≤ 4p(n− |A|)2|A|.

11

However, this implies

(p+ 1)2(n− 2|A|) ≤ 8p(n− |A|),

i.e., n((p+ 1)2 − 8p) ≤ 2|A|((p+ 1)2 − 4p)

≤ 2|A|(p− 1)2

< 32pn

(p+ 1)2 − 8p < 32p

which is impossible for p ≥ 41.
Setting p = 53 (so that Xp,q = X53,q is regular of degree p + 1 = 54), we see that X53,q

has (1 + o(1))27n edges. This shows that Theorem 3 holds when n = 1
2
q(q2 − 1) for a prime

q ≡ 1(mod 4).
If 1

2
qi(q

2
i − 1) < n < 1

2
qi+1(q

2
i+1 − 1) = n′ where qi and qi+1 are consecutive primes

congruent to 1 modulo 4, we can simply augment our initial set S to a slightly larger set S ′

of size n′ by adding n′ − n = δ(n) additional good elements. Standard results from number

theory show that δ(n) = o(n), (see [8]). Since the Ramanujan graph query strategy of Q

actually identifies Ω(n′) good elements of S ′ (for fixed p) then it certainly identifies a good

element of our original set S. This proves Theorem 3 for all n. ¤

We point out that we always have g1(n) ≤ g(n) for all n. We also remark that the

constant 27 can be further reduced by using random sparse graphs and applying concen-

tration estimates from probabilistic graph theory. However, such methods can only deduce

the existence of a graph with the desired properties whereas we use an explicit construction

(Ramanujan graphs) here.

5 Concluding remarks

We mention several unanswered questions here.

12

(i) Is it true that for all odd n ≥ 1,

f1(n) = f(n) = n− w2(n)?

Computation shows this is true for n ≤ 45.

(ii) Is it true that g1(n) = g(n) for all n?

We currently have no example showing that allowing an arbitrary number of bad values

gives the Adversary any advantage over just allowing one bad value.

(iii) What is the true order of growth of g(n)?

For example, is it true that g(n) = (1 + o(1))n?

(iv) Suppose we consider the more general situation in which we only require, for a valid

assignment φ, that |φ−1(0)| ≥ αn for some fixed α > 0 and |φ−1(i)| < |φ−1(0)| for all
i > 0. What are the corresponding bounds on f and g in this case ? Of course the

same questions can be asked in the even more general situation where we just assume

|φ−1(0)| ≥ h(n) for some function of n. For example, in the extreme case that we only

assume |φ−1(0)| = 2, so that |φ−1(i)| = 1, for i > 0, it can require
(

n

2

)

− 1 queries in
the worst case to determine a good element.

(v) On the opposite side of the coin, so to speak, to our problems are those coming from

group testing. This involves the problem of identifying a small subset of defective

items in a much larger set by means of “group tests”, in which various subsets X

are tested with the query “Is there a defective item in X?” Again, the challenge is to

minimize the number of such queries needed to identify all defective items (see [3]) for

a comprehensive survey).

(vi) The adaptive version of our problem with only one bad value (i.e., R = 1) has the

following equivalent number-theoretic formulation, still as a game played between two

13

players Q and A. At any point during the game a multiset S of non-negative integers

is maintained (where the starting multiset consists on n 1’s). Q’s move is to select two

elements from S, say a and b. A’s move is then to remove a and b from S, and replace

them by the single element s which is either a+ b of |a− b| (A gets to choose which),

forming a new multiset with one fewer element. The game is over as soon as

max
s∈S

s ≥ 1
2

∑

s′∈S

s′.

A’s goal is to extend the game as long as possible. The elements of S correspond to

the discrepancies of the components in the earlier formulation. The maximum length

of the game is just f1(n).

More generally, we could start with some arbitrary multiset S of non-negative integers

and ask for the maximum length f1(S) of the corresponding game in this case. As

pointed out by Don Knuth [5], in this form the game has a similar flavor to the problem

of finding the second largest element in a partially sorted subset of a linearly ordered

set studied by Floyd and Knuth [4, 6]. In that case, the queries we are allowed have the

form “Is x < y?”, and the s ∈ S represent the sizes of the partially ordered components.

Conceivably, a careful examination of the data for this more general problem would

suggest an exact expression for f1(S) which could be proved inductively. Certainly,

this represents a promising direction to explore.

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), 86-96.

[2] F. R. K. Chung, Spectral Graph Theory, CBMS Lecture Notes, AMS Publications.

[3] D.-Z. Du and F. K. Hwang, Combinatorial Group Testing and its Applications, World

Scientific Publishing Co., Inc., River Edge, NJ, 1993.

14

[4] R. W. Floyd and D. E. Knuth, The Bose-Nelson sorting problem, A survey of combina-

torial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, colo., 1971),

pp. 163-172, North-Holland, Amsterdam, 1973.

[5] D. E. Knuth, personal communication.

[6] D. E. Knuth, The Art of Computer Programming, Volume 3. Sorting and Searching,

Addison-Wesley Publishing Co., Reading, Mass., 1973.

[7] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988),

261-277.

[8] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957, pp. 327.

[9] A. Taylor and W. Zwicker, personal communication.

15

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

