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Abstract

We present an explicit construction of codes that can be list decoded from a fraction (1− ε)

of errors in sub-exponential time and which have rate ε/ logO(1)(1/ε). This comes close to the
optimal rate of Ω(ε), and is the first sub-exponential complexity construction to beat the rate
of O(ε2) achieved by Reed-Solomon or algebraic-geometric codes. Beating this quadratic rate
with polynomial decoding complexity remains one of the central open questions in the area of
list decoding, and this work lends some hope to the eventual resolution of this question.

Our construction is based on recent extractor constructions with very good seed length [16].
While the “standard” way of viewing extractors as codes (as in [15]) cannot beat the O(ε2) rate
barrier due to the 2 log(1/ε) lower bound on seed length for extractors, we use such extractor
codes as a component in certain expander-based construction schemes to get our result. The
O(ε2) rate barrier also arises if one argues about list decoding using the minimum distance (via
the so-called Johnson bound) — so this also gives the first explicit construction that “beats the
Johnson bound” for list decoding from errors.

The conceptual message from our work is that good strong extractors for low min-entropies
will lead to near-optimal list decodable codes. Given all the progress that has been made on
extractors, we view this as an optimistic avenue to look for better list decodable codes, both by
looking for better extractors, as well as by importing non-trivial techniques from the extractor
world in reasoning about and constructing codes.

1 Introduction

An area of algorithmic coding theory that has received much attention lately is that of List Decoding.
List decoding deals with the situation when the amount of noise is too large to be able to identify the
original transmitted codeword unambiguously. For example, when more than 1/2 of the symbols
could be in error, unique decoding of the correct codeword is impossible. Under list decoding the
goal is to output a small number of candidate codewords one of which is the correct one. We refer
the interested reader to [12, 3] for more detailed background and history on list decoding.

Informally, a code has good list decoding properties if every Hamming ball of “a large” radius
contains very “few” (say at most L) codewords of the code. This requirement only addresses
the combinatorial aspect of list decoding, and in addition one would also like the code to be
explicitly specified (say, constructible in polynomial time), efficiently encodable, and also have a
decoding algorithm to efficiently find and output the list of at most L codewords that are close to
a noisy received word. Let us quickly recap that an error-correcting code over alphabet Σ is a map
C : Σn1 → ΣN where n1 is said to be the dimension of C, N is the block length of C, and the ratio
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n1/N , which measures the amount of redundancy introduced by the code, is called the rate of C.
Such a code C is said to be (p, L)-list decodable if for every r ∈ ΣN , |{x | ∆(r, C(x)) ≤ pN}| ≤ L,
where ∆(y, z) denotes the Hamming distance between strings y and z; in other words there are at
most L codewords which differ from r in at most a fraction p of symbols. The fundamental question
in the subject of list decoding is then to construct (p, L)-list decodable codes for large p, small L
and which have good (large) rate. These being conflicting combinatorial goals, there are natural
trade-offs to how large the rate can be, and ideally we would like explicit codes with near-optimal
rate, together with efficient encoding and list decoding algorithms.

For sake of simplicity, we focus on the “high noise” situation in this paper where the error
fraction p = (1 − ε) for ε > 0 treated as a very small constant. This turns out to be the cleanest
setting for an initial study of the asymptotics and also represents the regime where list decoding
is most beneficial. It is known that (1 − ε, O(1/ε))-list decodable codes of rate Ω(ε) exist (over
an alphabet size of, say O(1/ε2)), and that Ω(ε) is the best rate possible for such codes. The
best explicit construction1 achieves a rate of ε2 — this is achieved by Reed-Solomon and algebraic-
geometric codes [7] and certain expander-based constructions (that still use Reed-Solomon codes as
a building block) [5]. Despite much progress in the general area of list decoding, the O(ε2) bound
has been a “barrier” for the rate for codes list-decodable up to a fraction (1 − ε) of errors. One
explanation for this perceived barrier is that Ω(ε2) is the best rate one can achieve if one constructs
codes with good relative distance and then uses a combinatorial result called the “Johnson bound”
to argue about the (1− ε, L)-list decodability properties of the code. (The reason is that one needs
a relative distance of (1−O(ε2)) for the Johnson bound argument to work, and this in turn restricts
the rate to O(ε2) (by the Singleton bound). Therefore, any improvement of the rate beyond Ω(ε2)
must bypass the Johnson bound paradigm, which is the primarily employed approach including in
the Reed-Solomon decoding result [7].)

The question of improving the rate beyond the O(ε2) barrier is one of the central open ques-
tions in the subject of list decoding. In [5], the authors present a randomized Monte Carlo code

construction with rate Ω(ε) together with sub-exponential (of the form 2O(n1/p)) time algorithms
to list decode them up to a fraction (1− ε) of errors. However, the construction is not explicit, and
there is also no efficient way to certify that the code, once constructed randomly, has the necessary
list decoding properties.

In this paper, we present the first explicit construction of codes of rate better than Ω(ε2) with
non-trivial list decoding properties up to radius (1−ε). In fact, the rate we achieve is ε/ logO(1)(1/ε)
and thus close to the optimal rate of Ω(ε). The shortcoming of our result is that the list decoding

algorithm is randomized and runs in sub-exponential time (of form 2O(N1/p) where N is the block
length) and could return sub-exponential sized lists as output. But we point out that prior to this
work, even the combinatorial problem of explicit constructions with rate better than O(ε2) and sub-
exponential list size for (1− ε) errors (with no requirement on decoding time) was open. Needless
to say, a polynomial list decoding complexity is more desirable, but nevertheless our construction
is the first to beat the naive exponential bounds and demonstrates that something non-trivial is
possible in this setting, thereby lending hope to eventually beating the Ω(ε2) rate barrier, and
perhaps even achieving the optimal Ω(ε) rate, with polynomial decoding complexity.

Extractors and codes

Our construction is based on a connection between list-decodable codes and extractors. Extractors
are well-studied objects in the pseudorandomness literature. An extractor takes as input a sample

1For purposes of this paper, by an “explicit” construction we mean a deterministic polynomial time construction.
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drawn from a weak-random source, and using a small seed of truly random bits as catalyst, “ex-
tracts” almost pure randomness from it. Since [15] first pointed this out, it is now well-known that
(strong) extractors give list decodable codes — in fact, (strong) 1-bit extractors are equivalent to
binary list-decodable codes with related parameters. To obtain a code from an extractor, one views
the input from the weak-random source as the message, and its encoding consists of the extractor’s
output as the seed varies over all possible values. The block length (and hence rate) of the code
depends on the length of the seed. The error of an extractor is the deviation of its output from
the uniform distribution, and roughly speaking an extractor that outputs several bits with error ε
yields a code list-decodable up to radius (1 − ε). Now, a lower bound of 2 log(1/ε) − O(1) on the
seed length as a function of the extractor’s error ε [9] translates into an O(ε2) upper bound on the
rate of the extractor code.2 This suggests that the above connection between extractors and codes
cannot be used to meet out goal of constructing codes with near-optimal rate, or even with rate
better than Ω(ε2).

Extractor codes, however, are more than list-decodable. They have the following useful property
as observed by [15]: given a set Si of possibilities for the i’th symbol for every i, the number of
codewords whose i’th symbol lies in Si for εN more coordinates than the expected number of such
coordinates for a random string, is small. When the Si’s have exactly one element, this corresponds
to list decoding, but otherwise it is more general and was called “list-recovering” in [6]. Our basic
idea is to use extractors with large error, say γ = 1/4, so that the O(γ2) upper bound on the rate
of the associated codes is a constant independent of ε. But now one cannot argue that these codes
are (1− ε, L)-list decodable. However, these codes have a very useful list-recovering property that
can be used in certain expander-based constructions as in [5] to give codes with rate almost the
optimal Ω(ε) bound.

Despite this connection between extractors and codes, there are certain concerns (that do not
normally arise when one studies extractors for their own sake) that have to be addressed for this way
of constructing codes to be useful for us. For example, the list size is related exponentially to the
min-entropy of the weak-random source, and thus one is interested in the low, ideally logarithmic
or lower, min-entropy regime which is not that interesting for extractors in their pseudorandomness
context. Furthermore, in order to get rate that is bounded away from zero, it is crucial that the
extractors used have seed length log n + O(1), i.e. with the constant in front of log n being 1
(as opposed to the O(log n) seed length which is good enough for other applications of extractors).
Extractors with such seed length were not known till recently (except for some constructions in [14],
but these were just obtained by viewing certain list-decodable codes as extractors and are therefore
not useful to us). Fortunately, in recent work, Ta-Shma, Zuckerman, and Safra [16] construct
such extractors, which we will sometime refer to as TZS extractors. The min-entropy needed for
their result is nΩ(1) and this dictates the sub-exponential list decoding complexity of the codes we
construct from them. We recall that obtaining O(log n) seed length for min-entropies smaller than
nΩ(1) is a qualitatively harder problem (eg. Trevisan’s celebrated extractors [17] required nΩ(1) min-
entropy), though it was eventually obtained in subsequent works. In light of this, improving our
codes using this connection to extractors will probably require additional key insights — we should
point out that even the subsequent improvements to TZS extractors by Shaltiel and Umans [10]
(which work for up to polylogarithmically small min-entropy) fall short for our purposes, due to
the seed length becoming at least α log n for α > 1.

Finally, we note that explicit specification of the extractor implies a polynomial time encoding
procedure for the codes. As for decoding, this does not follow from any aspect of the extractor
world, since the extraction property only implies a combinatorial list decoding property, namely

2Throughout this paper, all logarithms will be to the base 2.
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small list size, and in general it does not imply anything other than a brute-force decoding procedure
to find the list of codewords. Nevertheless, for the extractors we use, we are able to turn the proof
of the extraction property into an algorithm, thereby giving a sub-exponential time algorithm to
perform the list decoding. Ta-Shma and Zuckerman [15] did a conceptually similar thing with
Trevisan’s extractor construction [17] and gave a decoding algorithm for it, but since the TZS
extractors are very different from Trevisan’s, the parallel between our work and that of [15] ends
with this high-level structural similarity.

Dispersers and Codes. While not explicitly pointed out in the literature, it is clear that the dis-
persers, the one-sided analogue of extractors, correspond, in the coding world, to decodability from
erasures. We look at the quantitative aspects of this connection and point out that constructing
optimal dispersers will solve another central open question concerning list decoding: constructing
binary codes of rate Ω(ε) that can be decoded from a fraction (1− ε) of erasures — currently the
best known explicit construction has rate O(ε2).

Organization. In the next section, we present our main conceptual result connecting extractors
and codes. In Section 3 we use extractors from [16] based on bivariate polynomials to achieve a

2O(
√

N) list decoding complexity. We then use the multivariate polynomial based extractors from
[16] to improve the complexity to 2O(Nδ) for arbitrary δ > 0 in Section 4. Dispersers and erasure
codes are discussed in Section 5.

2 Codes from Extractors: The Main Connection

In this section, we will present our method of constructing good list-decodable codes from extractors.
It is already known that extractors can as such be viewed as codes [15]. Our construction is a little
less direct in that we uses extractors as a component in a expander-based code construction scheme
(such expander-based schemes have already been used a few times, eg. in [1, 5]). We now turn to
the basic definitions concerning extractors and expanders.

Definition 1 (Extractors) A function E : {0, 1}n1×{0, 1}d → {0, 1}m is a strong (k, γ)-extractor3

if for every X ⊆ {0, 1}n1 of size at least 2k, the distribution of y ◦ E(x, y) where x, y are picked
uniformly from X and {0, 1}d respectively, is γ-close to the uniform distribution on {0, 1}d+m.

Viewing an Extractor as a Code. We now mention a “direct” way of getting codes from
extractors first made explicit by Ta-Shma and Zuckerman [15]. Given an extractor E : {0, 1}n1 ×
{0, 1}d → {0, 1}m, define a code CE : {0, 1}n1 → [Q]2

d
where Q = 2m as follows: CE(x) =

〈E(x, y)〉y∈{0,1}d . Thus CE is a code over alphabet [Q] of dimension n1/m (as n1 bits can be viewed

as n1/m symbols over [Q]) and block length 2d. This view of extractors as codes motivates an
algorithmic problem concerning “decoding” extractors.

Definition 2 (γ-frequent elements) For a statistical test T ⊆ {0, 1}m+d, we define an x ∈
{0, 1}n1 to be γ-frequent for T if Proby[y ◦E(x, y) ∈ T ] ≥ |T |

2m+d +γ for y picked u.a.r from {0, 1}d.

Definition 3 (Decoding of Extractors) A γ-decoding algorithm for a (strong) extractor E :
{0, 1}n1×{0, 1}d → {0, 1}m takes as input a “test” subset T ⊆ {0, 1}m+d and outputs all x ∈ {0, 1}n1

3We will use n1 to denote the length of the string from the weak-random source to avoid confusion with the block
length of codes for which n is usually reserved. Also all extractors we will be interested in will be strong, so we will
often omit the qualifier strong in the sequel.
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which are γ-frequent for T . An extractor is said to be γ-decodable in time T (n1) if there exists a
γ-decoding algorithm for it that runs in time T (n1).

Definition 4 (Expander) For positive integers n, d and reals ζ, ε > 0, an (n, d, ζ, ε)-expander is
an n × n d-regular bipartite graph (X, Y, E) with the property that for every subset S ⊆ Y with
|S| ≥ ε|Y |, the fraction of nodes in X that have no neighbors in S is at most ζ.

Combining a code and an expander. We now review the basic operation by which we combine
a code with an expander to “improve” its error-resilience (at the expense of increase in alphabet
size). This operation is quite natural and simple and dates back to the work of Alon et al more
than a decade ago [1].

Definition 5 Given a code C of block length n over alphabet Σ, and a ∆-regular n × n bipartite
graph G, define the code G(C) over alphabet Σ∆ which has the same number of codewords as C as
follows. For each c = 〈c1, c2, . . . , cn〉 ∈ C, define a codeword G(c) ∈ G(C) by pushing the symbols
of c along the edges of G and at each node on the right hand side of the bipartition, collecting ∆
symbols from its neighbors to form a symbol from Σ∆. Formally, G(c)i = 〈cΓ1(i), . . . , cΓ∆(i)〉 where
Γk(i) is the index of the k’th neighbor on the left of the i’th node on the right hand side of G.

We remark that the above can be viewed as encoding each symbol of c by the repetition code of block
length ∆ and then redistributing these symbols via an expander. Clearly, one can (and should) use
better codes than the repetition code, and such generalizations of above have been crucial in [2, 6].
For the noise regime we are interested in, keeping things simple as in above construction does not
cost us much, and for ease of presentation, we will just use the above expander-based construction
in this paper.

To avoid confusion with our use of ε for the agreement from which we list decode, we will use γ
to denote the error of extractor. We will think of this error γ as an absolute constant independent
of ε and this will be key to avoid the 2 log(1/γ) lower bound on seed length from ruining our
final rate. The reader might want to think of γ as being fixed to, say, 1/4 (we keep an additional
parameter and don’t fix it as 1/4 throughout only because we will have to work with γ very close
to 1 in Section 4). The following lemma is just an instance of converting “list-recoverable” codes
into list-decodable codes implicit in [5]. For self-containment we present a proof without explicitly
referring to the list-recovering terminology. For ease of notation, for an integer p, we will use (p)
to stand for {0, 1}p throughout the paper.

Lemma 1 Let E : (n1)× (d)→ (m) be a strong (k, γ)-extractor. Let G be a (2d, ∆, ζ, ε)-expander.
Then, provided 2m > ∆/(1− ζ − γ), G(CE) is a (1− ε, 2k)-list decodable code over alphabet [2m]∆

with block length 2d and “dimension” n1

m∆ (and thus rate n1

2dm∆
). Furthermore, if the extractor is

γ-decodable in time T (n1), then G(CE) can be (1− ε, 2k)-list decoded in time O(T (n1) + 2d∆).

Proof: Denote by N = 2d the block length of the code G(CE), and let Σ = [2m]∆ be its alphabet.
Let r = 〈r1, r2, . . . , rN 〉 ∈ ΣN . We wish to prove that there are at most 2k codewords in G(CE)
that agree with r on εN or more locations, and that the list of all such codewords can be found in
time O(T (n1) + N∆).

Consider the following decoding algorithm. For each y ∈ {1, 2, . . . , 2d}, let NG(y) ⊆ [2d] be the
set of neighbors on the right of the y’th node on the left in G. Now each symbol on the right votes
for what it thinks the corresponding symbol at each of its neighbors on the left is. Formally, we
compute the sets Ty = {y ◦ (ri)k | i ∈ NG(y) and Γk(i) = y} ⊆ (d + m) (where (ri)k is the k’th
component of the ∆-tuple ri and can thus be viewed as an element of (m)) for each 1 ≤ y ≤ 2d
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where y is viewed as an element of {0, 1}d. We then set T =
⋃

y∈(d) Ty, and run the γ-decoding
algorithm for the extractor E on input the statistical test T . Since E is a strong (k, γ)-extractor,
we will output at most 2k codewords. The claimed runtime also follows immediately.

It remains to prove that the algorithm outputs each message x whose encoding by G(CE) agrees
with r on locations in some S ⊆ [N ] with S ≥ εN . This amounts to proving that such an x is
γ-frequent for the test T computed above. Here is the key point in proving this: for such x, by the
property of the expander G, we are guaranteed that y ◦E(x, y) ∈ Ty for at least (1− ζ)2d values of
y. Hence we have

Proby[y ◦ E(x, y) ∈ T ] ≥ (1− ζ) . (1)

Now |T | ≤ 2d∆ and since 2m ≥ ∆/(1 − ζ − γ) by hypothesis, we have |T |
2d+m ≤ (1 − ζ − γ).

Combining this with Equation (1), we conclude that x is γ-frequent for T , as desired. 2

To use the above lemma, we use the fact that the necessary expanders of degree ∆ = O( 1
ζε) can

be explicitly constructed. We state two corollaries which record consequences of the above lemma
once we use such an expander. The first one says that very good extractors will do wonders for
codes, and it captures the main conceptual message of this work. The second one is more “realistic”
and notes down the parameters obtainable from possibly sub-optimal constructions.

Corollary 2 (Better Extractors for Better Codes) If near-optimal strong extractors with seed
length log n1 + O(1) and entropy loss O(1) can be explicitly constructed for all min-entropies
and error, say, 1/4, then we can explicitly construct (1 − ε, O(1/ε))-list decodable codes of rate
Ω(ε/ log(1/ε)). Furthermore, if the extractors can be 1/4-decoded in time polynomial in n1, then
the resulting codes can be list decoded up to a fraction (1− ε) of errors in polynomial time.

Proof: We use Lemma 1 with a (k, 1/4)-extractor E : (n1) × (d) → (m) where 2m ≥ a/ε,
k = log(1/ε) + O(1), and d = log n1 + O(1), and a (2d, b/ε, 1/2, ε)-expander G (an explicit such
expander can be constructed using Ramanujan graphs, cf. [1]) — here a, b are absolute constants.
If a > 4b, then Lemma 1 guarantees that G(CE) is (1 − ε, 2k)-list decodable, and 2k = O(1/ε) so
the claim about list decodability follows. The rate of the code is n1

2d(b/ε)m
which is Ω(ε/m) and since

m = O(log(1/ε)), we get Ω(ε/ log(1/ε)) rate. 2

Corollary 3 For arbitrary ε > 0, if for a function k : N → N a family of strong (k(n1), 1/4)-
extractors E : (n1)×(d)→ (m) where 2m = Θ(1/ε) and d = log n1+cε can be explicitly constructed,
then one can explicitly construct a family of codes of rate Ω( ε

2cε log(1/ε)) such that a code of block

length N in the family is (1 − ε, 2k(N/2cε ))-list decodable. Furthermore, if the extractor is 1/4-
decodable in time T (n1), then the resulting code can be list decoded up to a fraction (1−ε) of errors
in time T (N/2cε) + O(N/ε).

3 Construction using bivariate polynomials

As mentioned in the introduction, we need extractors whose seed length d is log n1 +O(1), with the
constant in front of log n1 being 1, so that the rate of the codes we construct using Lemma 1 will
be bounded away from zero. The only currently known extractors with this property are due to
Ta-Shma, Zuckerman, and Safra [16] who use Reed-Muller codes (which are based on multivariate
polynomials) to construct such extractors. Naturally, we turn to these extractors in our quest
for codes via Lemma 1. Specifically, in this section, we will use the bivariate polynomial based
extractors from [16] to prove the following.
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Theorem 4 For every constant ε > 0, there is a polynomial time constructible family of codes
of rate Ω(ε/ log11(1/ε)) such that every code in the family is (1 − ε, 2O(

√
N log N))-list decodable in

randomized 2Õ(
√

N log N) time where N is the block length of the code.4

Improving the extractor used for the above result to work for lower min-entropies will improve
the runtime and list size. In the next section, we will improve the decoding time and list size to
2Nδ

for any desired δ > 0 at the expense of some worsening in the rate, by using the multivariate
polynomial based extractors for lower min-entropies from the same paper [16].

Perspective: Since the TZS extractor is itself based on codes, our construction can be cast purely
as an operation on Reed-Muller codes, with no reference to extractors. However, not only was
the extractors language useful to define such a nice operation, but techniques from the domain of
extractors like next-bit predictor and reconstruction paradigm seem crucial for the development of
the list decoding algorithm.

3.1 The TZS extractor

We recall the extractor construction from [16]. Recall that the goal is an (k, γ) extractor E :
(n1) × (d) → (m) with d = log n1 + cm,γ and k as small as possible. Define ρ = γ/2m — we
will set γ = 1/4 and m = log(1/ε) + O(1) where our target is to list decode up to radius (1 − ε),
but retain these parameters to maintain the same notation as [16]. Pick parameters h, q that

satisfy
(

h+1
2

)

log q ≥ n1, specifically h = d3
√

n1

log n1
e and q a power of two of size Θ(h/ρ4). Let C

be a (1/2 − ρ, O(1/ρ2))-list decodable binary linear code of dimension ` = log q. Such a code of
block length ¯̀ = O(ρ−2 log q) (and thus rate Ω(ρ2)) exists and can be found in qO(1/ρ2) time [4].
(Alternatively, such a code of rate Ω(ρ4) can be found in (log q)O(ρ−2) time, but we will use the

stronger bound since it will still give an affordable construction time of n
O(log(1/ε))
1 for our choice

of parameters.)
The strong extractor, say E∗ : (n1) × (d) → (m), is defined as follows. We associate with

x ∈ (n1) a bivariate polynomial px : F
2
q → Fq of total degree at most (h − 1) (the number of such

polynomials is at least q(
h+1

2 ) ≥ 2n1 so each x can be associated with a different polynomial). We
set d = 2 log q + log ¯̀ and view the seed y = (a, j) as a point a = (a1, a2) ∈ F

2
q and an index

j ∈ [¯̀]. The extractor output is now defined to consist of the j’th bit of the encoding by C of the
evaluations of px at m successive points along a “horizontal” line beginning with a. Formally,

E∗(x, ((a1, a2), j)) = 〈C(px(a1, a2))j ◦ C(px(a1 + 1, a2))j ◦ · · · ◦ C(px(a1 + m− 1, a2))j〉 . (2)

Note that d = log(q2 ¯̀) = log(q2 log q)+2 log(1/ρ)+O(1). Now, by our choice of q = Θ(ρ−4
√

n1/ log n1),
we have d ≤ log n1 +10 log(1/ρ)+O(1), and thus the above has a very good seed length. The main
result of [16] is the following which states that is also a good extractor for min-entropy at least
about

√
n1.

Theorem 5 The function E∗ : (n1) × (d) → (m) as defined above gives a strong (k, γ)-extractor
with d = log n1 + 10 log(m/γ) + O(1) provided k ≥ Ω(m

√

n1 log(n1/γ)).

For the choice γ = 1/4 and m = log(1/ε) + O(1) we can apply Corollary 3, this immediately
gives codes of rate Ω(ε/ log11(1/ε)) which have at most sub-exponentially many codewords in any
Hamming ball of (relative) radius (1− ε). Thus the combinatorial aspect of list decoding is already
taken care of!

4By a randomized list decoding algorithm we mean a procedure that outputs the correct list of codewords with
high probability.
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3.2 Decoding the TZS Extractor

It remains to give a decoding algorithm to find and output these sub-exponentially many codewords
in sub-exponential time, in other words a γ-decoding algorithm for the extractor that runs in 2Õ(

√
n1)

time and finds the set of all γ-frequent elements x for a given T — Theorem 5 guarantees that there
will be at most 2k such x’s. The proof that there are not too many such x’s follows a reconstruction
paradigm by demonstrating a reconstruction procedure which outputs each γ-frequent x with good
probability using a short advice string as input (the advice kick starts and guides the procedure by
helping it make the right choices). If the needed advice string is short, then there cannot be too
many γ-frequent x’s. This proof method is by nature algorithmic so we really only need to revisit
the analysis to ensure that all the steps can be performed efficiently. The dominant component in
the runtime ends up being trying out the various advice strings, and this also governs the list size
(or the min-entropy for which the construction works, in extractor terminology).

3.2.1 Next-element predictors

The first step is to use the distinguishing subset T to obtain a next-element predictor. This is quite
standard, cf. [16, 10]. By Yao’s next-bit predictor lemma, there must exist an i, 1 ≤ i ≤ m, and a
randomized next-bit predictor A : {0, 1}i−1 → {0, 1}, such that Prob[A(E∗(x, y)1 · · ·E∗(x, y)i−1) =
E∗(x, y)i] ≥ 1

2 + γ
m where the probability is taken over y picked u.a.r from (d) as well as A’s coin

tosses. In fact, A works as follows. On input y ∈ (d) and bits b1, b2, . . . , bi−1 which are supposedly
the first (i− 1) bits of E∗(x, y), it predicts the i’th bit as follows.

1. Pick (m− i + 1) bits bi, bi+1, . . . , bm ∈ {0, 1} at random.

2. If y ◦ 〈b1, b2, . . . , bm〉 ∈ T , output bi, else output b̄i.

Clearly there must exist a fixing of the coin tosses of A to give a function g : {0, 1}i−1 → {0, 1},
such that Proby[g(E∗(x, y)1 · · ·E∗(x, y)i−1) = E∗(x, y)i] ≥ 1

2 + γ
m . Alternatively, by going over all

possible 2m−i+1 random choices, as well as various choices of i, we conclude the following (we can
assume i = m, since for smaller i the next-bit predictor can simply ignore the first (m − i) bits
owing to the symmetry of the extractor’s definition):

Lemma 6 For every T ⊆ (d + m), we can find a set G of at most 2m+1 Boolean functions on
(m− 1) bits such that for every x that is γ-frequent for T , there is a function g ∈ G such that

Prob
[

g
(

C(px(a))j , C(px(a+(1, 0)))j , . . . , C(px(a+(m−1, 0)))j

)

= C(px(a+(m, 0)))j

]

≥ 1

2
+

γ

m
,

where the probability is taken over random choices of a ∈ F
2
q and j ∈ [l̄].

Recalling that ρ = γ
2m , one can use that C is (1/2 − ρ, O(ρ−2))-list decodable together with the

next-bit predictor to get a next-element predictor for the values of px as stated below. This is
implicit in [16] and is made explicit in Lemma 5 of [10].

Lemma 7 For every T ⊆ (d + m), we can find a set F of at most 2m+1 functions f : F
m−1
q →

F
O(ρ−2)
q such that for every x that is γ-frequent for T , there is a function f ∈ F such that

Proba∈F2
q

[

f
(

px(a− (m− 1, 0))), px(a− (m− 2, 0)), . . . , px(a− (1, 0))
)

3 px(a)
]

≥ ρ . (3)
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Note that the number of such functions over Fq is in general at least qqm−1

, which is way too many.
The above lemma shows that a much smaller number O(2m) of functions always contains a good
next-element predictors. Though its content is implicit in the previous works [16, 10], we had
to make explicit the number of candidate next-element predictors that have to be tried, since we
care about the complexity of the reconstruction procedure (while in the context of [16, 10] it was
sufficient to show that a good reconstruction procedure exists).

3.2.2 Reconstruction using the next-element predictor

We can now assume we have at our disposal a good next-element predictor f : F
m−1
q → F

O(ρ−2)
q

that satisfies (3) for the γ-frequent element x in question. We should now make sure that we can
use this to reconstruct x. The reconstruction procedure Rf with oracle access to f and input an
advice string z works as follows:

1. Pick a random line L ⊆ F
2
q (i.e. pick α ∈ F

2
q and β ∈ F

2
q \ {(0, 0)} at random and set

L = {α + tβ | t ∈ Fq})5

2. Use z to take as advice the value of px on the (m − 1) predecessor lines L − (1, 0), L −
(2, 0), · · · , L − (m − 1, 0), each expressed as a degree (h − 1) univariate polynomial in t over
Fq given by its h coefficients in Fq. /* This takes (m− 1)h log q bits of advice */
Initialize L′ = L.

3. Repeat the following for h steps to learn the values of px on L and its (h − 1) “successors”
L + (i, 0) for 1 ≤ i ≤ h− 1.

(a) For each t ∈ Fq, use the next-element predictor with already known values for px(L′(t)−
(j, 0)) for 1 ≤ j < m to get a list St of O(ρ−2) elements one of which is hopefully
px(L(t)).

(b) Find a list of at most O(ρ−3) univariate polynomials Q over Fq of degree at most (h−1)
which satisfy Q(t) ∈ St for at least ρq/2 values of t.6

(c) Use at most 3 log(1/ρ) + O(1) bits of advice from z to pick the correct polynomial px|L′

from the above list.

(d) Move onto the next line by setting L′ ← L′ + (1, 0).

4. From the predicted values for px, interpolate to find px and thus x. If no such degree (h− 1)
bivariate polynomial exists, output a failure.

One of the key steps in the above is the list decoding step where all the polynomials Q for which
Q(t) ∈ St quite often are found. By a well-known combinatorial result (cf. [11]), for the concerned
choice of parameters (specifically q = Θ(h/ρ4)), the number of such polynomials is O(ρ−3) (see [10]
for an explicit calculation in this setting). Moreover, it is also known how to find the list of all such
univariate polynomials Q in time polynomial in q — this lets us also conclude that Rf can be has
an efficient implementation.

5For the various steps to predict the value of new points, L must not be parallel to the x axis, i.e. β should
not be of the form (i, 0). But this happens with probability at most 1/q which is o(1), so we implicitly assume this
pathological case does not occur.

6The proof that the reconstruction procedure works from [16] proceeds by showing that for a random choice of
L, owing to the pairwise independence of points on L′, the next-element predictor will work correctly for at least a
fraction ρ/2 of the points in L′ with high probability (around 1−O(1/q)). Hence this list decoding step will succeed
in finding px|L′ as one of its solutions.
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Lemma 8 (Implicit in [16]) Given an f which is a good next-element predictor for x and satis-
fies (3), there is an advice string z of at most (m − 1)h log q + 3h log(1/ρ) + O(h) bits for which
the above reconstruction procedure Rf on input z outputs x with probability at least 1/2 over the
coin tosses of R (i.e. the choice of the random line L). Furthermore, given oracle access to f , the
procedure R can be implemented to run in time polynomial in n1.

3.2.3 Obtaining a Decoding algorithm

We now indicate how the above reconstruction procedure can be turned into a list decoding algo-
rithm that outputs every γ-frequent x with high probability.

On input the distinguisher T ⊆ {0, 1}d+m:

Repeat the following steps for each of the at most 2m+1 next-element predictor functions f .

1. For each possible input advice string z which is (m− 1)h log q + 3h log(1/ρ) + O(h) bits long,
do the following:

(a) Run the reconstruction procedure Rf 2n1 times with independent coin tosses, and let
X be the set of x’s reconstructed in the various iterations.

(b) Check whether each x ∈ X is indeed γ-frequent for T , and if so output x.

Since an x0 that γ-frequent for T is output by Rf for some choice of f on some input advice z0

with probability 1/2, except with probability 1/22n1 , this x0 will be output in one of the 2n1 runs
of Rf on input z0. By a union bound, the probability that the list output by the above algorithm
is exactly the list of all γ-frequent elements for T is at least (1− 2−n1).

3.2.4 Complexity analysis of decoding procedure

Since each run of Rf can be completed in poly(n1) time, the dominant component in the runtime
ends up being the time to go over all possible advice strings. The number of different advice strings
is 2O(h(m log q+log(1/ρ))) (the number of next-element predictors to try is much smaller than this).

Let us recall our setting of parameters, namely h = Θ(
√

n1/ log n1), m = O(log(1/ε)), ρ =
γ

2m = 1
8m , and q = Θ(h/ρ4). The overall running time is thus 2O(

√
n1 log n1 log(1/ε)), which is certainly

2O(
√

N) where N = 2d = Ω(n1 log10(1/ε)) (recall the value of the seed length d from Theorem 5) is
the block length of the extractor viewed as a code. Therefore the decoding time for the extractor
and number of γ-frequent elements to be output are both 2O(

√
N log N).

Now combining this with Theorem 5 and Corollary 3, gives us our main result of this section,
namely Theorem 4.

4 Construction using multivariate polynomials

To improve the min-entropies for which their extractors work below the
√

n1 bound achieved by
the above construction, Ta-Shma et al [16] also give a construction based on D-variate polynomials

which works for min-entropy about n
1/D
1 . We restate their result in this setting below (this is

Theorem 3 in their paper):

Theorem 9 [16] For every n1, m and D, there is an explicit family of strong (k, γ) extractors

E
(D)
n1 : (n1)× (d)→ (m) with k = Ω(mD−1n

1/D
1 log n1), d ≤ log n + O(D2 log m), and γ = 1− 1

8D .
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The proof of the above theorem is deferred in the conference version of [16], but appears in the
full version. We sketch the basic proof idea in a manner which will hopefully convince the reader
that one can indeed obtain a decoding algorithm from the proof of the extractor property in [16].
The input x ∈ (n1) is viewed as a D-variate polynomial px of total degree at most h over Fq. The

parameters are chosen so that
(

h+D
D

)

log q ≥ n1, so this is possible; specifically, h = D(n1/ log h)1/D

and q is the smallest power of 2 larger than Ω(mmax{4,D−1}h) (the field size q is chosen large
enough compared to h so that the error probability of the reconstruction procedure works out to
be small). The number of output bits m will be chosen to satisfy 2m = Θ(D2/ε). We can then
use this extractor in Lemma 1 with γ = 1 − 1

8D , ζ = 1
16D along with an explicit (2d, O( 1

ζε), ζ, ε)-

expander, to construct a code of rate Ω(ε/ log(D2/ε)O(D2)) that is (1 − ε, 2k)-list decodable for k
as in Theorem 9.7

Now to the extractor definition itself. The random seed y ∈ (d) consists of three parts: a ∈ F
D
q ,

i ∈ {1, 2, . . . , D−1} = [D−1], j ∈ [l̄] (where ¯̀is the block length of a binary linear code of dimension
log q which is (1/2− ρ, O(ρ−2))-list decodable as in the previous section; we will set ρ = 1

8m). The

extractor E(D) is defined as E(D)(x; (a, i, j)) = 〈C(px(a + ei))jC(px(a + 2ei))j · · ·C(px(a + mei))j〉
where ei denotes the unit vector in m dimensions with 1 in the i’th coordinate and 0’s elsewhere.

The proof that this construction is an extractor again follows the reconstruction paradigm which
lets us turn it into a γ-decoding algorithm, for γ = 1 − 1

8D . Let a distinguisher T ⊆ (d + m) be
given and the goal is to find all x which are γ-frequent for T . Since γ is very close to 1, a simple
averaging argument is used to show that for each i ∈ [D−1], if U i denotes the uniform distribution

on {(a, i, j) | a ∈ F
D
q , j ∈ [¯̀]}, then Prob[U i ◦ E(D)(x, U i) ∈ T ] − |T |

2m+d ≥ 7/8. One can then use
Yao’s next-bit predictor argument to convert T into a predictor Ti for each i. Using arguments
as in the bivariate case, for each i ∈ [D − 1], we can find a collection Fi of at most O(2m) q-ary
next-element predictor functions satisfying a property similar to Lemma 7, with ρ = 7

16m and the
vector (1, 0) replaced by ei.

We now state use the above to prove the following, which is our main technical result.

Theorem 10 For every integer D ≥ 2, for every ε > 0, there is a polynomial time constructible
family of codes of rate Ω(ε/ logO(D2)(D2/ε)) such that every code in the family is (1−ε, 2O(N1/D log N))-

list decodable in randomized 2O(N1/D log N) time where N is the block length of the code.

Proof Sketch: As argued above, one can compute, based on the distinguishing set T , a small
collection of next-element predictors for every direction ei, 1 ≤ i ≤ D−1. These are then used in a
reconstruction procedure to determine all γ-frequent elements for T . The goal is to take as advice
the value of px on a small collection of points in F

D
q and then use the next-element predictors to

deduce the value of px on enough points to be able to interpolate and determine px, and thus also
x.

Recall that for the bivariate case, we reconstructed px by finding its values on a collection
of “successive” lines. This approach as such is not suitable for the D-variate case since we will
need to make about qD−1 line prediction steps, which is too many (the error probability for the
procedure Rf adds up for each step, and also we need advice to pick the right polynomial at each
Reed-Solomon list decoding step which amounts to requiring a longer advice string than before!).
Instead the approach of [16] is to recursively predict the value along “cubes” of larger and larger
dimension. We pick a line L at random and the goal is to predict the value on all of the D-
dimensional affine subspace L + spanh{e1, e2, . . . , eD−1} where spanh refers to the fact that the

7This is why we did not fix γ = 1/4 throughout the paper.
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coefficients are all bounded by h (predicting the value of px on such a subcube suffices to identify
it, and thus x, uniquely).8

Once a line L is picked, for s = 0, 1, 2, . . . , D − 1, the values of px on the s + 1-dimensional
affine subspace U = L + spanh{e1, . . . , es} are computed recursively as follows. If s = 0, U = L,
and we determine px|L by just consulting the advice string (this takes (h + 1) log q bits of advice
since p|L is a univariate degree h polynomial). If s ≥ 1, we recursively compute values on Ur =
L + res + spanh{e1, e2, . . . , es−1} for 0 ≤ r ≤ m − 2 (since L + res is also just another line).
Then for each u ∈ Ur for m − 1 ≤ r ≤ h − 1, we run the next-element predictor from Fs for
direction s using the already computed values for the (m − 1) predecessors of u (i.e. the points
u− es, u− 2es, . . . , u− (m− 1)es). We then perform a “Reed-Muller list decoding step” using these
predicted values to compute a small list of candidate s-variate polynomials one of which is likely
to compute the correct value of px on Ur.

9 As in the bivariate extractor from the previous section,
the advice string is used for purposes of “tie-breaking” to determine the correct polynomial at each
of these intermediate list decoding steps. As before, the crucial aspect is that the number of such
candidate polynomials is small and can also be found efficiently. This follows from a known result
on list decoding Reed-Muller codes, stated below.

Lemma 11 (Follows from [13]) For each u ∈ F
s
q, let Su ⊂ Fq be a set of size at most A. Then,

provided δ ≥ 2
√

hA/q, there are at most 4A/δ s-variate polynomials p over Fq of total degree h
such that p(u) ∈ Su for at least a fraction δ of the points u. Moreover, there is a randomized
algorithm that runs in time poly(qs) and for any such input collection of sets {Su}u∈Fs

q
, outputs

exactly the list of all such polynomials p with overwhelming probability.

In analyzing the extractor, the above lemma is used with A = O(ρ−2) (the number of outputs of
the next-element predictors), and thus one only needs O(log(1/ρ)+log(q/h)) bits of advice for each
tie-breaking step. Given an advice string, therefore, the reconstruction procedure is very efficient
and in fact can be implemented to run in polynomial time. One can obtain a γ-decoding algorithm
from the reconstruction procedure as in Section 3.2.3 by running through all the choices for next-
element predictor functions — there will be 2O(mD) choices in all since one has to pick a function
from Fi for each of the directions ei, 1 ≤ i ≤ D − 1 — as well as all choices of the advice strings.

Let us now argue about the number of advice bits needed as that governs the running time of
the decoding algorithm. Unwinding the recursion, the number of different lines L′ for which we
determine px|L′ using the advice string in the computation of px on all of L + spanh{e1, . . . , eD−1}
equals (m−1)D−1. Thus at most mD−1(h+1) log q bits of advice are needed to figure out px on all
the lines needed to kick-start the next-element prediction steps. The number of Reed-Muller list
decoding steps, say Ns, involved for predicting px on L+spanh{e1, e2, . . . , es} satisfies the recurrence
Ns = (m − 1)Ns−1 + (h −m + 1) and N0 = 0. Therefore we have ND−1 ≤ (m − 1)D−2(h −m +
1) ≤ mD−1h, and thus the total number of advice bits needed to disambiguate between candidate
polynomials for all intermediate list decoding steps is at most O(mD−1h(log(1/ρ) + log(q/h))).

Recalling that ρ = 7
16m , the overall decoding time is thus 2O(mD−1h log(mq)), which for the choice of

parameters m = log(D2/ε) + O(1), h ≤ n
1/D
1 , and q ≤ mmax{4,D−1}h ≤ n1 for large enough n1, is

at most 2O(mD−1n
1/D
1 log n1). Since the block length of the extractor E(D) viewed as a code equals

N = n1 · 2Θ(D2 log m) = n1m
Θ(D2), the runtime of the decoding procedure, expressed as a function

of the block length of the constructed code, is at most 2O(N1/D log N). 2

8In case L+spanh{e1, e2, . . . , eD−1} is not D-dimensional, which happens with negligible probability for a random
line L, the algorithm gives up and reports a decoding failure.

9In Section 3, we had s = 1, so that each of the list decoding steps was for univariate polynomials (Reed-Solomon
codes).

12



5 Dispersers and Erasure List-Decodable Codes

In this section we make explicit some simple facts that connect dispersers, which are one-sided
analogues of extractors, and list decoding from erasures. We recall that erasures are a noise model
where a certain fraction of symbols are adversarially erased (replaced with “blanks”, say) and the
remaining are received intact (and it is known to the receiver which positions have been erased).

Definition 6 (Dispersers) A function D : (n1) × (d) → (m) is a strong (k, γ)-disperser if for
every X ⊆ {0, 1}n1 of size at least 2k, at most a γ fraction of points in (d)×(m) have zero probability
under Ud ◦D(X, Ud) where Ud (resp. X) denotes the uniform distribution on (d) (resp. X).

The requirement is weaker than the extraction property, and dispersers exist with d = log(n−k)+
log(1/γ)+O(1) and entropy loss log log(1/γ)+O(1), both of which are better than what is possible
for extractors.

Definition 7 (Erasure List-decodability) A code C ⊆ [q]n is said to be (ρ, L)-erasure list-
decodable if for every r ∈ [q]n(1−ρ) and every set T ⊆ {1, 2, . . . , n} of size (1 − ρ)n, we have
|{c ∈ C | c|T = r}| ≤ L where for y ∈ [q]n, y|T ∈ [q]|T | denotes the projection of y onto the
coordinates in T .

An interesting open problem in the area of list decoding, mentioned for example in [6], is obtaining
an explicit construction of a family of (1 − ε, L)-erasure list-decodable binary codes of rate Ω(ε)
(which is optimal up to constant factors). The following simple lemma shows that explicit dispersers
with optimal seed length will imply such codes. It is interesting that though dispersers are more
general objects than erasure codes (just like extractors are more general than list-decodable codes),
there is no asymptotic loss in rate due to their extra generality. In contrast, even optimal extractors,
when interpreted as codes as in [15], give only codes of rate O(ε2) which is worse than the optimal
Θ(ε) rate.

Lemma 12 Suppose D : (n1) × (d) → (m) is a strong (k, γ)-disperser. Then the binary code

C : {0, 1}n1 → {0, 1}2d
defined as C(x)|i = D(x, i)1 for 1 ≤ i ≤ 2d, where D(x, i)1 denotes the first

bit of the m-bit string D(x, i), is (1− 2γ, 2k)-erasure list-decodable code. If the seed length of D is
optimal with d ≤ log n1 + log(1/γ)+O(1), then choosing γ = ε/2, we get a binary code C with rate
Ω(ε) that is (1− ε, 2k)-erasure list-decodable.

Proof: Define N = 2d and let T = {t1, t2, . . . , t2γN} be a subset of {1, 2, . . . , N} of size 2γN (with
1 ≤ t1 < t2 < · · · < t2γN ≤ N), and let r ∈ {0, 1}2γN . Let x1, x2, . . . , xM be all the messages in
(n1) for which C(xs)|T = r, 1 ≤ s ≤M . We need to show that M ≤ 2k.

Define S ⊆ (d)×(m) as follows: S = {(i, α) | i /∈ T ; α ∈ (m)}∪{(tj , α) | 1 ≤ j ≤ 2γN ; α1 = rj}.
Note that |S| = (1 − 2γ)2d+m + 2γ · 2d · 2m−1 = (1 − γ)2d+m. Now, for each xs, 1 ≤ s ≤ M , and
each y ∈ (d), we have D(xs, y) ∈ S. By the (k, γ)-disperser property of D, it follows that M ≤ 2k,
as desired. Finally, the rate of C equals n1/2

d, and therefore is Ω(ε) if d ≤ log n1 +log(1/ε)+O(1).
2

6 Concluding Remarks

The obvious open question that our work highlights is that of constructing better extractors with
log n1 + O(1) seed length with error γ = 1/2 (say), in particular those which work for lower min-

entropies (say n
o(1)
1 ). The improvements to the TZS extractors by Shaltiel and Umans [10] definitely
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gives hope for such a pursuit. One would also need decoding algorithms for the extractors, but
the success in turning proofs of the extraction property for the Trevisan and TZS extractors into
decoding algorithms lends hope for also achieving the algorithmic goal if and when the extractors
are constructed. Our interest in such extractors stems mainly from the quest for better list-
decodable codes which can then be constructed using the connection presented in Lemma 1. Note
however that extractors are stronger objects than list-decodable codes and there may well be
simpler, less challenging ways to construct near-optimal list-decodable codes. But even in such a
case, some of the techniques from the extractor world like next-element predictors and advice based
reconstruction could be useful new additions to the toolkit of coding theory.
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