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Towards the Classical Communication Complexity of Entanglement
Distillation Protocols with Incomplete Information
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Abstract

Entanglement is an essential resource for quantum communication and quantum computa-
tion, similar to shared random bits in the classical world. Entanglement distillation extracts
nearly-perfect entanglement from imperfect entangled state. The classical communication com-
plexity of these protocols is the minimal amount of classical information that needs to be ex-
changed for the conversion. In this paper, we focus on the communication complexity of pro-
tocols that operate with incomplete information, i.e., where the inputs are mixed states and/or
prepared adversarially.

We consider three models of imperfect entanglement, namely, the bounded measurement
model, the depolarization model, and the fidelity model. We describe there models as well as
the motivations for studying them. For the bounded measurement model and the depolarization
model, we prove tight and almost-tight bounds on the output quality of non-interactive protocols.
For the fidelity model we prove a lower bound that matches the upper bound given by Ambainis
et al., and thus completely characterizes communication complexity of entanglement distillation
protocols for this model. Our result also suggests the optimality of the BB84 protocol in terms
of communication complexity.

We emphasize that although some of the results appear intuitively straightforward, their
proofs are not. In fact, two novel techniques are developed for proving these results. We believe
that these techniques are of independent interests, too.

1 Introduction

Communication complexity studies the amount of communication needed to solve a certain com-
putational problem [62, 33]. Communicating quantum bits instead of classical bits can decrease
the amount of communication needed [16, 53, 54]. Besides new solutions to classical problems,
quantum world also brings new open problems to communication complexity.

Entanglement distillation is a widely studied problem in quantum information theory. Entan-
glement Distillation Protocols (EDPs) are two-party protocols between Alice and Bob that take as
input imperfectly entangled quantum states, and output near-perfect EPR pairs. In such proto-
cols, Alice and Bob are allowed to perform local quantum operations and classical communications.
However, they are not allowed to communicate in a quantum channel. Protocols of this type are
called “LOCC protocols,” for “Local Operation Classical Communication.” For LOCC protocols, it
is natural to ask what the communication complexity of these tasks is, i.e., how much information
Alice and Bob need to exchange in order to produce near-perfect EPR pairs. Also, it is interesting
to consider the trade-off between the amount of communication and the quality of the output.
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Entanglement distillation protocols are closely related to a number of areas. We discuss some
of these related areas, as well as how the communication complexity of EDPs are related in these
areas.

Understanding Entanglement Entanglement, and particularly in the form of Einstein-Podolsky-
Rosen pairs [19] (EPR pairs), is probably the most important phenomenon in quantum information
theory, with exciting applications such as teleportation [6] and superdense coding [11]. Researchers
have long trying to understand entanglement, and in particular, the guantification of entanglement.
Given an entangled state p, how much entanglement does it have? Among the various proposes
is the concept of distillable entanglement [10, 46], which is defined to be the asymptotic ratio of
number of EPR pairs “distillable” from n copies of p using the optimal entanglement distillation
protocol to n. A good understanding of EDPs, therefore, is essential for understanding entangle-
ment.

Fighting Decoherence Quantum states are notoriously unstable and are easy to “decohere,”
that is, that they interact with the environment and become “corrupted.” This can be a problem for,
for example, teleportation, where Alice and Bob need to maintain a large collection of shared EPR
pairs before the teleportation starts, and imperfect EPR pairs will result in unfaithful teleportation.
Naturally, Alice and Bob need to use EDPs to “extract” almost perfect EPR pairs.

Understanding Quantum Error Correcting Codes Quantum Error Correcting Codes (QECCs)
are mechanisms for systematically encoding quantum information into “code-words”, so that if parts
of a code-words are corrupted, the original information can still be recovered by decoding. It is
desirable to design QECCs with low overhead (the amount of redundancy added) that can tolerate

a high rate of noise. Initiated by Shor [58] and Steane [59], the study of QECCs has become a
very active area. Many constructions are proposed [21, 34, 51], and many bounds on the overhead
of QECCs are known [18, 20, 56, 48, 49, 50]. Most of these bounds are proven using techniques
from classical error correcting codes and are only for non-degenerate codes [21, 45]. On the other
hand, much less is known for degenerate codes, since they don’t have counterparts in classical error
correction and novel techniques are needed to prove bounds for them.

Quantum entanglement distillation protocols can be viewed as an alternative to QECCs. Thanks
to teleportation, a collection of shared EPR pairs is equivalent to a quantum channel. If Alice
produces a number of EPR pairs and send over Bob’s share through a noisy channel, they will
share imperfect EPR pairs. Next, Alice and Bob can use an entanglement distillation protocol to
distill perfect EPR pairs, and then use the distiled EPR pairs to transmit quantum information by
teleportation. In this way, EDPs can be used to transmit quantum information reliably through
a noisy channel. This connection was first pointed out by Bennett et al. [9], and later made more
precise in [10]. Furthermore, Bennett et al. [10] showed a correspondence between one-way EDPs
(where the communication is only from Alice to Bob) and QECCs. They proved that every one-way
EDP implies a QECC that can tolerate the same noise rate, and vice versa.

Because of the correspondence between QECCs and EDPs, it is interesting to compare their
efficiencies, and in particular, if their overheads are preserved in the conversion. We may measure
the overhead of a QECC by the difference between the code length and the message length, and
the overhead of EDPs is naturally measured by the amount of communication. Unfortunately, the
conversion by Bennett et al. [10] does not preserve the overhead. However, the overhead is preserved
for a large class QECCs, known as stabilizer codes [21]. See Nielsen and Chuang [45, pp. 597]. Such
an equivalence suggests that the study of communication complexity of EDPs may provide more
insights to the study of the bounds on QECCs, for both degenerating codes and non-degenerating



codes. As a case in point, Leung et al. [34] considered a generalization of QECCs, which they call
“approximate quantum error correcting codes”, and showed that by relaxing the error correction
condition, more efficient codes can be designed. This result, viewed from the perspective of the
EDPs, simply corresponds to the trade-off between the amount of communication and the output
quality of these protocols, which appears to be quite natural.

Understanding Quantum Key Distribution Consider the Quantum Key Distribution proto-
col (QKD) by Bennett and Brassard [5]. It is one of the very few results from quantum information
theory that currently enjoy practical applications. See [4, 29, 41, 12, 13] for some experimental
results. There also have been a sequence of proofs of security for such a protocol, with latter ones
simplifying and/or strengthening the former ones; see [40, 14, 37, 35, 15, 57]. Lo and Chau [37]
were the first one that made a connection from the key distribution protocols to EDPs, and the
proof was further simplified by Shor and Preskill [57]. While all these studies focus on the security
of such a protocol, they seem not to be concerned with the communication complexity, i.e., how
efficient the BB84 protocol is in term of the classical bits exchanged.

Interestingly, quantum key distribution protocols are closely related to entanglement distillation
protocols working in the so-called “fidelity noise model” (discussed later in our paper). There exists
a significant amount of similarity between the definition of secure QKD protocols and the definition
of conditional EDPs for the fidelity model. In particular, Lo and Chau and Shor and Preskill showed
that the BB84 protocol is in some sense “equivalent” to a specific EDP, such that the security of
the BB84 protocol corresponds to the “quality” of the EDP, and the communication complexity of
the BB84 protocol directly corresponds to the communication complexity of the EDP. Therefore,
an optimality result for this entanglement distillation protocol (as we shall show in this paper)
implies that the BB84 protocol is optimal in terms of communication complexity for protocols.

1.1 Owur Contributions

In this paper, we study the classical communication complexity of EDPs with incomplete informa-
tion. In this setting, Alice and Bob don’t have the complete knowledge about the input state they
share. Rather, the input state is a mixed state, or is adversarially prepared.

We also focus on the precise communication complexity of EDPs, rather than their asymptotic
behavior. In fact, we try to answer questions of the following fashion: “On this particular input
state class, how many bits of classical communication are needed in order to just output a single
EPR pair with certain quality?” We believe that it is important to understand the communication
complexity in this case, where the requirement appears to be minimal. Interestingly, as we shall
see later, answers to this minimal question already yield a lot of insights into the more general
problem, where Alice and Bob wish to generate EPR pairs of not only high quality, but also of
large quantity.

We consider various formulations of “imperfect EPR pairs”, which we call “noise models”. We
study the behavior of EDPs with different noise models and inputs. We summarize our results
here.

A tight bound for the bounded measurement mode. In the bounded measurement model,
Alice and Bob originally share n perfect EPR pairs, and then r out of these n pairs are
measured in the computational basis, resulting in a mixed state £(|00)(00| + |[11)(11]). Alice
and Bob have no information about which pairs are measured and which are not, but they
know 7. In other words, the measured qubit pairs are adversarially chosen. This is a simplified
version of the noise model typically used in quantum error correction, where r pairs are



arbitrarily corrupted. We choose to study the bounded measurement model since it is simpler
for analysis yet rich enough to yield interesting results.

We prove a tight upper bound on the output fidelity (which measures the “quality” of a
protocol) of non-interactive protocols, i.e., ones where Alice and Bob don’t communicate.
More precisely, we prove that maximal fidelity of a non-interactive protocol is at most 1—7/2n.
This is tight since there exists a very simple protocol that achieves a fidelity of 1 — r/2n. We
view this result as the first step towards understanding EDPs for this model.

An almost tight bound for the depolarization model. In the depolarization model, Alice
generates n EPR pairs by herself, and then sends to Bob his share over through a depo-
larization channel of parameter p, which independently leave each qubit unchanged with
probability (1 — p) and replace it with a completely mixed state with probability p. It is a
typical model for “noisy channels”, and in particular was studied by Bennett et al. [9, 10].

We prove an almost tight upper bound for non-interactive protocols over this model. More
precisely, we show that any non-interactive protocol has maximal fidelity 1 —p/2 in its output.
This bound if almost tight in that there exists a very simple protocol of output fidelity 1—3p/4.

A complete characterization for the fidelity model. The fidelity model is an adversarial noise
model, where the only information Alice and Bob have is that the fidelity of their input state
and the perfect EPR pairs is 1 — . Ambainis et al. [1], studied this model in the name of
“general error” model. This model was also independently studied by Lo and Chau [37] and
Shor and Preskill [57] in proving security of the BB84 quantum key distribution protocol,
who showed that the BB84 protocol is, in fact, an entanglement distillation protocol for the
fidelity model.

We present a complete characterization of EDPs over the fidelity model. We prove an almost
tight lower bound (up to an additive constant) on the communication complexity of EDPs
over the fidelity model. More precisely, we prove that the maximal conditional fidelity of an
EDP with ¢ bits of communication is at most 1 — e - p/2t*1, even if the EDP is only required
to output 1 qubit pair. Here, € is the fidelity of the input state, p is the probability that the
EDP succeeds with perfect EPR pairs, and the conditional fidelity is the fidelity of the EDP
conditioned on it succeeding (we allow an EDP to fail in this case). Therefore, to achieve a
fidelity or 1—¢ on the output, log(1/d)+log(e-p) —1 bits of classical communication is needed.
Comparing the result from [1], which contains a protocol that (with simple modification) uses
log(1/d) + log(1 — €) bits, our lower bound is tight up to an additive constant (under the
reasonable assumption that both e and p are constant). Our result implies that the “random
hashing” protocol by Ambainis et al. [1] optimal. Since essentially the same protocol is used in
the BB84 key distribution protocols, as pointed out by Lo and Chau [37], the BB84 protocol
is also optimal in terms of communication complexity.

We stress that some of these results may seem intuitively straightforward, their proofs do not
appear so. In fact, in order to prove these results, we need to develope two novel techniques that
might be interesying by themselves.

Alternative definition of fidelity We give an alternative definition of the fidelity of a pure state
and an EPR pair. We first notice that an EPR pair (denoted by ®*) is the unique state that
remains unchanged under a group of operators. Then we show that for an arbitrary pure
state | ¢), its “deviation” from this group of operators is exactly the fidelity of | ¢) and ®*.
See Lemma, 3.



This technique is used to prove the two results for the bounded measurement model and the
depolarization model. It is interesting to compare this technique to the stabilizer formal-
ism [22], where a state is defined as the unique elements that is “stabilized” by a group of
operations, i.e., that is remains unchanged under these operations. Our alternative definition
suggests that it may be interesting to consider states that are “partially” stabilized as well.

Analysis of protocols with mixed state input We introduce a technique to analyze general
LOCC protocols with mixed states as input. Prior to our work, most of the work on LOCC
protocols only deal with pure states as input. Having a pure state as input greatly simplifies
the analysis, since the Schmidt decomposition can be used. Many researchers have used
Schmidt decomposition in their analysis, including Lo and Popescu [38], Nielsen [43], Hayden
and Winter [25], and Nayak and Salzman [42]. Unfortunately this technique does not work
for mixed states, since Schmidt decomposition is only for pure states. In fact, Lo and Chau
proved that for pure state inputs, one-way protocols are as powerful as two-way protocols.
On the other hand, Bennett et al. [10] showed that for certain mixed state inputs, two-way
protocols are provable more powerful than one-way protocols. These results shows a distinct
difference between pure state and mixed states.

Our technique, on the other hand, is designed to analysis protocols with mixed states as
input. Roughly speaking, our technique works as follows. We consider both the reduced
density matrix of Alice and Bob. When Alice sends a classical bit to Bob, this may cause
Bob’s density matrix to “split”, since if Alice and Bob’s states are entangled, then the bit
sent by Alice may carry some information about Bob’s state.! Our technique keeps track of
the splitting reduced density matrix pair as the protocol proceeds, and builds a binary tree
corresponding to the messages exchanged. By maintaining an invariant when traversing the
tree of message history, we manage to prove our result. We discuss this in Section 5.

1.2 Related Work

To the best of our knowledge, the study of entanglement distillation protocols was initiated by
Bennett et al. [8], who considered the problems of producing perfect EPR pairs from a large copy
of identical pure states. From then on, the problem of entanglement distillation was studied by a
number of researchers from different perspectives [9, 10, 27, 28, 46, 47, 52]. All of which consider
the situation where n identical copies of a state are given as input to an LOCC protocol, which
then outputs m EPR pairs. They studied the asymptotic behavior of m/n as n approaches infinity.

Researchers also studied EDPs for a single copy of an arbitrary pure state; see Vidal [60],
Jonathan and Plenio [30], Hardy [23], and Vidal et al. [61]. Much of the work was built on the
result of majorization by Nielsen [43], who is the first one that studied conditions under which one
pure state can be transformed into another one by LOCC. All the work above assumes that Alice
and Bob know the explicit description of the state they share, and so they can act optimally.

Relatively less work was done on studying EDPs with incomplete information prior to this
paper. See Bennett et al [9, 10]. The fidelity noise model was independently studied by a number
of researchers: Lo and Chau [37] and Shor and Preskill [57] in proving security of the BB84 protocol;
Barnum et al. [2] in the study of “purity-testing protocols” protocols; Ambainis et al. [1] in relating
EDPs to classical randomness extractors.

'On the other hand, assuming that Alice and Bob don’t erase their information, if Alice and Bob’s input states
are not entangled, then the bit sent by Alice will not cause the split.



Researchers have also studied the classical communication complexity of other quantum tasks.
Lo and Popescu [39] observed that the “entanglement concentration protocol” in [8] does not
require any classical communication, while the “entanglement dilution protocol” requires O(n) bits
of classical communication for producing n copies of the “diluted” state. They also constructed a
new dilution protocol that only uses O(y/n) bits of communication. This protocol was proven to
be asymptotically optimal by Hayden and Winter [25], and Harrow and Lo [24]. Lo [36] studied
the communication complexity for Alice and Bob to jointly prepare a large number of copies of
arbitrary (known) pure states, and proved an non-trivial upper bound. All the results above focus
on a relatively simple situation, where the input are n copies of a known pure state, and almost all
are asymptotic results.

2 Notations and Definitions

All logarithms are base-2. We identify an integer with the 0-1 vector obtained from its binary
representation. For a vector v, we write v[j] to denote its j-th entry. For 0-1 vector z, we denote
its Hamming weight by |z|, which is the number of 1’s in z. For binary strings = and y, we use z;y
to denote the concatenation of these two strings.

Throughout the paper we are interested in finite, bipartite, symmetric quantum systems shared
between Alice and Bob. We identify a “ket” | ¢) with a unit column vector. We assume there exists
a canonical computational basis for any finite Hilbert space of dimension IV, and we denote it by
{]0},|1),...,| N —1)}. We use superscripts to indicate which “side” a qubit or an operation belongs
to. For example, a general bipartite state | ) can written as | ) = 3, ; aj Y41 4)8.

There are 4 Bell states for a pair of qubits shared between Alice and Bob, and we denote them as
ot = Z5(10)40)7 +1)41)7), @~ = Z5(10)40)% — [1)41)P), T = Z=(10)41)" +]1)4]0)P),
and U~ = 1 (|0)4] 1) — |1)4]0)7).

We denote the state (®1)®", which represents n perfect EPR pairs, by ®,,. We also abuse the
notation to use ®,, to denote both the vector ®,, and its density matrix |®,,)(®,|, when there is no
danger of confusion.

The Pauli Matrices X, Y, and Z are unitary operations over a single qubit defined as

X(a0) +8I1) = Bl0)+all)
Y(al0) +8|1)) = iBl0) —iall)
Z(al0) +6|1)) = 0)—-p|1)

We use I to denote the identity operator.

For a unitary operator U, we can write it in a matrix form under the computational basis.
Then we define its conjugate, U*, to the entry-wise conjugate of U. Clearly U* is still a unitary
operation. An error model is simply a set of bipartite (mixed) states, and is often denoted by M.
We say a state p is consistent with M, if p € M.

Fidelity is a measure of closeness between quantum states which we use to measure the quality
of the output of an EDP. For two mixed states p and ¢ in the same Hilbert space their fidelity is
defined as F(p,0) = Tr?(\/pl/20p'/2). 1f ¢ = |p){p| is a pure state, the definition simplifies to
F(p,|le){p|) = (¢|p|le). A special case is when |¢) = &,, for some n, such that p and &, have
the same dimension. In this case, we call the fidelity of p and | ¢) the fidelity of state p, and the
definition simplifies to F(p) = (P, |p| @p)-

We are often interested in the fidelity of two states of unequal dimensions, and in particular,
the fidelity of a general state p and the Bell state ®*. Then, we define the base fidelity of p to be



the fidelity of the state obtained by tracing out all but the first qubit pair of p. We denote the base
fidelity of p by F(p).

It is easy to verify that the fidelity is linear with respect to ensembles, so long as one of the
inputs is a pure state.

Claim 1 If p is the density matriz for a mized state that is an ensemble {p;, | i)}, and o is the
density matriz of a pure state, then we have F(p,0) =Y, pi - F(|¢i){¢il,0). [ ]

The fidelity is also monotone with respect to trace-preserving operations [45].

Claim 2 For any states p and o and any trace-preserving operator £, we have F(E(p),E (o))
F(p,0).

mlV

One useful fact about fidelity is that any completely disentangled state has base fidelity at most
1/2.

Lemma 1 If p is a completely disentangled state, then ﬁ(p) <1/2.

Proof: By the definition of base fidelity, we may assume that p has dimension 2. By Claim 1,
we only need to consider the case that p is a pure state |¢)(¢|. Since |¢) is disentangled, we may
write it as

|$) = (0] 0) + ar[ 1)) ® (60| 0) + 1| 1))

Then a direct calculation reveals that

(laol? + len P) (6ol + 81%) = 3,

N =

F8N8) = 5 laoo +aaff? <

where the inequality is due to Cauchy-Schwartz. [

2.1 Entanglement Distillation Protocols

We often denote an entanglement distillation protocol by P. The protocol starts with a mixed state
p shared between Alice and Bob. Alice and Bob can have their private ancillary qubits, originally
all initialized to |0). A protocol is either deterministic or probabilistic. For deterministic protocols,
Alice and Bob don’t share any initial random bits; for probabilistic protocols, Alice and Bob share
a (classical) random string. We say a protocol P is a t-bit protocol, if there are ¢ bits of (classical)
communication during the protocol. We don’t allow protocols to have any initial entanglement as
auxiliary inputs, nor do we allow quantum channels between Alice and Bob.
An the end of a protocol, both parties output m qubits, which form the output of the protocol.
If o is the density matrix of the output of protocol P on input p, we write it as P(p) = o. For
an entanglement distillation protocol P, we define its fidelity with respect to an error model M,
denoted by Faq(P), to be the minimal fidelity of its output over all input states consistent with
M. L e,
Fm(P) = min F(P(p)) (1)
In the fidelity error model (Section 5), we allow protocols to fail with some probability. (As shown
in [1], this is necessary for having good output fidelity in this model.) In this case, Alice also
outputs a special symbol (either a SUCC or a FAIL). The success probability of a protocol P over
an input state p is the probability that Alice outputs SUCC at the end of the protocol, and we



write this as Pp’““[p]. The ideal success probability of a protocol P is its success probability over
the ideal input ®,,. We say a protocol is ideal, if its ideal success probability is 1.

If 7 is the density matrix of the output of protocol P on input p, conditioned on that Alice
outputs SUCC, then we call 7 the conditional output of protocol P, and write this as P°(p) = 7.
We define the conditional fidelity to be the minimal fidelity of its conditional output:

F§u(P) = min F(P*(s) @

When the error model M is clear from the context, it is often omitted.

3 The Bounded Measurement Model

We prove an upper bound on the fidelity of 0-bit EDPs with respect to the bounded measurement
error model.

In the bounded measurement model, the input state of EDP consists of n EPR pairs r of which
have been measured. That is, the input state is | ¢v) = ®?:_& | ;), where

10410y ifw[j] =0
;) =< |DAIE  ifw]j] =1
ot if v[j] = *

and v € {0,1,+}". The state | ¢v) is called an error state, where v is called its error indicator
vector. The degree of v, denoted by deg(v), is the number of i’s in {1,..., N} for which v; # *.

The error model for the bounded measurement model, denoted by M{{]T, is defined to be

My = {l¢v) | deg(v) =r} 3)

An n-dimensional 0-1 vector z is consistent with a binary indicator vector v, if z[j] = v[j] for all
j such that v[j] # . We write this as  C v. For any v of degree r, there are 2"~" 0-1 vectors x
consistent with v. It is not hard to verify that

1
|pv) = ST ; | z)| z)? (4)

3.1 Two Useful Lemmas

We prove two lemmas that would be useful for the proofs in this paper. Both lemmas are about
how much “deviation” a quantum state undergoes when applied various unitary operations.

First, we consider the “deviation” of an arbitrary pure state under the operations {I, X,Y, Z}
over its first qubit. We have the following lemma:

Lemma 2 Let |¢) and | 1) be two pure states of the same dimension, not necessarily bipartite. Let
I, X, Y, and Z be the unitary operations over the first qubit of | ¢). Then we have

Yo [elUlg) <2 (5)

Ue{l,X,)Y,Z}



Proof: We write | ¢) = ap|0)| ¢o) + 1| 1) ¢1) and [9) = Bo| 0)| o) + S| 1)| 41)
Then we have

(A1) = agBo(do| o) + aiBi{dr| 1)
(@1 X|9) = aiBo(d1|vo) + agBi(tho | d1)
(#Y]9) = —ic1Bs{d1|vo) + icoBi(do|%1)
(P1Z]Y) = agPoldo | o) — aiBi{dr 1)
Therefore
Z Ko U9 = 2|coBol?[{do |%0)|* + 2eaBi*[{d1 | ¥1)|* + 2|0 [(Bo | ¥1)]* + 2] Bol* (b1 | 1b0)|?
Ue{I,X,Y,Z}

AN

2|e|?|Bol? + 2] [*|B1]? + 2| |*|B1]? + 2]t [*|Bo|?
2(Jcol® + | ) (1Bol* + 1811%)
= 2

An immediate corollary is
Corollary 1 Let | ¢) be a pure sate. We have ZUe{I,X,Y,Z} o |U| #)|? < 2.

Next, we consider quantum states and operations over bipartite systems. In particular, we
study the “deviation” of a general bipartite state under unitary operations of the form U  U*. We
interpret U ® U* as Alice applies U to her first qubit and Bob applies U* to his first qubit. Again,
we consider U € {I, X,Y, Z}.

We have the following lemma.

Lemma 3 Let |¢) be a pure state in a bipartite system shared between Alice and Bob. Let I,
X®X*, YRY™*, and Z ® Z* be the unitary operations over the first All these 4 operations work
on the first qubit of Alice and the first qubit of Bob. Then we have

(@19) +($1(X ® X)|¢) +($|(Y ®Y")|§) +($|(Z ® Z*)| §) = 4F(| §)) (6)

Proof: We first consider how the Bell states behave under these unitary operations. It is easy to
verify the result, which we compile into the following Table 3.1.

state &t o~ Tt ¥~
I®I* @t o Tt T
XX* |t - Tt U
YY* | &t - -t O-
ZQZ* | &t &= Ut -

Table 1: The Bell States under operators

It is easy to see that the state ®T is invariant under any of the 4 operations, while other Bell states
will change their signs under some operations.



Notice the 4 Bell states form an orthonormal basis for a bipartite system of 2 qubits. We
decompose | @) into the Bell basis and write

|¢) = ap® @ |0) + 1@~ @ [ 1) + ¥ @ |1ho) + a3V~ ® | 93)

3 12 —
where } 77 o] = 1. Therefore we have

(#l9) = laol +|aaf? +]azf? +|asf®
(X X)) = |ao® = o]+ |ogf” — |as]?
BIY@Y)|¢) = |aof® —lon|* = |aof” + |3l
Gl(ZZ%)|¢) = |+ |or]” —|ao|* — |as|?

and thus (¢] ¢) + (¢|(X ® X*)| ) + ($|(Y ®Y™)| ) + ($](Z ® Z°)| §) = d|aw|* = 4F (| ¢)). ~ m

Lemma 3 in fact gives an alternative definition of the base fidelity of a pure state.

We prove that the fidelity of 0-bit EDPs for the bounded measurement error model is at most
1 —r/2n, even if the protocols are only required to output one qubit-pair. Notice that fidelity is
monotone. Therefore if no protocol can output a single qubit pair of fidelity at least 1 —r/2n, then
no protocol can output multiple qubit pairs of fidelity at least 1 — r/2n.

Theorem 1 For any probabilistic 0-bit protocol P that outputs one qubit pair, we have F(P) <
1 — 5~ with respect to the bounded measurement model.

Notice that there exists a very simple probabilistic 0-bit protocol of fidelity 1 — o-: Alice and
Bob use their shared random string to uniformly pick an EPR pair and output it. If this pair is
measured, (which happens with probability r/n), the fidelity is 1/2, and otherwise it is 1. So the

overall fidelity is exactly 1 — r/2n and thus our upper bound is tight.

Proof: We consider a slightly different error model, where a random r out of n EPR pairs are
measured. This corresponds to the density matrix

p= 1n) S Ibv)(v]

T/ V:degV=r

Notice that this is the “average case” version of the bounded measurement model. Thus if we prove
an upper bound on the fidelity of P over p, then it is also an upper bound with respect to the
bounded measurement model.

We shall prove that no deterministic 0-bit protocol can have a fidelity higher than 1 — r/2n if
p is the input. Then, we conclude that no probabilistic protocol can have a fidelity higher than
1 —r/2n, too, since fidelity is linear.

Notice P is non-interactive, we can model it as Alice and Bob both applying a unitary operation
to their share of qubits, outputs the first qubit and discard the rest.

Suppose the unitary operators of Alice and Bob are Uy and Ug. We denote the states under
these operations by Ua|z) — | ¢5) and Ug|z) — |15).

Notice that we use “—” instead of “=" since we allow Alice and Bob to use ancillary bits.
Clearly, the vectors {| ¢;)}, are orthonormal, and so are the vectors {| ¢;)},.

We shall prove that

> [F(WaeUplgv)iviUaoUp))] <1- (")

2T (’:) deg V=r 2n
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which shall imply Theorem 1.
By Lemma 3, (7) is equivalent to

s | Y WlUaeUn) Wet UaeUs)dv)| <40-1) ()

"(7)
r/ degV=r |Ue{I,X,Y,Z}

We expand the left hand side: Notice that

(Ua ® Up)| dv) = 55 T/Q D o) tha)

zCV

where z C v if z is consistent with v (that is, if z[j] = v[j] for all j such that v[j] # *).

Therefore, we have

(b (U2 ©UB) (U@ UNUA@UB) v) = s D0 (e U] du) - (e [U7] )

zCVyCv

for any unitary operation U. So, (8) is equivalent to

Z SN Y (balUI) - WelUt ) <40 -5 )

degV raCVyCvV Ue{l,X,Y,Z}

However, by Cauchy-Schwartz, we have

YooY (b lUIby) - (@ (U4

deg V=r LV yCV U€{l,X,Y,Z}

M
M

< T T Y ta?] o Y Y et

degV=rzCVyCV UE{I,X,Y,Z} deg V=r zCVyCV U€e{l,X,Y,Z}

Next, we estimate the terms on the right hand side:

D30T DT KUl = DD DY U UIgy)I > 1

deg V=rzLCVyLCV U{I,X,Y,Z} T Yy Ue{I,X)Y,Z} degV=r:21CVAZ3CV

Notice that since | ¢;)’s are all orthonormal, we have >_, [(¢s |U| ¢y)? <1 for all z’s. Thus

DD D lgalUlga)? <272

Ty Ue{l,X,Y,Z}
For any z and y, we have
3 1= ( n—|z @yl )
deg V=r: sCVAYLCV n—r—|zoy|

The reason is simple: the only freedom for v is where to put the (n —r) %’s. But for every position
k such that z[k] # y[k], we have to have v[k] = *. Then we still have (n —r — |z @ y|) *’s we can

put anywhere. So if z # v,
n—1
> a<(,m0)
n—r—1

deg V=r: zCVAYCV
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Also notice that by Lemma 2, we have 3 /c(/ x v 71 (62 |U| ¢z)|? < 2 for any z.

Putting things together, we have

DD X HeslUlgy

degv=rzLCVyCV Uec{I,X,Y,Z}

(Z)-Z S e wle+ (1T1) N X (vl

T Ue{l,X,Y,Z} £y Ue{l, XY, Z}

-2 T e (P5) XS S vl
- [(

T Ue{l,X,Y,Z} T Yy Ue{L,X)Y,Z}
-1
. 2’IL+1 n i 271—1—2
()] e (0T
— 2n+2 1— L
(7")( 2n)
Similarly, we have

)0 3D M SR U A TR A (TR

degVv=rzCVyLCVUE{I,X,Y,Z}

too.
Thus we have

S XY E @alvl) talvtln) <22(M)a- )

deg V=rzCVyCV U€E{I,X,Y,Z}

which proves (9).

4 The Depolarization Model

We prove an upper bound on the fidelity of 0-bit EDPs with respect to the depolarization model.
We first describe the depolarization channel. A depolarization channel D of parameter p is a
super-operator defined as [45]

D(p)=(1-p) p+p g

In other words, this channel behaves in the following manner: with probability (1 — p), it
keeps the state untouched, and with probability p, it replaces that with the completely mixed
state. After passing the second qubit through this channel, the state ®* becomes a mixed state
pp = (1= 2P) SN (@F| + (&)@ | + [TT)(TF| + [T} (T).

The depolarlzatlon error model of n qubit pairs and parameter n, denoted as M
a single state: M = {p3"}.

We prove that the max1mal fidelity of 0-bit EDPs for the depolarization error model is 1 —p/2,
even if the protocols are only required to output one qubit-pair.

d

n,ps consists of
.

Theorem 2 For any probabilistic 0-bit protocol P that outputs one qubit pair, we have F(P) < 1—%
with respect to the depolarization model. [ |
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There exists a very simple deterministic 0-bit protocol that has fidelity 1 — ?ﬂTp: Alice and Bob

simply output the first qubit pair. It is very easy to verify that the fidelity of this protocol is 1 — %Tp.
Therefore the bound in the theorem is almost-tight (up to a constant factor).

The proof of Theorem 2 is very similar to that of Theorem 1, except that it is more complicated.
We postpone the proof to Appendix A.

5 The Fidelity Model

We study the communication complexity of EDPs with respect to the fidelity error model.

First, we give the definition of the fidelity error model. For a bipartite system of n qubit pairs,
we define the fidelity error model of parameter € to be the set of all bipartite systems of fidelity at
least 1 — e. We denote the error model by

M ={p|F(p)>1—¢} (10)

Notice that this error model is very different from the two previous models we studied, since it
provides much less information than the previous one. As a comparison, notice that in the bounded
measurement model, all the error states have fidelity 1/2", and in the depolarization model, the
fidelity of the input is (1 —3p/4)™, both are very small. However, Alice and Bob have the additional
information about the structure of the input states, and are able to use the information to do very
well.

5.1 Two Useful Facts About Positive Operators

We present two useful facts about positive operators. used in the rest of the paper.
For two positive operators A and B, we say A dominates B, if A— B is still a positive operator,
and we write this as A = B, or equivalently, B < A.

Claim 3 For any positive super-operator £ and any positive operators A and B, if A = B, then
E(A) = E(B). [

This directly follows the fact that £ is linear and preserves the positivity of operators: If A — B is
a positive operator, then £(A4) — £(B) = £(A — B) is also a positive operator.

Claim 4 Let p and o be density matrices such that p = a - o, for some positive number a. For
any POVM {E,}, let pn, = Tr(pEy,) and and ¢, = Tr(cEy,) be the probabilities the measurement
result being m for p and o, respectively. Then we have pp, > a - @p,. [

This is obvious, since we have p,, —a- gy = Tr((p—a-0)Ep) > 0.

5.2 Bounds for the Fidelity Model

Ambainis et al. [1] proved that in the fidelity error model of parameter e (which they called the
“general error model”), the maximal fidelity of a protocol is 1 — 22—;219%6 If the protocol has
n qubit pairs as input, k perfect EPR pairs as auxiliary input, and outputs m qubit pairs. In a
special case where k = 0 (no auxiliary input) and m = 1 (only one pair is output), the maximal

fidelity is 1 — 52— & < 1 — €/2. In other words, no “interesting” entanglement distillation protocols

27 —12
exist for the fidelity error model. Their result is tight, in that they also construc;ned a protocol,
namely the “Random Permutation Protocol”, which achieves a fidelity of 1 — 2";—;2%6

13



One can modify this protocol to eliminate communication. The resulting protocol has fidelity
about 1 — %e (therefore communication almost doesn’t help at all in this case). We also have a
lower bound that matches the protocol up to exponentially small terms.

Theorem 3 (a) There exists a probabilistic 0-bit entanglement distillation protocol of fidelity

1-— %22,1—36 with respect to the fidelity model of parameter e.

(b) If 2223—7116 < %, then any probabilistic 0-bit entanglement distillation protocol has fidelity at
most 1 — %2223—7116 with respect to the fidelity model of parameter e.

The proof to this theorem is postponed to Appendix B.

The situation for conditional fidelity is very different. Ambainis et al. proved that good pro-
tocols exist with high conditional fidelity. In particular, the following result can be easily derived
from [1]:

Theorem 4 [1] For every n and s < n, there ezists probabilistic s-bit entanglement distillation
protocols of conditional fidelity 1 — 275 /(1 — €) with respect to the fidelity model of parameter e.

Proof’s sketch: Consider the “Simple Random Hash” protocol in [1]. The original construction
for this protocol in [1] has (2n+2) bits of two-way communication. But a close examination reveals
that 1 bit of one-way communication suffices. In the original construction, Alice sends 2n bits to
Bob to establish a common random string, which are not needed for a probabilistic protocol. In
the original protocol, Bob also sends 1 bit of his measurement result back to Alice. This bit can
also be eliminated in our model, since we allow one player (normally Alice) to output a SUCC or
FAIL symbol at the end of the protocol. We then repeat the simplified 1-bit protocol for s rounds
sequentially, and obtain an s-bit protocol of conditional fidelity 1 —27%/(1 —¢). [

Notice that this protocol only consists of one-way communication. Also notice this protocol is ideal,
in that if the input is the perfect EPR pairs ®,, then the protocol always succeeds.

Therefore, to achieve a conditional fidelity of 1 — 4, only log(3) — log(1 — €) bits of communi-
cation is needed in the fidelity error model. Next, we prove a lower bound on the communication
complexity.

Theorem 5 For any probabilistic s-bit protocol of ideal success probability p, its conditional fidelity
is at most 1 — ep/25T! with respect to the fidelity model of parameter e.

Immediately from the theorem, we obtain a log(})—log(%)—1 lower bound on the communication
complexity for ideal protocols of conditional fidelity 1 — §. In the usual setting where € is a
constant, our lower bound matches the upper bound from Theorem 4, up to an additive constant.
Interestingly, the theorem is proven for protocols that only output 1 qubit pair. However, this lower
bound matches the upper bound of the Simple Random Hash protocol, which in fact outputs many

qubit pairs. In this sense, the communication complexity is quite independent from the yield of the
EDPs.

Proof: WLOG we assume the protocol only outputs one qubit pair. Consider a particular input
state

I
po = (1—6’)<I>n+e’-27n (11)
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It is a mixture of the perfect EPR pairs ®,, (with probability 1 — €’) and the completely mixed
state 1= (with probability €'). Notice that F(g#z) = 3. So if we set ¢ = 2223—7116, then we
have F(p) = 1 —e. We shall prove that no deterministic, s-bit protocol has fidelity more than
1 — 2=+ Dep over state pg, which will imply that no probabilistic protocol can have fidelity more
than 1 — 2=6+tDep. too.

We fix a deterministic protocol P. WLOG, we assume it proceeds in rounds: in each round,
one of the two parties (Alice or Bob) applies a super-operator £ to his or her share of qubits, and
then sends one (classical) bit to the other party. The protocol consists of s rounds, with one bit in
each round. Finally, Alice outputs the special symbol, determining if the protocol succeeds or fails.

To analyze the behavior of the protocol P over the input pg, we consider how P behaves over
state ®,, and state 2%, respectively. We use p (resp. ¢q) to denote the probabilities that P succeeds
over state ®,, (resp. 2%) Notice p is in fact the ideal success probability of protocol P. Then it is
easy to see that
(1=€e)p- F(P(®n)) + €q- F(P(zx))

(1-€)p+eq

F(P(po)) = (12)
Notice that we always have F¢(P(®,)) < 1. Since 22% is a disentangled state, 73(22%) is also
disentangled.

By Lemma 1, we have F“(’P(Q%n)) < 1/2. We shall prove that

q>p°?°, (13)
which will imply that
(1 _ 6') + 6/p/2s—|—1 G'p L
F(P < =1- . <1 —ep/257F 14
(Pleo)) < (1-¢)+ep/2s 25711 - 2s2_1elp) - @/ (4

Now we prove that ¢ > p2/2°. We analyze two cases separately: in case I, the state ®,, is the
input to the protocol; in case II, the state 22% is the input to the protocol. For each case, we keep

track of the reduced density matrices of Alice and Bob. In case I, we use T,E’A and T,}B to denote

the reduced density matrices of Alice and Bob after the k-th round; in case II, we use T,%I’A and

T,EI’B, respectively. For k = 0, we define the Tg’A, Tg’B, TgI’A, and TgI’B to be the density matrices
at the moment that protocol starts.

We give more definitions: after the k-th round, there are 2¥ possibilities depending on the first
k bits communicated. For any binary string ¢t € {0,1}*, we use O’}’A (resp. otI’B) to denote the
reduced density matrix of Alice (resp. Bob) after the k-th round in case I, conditioned on that the
first & bits communicated so far are [0], #[1], ..., {[k — 1]. We use p} to denote the probability that
this happens (that the first k& bits are ¢[0],¢[1],...,¢[k — 1]). Obviously we have p} = p£0 +p};1 for

any t € {0,1}*. Furthermore, we have the following equalities

Sopho=1 (15)

te{0,1}*
LA LA
Y. omeot = (16)
te{0,1}k
I,B LB
o opio? =y (17)
te{0,1}*
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We define O'}LA, U}I’B, and py for case II, similarly.

We use £ to denote the empty string. So we have pg = p? =1
One important observation is that when the protocol starts, the reduced density matrices for
Alice and Bob are identical in both cases:

La_ Ip_ ILA_

s 1
o) =0 =0 o = o (18)

2Tl

When the protocol proceeds, the reduced density matrices in two cases will become different,
since the state @, is an entangled state, while 22% is not. However, they cannot differ “too far”, as
we shall prove in the following lemma. (proof postponed to Appendix B).

Lemma 4 For all k=0,1,....5s — 1 and t € {0,1}*, p}- O'tI’A = a}I’A and p! - ag’B < O’}I’B.

Now we are ready to prove (13). After s bits are sent, Alice will decide whether to succeed
or fail. In case I, we use r; to denote the probability that Alice choose to succeed conditioned on

that the bits communicated are ¢[0],¢[1],...,t[s — 1]. Notice we have p% . O'}’A = a}I’A, and thus by

Lemma 4, we know that in case II, the success probability is at least p% - T
Therefore, we have

p= > mep (19)

te{0,1}¢

¢ > Y repiep (20)
te{0,1}s

which implies that

g > > rt-(pDQ (21)

te{0,1}
> 2w S @ (22
=Y t t " \Pt
te{0,1} te{0,1}
2
1
> 9 Z Tt'p¥ (23)
te{0,1}¢
2
p
= o (24)
This proves the theorem. [ |
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A Proofs of the Results for the Depolarization Model

Proof: [of Theorem 2]
Notice that by changing the basis, we can write the density matrix, p,, in another form:

pp=(1—p) [@T) (T + i—) - (100){00[ + [01)(01] + [10){10[ + [11)(11])

which gives another interpretation of the depolarization model: each EPR pair, is kept intact with
probability (1 — p), and is replaced by a completely mixed state with probability p.

This observation leads us to consider a related error model, namely the “random-corrupt”
model. In a random-corrupt model of parameter r, r EPR pairs are randomly chosen from the n
pairs and are “corrupted” — meaning being replaced by the completely mixed state }(|00)(00| +
|01)(01] + |10)(10| + |11)(11]).

It is easy to see that a depolarization error model of parameter p is simply a mixture of the
random-corrupt models, with probability (I})p"(1 —p)" " being of parameter r.

We shall prove that the maximal fidelity of any 0-bit protocol over the random-corrupt model
of parameter r is 1 — r/2n. This will imply our theorem, since we have

n

> (:)p’"(l -p)" (1 - %) - g_

r=0

As in the proof of Theorem 1, we only consider deterministic protocols.

We present more notations and definitions. As extended indicator vector, often denoted by u,
is an n-dimensional vector, whose each entry is an element from {00, 01, 10,11, x}. Its degree is the
number of entries that are not . There are 4" (’:) extended indicator vectors of degree r. Each
extended indicator vector u corresponds to a unique bipartite state |1y) in the following way:

10)%10) if v[j] = 00
n—1 |0)A 1)B ifwlj] =11
|Yu) = X | ¢;), where |¢;) =< [1A0)E  if v[j] =10
g ’ ! |1)4] 1) ifv[;'] =11
ot if v[j] = *

We call such an |1y) an ezxtended error state.

An 2n-dimensional 0-1 vector z is consistent with an extended indicator vector u, if z[j]; z[n +
j] = u[j] for all j such that v[j] # *, and z[j] = z[n + j] for all j such that v[j] = *. We write
this as  C u. There are 2" " 0-1 vectors z consistent with an indicator vector of degree r. We
view z as the concatenation of 2 n-dimension vectors: z = [;7, and we write them as [ = LT(z)
and r = RT(z).

With the notations, we can write the extended error states as

b= g 3 |UT)RT@)” (25)

We define the discrepancy of x to be DIS(z) = LT(s) & RT(s), where @ stands for bit-wise
XOR. The degree of discrepancy of x is |DIS(z)|, the Hamming weight of DIS(x). Clearly, there are

(g) 2™ 0-1 vectors of dimension 2n having degree of discrepancy d. Furthermore, if £ has degree of
n—d)

discrepancy d, then the number of degree-r extended indicator vectors u such that  C u is (T_ 4)
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This is because for every j such that z[j] # z[n + j], we must have u[j] = z[j]; z[n + j] in order to
have z C u. So the only freedom for u is to put (n —r) *’s in the n — d places where z[j] = z[n + j].

Now we consider an arbitrary 0-bit protocol. We model it as Alice and Bob both applying a
unitary operation to their share of qubits, outputs the first qubit and discard the rest. Suppose the
unitary operators of Alice and Bob are U4 and Ug. We denote the states under these operations
by

UA|$> — |¢w)
UB|$> — |¢w>

Then as in the proof of Theorem 1, we shall prove that

Y| Y WU (e U UaeUp)lpu) | <41 -5)  (26)

47 (;‘l) degu=r UE{I,X7Y5Z}

which will imply our theorem.
Notice that

(Ua®Up)lvu) = 55 /2 > 1T @) ¥R T (@)

zCUu
and so we have
1
(u|Ua®@ Up)' (U@ U (Us@UB)lYu) = 5o D D (01T U1 61T (URT@) U 1¥RT()
zCUyCUu

So we only need to prove that

2n—|—r Z DD D (AT UlTy) - (WRT @) (U TYRT ) < 4(1- %) (27)

deg u=rzCUuyCuUve{l,X,Y,Z}

By Cauchy-Schwartz, we have

DX Y Tw U T  WRTw U ¥RT )

degU=rzCuyCuUe{l,X,Y,Z}

(Z DD |<¢LT(z)|U|¢LT(y))|2)

degU=r zCUyCUUE{I,X,Y,Z}

2

1
2

(Z S0 > WRTw U vRT, >)

degu=rzCuyCuUe{I,X,Y,Z}

Now we estimate

Yo 22 D letwUldTe) P

degu=rzCUuyCUUE{l,X,Y,Z}

Notice we can write z as z = LT(z); (LT (z) @ DIS(z)) and y as y = LT (y); (LT (y) @ DIS(y)). If
there exists an extended indicator vector u such that £ C u and y C u, we must have DIS(z) =
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DIS(y). This is because that for every j such that DIS(z)[j] = 1, z[j] and z[n + j] differ. Thus we
must have v[j] = z[j]; z[n + j], which implies that v[j] = y[j]; y[n + j], and DIS(y)[j] = 1. In fact,
for every j such that DIS(z)[j] = 1, we have z[j] = y[j] and z[n + j] = y[n + j].

So we have

o2 D et UleTe) P

degu=rzCuyCuUe{l,X,Y,Z}
= D > X Ul . 1
a€{0,1}" be{0,1} U€{I,X,Y,Z} c€{0,1}" deg u=r: [(a;(a®dc)) CU]A[(b;(bDc))CU]

by a substituting a for LT(z), b for LT(y), and ¢ for DIS(z).
Now we fix a and b, and compute

2. 2 !
ce{0,1}™ deg U=r: [(a;(a®c)) EUJA[(b;(bBc))EU]

We define k = |a @ b|. For every j where a[j] # b[j], we must have c[j] = 0 and u[j] = *. For every
J where a[j] = b[j], if we have c[j] = 1, then we must u[j] = a[j]; (a[j] ® 1); if we have c[j] = 0, then
u can be either a[j];alj] or *. Therefore, of n — k positions where a[j] = b[j], r would be chosen
where u has a non-* entry. Of these r places, one has the freedom to choose c[j] = 0 or c[j] = 1.
For all other places, c[j] = 0 and u = *. So we have

> > =7 (")
c€{0,1}" deg U=r: [(a;(ac))TUA[(b;(bc))CU]
In other words,

SEY Y lareltlargt- XX Xl ("0

deg U=r zCUYCUUE{I,X,Y,Z} ae{0,1}" be{0,1}» Ue{I,X,Y,Z}
(28)
Since | ¢4)’s are orthogonal, we have

DD > Kga Ul <22

a b Ue{l,X,Y,Z}

Also by Lemma 2, we have

D e U] pa)? < 27

Therefore

Z Z Z I<¢a|U\¢b)|2.2r.(”-I;&@b\)

ae{0,1}" be{0,1}" Ue{I,X,Y,Z}

n n—1 n—1
< Siwwisar- 2| -T2 (M0) XX X e
a a€{0,1}" b€{0,1}" UE{I,X,Y,Z}

< ontrtl [ () _ (M 1 4oontr+2 (T 1
o T r T
_ ontr42( T -
=2 (r) (1 Zn)

which implies (27), which implies the theorem. [ ]
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B Proofs to the Results in the Fidelity Model

Proof: [of Theorem 3,a] Our protocol is a modification of the random permutation protocol of

1.

No-communication Random Permutation Protocol.

1. Using the shared random string, Alice and Bob generate a uniformly random permutation
m € S and z1 € {—1,1}, 29 € {—1,1}, ..., zon € {—1,1}.

2. Alice and Bob apply the transformation U mapping U|i) = (—1)%|n(3)) to their qubits.
3. They output the first EPR pair and trace out the rest.

Note that if they are given the perfect state ®,, then U ® U|®,) = ®,, and the output is a
perfect EPR pair. If the starting state is not perfect, then the first two steps “symmetrize” it.

Claim 5 Let p be the mized state obtained after the first two steps. Then,

p = 1ol @n){(®n | + p1p1 + p2p2 + P3p3

where p1 s a uniform mizture of 2" states |i)|i), p2 is a uniform mizture of 2™(2"™ — 1) states
D) +13)9), 5 # i, ps is a uniform migture of 2(2" — 1) states —(|4)| j) = 5)|1)), j # i
and Do, P1, P2, P3 € R.

Proof: We divide the transformation into two parts: U = U"U’, U|'Z.> = (=1)%, U"]i) = | n(3)).
Let p’ be the intermediate density matrix after applying U’. Then, the only nonzero entries in p’
are | )| 4y (@ [(i|, | )| 9) G |G|, |9 3)E G |, [4)|7){j |(¢]. Applying U" after that makes all entries of
each type equal.

Let a, b, c,d be their values. Then, we can set py = 2"a, p1 = 2"(b — a), po = 2" (2" — 1)(c + d),
ps = 22"~ 1)(c - d). .

We have F(po) = 1, F(p1) = 5 and F(ps) = F(p3) = 0. We note that

1
p0+2—nP121—€ (29)

because each of states U @ U| ) has the same fidelity as | 1) and fidelity is convex. We can rewrite
(29) as Z=p1 +po+p3 < e

Outputting the first EPR pair and tracing out the rest transforms pg into a state of fidelity 1,
p1 into a state of fidelity 1/2 and py and p3 into states of fidelity (27~ —1)/2(2" — 1). Thus, the
final fidelity is 1 — 4,

5o L +3-2n*1—1( ) < :’,-2”*1—16_§2n—2/36
Pt T e —qy WP S e Ty C T g 1
|
Proof: [of Theorem 3,b] Let p be the mixture of | ®,,)(®,, | with probability 1 — 222;—7:16 and the

completely mixed state in 2" x 2™ dimensions with probability 2223—7:16. Since the perfect state has
fidelity 1 and the completely mixed state has fidelity 22%,, this state has fidelity 1 — e.
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W.l.o.g., a no-communication protocol consists of Alice applying Uy, Bob applying Ug and each
of them outputting the first qubit.

Let p4 be the density matrix of Alice’s first qubit if she starts with her system in 2"-dimensional
completely mixed state. As any density matrix on one qubit, p4 has can be decomposed into mixture
of two orthogonal one-qubit states (its eigenstates)

pa =Ml pa)(Wha |+ No| vi) (w7 |

where A1 o are the eigenvalues of p4. Since eigenvalues of a density matrix must sum up to 1, we
can assume that \; = % + 34 and g = % —d4, 64 > 0. Let pp be the density matrix of Bob’s
first qubit if he starts with his system in 2"-dimensional completely mixed state. We define | g),
|95), 0p similarly. Let § = max(d4,0p).

Claim 6 If the starting state is ®,, the fidelity of the final state is at most 1 — §2.

Proof: W.lo.g. assume that § = d 4.

Consider Alice’s part of ®@,,. It is the completely mixed state on Alice’s 2" dimensional system.
Therefore, Alice’s output qubit will be in the state p4. This means that the fidelity of the state
output by Alice+Bob and |00) + |11) is at most the fidelity between p4 and 3 (density matrix of
Alice’s part of %(\ 00) + |11))).

Let U be the unitary transformation that maps |0) to |14) and | 1) to |%%). Then,

1. 1. s+d 0 1

2
1 1 1 1 1 1 1 1
= R — R — — = — ——2<— ——2 = —2_
(\/i‘/2+5+\@‘/2 5) /5 5_2+<2 5) 1-46

Claim 7 If the starting state is the completely mized state in 22" dimensions, the fidelity of the
final state is at most i + €.

Proof: Since the completely mixed state is the tensor product of completely mixed states of Alice
and Bob, the final state of output qubits is p4 ® pp. This state is a mixture of | 9) ® |9'), where
|4) (or |¢')) is one of |44) and |¢) (or [4p) and | %)) with probabilities (5 + 64)(5 + dB).
Notice that 1 1
- i *\ 4 1 1yx
7 ﬁ(liﬁ)llﬁ) [ (7))

for any one qubit state |1). In particular, we can take |1) = |14). Let a = |(3%|¥5)|?>. Then,
the fidelity of states |14) ® |9p) and |9%) ® |15) is £ and the fidelity of states |¢4) ® [13) and
|94) ® |9p) is 152. Therefore, the overall fidelity of the final state is

(100) + [ 11)) =

2 2 2 2 2 2 2

_2 (l + 2(5,4(513) + ! ; ? (1 - 2(5A5B) < % (% + 2‘SA‘SB> <

a ((% F04)(5 +08) + (5~ 8a) (5 - 53)) Ll ((l F6a)(5 — 6m) + (5~ 0a)(5 + 53))

2\2
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Therefore, the fidelity of the protocol on p4 is at most

22n 9 2n 1 9 3 22n

If Alice and Bob share randomness, we can fix one value r for randomness and take U4 and Up for
this 7. The bound of equation (30) applies for any particular r, Therefore, it also applies on the
average over all r. [

(1-

(30)

Proof: [to Lemma 4] By induction. The base case is obvious. Now the inductive case. Consider
the situation at the end of the k-th round. Suppose the first k bits sent are ¢[0],¢[1],...,¢[k — 1].
WLOG we assume that in the (k + 1)-th round, Alice applies a super-operator £ to her share of
qubits, and send one bit a to Bob.

First we consider the density matrix for Alice. Notice that in general, a is the result of the
measurement from £. Therefore, we can “split” £ into two positive super-operators & and &1, such
that

Eop") = 2R .o (31)

LA Pii 1,4
Ei(oy™) = 1 "% (32)
t

Dy
Eolor) = . o0A (33)

Dy
Eo) = Thb.gllA (34)

Intuitively, & corresponds to the case that a = 0 is sent, and £; corresponds to the case that a =1
is sent.
By inductive hypothesis, we have

LA 1.4
prooyt <o) (35)

Combining (35), (31) and (33) with Claim 3 yields that

11
I LA I 11,4 Pio 114 11,4
Pro -0 = Eolpi -0 1) 2 (o) = iy "Opg 2 O (36)
t

Combining (35), (32) and (34) with Claim 3 yields that

II
11,4 Pa 11,4 I1,A
ptl Ut1 =51(pt )*51( ) = pH 1Ot 2O (37)
t

Now we consider the reduced density matrix for Bob. In case I, the qubits between Alice and

Bob are entangled. Therefore, the bit Alice sends to Bob carries some information about his state.

IB IB d

In terms of the density matrix, Bob’s reduced density matrix will “split” from o;," to 0o an

a};’f . Notice that Bob doesn’t perform any operation to his qubits, and thus we have

I
LB Pio Pt1 I,B
oy =71 tO T 031 (38)
Dy pt
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In case II, the qubits between Alice and Bob are disentangled. Therefore, the bit sent by Alice carries
no information about Bob’s own state. Thus Bob’s reduced density matrix remains unchanged.?

Thus we have

I, II,LB _ 1II,B
Oy =040 =01
By inductive hypothesis, we have
I LB II,B

proy 20y
Combining (38), (39), and (40), we have

I I.B I IB II,B
Do 0o = Pp-0y 20y

I IaB ]
P10y = proy 2oy

So the inductive case is proved.

%We assume that Alice and Bob don’t erase any information during the protocol.
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