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Abstract

We consider Total Functional NP (TFNP) search problems. Such problems are based on combinatorial principles
that guarantee, through locally checkable conditions, that a solution to the problem exists in an exponentially-large
domain, and have the property that any solution has a polynomial-size witness that can be verified in polynomial time.
These problems can be classified according to the combinatorial principle that guarantees the existence of a solution;
for example, PPP is the class of such problems whose totality is assured by the Pigeonhole Principle. We show many
strong connections between relativized versions of these search classes and the computational power—in particular
the proof complexity—of their underlying principles. These connections, along with lower bounds in the propositional
proof systems Nullstellensatz and bounded-depth LK, allow us to prove several new relative separations among the
classes PLS, PPP, PPA, PPAD, and PPADS.

1 Introduction

Traditionally the study of computational complexity has been largely a study of decision problems, or the
problems of deciding whether the input satisfies a certain property. Consequently, search problems, or the
problems of finding an object satisfying a desired property, have been studied in terms of their equivalent
decision counterparts. For example, the complexity of finding a Hamiltonian cycle of a graph (if one exists)
is studied indirectly via the problem of deciding if the input graph has a Hamiltonian cycle. A justification
for this indirect approach is that these search and decision problems are polynomially equivalent, i.e., they
are polynomial-time Turing reducible to each other.

However, when a search problem is total, i.e., every instance of it is guaranteed to have a solution, it seems
to have no polynomially equivalent decision problem. Such total search problems are commonplace in
computer science and mathematics: examples include optimization problems such as the problem of finding
a Traveling Salesman tour that is locally optimal with respect to the 2-OPT heuristic, and the problems in
game theory such as the problem of finding a Nash equilibrium given payoff matrices for two players. Thus
it is important for us to understand the complexity of total search problems, and we need to study them
directly.

In the papers [JPY88, Pap94b], total search problems are classified into classes according to the combi-
natorial principle in the finite domain that guarantees the totality of the problems. These classes contain
numerous natural problems, some of which are complete. For example, PLS, which is the class of efficient
local search heuristics, is characterized by the characterized by the parity principle “no odd-sized graph
has a perfect matching”; and PPP, which has relevance to cryptographic hash functions, corresponds to the
pigeonhole principle “there is no injective mapping from

�
n � 1 � to

�
n � .” The classes PPAD and PPADS are

defined in a similar manner (PPAD was called PSK in [Pap94b], and it is given this name in [BCE� 98]).
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Beame et al. [BCE � 98] reformulate the search classes in terms of type-2 search problems, or search prob-
lems whose input contains not only numbers and strings (type-1 objects) but also functions and relations
(type-2 objects) that are presented as oracles. This type-2 approach results in much cleaner definitions of
the above search classes: each class essentially becomes a collection of the type-1 instances of a single
type-2 problem. Thus the relationship among these classes can be studied through the corresponding type-2
search problems. In many cases we can obtain unconditional separations of type-2 search problems, which
imply the separations of the corresponding search classes by an oracle. Since an unrelativized separation
of any two search classes implies P �� NP, such relative separations are currently the best results we can
hope for. Various relative containments and separations among the above five search classes are obtained
this way in [BCE � 98, Mor01]. Moreover, since the complexity of the type-2 problems is directly related to
the ‘computational power’ of the corresponding combinatorial principles, the type-2 setting also provides
us with means to study various combinatorial principles in terms of their computational power, which is an
interesting mathematical endeavour by itself. This paper presents new results that are obtained by further
exploiting this connection.

We extend the framework of [BCE � 98] into a systematic method of formulating type-2 search problems
from combinatorial principles. The method is essentially as follows. Let Φ be a first-order existential
sentence over an arbitrary language such that Φ holds in every finite structure, and define QΦ to be the
corresponding type-2 search problem of finding a witness to Φ in a finite structure given as the input.
For example, the type-2 problem PIGEON of [BCE � 98] that characterizes the class PPP arises from the
following sentence: ���

x � �
α
�
x ���� 0 ���

�
	
x � y � �

x �� y � α
�
x � � α

�
y � �
�

which states that, if 0 is not in the range of function α, then there must exist two elements that are mapped
to the same element by α; this is the injective pigeonhole principle, which holds in every finite structure.

This paper shows that knowledge of the proof complexity of Φ reveals the relative strength of QΦ, where the
proof complexity of Φ is measured in terms of the size of the shortest proof of the propositional translation
of Φ in a given proof system. This close link between proof complexity and computational complexity
allows us to derive a number of results on the relative strength of search problems by utilizing the extensive
knowledge that has been accumulated in proof complexity research. Our approach is made possible by the
direct connection between combinatorial principles and search problems that becomes explicit in the type-2
setting.

Main Result 1: Let QΦ and QΨ be two type-2 search problems corresponding to the combinatorial principles
Φ and Ψ. If QΦ  m QΨ, then there are reductions from the propositional translation of Φ to the propositional
translation of Ψ in depth-1.5 tree-like LK and in Nullstellensatz. This result can be seen as a generalization
of a technique used in [BCE � 98], where a relative separation is proven using a Nullstellensatz degree lower
bound.

As corollaries, we obtain relative separations of search classes that have not been known, such as PLSA � PPAA.
Our result generalizes the proof techniques of Beame et al. and hence it provides alternative proofs for some
of their results via the proof complexity separations. Moreover, since the combinatorial principle character-
izing PPA has low-complexity proof in Nullstellensatz, it follows that the totality of every PPA problems
has a low-complexity proof. This is interesting because PPA contains the witnessing problems for the fixed
point theorems of Brower, Nash, and Kakutani [Pap94b].

We also provides a partial solution for the open question whether PLS is contained in PPP.

Main Result 2: There is no ‘nice reduction’ from ITERATION (which corresponds to PLS) to PIGEON
(which characterizes PPP).
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Our third main result is a sufficient condition for QΦ to be nonreducible to ITERATION.

Main Result 3: If Φ is a combinatorial principle that does not involve the ordering relation, and if Φ fails
in an infinite structure, then QΦ is not reducible to ITERATION.

This generalizes the relative separation in [Mor01], and it implies that, in a relativized world, PLS does
not contain any of PPP, PPA, and PPAD. This may be interpreted as evidence that efficient local search
heuristics are unlikely to exist for these classes. Main result 4 provides an alternative proof for Riis’s
independence criterion for the bounded arithmetic theory S2

2

�
R � [Rii93, Kra95].

This paper is organized as follows. Section 2 introduces basic definitions of search problems and the proof
systems that we use. The search classes of [JPY88, Pap94b, BCE � 98] are introduced here, and the known
relative separations are stated. In Section 3 we show how to translate combinatorial principles in first-order
logic into unsatisfiable propositional formulas and unsatisfiable set of polynomials. Section 4 contains our
Main Results 1 and 2. Section 5 presents some of the known proof complexity separations, which imply a
number of the search problem separations in Section 6. Section 7 is an exposition of Main Result 3. Section
8 contains concluding remarks and some open problems.

2 Preliminaries

Throughout this paper we write Vn to denote the set of all n-bit strings.

2.1 Search Problems

NP is the class of decision problems that are representable as
�
	

y � R
�
x � y � , where R is a polynomial-time

predicate such that R
�
x � y � implies � y �  p

�
� x � � for some polynomial p.

The corresponding NP search problem QR is the problem of finding, given x, y such that R
�
x � y � . The input

x is called an instance of QR and any y satisfying R
�
x � y � is called a solution for instance x. For every x,

QR

�
x � ��� y : R

�
x � y ��� denotes the set of solutions for instance x. Usually we omit the subscript R. We say

that Q is total if Q
�
x � is nonempty for all x. TFNP is defined to be the class of total NP search problems

in [MP91] (see also [Pap94a]); the same class is called VP (for Verification of solutions in Polytime) in
[Mor01]. A number of interesting subclasses of TFNP have been identified and studied: these classes
are PLS of [JPY88], and PPP, PPA, PPAD, and PPADS of [Pap94b, BCE � 98]. All of these classes
contain natural problems, some of which are complete (under an appropriate notion of reducibility). We
will formally define these classes below.

Beame et al. [BCE � 98] generalize the notion of search problem so that the instances of search problem
Q consist not only of strings, which are type-1 objects, but also functions and relations, which are type-2
objects. More formally, let R be a type-2 relation with arguments

�
α1 ������� � αk � x � y � , where x and y are strings

and for each i, 1  i  k, αi is either a string function or a string relation. R defines a type-2 search problem
QR in the usual way.

The complexity of type-2 relation, functions, and search problems is measured with respect to a Turing
machine that receives the type-1 arguments on its input tape and is allowed to access the type-2 arguments as
oracles [Tow90]. In particular, a type-2 function F

�
α1 ������� � αk � x � is said to be polynomial-time computable

if it is computed by a deterministic Turing machine in time polynomial in � x � with oracle access to α1 ������� � αk.
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2.2 Combinatorial Principles and Search Problems

Beame et al. [BCE � 98] introduce several type-2 search problems that correspond to the combinatorial
principles that characterize the search classes of [Pap94b]. We extend their approach into a systematic
method of defining type-2 search problems from combinatorial principles that are represented as sentences
of first-order logic with equality.

Let L be an arbitrary first-order language and let Φ be a sentence over L of the form

Φ �
�
	

x1 �����
	

xk � φ
�
x1 ������� � xk �

for some quantifier-free φ. Let us call such sentences
	

-sentences. As usual, we allow the equality symbol� in Φ even though we do not explicitly include it in L. Φ is interpreted in a structure M which defines the
universe of discourse and the meaning of constants, functions, and relations of L. Some symbols of L may
be designated as built-in symbols with which we associate predetermined interpretation.

Definition 1. Define a canonical structure to be a structure such that (1) the universe of discourse is Vn

for some n
�

1; and (2) every built-in symbol of L assumes the predetermined interpretation. We abuse the
notation and write Vn to denote the canonical structure with the set Vn the universe of discourse.

Throughout this paper the only built-in symbols we use are  and 0, and they are interpreted as the standard
ordering of n-bit binary numbers and 0n, respectively.

Assume that Φ holds in every canonical structure. Then the corresponding witness problem is the following:
given a canonical structure Vn, find a tuple � v1 ������� � vk ���

�
Vn � k such that φ

�
v1 ������� � vk � holds in Vn. We

formulate the witness problem as the type-2 search problem QΦ whose type-1 argument x specifies the
universe of discourse V � x � and whose type-2 arguments are the functions and relations of L. Built-in symbols
are not part of the type-2 arguments, since their meaning in V � x � is already fixed. Finally, since only the
length of x is used to define V� x � , we assume without loss of generality that the type-1 argument of QΦ is
always of the form 1n for n

�
1.

Let us introduce the combinatorial principles that are of particular interest in the study of search problems.
For readability we present them in implicational form; it is easy to see that all of them are

	
-sentences.

Moreover, all of them hold in every canonical structure.

f
�
0 � � 0 �

���
x � �

x � f
�
f
�
x � � � �

�
	
x � �

x �� 0 � x � f
�
x � � (1)���

x � �
f
�
x ���� 0 ���

�
	
x � y �

�
x �� y � f

�
x � � f

�
y � � (2)

g
�
0 � � 0 � f

�
0 � �� 0 �

���
x � �

x � g
�
f
�
x � � � �

���
x � �

x �� 0 � x � f
�
g
�
x � � � �

�
	
x � y � �

x �� y � f
�
x � � f

�
y � � (3)�
	

x1 � y1 � x2 � y2 � � �
x1 �� x2 � y1 �� y2 � � f

�
x1 � y1 � � f

�
x2 � y2 � � (4)

f
�
0 �	� 0 �

���
x � �

f
�
x � � x � �

�
	
x � �

x 
 f
�
x � � f

�
x � � f

�
f
�
x � � � (5)

Principle (1) states that, if the function f matches every element to either a unique partner or itself, and if 0
is matched to itself, then there exists another element that is matched to itself. This is essentially the parity
principle ‘no odd-sized graph has a perfect matching’, and it holds in every structure whose size is even;
therefore, it holds in every canonical structure. LONELY is the corresponding search problem.

Principle (2) states that if 0 is not in the range of f , then there exist two distinct elements that are mapped to
the same element by f ; this is the injective, functional pigeonhole principle, and the corresponding search
problem is PIGEON.
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Principle (3) is a weaker variant of the above pigeonhole principle. The additional assumptions essentially
state that g is the inverse of f , and 0 is not in the range of f . This is the onto-pigeonhole principle, and the
corresponding search problem is OntoPIGEON.

Principle (4) is the weak pigeonhole principle, which is similar to (2) but the domain size is the square of
the range size. We call the corresponding problem WeakPIGEON.

Principle (5) is the iteration principle of [BK94, CK98], and we call the corresponding type-2 problem
ITERATION. It states that, if f is nondecreasing and f

�
0 � � 0, then there exist x such that f

�
x � � x and

f
�
x � � f

�
f
�
x � � . Note that it contains a built-in ordering  . It is equivalent to the principle ‘every dag with

at least one edge has a sink’.

2.3 Reductions

Let Q be a type-2 search problem. Q can be used as an oracle in the following way. A Turing machine M
presents a query to Q in the form

�
β1 ������� � βk � 1m � , where each of β1 ������� � βk is a polynomial-time function or

relation. In the next step M receives in its answer tape some z that is a solution for Q
�
β1 ������� � βk � 1m � .

Let Q1 and Q2 be two type-2 search problems. We say Q1 is Turing reducible to Q2 and write Q1  T Q2

iff there exists an oracle Turing machine M that, given an instance
�
α1 ������� � αk � 1n � of Q1, outputs some

z � Q1

�
α1 ������� � αk � 1n � in polynomial-time using α1 ������� � αk and Q2 as oracles, where each query to Q2 is of

the form
�
β1 ������� � βl � 1m � with m � nO

�
1 � and with each βi for each 1  i  l, a function or a relation that is

polynomial-time computable using α1 ������� � αk as oracles.

Q1 is many-one reducible to Q2, written Q1  m Q2, if Q1  T Q2 by an oracle Turing machine that asks at
most one query to Q2. We write Q1 � m Q2 if Q1 and Q2 are many-one reducible to each other.

Let Q1 and Q2 be type-2 search problems, and assume that the type-2 arguments of Q1 and Q2 are α1 ������� � αk

and β1 ������� � βl , respectively. Assume that Q1  m Q2. Given an instance
�
α1 ������� � αk � 1n � of Q1, the many-one

reduction composes a query
�
β1 ������� � βl � 1m � to Q2, where m  p

�
n � for some polynomial and each βi is

polynomial-time computable using oracles α1 ������� � αk .

For each v �
�
Vm � arity

�
βi � , where the polynomial-time algorithm for βi gives rise to a decision tree T n

βi � v, which
encodes all possible computations of βi

�
v � in terms of α1 ������� � αk. More specifically, each internal node of

T n
βi � v is a query to some α j with N � 2n outgoing edges, one for every possible way the query to α j can be

answered. The leaves are labeled by possible values for βi

�
v � . Note that the height of T n

βi � v is polynomial in
n and polylogarithmic in N.

These trees have the following two defining properties:
(i) given any set of equations � βs1

�
v1 � � w1 ������� � βst

�
vt � � wt � that constitute a solution to Q2, take one path

from T n
βsi � vi

that leads to a leaf labeled wi for each i. The queries along these t paths define a portion of

α1 ������� � αk. This portion constitutes a solution to Q1.
(ii) each tree is complete in the sense that whenever α j is queried at an internal node, there is an edge fanning
out of that node for each possible value of α j .

We will use the above properties in the proof of our main theorem

Definition 2. Let Q be a type-2 search problem. Then C
�
Q � is defined as

C
�
Q � � � Q � : Q � is type-1 and Q �  m Q ��� TFNP �

Now we are ready to formulate the search classes of [JPY88, P94] in terms of the type-2 search problems.
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PPA stands for Polynomial Parity Argument, and it is characterized as PPA � C
�
LONELY � . This class

contains the problems of finding various economic equilibria, some of which are complete. Polynomial
Pigeonhole Principle is defined as PPP � C

�
PIGEON � , and it has relevance in the study of cryptographic

hash functions. These two definitions are from [BCE� 98]. PPAD is an analogue of PPA in the directed
graphs, and hence the name (D is for ‘Directed’). PPAD � C

�
OntoPIGEON � . Beame et al. characterizes

PPAD by different combinatorial principles, but they are equivalent to the onto-pigeonhole principle, which
we use in this paper. Polynomial Local Search is the class of optimization problems for which efficient
local-search heuristics exist, and PLS � C

�
ITERATION � . This characterization is essentially in [CK98] in

the context of bounded arithmetic. Also [Mor01] contains a direct proof in a complexity theoretic setting.
For more information on these classes, see [JPY88, Yan97] for PLS and [Pap94b] for the other classes.

Theorem 3. [CIY97] Let Q1 and Q2 be type-2 search problems defined by
	

-sentences. The following are
equivalent: (i) Q1  m Q2; (ii) for all oracles A, C

�
Q1 � A � C

�
Q2 � ; and (iii) there exists a generic oracle G

such that C
�
Q1 � G � C

�
Q2 � G.

Theorem 4. [BCE � 98] The following hold: (i) OntoPIGEON  m LONELY; (ii) OntoPIGEON  m

PIGEON; (iii) LONELY and PIGEON are incomparable, i.e., neither is many-one reducible to the other.

The above result completely characterizes the relationship among PPAD, PPA, and PPP. However, PLS is
not discussed in [BCE � 98], and progress for resolving the relative complexity of PLS is made in [Mor01]:

Theorem 5. [Mor01] OntoPIGEON is not many-one reducible to ITERATION.

Thus, PLS contains none of PPP, PPA, and PPAD in a relativized world. However, it was still unresolved
whether PLS is contained in any of the other classes, and we will present below solutions to some of these
open problems.

2.4 Proof Systems

We consider two propositional proof systems in this paper. The first is called propositional LK or sequent
calculus. Let A1 ������� � Ak � B1 ������� � B � be propositional formulas over some set of variables X̄ and the connec-
tives � � � � � . A sequent is a syntactic object of the form

A1 ������� � Ak ��� B1 ������� � B � �
with the intended meaning

A1 � ����� � Ak � B1 � ����� � B � �
The depth of such a sequent is the maximum over the depths of each of the formulas. LK usually includes
the following rules (A � B are formulas, ∆ � Γ � ∆ � � Γ � are sets of formulas):

Logical Axiom: A ��� A Weakening: Γ ��� ∆
Γ 	
��� ∆ 	 for Γ � Γ � � ∆ � ∆ �

Contraction: A � A � Γ ��� ∆
A � Γ ��� ∆ � Γ ��� ∆ � A � A

Γ ��� ∆ � A Exchange: A � B � Γ ��� ∆
B � A � Γ ��� ∆ � Γ ��� ∆ � A � B

Γ ��� ∆ � B � A

� -introduction: A � B � Γ ��� ∆
A  B � Γ ��� ∆ � Γ ��� ∆ � A Γ ��� ∆ � B

Γ ��� ∆ � A  B � -introduction: Γ ��� ∆ � A � B
Γ ��� ∆ � A � B � A � Γ ��� ∆ B � Γ ��� ∆

A � B � Γ ��� ∆

� -introduction: Γ ��� ∆ � A� A � Γ ��� ∆ � A � Γ ��� ∆
Γ ��� ∆ � � A Cut: A � Γ ��� ∆ Γ ��� ∆ � A

Γ ��� ∆
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An LK derivation of B from A1 ������� � Ak is a sequence of sequents S1 ������� � Sm where Sm is ��� B and each Si

either follows via one of the above rules from earlier sequents or is � � A j for some j. A refutation is a
derivation of � � . The size of a derivation is the sum of the sizes of all formulas mentioned in the derivation,
while the depth is the maximum depth of any sequent in the derivation. A derivation is called tree-like if
each sequent is used at most once to derive a new sequent. LK is well-known to be derivationally sound and
complete.

Nullstellensatz is an algebraic proof system. Let F be a field and let X̄ be a set of variables. Given poly-
nomials q1 ������� � qm � p � F

�
X̄ � , a Nullstellensatz derivation of p from q1 ������� � qm is another set of polynomials

r1 ������� � rm � F
�
X̄ � such that

r1q1 � ����� � rmqm
� p �

identically. A refutation is a derivation of 1. The degree of a Nullstellensatz derivation is the maximum over
the degrees of riqi. Nullstellensatz is derivationally sound and complete over any field F in the sense that p
can be derived iff it is in the ideal generated by q1 ������� � qm.

3 Propositional Translations of Type-2 Problems

Let Φ be an
	

-sentence over language L. We say that Φ is basic if its quantifier-free part is in DNF and
contains no nesting of symbols of L. More specifically, if Φ is basic then every atomic formula in Φ is of
the form R

�
x � , y � f

�
x � , or x � y, where R is a predicate symbol and f is a function symbol.

For a type-2 search problem QΦ defined by a basic
	

-sentence Φ, CNF
�
QΦ � n � for each n will be the unsat-

isfiable propositional CNF which (falsely) states that QΦ is not total. It is the result of a standard translation
of � Φ into propositional CNF formulas due to [PW85]. The following is a more detailed description of the
translation: There will be a set of variables in CNF

�
QΦ � n � for each type-2 argument α for QΦ. If α is an

m-ary relation, then there will be a propositional variable X α
v for each m-tuple v in the domain of α. If α is

a function, we add propositional variables for the relation graph
�
α � : X α

vw for each v in the domain of α and
each w in the target of α.

More specifically, CNF
�
QΦ � n � is formed as

�
x1 � � � � � xk � Vn

φ �
�
x1 ������� � xk � �

where φ � is the CNF that is the negation of φ, and where each atom is replaced by its corresponding propo-
sitional variable or propositional constants. If an atom contains � or any built-in predicate or function, then
it is replaced with either true or f alse, depending on their truth value in the canonical structure Vn.

In addition, for each m-ary function in QΦ and each m-tuple, we add clauses to CNF
�
QΦ � n � stating that the

function is well-defined on that input: for each v̄ in the domain of α, define

de fn

�
Xα

v̄ � � syn �
w � Vn

Xα
v̄w

and
singlede fn

�
Xα

v̄ � � syn

�
u � w � Vn

� Xα
v̄u� � Xα

v̄w�

Notice that all the clauses in CNF
�
QΦ � n � have constant size except the de f clauses, which have size

�Vn � � N. The number of clauses in the CNF is polynomial in N. Let CNF
�
QΦ � be the family of formulas� CNF

�
QΦ � n ��� n ��� .
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If we start with Φ that is not basic, we modify it to obtain a basic sentence as follows. If Φ contains a nesting
of symbols, say y � f

�
g
�
x � � , then replace it with

�
	
z � �

z � g
�
x � � y � f

�
z � � . Treat the other cases f

�
x � � g

�
y �

and R
�
f
�
x � � in a similar way. After all atoms are made basic, then make the whole sentence prenex with the

quantifier-free part in DNF. Let Φ� be the resulting
	

-sentence. It is clear that QΦ � m QΦ 	 .

We will also need translations of search problems into polynomials. We start with CNF
�
QΦ � : consider those

clauses of CNF
�
QΦ � that correspond to solutions of QΦ (call these clauses the solution clauses). Each one

can be converted into a polynomial in the usual way: each literal forms a linear factor of the polynomial,
where a positive literal x becomes a factor 1 � x and a negative literal � x becomes a factor x. In addition, we
add polynomials forcing each variable x to take on 0/1 values: x � x2.

We insist each type-2 function α is well-defined on each of its domain elements v with the following poly-
nomials:

polyde fn

�
Xα

v̄ � � ∑
w � Vn

Xα
v̄w� 1 �

polysinglede fn

�
Xα

v̄ � � � Xα
v̄wX

α
v̄w	 � w� w � � Vn; w �� w � � �

Call the set of all the above polynomials poly
�
QΦ � n � . Let poly

�
QΦ � be the family � poly

�
QΦ � n ��� n ��� .

4 Search problem reductions and proof complexity reductions

4.1 Bounded-depth LK

Definition 6. Let S � R be two families of propositional formulas. We say S has a bounded-depth LK refu-
tation reduction to R , written S  bd � LK R , we can derive a substitution instance R � of R from S in quasi-
polynomial-size bounded-depth LK.

Assume we have a search problem reduction from an instance of QΦ of size n to an instance of QΨ of size
m, and that the reduction gives rise to decision trees T � � T n � . Call the set of variables of CNF

�
QΦ � n �

X̄ , and the set of variables of CNF
�
QΨ � m � , Ȳ . Consider a Y � Ȳ corresponding to the equation β

�
v̄ � � w,

where v̄ � Vm, w � Vm and β is one of QΨ’s type-2 objects. Let T
�
Y � be the DNF over X̄ that encodes all

paths in T n
β � v̄that lead to w. For any formula A over Ȳ , let T

�
A � be a substitution instance of A where T

�
Y �

is substituted for each variable Y .

Theorem 7. Let QΦ � QΨ be two type-2 NP search problems defined by first order sentences. If QΦ  m QΨ,
then CNF

�
QΦ �  bd � LK CNF

�
QΨ � . In fact, the derivations are tree-like and all formulas mentioned can be

represented as decision trees over type-2 objects of QΦ with depth polynomial in n.

Proof. Assume CNF
�
QΦ � n � is reducible to CNF

�
QΨ � m � by trees T . We derive T

�
CNF

�
QΨ � m � � from

CNF
�
QΦ � n � Let β be one of QΨ’s type-2 objects and let v̄ � Vm.

(i) We first show how to derive D �
syn T

�
de f

�
Y β

v̄ � � . D is just dis j
�
T � , the disjunction of all paths in T � T β � v

n .
Call the paths P1 ������� � Pk. Let α1

�
v̄1 � ������� � α �

�
v̄ � � be the queries to QΦ that appear in T . We derive the sequent

de f
�
Xαi

v̄i � ������� � de f
�
Xα �

v̄� � � � D �
and then cut the formulas on the left. The derivation will be an upside-down copy of T itself. For a given
leaf, let Pi be the path that leads to that leaf. In the proof, the leaf will be labeled with the sequent

Pi � � P1 ������� � Pk �

8



In general, for a node x of T , let P be the path from the root to x and let αi1

�
v̄i1 � ������� � αi j

�
v̄i j � be the queries

in the subtree of T rooted at x. In the proof, node x will be labeled by

P� de f
�
X

αi1
v̄i1
� ������� � de f

�
X

αik
v̄i j
� � � P1 ������� � Pk �

This sequent is derived from the sequent at the children of x by � -introduction. Since T has quasi-poly size,
so will this derivation.

(ii) Now consider T
�
singlede f

�
Y β

v̄ � � . We show how to derive D �
syn � T

�
Y β

v̄ � w� � � T
�
Y β

v̄ � w	 � , for each pair

w �� w � . The formula T
�
Y β

v̄ � w� is just a disjunction of all paths in T � T β � v̄that lead to w, call them P1 ������� � P� .
Similarly, T

�
Y β

v̄ � w	 � is the disjunction of all paths in T that lead to w � : R1 ������� � Rk. Any pair of paths Pi � R j

must differ on at least one query. Say that on Pi, we have αi j

�
v̄i j � � wi j and on R j, αi j

�
v̄i j � � w �i j. Begin

with the sequents
Pi � R j � � X

αi j
v̄i jwi j

and Pi � R j ��� X
αi j

v̄i jw 	i j
�

for each i � j. By � - and � - introduction, we get

� X
αi j
v̄i jwi j � � X

αi j

v̄i jw 	i j
� Pi � R j ��� �

By weakenings and � -introductions, we get

� � X
αi j
v̄i jwi j � � X

αi j

v̄i jw 	i j
� i j � �

i

Pi � �
j

R j ��� �

Finally, by � -introduction, we get � � X
αi j
v̄i jwi j � � X

αi j

v̄i jw 	i j
� i j ��� D �

This derivation again has quasi-polynomial size.

(iii) Finally, consider a clause C of CNF
�
QΨ � that says that one of the criteria for solution fails. We derive

D � T
�
C � . Assume C mentions variables Y β1

v̄1 � w1
������� � Y βk

v̄k � wk
. For each 1  i  k, let Ti

� T βi
v̄i . Let P be all

k-tuples of paths �
�
P1 ������� � Pk � � P1 � T1 ������� � Pk � Tk � . If P � P violates C, then it must contain a solution

to Qφ. We can derive dis j
�
P � , the disjunction of all elements of P , just as we derived dis j

�
T � in (i). The

inconsistent tuples can be cut out; so can the those tuples that violate C, as follows: any P that violates
C must also violate a clause B of CNF

�
Qφ � , which rules out some potential solution to Qφ. Starting from

��� B, we get the sequent B � ��� , where B � is a set of literals that are the negations of those literals in B.
But B � must be a subset of P. Therefore, we can cut out P from ��� P . Now we have simply

� � P ���
where P � is the set of all consistent paths in P that satisfy C. Write C as l1 � ����� � � lk, where each li is either
Y βi

v̄i � wi
or its negation. If li is a negative literal, let T comp

�
li � be the disjunction of all the paths in Ti that don’t

lead to wi. Let g
�
li � � T

�
li � if li is positive and T comp

�
li � otherwise. For each path P � P � , there is an i such

that P contains one of the paths in g
�
li � . Therefore, it is easy to derive

� � g
�
l1 � ������� � g

�
lk �

from

� � P � �
Finally, using ��� dis j

�
Ti � and the cut rule, we derive

� � T
�
l1 � ������� � T

�
lk � �

which is D itself. Again this derivation has quasi-polynomial size.
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4.2 Nullstellensatz

We saw above that a poly-time reduction between search problems yields a quasi-poly-size bounded-depth
LK reduction between the corresponding propositional formulas. Here we show a similar connection to the
Nullstellensatz system.

Definition 8. Let F be a field and let X̄ and Ȳ be infinite sets of variables. Let P1 be an infinite family of
finite subsets of F

�
X̄ � and let P2 be an infinite family of finite subsets of F

�
Ȳ � . We say that P1 has a degree-d

Nullstellensatz reduction to P2 (P1  HN
�
d � P2), if, for any A � P1 there is a B � P2 and a set of polynomials

f̄Y � � fY � Y � Ȳ � F
�
X̄ � such that each polynomial in B

�
f̄Y

�
Ȳ � has a degree-d Nullstellensatz derivation from

A. B
�
f̄Y

�
Ȳ � is just the result of replacing each variable Y in each polynomial of B by fY .

Theorem 9. Let QΦ � QΨ be two type-2 NP search problems defined by first order sentences. If QΦ  m QΨ,
then poly

�
QΦ �  HN

�
d � poly

�
QΨ � for some d that is polynomial in n over any field.

Proof. Assume we have a search problem reduction from an instance of QΦ of size n to an instance of QΨ of
size m, and that the reduction is given by decision trees T � � T n � . We present a Nullstellensatz reduction
from poly

�
QΦ � n � to poly

�
QΨ � m � . Call the set of variables of poly

�
QΦ � n � X̄ , and the set of variables of

poly
�
QΨ � m � Ȳ . Consider a Y � Ȳ corresponding to the equation β

�
v̄ � � w, where v̄ � Vm � w � Vm and β is

one of QΨ’s type-2 objects. We substitute for Y a polynomial T
�
Y � that encodes all paths in T n

β � v̄that lead to
w in the following manner: given one such path p, consider each query on p to one of QΦ’s type-2 objects
α. If α is a function and p insists that α

�
v̄ � � � w � , then the polynomial tp will include the factor X α

v 	 w 	 . If α
is a relation and p insists that α

�
v̄ � � is true, then tp will include the factor X α

v̄	 ; while if p insists that α
�
v � � is

false, tp will include the factor 1 � X α
v̄	 . Essentially, tp is a polynomial which is 0 on assignments that deviate

from p at some point. The polynomial T
�
Y � is simply the sum of the polynomials t p for each such path p.

Note that the degree of T
�
Y � is polynomial in n.

We now claim that every polynomial in T
�
poly

�
QΨ � m � � has a low-degree Nullstellensatz derivation from

poly
�
QΦ � n � . T

�
poly

�
QΨ � m � � is the result of replacing all variables Y in all polynomials of poly

�
QΨ � m � by

T
�
Y � . Consider each type of polynomial in poly

�
QΨ � m � in turn. Observe that the solution clauses of QΦ

and QΨ enumerate the solutions of each of the search problems. If g
�
Ȳ � is a polynomial in poly

�
QΨ � m � that

corresponds to a solution clause, then each term of T
�
g
�
Ȳ � � includes as a factor a polynomial corresponding

to a solution clause of QΦ. Since g has constant degree, each term can certainly be derived from poly
�
QΦ � n �

in poly
�
n � -degree Nullstellensatz.

Now let g � poly
�
QΨ � m � be one of the 0/1 constraint polynomials: Y � Y 2. If X (alternatively, 1 � X ) is

a factor in one of the tp’s of T
�
Y � , then X � X 2 is a factor of tp � t2

p. Now we just have to worry about
generating polynomials of the form tptp 	 for tp � tp 	 in T

�
Y � : the paths p and p � are two different paths in the

same decision tree. Consider the first place where p and p� differ. If that place queries a type-2 function α
of QΦ on input ū, then something in polysinglede fn

�
Xα

ū � is a factor of tptp 	 . Otherwise, if that place queries
a type-2 relation α of QΦ on input u, then X α

u �
�
Xα

u � 2 is a factor of tptp 	 . Again, since g has constant degree,
T
�
g
�
Ȳ � � can be derived in polynomial degree.

If g � polysinglede fm

�
Y β

v̄ � for some type-2 function β and v̄ � Vm, then g looks like Y1Y2, where Y1
� Y β

v̄w

and Y2
� Y β

v̄w	 , w �� w � . Choose any tp in the sum T
�
Y1 � and any tp 	 in T

�
Y2 � . The paths p and p � are two

different paths in the same decision tree, so the situation is the same as above.

Finally, consider the case where g � polyde fm

�
Y β

v̄ � . Then T
�
g
�
Ȳ � � is the sum of the tp’s for all paths p in
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the tree T � T m
β � v̄. We prove by induction on the height of T that

s
�
T � � ∑

p � T
tp � 1

has a Nullstellensatz derivation from poly
�
QΦ � n � of degree height

�
T � . If height

�
T � � 0, then we consider T

to have one path p of length 0 and let tp
� 1. Hence s

�
T � � 0. Otherwise, let T have height k � 0. Consider

the tree T � , the subtree of T where every path from the root is truncated at length k � 1. By induction,
s
�
T � � � 1 has a Nullstellensatz derivation of degree k � 1. Consider any leaf l of T � that is not a leaf of T

and assume it queries type-2 object α on element ū in T . Let T �l be the tree T � with every T -child of l added
on. If α is a function, then s

�
T �l � � s

�
T � � � polyde fn

�
Xα

ū � tpl , where pl is the path from the root to l. If α is a
relation, then s

�
T �l � � s

�
T � � � 0. We know s

�
T � � s

�
T � � is just the sum of s

�
T �l � � s

�
T � � for all such leaves l.

Hence s
�
T � has a degree k Nullstellensatz derivation and T

�
g
�
Ȳ � � has a polynomial degree Nullstellensatz

derivation.

5 Proof Complexity Separations

In this section we show a number of proof complexity separations which, together with Theorems 7 and 9,
imply separations of type-2 search problems. Note that the CNF formulas CNF

�
PIGEON � , CNF

�
WeakPIGEON � ,

CNF
�
LONELY � , and CNF

�
WeakPIGEON � are equivalent to the CNF formulas whose proof complexity

have been studied extensively. CNF
�
ITERATION � is equivalent to the housesitting principle of [CEI96,

Bus98b].

Lemma 10. The following separations hold in bounded-depth LK:
(a) CNF

�
PIGEON � � bd � LK CNF

�
WeakPIGEON � .

(b) CNF
�
LONELY � � bd � LK CNF

�
PIGEON � .

(c) CNF
�
PIGEON � � bd � LK CNF

�
ITERATION � .

(d) CNF
�
LONELY � � bd � LK CNF

�
ITERATION � .

Proof. [PBI93, KPW95] show that CNF
�
PIGEON � requires exponential-size refutations in any bounded-

depth system. [BP96] show (b), and hence CNF
�
LONELY � requires exponential-size bounded-depth LK

refutations. On the other hand, [MPW00] show that CNF
�
WeakPIGEON � has quasi-poly-size 0.5-depth

LK refutations, and Lemma 11 below shows that CNF
�
ITERATION � has poly-size tree-like resolution

refutations.

Lemma 11. CNF
�
ITERATION � has poly-size tree-like resolution refutation.

Proof. Fix arbitrary n � � and let N � 2n. CNF
�
ITERATION � n � consists of the following clauses:

(i) � X0 � 0
(ii) � Xi � j for all i � j such that j 
 i
(iii) � Xi � j � � X j � j for all i � j such that i 
 j
(iv) � 0 � j � N � 1 Xi � j for every i
(v) � Xi � j � � Xi � k for all i � j � k with j �� k
For every i

�
1, define Ai to be the clause � j � i � X j � j. A1 is derivable from clauses (i), (iii), and (iv) for

i � 0. Similarly, for every i
�

1, the clause Xi � i � Ai � 1 is derived using (ii), (iii), and (iv). Thus, for every
i
�

2, Ai is derived by resolving Ai � 1 and Xi � 1 � i � 1 � Ai on Pi � 1 � i � 1. Finally, the empty clause is derived from
An

� � PN � N and PN � N , which is derived from (ii) and (iv).
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Lemma 12. The following separations hold for degree-d Nullstellensatz whenever d is polynomial in n:
(a) poly

�
PIGEON � � HN

�
d � poly

�
OntoPIGEON � over any field F.

(b) poly
�
ITERATION � � HN

�
d � poly

�
OntoPIGEON � over any field F.

(c) poly
�
PIGEON � � HN

�
d � poly

�
LONELY � over any field F of characteristic 2.

(d) poly
�
ITERATION � � HN

�
d � poly

�
LONELY � over any field F of characteristic 2.

Proof. [BCE � 98, Raz98] prove that poly
�
PIGEON � requires Ω

�
N � -degree Nullstellensatz refutations over

any field. [CEI96, Bus98b] prove the same for poly
�
ITERATION � (they call the principle “housesitting”).

On the other hand, poly
�
OntoPIGEON � has constant-degree Nullstellensatz refutations over any field. We

have the following polynomials (let Xi j say that pigeon i maps to hole j and let Yi j say that hole i maps to
pigeon j for 0  i � j 
 N):
(i)

�
∑N � 1

j � 0 Xi j � � 1 for all i

(ii)
�
∑N � 1

j � 0 Yi j � � 1 for all i �� 0
(iii) Xi0 for all i
(iv) Xi j

�
1 � Yji � for any i � j

(v) Yi j

�
1 � X ji � for any i � j

(vi) Xi jXi j 	 for any i � j �� j �
Begin by converting each Yi j in (ii) to X ji using (iv) and (v). Now sum up all polynomials in (i) and subtract
all polynomials in (ii). What remains is

�
∑N

i � 0 Xi0 � � 1. Now we can simply cancel each Xi0 using (iii).

Finally, poly
�
LONELY � has constant-degree Nullstellensatz refutations over characteristic 2. We have the

following polynomials (let Xi j say that node i maps to node j for 0  i � j 
 N):
(i) Xi j � Xi jX ji for all i �� j
(ii) Xii for all i �� 0
(iii) 1 � X00

(iv) ∑N � 1
j � 0 Xi j � � 1 for any i

(v) Xi jXi j 	 for any i � j �� j �
Begin by summing up all polynomials in (i), (ii) and (iv): this yields

�
∑N � 1

i � 1 X0i � � 1. If we add X0 jX00 �
X0 j

�
1 � X00 � to this, we get simply 1.

6 Search Problem Separations

The following theorem states many of the separations that follow directly from Theorems 7 and 9, and
Lemmas 10 and 12:

Theorem 13. (a) ([BCE � 98]) PIGEON � m LONELY
(b) ([BCE � 98]) LONELY � m PIGEON
(c) PIGEON � m WeakPIGEON
(d) ([BCE � 98]) PIGEON � m OntoPIGEON
(e) ITERATION � m LONELY
(f) [Mor01] LONELY � m ITERATION
(g) [Mor01] PIGEON � m ITERATION

By Theorem 3, this implies relative separations of all the corresponding search classes.

To (almost) complete the characterization of PLS, we prove a slightly weaker separation of ITERATION
from PIGEON:
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Definition 14. We say that Q1 is nicely reducible to Q2 if Q1  m Q2 and, any instance of Q1 which contains
exactly one solution is reduced to an instance of Q2 that contains exactly one solution.

Note that all common examples of reductions are nice reductions. In fact, they almost always preserve the
number of solutions in general. Nice reductions are, ostensibly, much less restricted than what [BCE � 98]
call strong reductions.

Lemma 15. If ITERATION is nicely reducible to PIGEON, then ITERATION is reducible to OntoPIGEON.

Proof. Consider ITERATION on a structure of size N � 2n, defined by the type-2 function succ
�
�̇ . The cor-

responding instance of PIGEON has size M  2poly
�
n � , and is defined by the function β. Let T � � Tn

β � pi
� M � 1

i � 0

be the nice reduction from ITERATION to PIGEON. Begin by creating T � : augment T so that whenever a
tree Tβ � pi queries the successor of node x in the ITERATION instance, it immediately queries succ

�
succ

�
x � �

whenever succ
�
x � � x. Now prune all branches of these trees that contain a solution to the ITERATION

instance. At this point, given any path π in Tβ � pi
and any path π � in Tβ � p j

such that both paths lead to hole
hk, it must be the case that π and π � are inconsistent. Lemma 4 of [BCE � 98] describes how to build a forest
of trees H � � Hβ � hi

� M � 1
i � 1 such that each tree has height at most polynomial in n and Hβ � hi

determines which
pigeon, if any, maps to hole hi. If we find that no pigeon maps to hole hi, we label the leaf by pigeon 0.

We now have the appropriate objects, namely T and H , to pass to an oracle for OntoPIGEON. This oracle
will return (1) pigeons pi and p j that collide, (2) a pigeon pi that maps to hole h0, (3) a pigeon pi that
maps to hole hk, but hole hk maps to pigeon p j , or (4) a hole hi that maps to pigeon pk, but pk maps to
hole h j. Cases (1) and (2) have nothing to do with H , so we can find a solution to ITERATION by the
correctness of T . In case (3), it must be that pi and p j collide under T , so again we can find a solution
to ITERATION. Finally, case (4) can arise only when k � 0 and hi is left empty by T . Assume that the
pertinent path, π, in tree Hβ � hi does not reveal a solution to the ITERATION instance, otherwise we are
done. Create an instance of ITERATION that is consistent with π and contains only one solution. Since T
is a nice reduction, the corresponding instance of PIGEON has exactly one solution. Hence, there should
be no hole, except perhaps h0, that remains empty. Therefore Hβ � hi

must have been incorrect, so T must
have been incorrect.

Theorem 16. ITERATION is not nicely reducible to PIGEON.

Proof. This follows from Lemmas 15 and 12, and Theorem 9.

7 A Separation Criterion for PLS

We now present a sufficient condition for separating a search Q from ITERATION. The condition general-
izes all of the relative separations from ITERATION that appear in this work and in [CK98, Mor01]. Note
that the conclusion of Theorem 17 implies that C

�
Q � A � PLSA for some oracle A:

Theorem 17. Let Φ be an
	

-sentence over a language L with no built-in predicate and no built-in function.
If Φ fails in an infinite structure, then

QΦ
�

T ITERATION �

Theorem 17 is similar to Theorem 11.3.1 of [Kra95] below.
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Theorem 18. [Kra95] Let Φ be a
	 �

-sentence over a relational language L without  . If Φ fails in an
infinite structure, then the type-2 problem QΦ is not in type-2 FPNP.

Theorems 17 and 18 are incomparable. Since ITERATION is in type-2 FPNP trivially, the consequence of
Theorem 18 is stronger than that of our Theorem 17. However, it does not apply to search problems defined
by

	
-sentences (which are also

	 �
-sentences) over functional languages, which is the scope of our Theorem

17. For example, Theorem 18 does not say anything about the complexity of PIGEON, since the PIGEON
principle is not over a relational language. In fact, ΦPIGEON is in type-2 FPNP trivially: binary search asking
‘does there exist v � k witnessing ΦPIGEON?’ for various k yields a solution in polynomial-time.

Theorem 17 seems to follow from Theorem 7 and the fact that CNF
�
ITERATION � has small tree-like

Resolution refutations, via a lower bound of the style presented in [Rii01, Kra01, DR01]. If QΦ is reducible
to ITERATION, then CNF

�
QΦ � has tree-like LK refutations of size polynomial in N that mention only

formulas that can be represented as poly-depth decision trees over the type-2 objects of QΦ. On the other
hand, if CNF

�
QΦ � holds in an infinite model, it shouldn’t have such a refutation (for a treatment of similar

lower bounds for LK, see [GT03]). Instead, however, we give a more direct proof that does not go through
proof complexity.

7.1 Proof of Theorem 17

Throughout this section, we fix the language L to be L � � 0 � α � , where α is a unary function, and assume that
Φ is an

	
-sentence over L of the form

�
	
x � φ

�
x � . The case with arbitrary language and arbitrary

	
-sentence

is analogous to the current case.

For any n
�

1, a partial function ρn : Vn �� Vn is called a restriction. Let ρ � � ρn � n be a family of restrictions.
We denote by

�
QΦ � ρ the type-2 search problem QΦ such that the oracle for α answers queries consistently

with ρ, i.e., on instance
�
1n � α � , if v � dom

�
ρn � , then the query ‘α

�
v � ’ is answered with ρn

�
v � . The size

of restriction ρn is � dom
�
ρn � � � � ran

�
ρn � � and is written � ρn � . We say that � ρn � n is a polysize family if

� ρn � � nO
�
1 � . We say that a restriction ρn : Vn �� Vn contains a solution for QΦ if the defined part of ρn

contains a witness to Φ in Vn.

A restriction ρn : Vn �� Vn is said to be safe for Φ if the following conditions are met: (1) there exists an
infinite structure K � �

K � αK � in which Φ fails; and (2) there exists a one-one mapping h : Vn �� K such that
ρn

�
v � � u implies αK

�
h
�
v � � � h

�
u � . Note that, if ρn is safe for Φ, then ρn does not contain a solution for

QΦ. We say that a family � ρn � n of restrictions is safe for Φ if ρn is safe for Φ for every n.

Define Tn to be a decision tree whose internal nodes are labeled with queries ‘α
�
v � ’ for some v � Vn and

whose edges are labeled with answers ‘u’ for some u � Vn. Each internal node specifies an oracle query to
α, and if the answer is ‘α

�
v � � u’, then the outgoing edge with label ‘u’ should be taken, which leads to

the node specifying the next query. This procedure terminates when a leaf node is reached. The leaf nodes
are unlabeled. Note that, for every path P of Tn, there exists a corresponding restriction πP specified by
the queries and answers on P. We say that Tn solves QΦ on n if, for every path P of Tn, the corresponding
restriction πP contains a solution for QΦ. Let DepthT

�
n � be the depth of Tn, i.e., the maximum length of

paths from the root to a leaf node. A family � Tn � n of S-trees is said to be poly-depth if DepthT

�
n � � nO

�
1 � .

Poly-depth families of S-trees constitute a nonuniform version of type-2 FP.

Special cases of the following are implicit in [Bus86, Kra95, BCE � 98, CK98, Mor01].

Lemma 19. Let L be a language not containing  and let Φ be an
	

-sentence over L that fails in an infinite
structure. If � Tn � n is a poly-depth family of S-trees over L and ρ � � ρn � n is a safe, polysize family of

14



restrictions, then, for all sufficiently large n, Tn contains a path P such that ρn
� πP is safe for Φ.

Note that the conclusion of Lemma 19 implies that Tn does not solve
�
QΦ � ρ on n. Proving Lemma 19 is not

hard and left to the reader.

Now assume for the sake of contradiction that QΦ  m ITERATION by an oracle Turing machine M that
solves QΦ in polynomial-time by making one query to ITERATION and arbitrary many queries to α. Let
k
�
n � � nO

�
1 � be the running time of M.

Claim 20. There exists a polysize family � ρn � n of restrictions such that, for sufficiently large n, the following
hold: (1) ρn is safe for Φ; and (2) ρn contains the answers to all the queries to α and ITERATION made
by M on

�
1n � α � .

Suppose Claim 20 holds and consider M on
�
1n � α � for n sufficiently large. We answer all the queries to α

and ITERATION according to ρn asserted to exist by the Claim. At the end of its computation, M is forced
to output some v � Vn as a solution, although no solution is forced by ρn. Hence, after M outputs some v,
we extend ρn to some α such that φ

�
v � does not hold in Vn. This completes the proof of Theorem 17.

It remains to prove Claim 20. Fix n sufficiently large so that all the necessary invocations of Lemma 19
hold, and let k � k

�
n � . We divide the computation of M into 3 phases: phase 2 is the ITERATION-query

of M, and phase 1 and 3 consist of all the α-queries that are asked before and after the ITERATION-query,
respectively. Our goal is to construct safe restrictions µ1 � µ2 � µ3 such that (1) µ3 extends µ2, which extends
µ1; (2) µi contains the answers to all the queries that are asked in the first i phases of M; and (3) � µi � � nO

�
1 � .

In order to construct µ1, let M � be an oracle Turing machine that simulates M until M writes the ITERATION-
query, at which point M � halts. Thus, M � simulates phase 1 of M and asks at most k α-queries. Construct a
decision tree T � from M � by extracting all possible sequences of α queries that M � asks. By Lemma 19 (with
ρn empty), T � contains a path P such that πP is safe for Φ. Let µ1

� πP.

For phase 2, let
�
1m � β � be the ITERATION-query that M asks, when all preceding α-queries are answered

according to µ1. Our task is to construct µ2 by extending µ1 enough so that a solution for ITERATION
�
1m � β �

is specified, while keeping µ2 safe for Φ. By definition of many-one reduction, β : Vm �� Vm is computable
by an oracle Turing machine Mβ in time polynomial in n using α as an oracle. For each x � Vm, let B

�
x � be

the decision tree corresponding to the computations of Mβ on x. We say a path P of the decision tree B
�
x � is

good if P is consistent with µ1 and µ1
� πP is safe. For each x � Vm, let GoodB

�
x � be the set of all good paths

of B
�
x � . By Lemma 19, for all x, GoodB

�
x � is not empty.

There are three cases to consider.

First Case: GoodB

�
0n � contains a path P such that the corresponding computation of Mβ makes β

�
0n � � 0n.

We set µ2
� µ1

� πP and return an arbitrary v � Vm to M as a solution for the ITERATION-query
�
1m � β � .

Second Case: For some x � Vm, GoodB

�
x � contains a path P such that the corresponding computation of Mβ

makes β
�
x � � y for some y 
 x. We set µ2

� µ1
� πP and return x as a solution for the ITERATION-query.

Third Case: the above two cases do not hold. Since the first case does not hold, every path in GoodB

�
0n �

corresponds to a computation of Mβ with β
�
0n �	� 0n. Similarly, since the second case does not hold, every

path in GoodB

�
1n � leads to β

�
1n � � 1n. Hence, by the least number principle, there exists x � Vm such that

(1) GoodB

�
x � contains a path P � that leads to β

�
x � � y for some y � x; and (2) for all z � x, every path in

GoodB

�
z � leads to β

�
z � � z.

Let x, y, and P � be as in the preceding paragraph. Let BetterB

�
y � as the set of paths P � � of B

�
y � such that πP 	 	

is consistent with µ1
� πP 	 and µ1

� πP 	
� πP 	 	 is safe for Φ. By Lemma 19, BetterB

�
y � is not empty. Let P � be
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any path in BetterB

�
y � . Set µ2 to be µ1

� πP 	
� πP � and return x to M as a solution for its ITERATION-query.

Note that x is a solution because β
�
x � � y and β

�
y � � y. This concludes the construction of µ2.

µ3 is constructed in essentially the same way as µ1 by invoking Lemma 19 with µ2. Finally, let ρn
� µ3. The

resulting family � ρn � n satisfies the conditions in Claim 20.

8 Concluding Remarks and Open Problems

We have obtained a number of search problem separations from proof complexity separations and our The-
orems 7 and 9. Note that our proofs of these separations do not depend on the fact that the substitution
instance of CNF

�
QΨ � and poly

�
QΨ � are uniformly generated by a Turing machine that reduces QΦ to QΨ.

Hence, all the search problem separations in this paper hold to exclude reductions by nonuniform poly-size
circuits. The same is true for the separations obtained in [BCE � 98, Mor01].

All the separations we obtained in this paper are with respect to many-one reducibility. Since all the known
separations from [BCE � 98, Mor01] are known to hold with respect to Turing reducibility, it is an interesting
open problem to see if this stronger separation is obtainable directly from proof complexity separation.

We made progress toward resolving the relative complexity of PLS by showing ITERATION
�

m LONELY
and ITERATION is not nicely reducible to PIGEON. We are interested in knowing whether ITERATION
is many-one reducible to PIGEON or not, which still remains open. One difficulty is that the iteration
principle is easy for almost all proof systems (except for Nullstellensatz, for which the hardness of the
iteration principle allowed us to prove ITERATION

�
m LONELY) and the pigeonhole principle is hard

for almost all proof systems.

From Theorem 9 and the fact that poly
�
LONELY � has constant-degree Nullstellensatz refutations, it follows

that the totality of every PPA problem has low-degree Nullstellensatz proofs. This indicates that the fixed
point theorems of Brower, Nash, and Kakutani, whose corresponding search problems are in PPA, have
low-complexity proofs.

Theorems 7 and 9 constructs propositional refutations from reductions. Does the converse hold? Is it true
that the translation of a search problem has a small LK or Nullstellensatz refutation, then the search problem
is reducible to, say, ITERATION (which is easy for LK) or LONELY (which is easy for Nullstellensatz)?

The theories of bounded arithmetic are introduced by Buss in [Bus86] as fragments of Peano Arithmetic with
bounds on their reasoning power. Bounded arithmetic is closely related to computational complexity and
proof complexity, and our results connecting these two areas naturally have some consequences on bounded
arithmetic as well. For the definitions and relevant results, we refer the reader to [Bus86, Kra95, Bus98a].

Theorem 21. Let Ψ
�
a � � Σb

∞

�
L � , where L is an arbitrary set of symbols, and define QΨ be a type-2 search

problem of witnessing Ψ in canonical structures. Assume that the relativized bounded arithmetic theory
S2

�
L � proves

�
xΨ

�
a � . Then PIGEON

�
m QΨ and LONELY

�
m QΨ. In fact, QΦ

�
m QΨ for any Φ such

that CNF
�
Φ � requires exponential-size refutations in any bounded-depth LK system.

Proof. The idea is that, if S2

�
L � proves

�
xΨ

�
x � , then the propositional translations of Ψ

�
a � has quasipolynomial-

size proofs in bounded-depth LK [PW85, Kra95]. From Theorem 7 it follows that, if QΦ  m QΨ, then
CNF

�
Φ � has subexponential-size LK refutations, which contradicts the assumption.

Our Theorem 17 implies the following independence criterion for the relativized S2
2 by Riis [Rii93] in a

similar way Krajicek’s theorem (Theorem 18) in [Kra95] implies it.
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Theorem 22. [Rii93] Let L be a language that is disjoint with the language of bounded arithmetic, and
let Φ � 	

xφ
�
x � be a sentence of arbitrary quantifier-complexity. If Φ fails in an infinite structure, then

the relativized bounded arithmetic theory S2
2

�
L � does not prove Φ

� a, where Φ
� a is Φ with all quantifiers

bounded by a free variable a.

Proof. Krajicek has a proof of this theorem based on complexity-theoretic separation. Since our proof is
similar to his, we only sketch the idea. Let Φ be of the form

	
x1

�
y1 �����

	
xk

�
ykφ

�
x1 � y1 ������� � xk � yk � , with φ

quantifier-free. Define a herbrandization ΦH of Φ as	
x1

	
x2 �����

	
xkφ

�
x1 � f1

�
a � x1 � ������� � xk � fk

�
a � x1 ������� � xk � � �

where f1 ������� � fk are new functions. Let L � � L
� � f1 ������� � fk � . Since there is an infinite structure in which ΦH

fails, QΦH is not reducible to ITERATION. Since ITERATION characterizes the Σb
1

�
L � � -consequences of

S2
2

�
L � � , S2

2

�
L � � does not prove	

x1 
 a
	

x2 
 a �����
	

xk 
 a
�
f1

�
a � x1 �	
 a � ����� � fk

�
a � x1 ������� � xk � � φ

�
x1 � f1

�
a � x1 � ������� � xk � fk

�
a � x1 ������� � xk � � � �

Let M be a model of S2
2

�
L � � in which the above formula fails. It is not hard to see that Φ

� a fails in this
model.
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