Relativized NP search problems and propositional proof systems

Joshua Buresh-Oppenheim Tsuyoshi Morioka

November 27, 2003

Abstract

We consider Total Functional NP (TFNP) search problems. Such problems are based on combinatorial principles that guarantee, through locally checkable conditions, that a solution to the problem exists in an exponentially-large domain, and have the property that any solution has a polynomial-size witness that can be verified in polynomial time. These problems can be classified according to the combinatorial principle that guarantees the existence of a solution; for example, PPP is the class of such problems whose totality is assured by the Pigeonhole Principle. We show many strong connections between relativized versions of these search classes and the computational power-in particular the proof complexity-of their underlying principles. These connections, along with lower bounds in the propositional proof systems Nullstellensatz and bounded-depth LK, allow us to prove several new relative separations among the classes PLS, PPP, PPA, PPAD, and PPADS.

1 Introduction

Traditionally the study of computational complexity has been largely a study of decision problems, or the problems of deciding whether the input satisfi es a certain property. Consequently, search problems, or the problems of fi nding an object satisfying a desired property, have been studied in terms of their equivalent decision counterparts. For example, the complexity of fi nding a Hamiltonian cycle of a graph (if one exists) is studied indirectly via the problem of deciding if the input graph has a Hamiltonian cycle. A justifi cation for this indirect approach is that these search and decision problems are polynomially equivalent, i.e., they are polynomial-time Turing reducible to each other.

However, when a search problem is total, i.e., every instance of it is guaranteed to have a solution, it seems to have no polynomially equivalent decision problem. Such total search problems are commonplace in computer science and mathematics: examples include optimization problems such as the problem of fi nding a Traveling Salesman tour that is locally optimal with respect to the 2-OPT heuristic, and the problems in game theory such as the problem of fi nding a Nash equilibrium given payoff matrices for two players. Thus it is important for us to understand the complexity of total search problems, and we need to study them directly.

In the papers [JPY88, Pap94b], total search problems are classifi ed into classes according to the combinatorial principle in the fi nite domain that guarantees the totality of the problems. These classes contain numerous natural problems, some of which are complete. For example, PLS, which is the class of effi cient local search heuristics, is characterized by the characterized by the parity principle "no odd-sized graph has a perfect matching"; and PPP, which has relevance to cryptographic hash functions, corresponds to the pigeonhole principle "there is no injective mapping from $[n+1]$ to $[n]$." The classes PPAD and PPADS are defi ned in a similar manner (PPAD was called PSK in [Pap94b], and it is given this name in [$\left.\mathrm{BCE}^{+} 98\right]$).

Beame et al. [$\left.\mathrm{BCE}^{+} 98\right]$ reformulate the search classes in terms of type-2 search problems, or search problems whose input contains not only numbers and strings (type-1 objects) but also functions and relations (type-2 objects) that are presented as oracles. This type-2 approach results in much cleaner defi nitions of the above search classes: each class essentially becomes a collection of the type- 1 instances of a single type-2 problem. Thus the relationship among these classes can be studied through the corresponding type-2 search problems. In many cases we can obtain unconditional separations of type- 2 search problems, which imply the separations of the corresponding search classes by an oracle. Since an unrelativized separation of any two search classes implies $\mathbf{P} \neq \mathbf{N P}$, such relative separations are currently the best results we can hope for. Various relative containments and separations among the above fi ve search classes are obtained this way in $\left[\mathrm{BCE}^{+} 98\right.$, Mor01]. Moreover, since the complexity of the type-2 problems is directly related to the 'computational power' of the corresponding combinatorial principles, the type-2 setting also provides us with means to study various combinatorial principles in terms of their computational power, which is an interesting mathematical endeavour by itself. This paper presents new results that are obtained by further exploiting this connection.
We extend the framework of $\left[\mathrm{BCE}^{+} 98\right]$ into a systematic method of formulating type-2 search problems from combinatorial principles. The method is essentially as follows. Let Φ be a fi rst-order existential sentence over an arbitrary language such that Φ holds in every fi nite structure, and defi ne Q_{ϕ} to be the corresponding type-2 search problem of finding a witness to Φ in a fi nite structure given as the input. For example, the type-2 problem PIGEON of $\left[\mathrm{BCE}^{+} 98\right]$ that characterizes the class PPP arises from the following sentence:

$$
(\forall x)[\alpha(x) \neq 0] \supset(\exists x, y)[x \neq y \wedge \alpha(x)=\alpha(y)]
$$

which states that, if 0 is not in the range of function α, then there must exist two elements that are mapped to the same element by α; this is the injective pigeonhole principle, which holds in every fi nite structure.

This paper shows that knowledge of the proof complexity of Φ reveals the relative strength of Q_{Φ}, where the proof complexity of Φ is measured in terms of the size of the shortest proof of the propositional translation of Φ in a given proof system. This close link between proof complexity and computational complexity allows us to derive a number of results on the relative strength of search problems by utilizing the extensive knowledge that has been accumulated in proof complexity research. Our approach is made possible by the direct connection between combinatorial principles and search problems that becomes explicit in the type-2 setting.

Main Result 1: Let Q_{Φ} and Q_{Ψ} be two type-2 search problems corresponding to the combinatorial principles Φ and Ψ. If $Q_{\Phi} \leq_{m} Q_{\Psi}$, then there are reductions from the propositional translation of Φ to the propositional translation of Ψ in depth-1.5 tree-like LK and in Nullstellensatz. This result can be seen as a generalization of a technique used in $\left[\mathrm{BCE}^{+} 98\right]$, where a relative separation is proven using a Nullstellensatz degree lower bound.

As corollaries, we obtain relative separations of search classes that have not been known, such as PLS ${ }^{A} \nsubseteq \mathbf{P P A}^{A}$. Our result generalizes the proof techniques of Beame et al. and hence it provides alternative proofs for some of their results via the proof complexity separations. Moreover, since the combinatorial principle characterizing PPA has low-complexity proof in Nullstellensatz, it follows that the totality of every PPA problems has a low-complexity proof. This is interesting because PPA contains the witnessing problems for the fi xed point theorems of Brower, Nash, and Kakutani [Pap94b].

We also provides a partial solution for the open question whether PLS is contained in PPP.
Main Result 2: There is no 'nice reduction' from ITERATION (which corresponds to PLS) to PIGEON (which characterizes PPP).

Our third main result is a suffi cient condition for Q_{Φ} to be nonreducible to ITERATION.
Main Result 3: If Φ is a combinatorial principle that does not involve the ordering relation, and if Φ fails in an infi nite structure, then Q_{Φ} is not reducible to ITERATION.

This generalizes the relative separation in [Mor01], and it implies that, in a relativized world, PLS does not contain any of PPP, PPA, and PPAD. This may be interpreted as evidence that effi cient local search heuristics are unlikely to exist for these classes. Main result 4 provides an alternative proof for Riis's independence criterion for the bounded arithmetic theory $S_{2}^{2}(R)$ [Rii93, Kra95].

This paper is organized as follows. Section 2 introduces basic defi nitions of search problems and the proof systems that we use. The search classes of [JPY88, Pap94b, $\mathrm{BCE}^{+} 98$] are introduced here, and the known relative separations are stated. In Section 3 we show how to translate combinatorial principles in first-order logic into unsatisfi able propositional formulas and unsatisfi able set of polynomials. Section 4 contains our Main Results 1 and 2. Section 5 presents some of the known proof complexity separations, which imply a number of the search problem separations in Section 6. Section 7 is an exposition of Main Result 3. Section 8 contains concluding remarks and some open problems.

2 Preliminaries

Throughout this paper we write V_{n} to denote the set of all n-bit strings.

2.1 Search Problems

$\mathbf{N P}$ is the class of decision problems that are representable as $(\exists y) R(x, y)$, where R is a polynomial-time predicate such that $R(x, y)$ implies $|y| \leq p(|x|)$ for some polynomial p.
The corresponding NP search problem Q_{R} is the problem of fi nding, given x, y such that $R(x, y)$. The input x is called an instance of Q_{R} and any y satisfying $R(x, y)$ is called a solution for instance x. For every x, $Q_{R}(x)=\{y: R(x, y)\}$ denotes the set of solutions for instance x. Usually we omit the subscript R. We say that Q is total if $Q(x)$ is nonempty for all x. TFNP is defi ned to be the class of total NP search problems in [MP91] (see also [Pap94a]); the same class is called VP (for Verifi cation of solutions in Polytime) in [Mor01]. A number of interesting subclasses of TFNP have been identifi ed and studied: these classes are PLS of [JPY88], and PPP, PPA, PPAD, and PPADS of [Pap94b, BCE ${ }^{+} 98$]. All of these classes contain natural problems, some of which are complete (under an appropriate notion of reducibility). We will formally defi ne these classes below.

Beame et al. $\left[\mathrm{BCE}^{+} 98\right]$ generalize the notion of search problem so that the instances of search problem Q consist not only of strings, which are type-1 objects, but also functions and relations, which are type-2 objects. More formally, let R be a type-2 relation with arguments $\left(\alpha_{1}, \ldots, \alpha_{k}, x, y\right)$, where x and y are strings and for each $i, 1 \leq i \leq k, \alpha_{i}$ is either a string function or a string relation. R defi nes a type- 2 search problem Q_{R} in the usual way.

The complexity of type-2 relation, functions, and search problems is measured with respect to a Turing machine that receives the type- 1 arguments on its input tape and is allowed to access the type- 2 arguments as oracles [Tow90]. In particular, a type-2 function $F\left(\alpha_{1}, \ldots, \alpha_{k}, x\right)$ is said to be polynomial-time computable if it is computed by a deterministic Turing machine in time polynomial in $|x|$ with oracle access to $\alpha_{1}, \ldots, \alpha_{k}$.

2.2 Combinatorial Principles and Search Problems

Beame et al. [$\left.\mathrm{BCE}^{+} 98\right]$ introduce several type-2 search problems that correspond to the combinatorial principles that characterize the search classes of [Pap94b]. We extend their approach into a systematic method of defi ning type-2 search problems from combinatorial principles that are represented as sentences of first-order logic with equality.

Let L be an arbitrary first-order language and let Φ be a sentence over L of the form

$$
\Phi \equiv\left(\exists x_{1} \ldots \exists x_{k}\right) \phi\left(x_{1}, \ldots, x_{k}\right)
$$

for some quantifi er-free ϕ. Let us call such sentences \exists-sentences. As usual, we allow the equality symbol $=$ in Φ even though we do not explicitly include it in L. Φ is interpreted in a structure \mathcal{M} which defi nes the universe of discourse and the meaning of constants, functions, and relations of L. Some symbols of L may be designated as built-in symbols with which we associate predetermined interpretation.

Definition 1. Define a canonical structure to be a structure such that (1) the universe of discourse is V_{n} for some $n \geq 1$; and (2) every built-in symbol of L assumes the predetermined interpretation. We abuse the notation and write V_{n} to denote the canonical structure with the set V_{n} the universe of discourse.

Throughout this paper the only built-in symbols we use are \leq and 0 , and they are interpreted as the standard ordering of n-bit binary numbers and 0^{n}, respectively.
Assume that Φ holds in every canonical structure. Then the corresponding witness problem is the following: given a canonical structure V_{n}, find a tuple $\left\langle u, \ldots, v_{k}\right\rangle \in\left(V_{n}\right)^{k}$ such that $\phi\left(v_{1}, \ldots, v_{k}\right)$ holds in V_{n}. We formulate the witness problem as the type-2 search problem Q_{Φ} whose type-1 argument x specifi es the universe of discourse $V_{|x|}$ and whose type-2 arguments are the functions and relations of L. Built-in symbols are not part of the type-2 arguments, since their meaning in $V_{|x|}$ is already fi xed. Finally, since only the length of x is used to defi ne $V_{x \mid}$, we assume without loss of generality that the type-1 argument of Q_{Φ} is always of the form 1^{n} for $n \geq 1$.
Let us introduce the combinatorial principles that are of particular interest in the study of search problems. For readability we present them in implicational form; it is easy to see that all of them are \exists-sentences. Moreover, all of them hold in every canonical structure.

$$
\begin{gather*}
f(0)=0 \wedge(\forall x)[x=f(f(x))] \supset(\exists x)[x \neq 0 \wedge x=f(x)] \tag{1}\\
(\forall x)[f(x) \neq 0] \supset(\exists x, y](x \neq y \wedge f(x)=f(y)] \tag{2}\\
g(0)=0 \wedge f(0) \neq 0 \wedge(\forall x)[x=g(f(x))] \wedge(\forall x)[x \neq 0 \supset x=f(g(x))] \supset(\exists x, y)[x \neq y \wedge f(x)=f(y)] \tag{3}\\
\left(\exists x_{1}, y_{1}, x_{2}, y_{2}\right)\left[\left(x_{1} \neq x_{2} \vee y_{1} \neq y_{2}\right) \wedge f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)\right] \tag{4}\\
f(0)>0 \wedge(\forall x)[f(x) \geq x] \supset(\exists x)[x<f(x) \wedge f(x)=f(f(x))] \tag{5}
\end{gather*}
$$

Principle (1) states that, if the function f matches every element to either a unique partner or itself, and if 0 is matched to itself, then there exists another element that is matched to itself. This is essentially the parity principle 'no odd-sized graph has a perfect matching', and it holds in every structure whose size is even; therefore, it holds in every canonical structure. LONELY is the corresponding search problem.
Principle (2) states that if 0 is not in the range of f, then there exist two distinct elements that are mapped to the same element by f; this is the injective, functional pigeonhole principle, and the corresponding search problem is PIGEON.

Principle (3) is a weaker variant of the above pigeonhole principle. The additional assumptions essentially state that g is the inverse of f, and 0 is not in the range of f. This is the onto-pigeonhole principle, and the corresponding search problem is OntoPIGEON.

Principle (4) is the weak pigeonhole principle, which is similar to (2) but the domain size is the square of the range size. We call the corresponding problem WeakPIGEON.

Principle (5) is the iteration principle of [BK94, CK98], and we call the corresponding type-2 problem ITERATION. It states that, if f is nondecreasing and $f(0)>0$, then there exist x such that $f(x)>x$ and $f(x)=f(f(x))$. Note that it contains a built-in ordering \leq. It is equivalent to the principle 'every dag with at least one edge has a sink'.

2.3 Reductions

Let Q be a type-2 search problem. Q can be used as an oracle in the following way. A Turing machine M presents a query to Q in the form $\left(\beta_{1}, \ldots, \beta_{k}, 1^{m}\right)$, where each of $\beta_{1}, \ldots, \beta_{k}$ is a polynomial-time function or relation. In the next step M receives in its answer tape some z that is a solution for $Q\left(\beta_{1}, \ldots, \beta_{k}, 1^{m}\right)$.
Let Q_{1} and Q_{2} be two type-2 search problems. We say Q_{1} is Turing reducible to Q_{2} and write $Q_{1} \leq_{T} Q_{2}$ iff there exists an oracle Turing machine M that, given an instance $\left(\alpha_{1}, \ldots, \alpha_{k}, 1^{n}\right)$ of Q_{1}, outputs some $z \in Q_{1}\left(\alpha_{1}, \ldots, \alpha_{k}, 1^{n}\right)$ in polynomial-time using $\alpha_{1}, \ldots, \alpha_{k}$ and Q_{2} as oracles, where each query to Q_{2} is of the form $\left(\beta_{1}, \ldots, \beta_{l}, 1^{m}\right)$ with $m \in n^{O(1)}$ and with each β_{i} for each $1 \leq i \leq l$, a function or a relation that is polynomial-time computable using $\alpha_{1}, \ldots, \alpha_{k}$ as oracles.
Q_{1} is many-one reducible to Q_{2}, written $Q_{1} \leq_{m} Q_{2}$, if $Q_{1} \leq_{T} Q_{2}$ by an oracle Turing machine that asks at most one query to Q_{2}. We write $Q_{1} \equiv_{m} Q_{2}$ if Q_{1} and Q_{2} are many-one reducible to each other.
Let Q_{1} and Q_{2} be type-2 search problems, and assume that the type-2 arguments of Q_{1} and Q_{2} are $\alpha_{1}, \ldots, \alpha_{k}$ and $\beta_{1}, \ldots, \beta_{l}$, respectively. Assume that $Q_{1} \leq_{m} Q_{2}$. Given an instance $\left(\alpha_{1}, \ldots, \alpha_{k}, 1^{n}\right)$ of Q_{1}, the many-one reduction composes a query $\left(\beta_{1}, \ldots, \beta_{l}, 1^{m}\right)$ to Q_{2}, where $m \leq p(n)$ for some polynomial and each β_{i} is polynomial-time computable using oracles $\alpha_{1}, \ldots, \alpha_{k}$.
For each $\bar{v} \in\left(V_{m}\right)^{\operatorname{arity}\left(\beta_{i}\right)}$, where the polynomial-time algorithm for β_{i} gives rise to a decision tree $T_{\beta_{i}, \bar{v}}^{n}$, which encodes all possible computations of $\beta_{i}(\bar{v})$ in terms of $\alpha_{1}, \ldots, \alpha_{k}$. More specifi cally, each internal node of $T_{\beta_{i}, \bar{v}}^{n}$ is a query to some α_{j} with $N=2^{n}$ outgoing edges, one for every possible way the query to α_{j} can be answered. The leaves are labeled by possible values for $\beta_{i}(\bar{v})$. Note that the height of $T_{\beta_{i, \bar{v}}}^{n}$ is polynomial in n and polylogarithmic in N.

These trees have the following two defi ning properties:
(i) given any set of equations $\left\{\beta_{s_{1}}\left(\overline{v_{1}}\right)=w_{1}, \ldots, \beta_{s_{t}}\left(\overline{v_{t}}\right)=w_{t}\right\}$ that constitute a solution to Q_{2}, take one path from $T_{\beta_{s}, \bar{v}_{i}}^{n}$ that leads to a leaf labeled w_{i} for each i. The queries along these t paths defi ne a portion of $\alpha_{1}, \ldots, \alpha_{k}$. This portion constitutes a solution to Q_{1}.
(ii) each tree is complete in the sense that whenever α_{j} is queried at an internal node, there is an edge fanning out of that node for each possible value of α_{j}.

We will use the above properties in the proof of our main theorem
Definition 2. Let Q be a type-2 search problem. Then $C(Q)$ is defined as

$$
C(Q)=\left\{Q^{\prime}: Q^{\prime} \text { is type- } 1 \text { and } Q^{\prime} \leq_{m} Q\right\} \cap \mathbf{T F N P} .
$$

Now we are ready to formulate the search classes of [JPY88, P94] in terms of the type-2 search problems.

PPA stands for Polynomial Parity Argument, and it is characterized as PPA $=C($ LONELY $)$. This class contains the problems of fi nding various economic equilibria, some of which are complete. Polynomial Pigeonhole Principle is defi ned as $\mathbf{P P P}=C($ PIGEON $)$, and it has relevance in the study of cryptographic hash functions. These two defi nitions are from [$\left.\mathrm{BCE}^{+} 98\right]$. PPAD is an analogue of PPA in the directed graphs, and hence the name (\mathbf{D} is for 'Directed'). PPAD $=C($ OntoPIGEON). Beame et al. characterizes PPAD by different combinatorial principles, but they are equivalent to the onto-pigeonhole principle, which we use in this paper. Polynomial Local Search is the class of optimization problems for which efficient local-search heuristics exist, and $\mathbf{P L S}=C($ ITERATION $)$. This characterization is essentially in [CK98] in the context of bounded arithmetic. Also [Mor01] contains a direct proof in a complexity theoretic setting. For more information on these classes, see [JPY88, Yan97] for PLS and [Pap94b] for the other classes.

Theorem 3. [CIY97] Let Q_{1} and Q_{2} be type-2 search problems defined by \exists-sentences. The following are equivalent: (i) $Q_{1} \leq_{m} Q_{2}$; (ii) for all oracles $A, C\left(Q_{1}\right)^{A} \subseteq C\left(Q_{2}\right)$; and (iii) there exists a generic oracle G such that $C\left(Q_{1}\right)^{G} \subseteq C\left(Q_{2}\right)^{G}$.

Theorem 4. $\left[B C E^{+} 98\right]$ The following hold: (i) OntoPIGEON \leq_{m} LONELY; (ii) OntoPIGEON \leq_{m} PIGEON; (iii) LONELY and PIGEON are incomparable, i.e., neither is many-one reducible to the other.

The above result completely characterizes the relationship among PPAD, PPA, and PPP. However, PLS is not discussed in $\left[\mathrm{BCE}^{+} 98\right]$, and progress for resolving the relative complexity of PLS is made in [Mor01]:

Theorem 5. [Mor01] OntoPIGEON is not many-one reducible to ITERATION.
Thus, PLS contains none of PPP, PPA, and PPAD in a relativized world. However, it was still unresolved whether PLS is contained in any of the other classes, and we will present below solutions to some of these open problems.

2.4 Proof Systems

We consider two propositional proof systems in this paper. The first is called propositional $L K$ or sequent calculus. Let $A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{\ell}$ be propositional formulas over some set of variables \bar{X} and the connectives \neg, \vee, \wedge. A sequent is a syntactic object of the form

$$
A_{1}, \ldots, A_{k} \longrightarrow B_{1}, \ldots, B_{\ell}
$$

with the intended meaning

$$
A_{1} \wedge \ldots \wedge A_{k} \supset B_{1} \vee \ldots \vee B_{\ell} .
$$

The depth of such a sequent is the maximum over the depths of each of the formulas. LK usually includes the following rules (A, B are formulas, $\Delta, \Gamma, \Delta^{\prime}, \Gamma^{\prime}$ are sets of formulas):

$$
\begin{aligned}
& \text { Logical Axiom: } \overline{A \rightarrow A} \\
& \text { Contraction: } \frac{A, A, \Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta}, \frac{\Gamma \rightarrow \Delta, A, A}{\Gamma \rightarrow \Delta, A} \\
& \wedge \text {-introduction: } \frac{A, B, \Gamma \rightarrow \Delta}{A \wedge B, \Gamma \longrightarrow \Delta}, \frac{\Gamma \rightarrow \Delta, A}{\Gamma \longrightarrow \Delta, A \wedge B} \quad \Gamma \rightarrow \Delta, B
\end{aligned}
$$

Weakening: $\frac{\Gamma \longrightarrow \Delta}{\Gamma^{\prime} \longrightarrow \Delta^{\prime}}$ for $\Gamma \subset \Gamma^{\prime}, \Delta \subset \Delta^{\prime}$
Exchange: $\frac{A, B, \Gamma \rightarrow \Delta}{B, A, \Gamma \longrightarrow \Delta}, \frac{\Gamma \rightarrow \Delta, A, B}{\Gamma \rightarrow \Delta, B, A}$
V-introduction: $\frac{\Gamma \rightarrow \Delta, A, B}{\Gamma \longrightarrow \Delta, A \vee B}, \frac{A, \Gamma \rightarrow \Delta}{A \vee B, \Gamma \longrightarrow \Delta} \quad B, \Gamma \rightarrow \Delta$

$$
\neg \text {-introduction: } \frac{\Gamma \longrightarrow \Delta, A}{\neg A, \Gamma \longrightarrow \Delta}, \frac{A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \neg A} \quad \operatorname{Cut}: \frac{A, \Gamma \longrightarrow \Delta}{\Gamma \rightarrow \Delta} \Gamma \longrightarrow \Delta, A
$$

An LK derivation of B from A_{1}, \ldots, A_{k} is a sequence of sequents S_{1}, \ldots, S_{m} where S_{m} is $\longrightarrow B$ and each S_{i} either follows via one of the above rules from earlier sequents or is $\longrightarrow A_{j}$ for some j. A refutation is a derivation of \longrightarrow. The size of a derivation is the sum of the sizes of all formulas mentioned in the derivation, while the depth is the maximum depth of any sequent in the derivation. A derivation is called tree-like if each sequent is used at most once to derive a new sequent. LK is well-known to be derivationally sound and complete.

Nullstellensatz is an algebraic proof system. Let F be a fi eld and let \bar{X} be a set of variables. Given polynomials $q_{1}, \ldots, q_{m}, p \in F[\bar{X}]$, a Nullstellensatz derivation of p from q_{1}, \ldots, q_{m} is another set of polynomials $r_{1}, \ldots, r_{m} \in F[\bar{X}]$ such that

$$
r_{1} q_{1}+\ldots+r_{m} q_{m}=p
$$

identically. A refutation is a derivation of 1 . The degree of a Nullstellensatz derivation is the maximum over the degrees of $r_{i} q_{i}$. Nullstellensatz is derivationally sound and complete over any fi eld F in the sense that p can be derived iff it is in the ideal generated by q_{1}, \ldots, q_{m}.

3 Propositional Translations of Type-2 Problems

Let Φ be an \exists-sentence over language L. We say that Φ is basic if its quantifi er-free part is in DNF and contains no nesting of symbols of L. More specifi cally, if Φ is basic then every atomic formula in Φ is of the form $R(\bar{x}), y=f(\bar{x})$, or $x=y$, where R is a predicate symbol and f is a function symbol.

For a type-2 search problem Q_{Φ} defi ned by a basic \exists-sentence $\Phi, C N F\left(Q_{\Phi}, n\right)$ for each n will be the unsatisfiable propositional CNF which (falsely) states that Q_{Φ} is not total. It is the result of a standard translation of $\neg \Phi$ into propositional CNF formulas due to [PW85]. The following is a more detailed description of the translation: There will be a set of variables in $\operatorname{CNF}\left(Q_{\Phi}, n\right)$ for each type-2 argument α for Q_{Φ}. If α is an m-ary relation, then there will be a propositional variable $X_{\bar{v}}^{\alpha}$ for each m-tuple \bar{v} in the domain of α. If α is a function, we add propositional variables for the relation $\operatorname{graph}(\alpha): X_{\bar{v} w}^{\alpha}$ for each \bar{v} in the domain of α and each w in the target of α.
More specifi cally, $\operatorname{CNF}\left(Q_{\Phi}, n\right)$ is formed as

$$
\bigwedge_{x_{1}, \ldots, x_{k} \in V_{n}} \phi^{\prime}\left(x_{1}, \ldots, x_{k}\right)
$$

where ϕ^{\prime} is the CNF that is the negation of ϕ, and where each atom is replaced by its corresponding propositional variable or propositional constants. If an atom contains $=$ or any built-in predicate or function, then it is replaced with either true or false, depending on their truth value in the canonical structure V_{n}.
In addition, for each m-ary function in Q_{Φ} and each m-tuple, we add clauses to $C N F\left(Q_{\Phi}, n\right)$ stating that the function is well-defi ned on that input: for each \bar{v} in the domain of α, defi ne

$$
d e f_{n}\left(X_{-v}^{\alpha}\right)=s_{s y n} \bigvee_{w \in V_{n}} X_{-v w}^{\alpha}
$$

and

$$
\text { singlede } f_{n}\left(X_{-v}^{\alpha}\right)=\operatorname{syn} \bigwedge_{u, w \in V_{n}} \neg X_{-v u}^{\alpha} \vee \neg X_{-v v}^{\alpha}
$$

Notice that all the clauses in $\operatorname{CNF}\left(Q_{\Phi}, n\right)$ have constant size except the def clauses, which have size $\left|V_{n}\right|=N$. The number of clauses in the CNF is polynomial in N. Let $\operatorname{CNF}\left(Q_{\Phi}\right)$ be the family of formulas $\left\{C N F\left(Q_{\Phi}, n\right)\right\}_{n \in \mathbb{N}}$.

If we start with Φ that is not basic, we modify it to obtain a basic sentence as follows. If Φ contains a nesting of symbols, say $y=f(g(x))$, then replace it with $(\exists z)[z=g(x) \wedge y=f(z)]$. Treat the other cases $f(x)=g(y)$ and $R(f(x))$ in a similar way. After all atoms are made basic, then make the whole sentence prenex with the quantifi er-free part in DNF. Let Φ be the resulting \exists-sentence. It is clear that $Q_{\Phi} \equiv_{m} Q_{\Phi^{\prime}}$.

We will also need translations of search problems into polynomials. We start with $\operatorname{CNF}\left(Q_{\Phi}\right)$: consider those clauses of $\operatorname{CNF}\left(Q_{\Phi}\right)$ that correspond to solutions of Q_{Φ} (call these clauses the solution clauses). Each one can be converted into a polynomial in the usual way: each literal forms a linear factor of the polynomial, where a positive literal x becomes a factor $1-x$ and a negative literal $\neg x$ becomes a factor x. In addition, we add polynomials forcing each variable x to take on $0 / 1$ values: $x-x^{2}$.
We insist each type-2 function α is well-defi ned on each of its domain elements v with the following polynomials:

$$
\begin{gathered}
\operatorname{polydef}_{n}\left(X_{v}^{\alpha}\right)=\sum_{w \in V_{n}} X_{\nu w}^{\alpha}-1, \\
\text { polysingledef } f_{n}\left(X_{v}^{\alpha}\right)=\left\{X_{v v}^{\alpha} X_{v w}^{\alpha} \mid w, w^{\prime} \in V_{n} ; w \neq w^{\prime}\right\} .
\end{gathered}
$$

Call the set of all the above polynomials $\operatorname{poly}\left(Q_{\Phi}, n\right)$. Let $\operatorname{poly}\left(Q_{\Phi}\right)$ be the family $\left\{\operatorname{poly}\left(Q_{\Phi}, n\right)\right\}_{n \in \mathbb{N}}$.

4 Search problem reductions and proof complexity reductions

4.1 Bounded-depth LK

Definition 6. Let \mathcal{S}, \mathcal{R} be two families of propositional formulas. We say \mathcal{S} has a bounded-depth LK refutation reduction to \mathcal{R}, written $\mathcal{S} \leq_{b d-L K} \mathcal{R}$, we can derive a substitution instance \mathcal{R}^{\prime} of \mathcal{R} from \mathcal{S} in quasi-polynomial-size bounded-depth LK.

Assume we have a search problem reduction from an instance of Q_{Φ} of size n to an instance of Q_{Ψ} of size m, and that the reduction gives rise to decision trees $\mathcal{T}=\left\{T^{n}\right\}$. Call the set of variables of $\operatorname{CNF}\left(Q_{\Phi}, n\right)$ \bar{X}, and the set of variables of $C N F\left(Q_{\Psi}, m\right), \bar{Y}$. Consider a $Y \in \bar{Y}$ corresponding to the equation $\beta(\bar{v})=w$, where $\bar{v} \subset V_{m}, w \in V_{m}$ and β is one of Q_{Ψ} 's type-2 objects. Let $\mathcal{T}(Y)$ be the DNF over \bar{X} that encodes all paths in $T_{\beta,-v}^{n}$, that lead to w. For any formula A over \bar{Y}, let $\mathcal{T}(A)$ be a substitution instance of A where $\mathcal{T}(Y)$ is substituted for each variable Y.

Theorem 7. Let Q_{Φ}, Q_{Ψ} be two type- 2 NP search problems defined by first order sentences. If $Q_{\Phi} \leq_{m} Q_{\Psi}$, then $\operatorname{CNF}\left(Q_{\Phi}\right) \leq_{b d-L K} C N F\left(Q_{\Psi}\right)$. In fact, the derivations are tree-like and all formulas mentioned can be represented as decision trees over type- 2 objects of Q_{Φ} with depth polynomial in n.

Proof. Assume $\operatorname{CNF}\left(Q_{\Phi}, n\right)$ is reducible to $\operatorname{CNF}\left(Q_{\Psi}, m\right)$ by trees \mathcal{T}. We derive $\mathcal{T}\left(\operatorname{CNF}\left(Q_{\Psi}, m\right)\right)$ from $\operatorname{CNF}\left(Q_{\Phi}, n\right)$ Let β be one of Q_{Ψ} 's type-2 objects and let $\bar{v} \subset V_{m}$.
(i) We fir rst show how to derive $D={ }_{\text {syn }} \mathcal{T}\left(\operatorname{def}\left(Y_{v}^{\beta}\right)\right)$. D is just $\operatorname{disj}(T)$, the disjunction of all paths in $T=T_{n}^{\beta, v}$. Call the paths P_{1}, \ldots, P_{k}. Let $\alpha_{1}\left(\bar{v}_{1}\right), \ldots, \alpha_{\ell}\left(\bar{v}_{\ell}\right)$ be the queries to Q_{Φ} that appear in T. We derive the sequent

$$
\operatorname{def}\left(X_{-}^{\alpha_{i}}\right), \ldots, \operatorname{def}\left(X_{-}^{\alpha_{\ell}}\right) \longrightarrow D
$$

and then cut the formulas on the left. The derivation will be an upside-down copy of T itself. For a given leaf, let P_{i} be the path that leads to that leaf. In the proof, the leaf will be labeled with the sequent

$$
P_{i} \longrightarrow P_{1}, \ldots, P_{k} .
$$

In general, for a node x of T, let P be the path from the root to x and let $\alpha_{i_{1}}\left(\bar{v}_{i_{1}}\right), \ldots, \alpha_{i_{j}}\left(\bar{v}_{i_{j}}\right)$ be the queries in the subtree of T rooted at x. In the proof, node x will be labeled by

$$
P, \operatorname{def}\left(X_{\bar{\varphi}_{1}}^{\alpha_{i_{1}}}\right), \ldots, \operatorname{def}\left(X_{\bar{\Gamma}_{j}}^{\alpha_{i_{k}}}\right) \longrightarrow P_{1}, \ldots, P_{k} .
$$

This sequent is derived from the sequent at the children of x by \vee-introduction. Since T has quasi-poly size, so will this derivation.
(ii) Now consider $\mathcal{T}\left(\right.$ singledef $\left.\left(Y_{v}^{\beta}\right)\right)$. We show how to derive $D={ }_{s y n} \neg \mathcal{T}\left(Y_{-, w}^{\beta}\right) \vee \neg \mathcal{T}\left(Y_{-v, \psi}^{\beta}\right)$, for each pair $w \neq w^{\prime}$. The formula $\mathcal{T}\left(Y_{v, w}^{\beta}\right)$ is just a disjunction of all paths in $T=T^{\beta,{ }^{-}}$that lead to w, call them P_{1}, \ldots, P_{ℓ}. Similarly, $\mathcal{T}\left(Y_{v, k}^{\beta}\right)$ is the disjunction of all paths in T that lead to $w^{\prime}: R_{1}, \ldots, R_{k}$. Any pair of paths P_{i}, R_{j} must differ on at least one query. Say that on P_{i}, we have $\alpha_{i j}\left(\bar{v}_{i j}\right)=w_{i j}$ and on $R_{j}, \alpha_{i j}\left(\bar{v}_{i j}\right)=w_{i j}^{\prime}$. Begin with the sequents

$$
P_{i}, R_{j} \longrightarrow X_{\gamma_{j} w_{i j}}^{\alpha_{i j}} \quad \text { and } \quad P_{i}, R_{j} \longrightarrow X_{\vartheta_{j} w_{i j}}^{\alpha_{i j}},
$$

for each i, j. By \neg - and \vee - introduction, we get

$$
\neg X_{\gamma_{j} j_{i j}}^{\alpha_{i j}} \vee \neg X_{\vartheta_{j} w_{i j}^{\prime}}^{\alpha_{i j}}, P_{i}, R_{j} \rightarrow .
$$

By weakenings and \vee-introductions, we get

$$
\left\{\neg X_{-j, w_{i j}}^{\alpha_{i j}} \vee \neg X_{-\psi_{i j} w_{i j}}^{\alpha_{i j}}\right\}_{i j}, \bigvee_{i} P_{i}, \bigvee_{j} R_{j} \rightarrow .
$$

Finally, by \neg-introduction, we get

$$
\left\{\neg X_{-\gamma_{j j_{i j}}}^{\alpha_{i j}} \vee \neg X_{\left.-\gamma_{j, w_{i j}^{\prime}}^{\alpha_{i j}}\right\}_{i j} \longrightarrow D .}\right.
$$

This derivation again has quasi-polynomial size.
(iii) Finally, consider a clause C of $\operatorname{CNF}\left(Q_{\Psi}\right)$ that says that one of the criteria for solution fails. We derive $D=\mathcal{T}(C)$. Assume C mentions variables $Y_{-, w_{1}}^{\beta_{1}}, \ldots, Y_{-, w_{k}}^{\beta_{k}}$. For each $1 \leq i \leq k$, let $T_{i}=T_{\psi}^{\beta_{i}}$. Let \mathcal{P} be all k-tuples of paths $\left\{\left(P_{1}, \ldots, P_{k}\right) \mid P_{1} \in T_{1}, \ldots, P_{k} \in T_{k}\right\}$. If $P \in \mathcal{P}$ violates C, then it must contain a solution to Q_{ϕ}. We can derive $\operatorname{disj}(\mathcal{P})$, the disjunction of all elements of \mathcal{P}, just as we derived $\operatorname{disj}(T)$ in (i). The inconsistent tuples can be cut out; so can the those tuples that violate C, as follows: any P that violates C must also violate a clause B of $\operatorname{CNF}\left(Q_{\phi}\right)$, which rules out some potential solution to Q_{ϕ}. Starting from $\longrightarrow B$, we get the sequent $B^{\prime} \longrightarrow$, where B^{\prime} is a set of literals that are the negations of those literals in B. But B^{\prime} must be a subset of P. Therefore, we can cut out P from $\longrightarrow \mathcal{P}$. Now we have simply

$$
\rightarrow \mathcal{P}^{\prime}
$$

where P^{\prime} is the set of all consistent paths in \mathcal{P} that satisfy C. Write C as $l_{1} \vee \ldots, \vee l_{k}$, where each l_{i} is either $Y_{-, w_{i}}^{\beta_{i}}$ or its negation. If l_{i} is a negative literal, let $\mathcal{T}^{\text {comp }}\left(l_{i}\right)$ be the disjunction of all the paths in T_{i} that don't lead to w_{i}. Let $g\left(l_{i}\right)=\mathcal{T}\left(l_{i}\right)$ if l_{i} is positive and $\mathcal{T}^{\text {comp }}\left(l_{i}\right)$ otherwise. For each path $P \in \mathcal{P}^{\prime}$, there is an i such that P contains one of the paths in $g\left(l_{i}\right)$. Therefore, it is easy to derive

$$
\longrightarrow g\left(l_{1}\right), \ldots, g\left(l_{k}\right)
$$

from

$$
\rightarrow P^{\prime}
$$

Finally, using $\longrightarrow \operatorname{disj}\left(T_{i}\right)$ and the cut rule, we derive

$$
\longrightarrow \mathcal{T}\left(l_{1}\right), \ldots, \mathcal{T}\left(l_{k}\right),
$$

which is D itself. Again this derivation has quasi-polynomial size.

4.2 Nullstellensatz

We saw above that a poly-time reduction between search problems yields a quasi-poly-size bounded-depth LK reduction between the corresponding propositional formulas. Here we show a similar connection to the Nullstellensatz system.

Definition 8. Let F be a field and let \bar{X} and \bar{Y} be infinite sets of variables. Let P_{1} be an infinite family of finite subsets of $F[\bar{X}]$ and let P_{2} be an infinite family of finite subsets of $F[\bar{Y}]$. We say that P_{1} has a degree-d Nullstellensatz reduction to $P_{2}\left(P_{1} \leq_{H N(d)} P_{2}\right)$, if, for any $A \in P_{1}$ there is a $B \in P_{2}$ and a set of polynomials $\bar{f}_{Y}=\left\{f_{Y}\right\}_{Y \in \bar{Y}} \subset F[\bar{X}]$ such that each polynomial in $B\left(\bar{f}_{Y} / \bar{Y}\right)$ has a degree-d Nullstellensatz derivation from A. $B\left(\bar{f}_{Y} / \bar{Y}\right)$ is just the result of replacing each variable Y in each polynomial of B by f_{Y}.

Theorem 9. Let Q_{Φ}, Q_{Ψ} be two type-2 NP search problems defined by first order sentences. If $Q_{\Phi} \leq_{m} Q_{\Psi}$, then poly $\left(Q_{\Phi}\right) \leq_{H N(d)}$ poly $\left(Q_{\Psi}\right)$ for some d that is polynomial in n over any field.

Proof. Assume we have a search problem reduction from an instance of Q_{Φ} of size n to an instance of Q_{Ψ} of size m, and that the reduction is given by decision trees $\mathcal{T}=\left\{T^{n}\right\}$. We present a Nullstellensatz reduction from $\operatorname{poly}\left(Q_{\Phi}, n\right)$ to $\operatorname{poly}\left(Q_{\Psi}, m\right)$. Call the set of variables of $\operatorname{poly}\left(Q_{\Phi}, n\right) \bar{X}$, and the set of variables of $\operatorname{poly}\left(Q_{\Psi}, m\right) \bar{Y}$. Consider a $Y \in \bar{Y}$ corresponding to the equation $\beta(\bar{v})=w$, where $\bar{v} \subset V_{m}, w \in V_{m}$ and β is one of Q_{Ψ} 's type-2 objects. We substitute for Y a polynomial $\mathcal{T}(Y)$ that encodes all paths in $T_{\beta,-v}^{n}$ that lead to w in the following manner: given one such path p, consider each query on p to one of Q_{Φ} 's type-2 objects α. If α is a function and p insists that $\alpha\left(\bar{v}^{\prime}\right)=w^{\prime}$, then the polynomial t_{p} will include the factor $X_{\nu^{\prime} w^{\prime}}^{\alpha}$. If α is a relation and p insists that $\alpha\left(\bar{v}^{\prime}\right)$ is true, then t_{p} will include the factor X_{ψ}^{α}; while if p insists that $\alpha\left(v^{\prime}\right)$ is false, t_{p} will include the factor $1-X_{q}^{\alpha}$. Essentially, t_{p} is a polynomial which is 0 on assignments that deviate from p at some point. The polynomial $\mathcal{T}(Y)$ is simply the sum of the polynomials t_{p} for each such path p. Note that the degree of $\mathcal{T}(Y)$ is polynomial in n.

We now claim that every polynomial in $\mathcal{T}\left(\right.$ poly $\left.\left(Q_{\Psi}, m\right)\right)$ has a low-degree Nullstellensatz derivation from $\operatorname{poly}\left(Q_{\Phi}, n\right) \cdot \mathcal{T}\left(\operatorname{poly}\left(Q_{\Psi}, m\right)\right)$ is the result of replacing all variables Y in all polynomials of $\operatorname{poly}\left(Q_{\Psi}, m\right)$ by $\mathcal{T}(Y)$. Consider each type of polynomial in $\operatorname{poly}\left(Q_{\Psi}, m\right)$ in turn. Observe that the solution clauses of Q_{Φ} and Q_{Ψ} enumerate the solutions of each of the search problems. If $g(\bar{Y})$ is a polynomial in $\operatorname{poly}\left(Q_{\Psi}, m\right)$ that corresponds to a solution clause, then each term of $\mathcal{T}(g(\bar{Y}))$ includes as a factor a polynomial corresponding to a solution clause of Q_{Φ}. Since g has constant degree, each term can certainly be derived from $\operatorname{poly}\left(Q_{\Phi}, n\right)$ in $\operatorname{poly}(n)$-degree Nullstellensatz.

Now let $g \in \operatorname{poly}\left(Q_{\Psi}, m\right)$ be one of the $0 / 1$ constraint polynomials: $Y-Y^{2}$. If X (alternatively, $1-X$) is a factor in one of the t_{p} 's of $\mathcal{T}(Y)$, then $X-X^{2}$ is a factor of $t_{p}-t_{p}^{2}$. Now we just have to worry about generating polynomials of the form $t_{p} t_{p^{\prime}}$ for $t_{p}, t_{p^{\prime}}$ in $\mathcal{T}(Y)$: the paths p and p^{\prime} are two different paths in the same decision tree. Consider the fir rst place where p and p^{\prime} differ. If that place queries a type-2 function α of Q_{Φ} on input \bar{u}, then something in polysinglede $f_{n}\left(X_{-}^{\alpha}\right)$ is a factor of $t_{p} t_{p^{\prime}}$. Otherwise, if that place queries a type-2 relation α of Q_{Φ} on input u, then $X_{u}^{\alpha}-\left(X_{u}^{\alpha}\right)^{2}$ is a factor of $t_{p} t_{p^{\prime}}$. Again, since g has constant degree, $\mathcal{T}(g(\bar{Y}))$ can be derived in polynomial degree.
If $g \in$ polysingledef $f_{m}\left(Y_{v}^{\beta}\right)$ for some type-2 function β and $\bar{v} \subset V_{m}$, then g looks like $Y_{1} Y_{2}$, where $Y_{1}=Y_{v w}^{\beta}$ and $Y_{2}=Y_{\tau v}^{\beta}, w \neq w^{\prime}$. Choose any t_{p} in the sum $\mathcal{T}\left(Y_{1}\right)$ and any $t_{p^{\prime}}$ in $\mathcal{T}\left(Y_{2}\right)$. The paths p and p^{\prime} are two different paths in the same decision tree, so the situation is the same as above.
Finally, consider the case where $g=\operatorname{polydef}_{m}\left(Y_{v}^{\beta}\right)$. Then $\mathcal{T}(g(\bar{Y}))$ is the sum of the t_{p} 's for all paths p in
the tree $T=T_{\beta,-v}^{m}$ We prove by induction on the height of T that

$$
s(T)=\sum_{p \in T} t_{p}-1
$$

has a Nullstellensatz derivation from $\operatorname{poly}\left(Q_{\Phi}, n\right)$ of degree $\operatorname{height}(T)$. If $\operatorname{height}(T)=0$, then we consider T to have one path p of length 0 and let $t_{p}=1$. Hence $s(T)=0$. Otherwise, let T have height $k>0$. Consider the tree T^{\prime}, the subtree of T where every path from the root is truncated at length $k-1$. By induction, $s\left(T^{\prime}\right)-1$ has a Nullstellensatz derivation of degree $k-1$. Consider any leaf l of T^{\prime} that is not a leaf of T and assume it queries type-2 object α on element \bar{u} in T. Let T_{l}^{\prime} be the tree T^{\prime} with every T-child of l added on. If α is a function, then $s\left(T_{l}^{\prime}\right)-s\left(T^{\prime}\right)=\operatorname{polyde}_{n}\left(X_{-u}^{\alpha}\right) t_{p_{l}}$, where p_{l} is the path from the root to l. If α is a relation, then $s\left(T_{l}^{\prime}\right)-s\left(T^{\prime}\right)=0$. We know $s(T)-s\left(T^{\prime}\right)$ is just the sum of $s\left(T_{l}^{\prime}\right)-s\left(T^{\prime}\right)$ for all such leaves l. Hence $s(T)$ has a degree k Nullstellensatz derivation and $\mathcal{T}(g(\bar{Y}))$ has a polynomial degree Nullstellensatz derivation.

5 Proof Complexity Separations

In this section we show a number of proof complexity separations which, together with Theorems 7 and 9, imply separations of type-2 search problems. Note that the CNF formulas $C N F$ (PIGEON), $C N F$ (WeakPIGEON), $C N F$ (LONELY), and $C N F$ (WeakPIGEON) are equivalent to the CNF formulas whose proof complexity have been studied extensively. CNF (ITERATION) is equivalent to the housesitting principle of [CEI96, Bus98b].

Lemma 10. The following separations hold in bounded-depth LK:
(a) $C N F$ (PIGEON) $\leq_{b d-L K} C N F$ (WeakPIGEON).
(b) $C N F$ (LONELY) $\nless z d-L K C N F$ (PIGEON).
(c) $C N F$ (PIGEON) $\leq_{b d-L K} C N F$ (ITERATION).
(d) $C N F$ (LONELY) $\leq_{b d-L K} C N F$ (ITERATION).

Proof. [PBI93, KPW95] show that $C N F$ (PIGEON) requires exponential-size refutations in any boundeddepth system. [BP96] show (b), and hence $C N F$ (LONELY) requires exponential-size bounded-depth LK refutations. On the other hand, [MPW00] show that $C N F$ (WeakPIGEON) has quasi-poly-size 0.5-depth LK refutations, and Lemma 11 below shows that $C N F$ (ITERATION) has poly-size tree-like resolution refutations.

Lemma 11. $C N F$ (ITERATION) has poly-size tree-like resolution refutation.
Proof. Fix arbitrary $n \in \mathbb{N}$ and let $N=2^{n}$. $C N F$ (ITERATION, n) consists of the following clauses:
(i) $\neg X_{0,0}$
(ii) $\neg X_{i, j}$ for all i, j such that $j<i$
(iii) $\neg X_{i, j} \vee \neg X_{j, j}$ for all i, j such that $i<j$
(iv) $\bigvee_{0 \leq j \leq N-1} X_{i, j}$ for every i
(v) $\neg X_{i, j} \vee \neg X_{i, k}$ for all i, j, k with $j \neq k$

For every $i \geq 1$, defi ne A_{i} to be the clause $\bigvee_{j \geq i} \neg X_{j, j}$. A_{1} is derivable from clauses (i), (iii), and (iv) for $i=0$. Similarly, for every $i \geq 1$, the clause $X_{i, i} \vee A_{i+1}$ is derived using (ii), (iii), and (iv). Thus, for every $i \geq 2, A_{i}$ is derived by resolving A_{i-1} and $X_{i-1, i-1} \vee A_{i}$ on $P_{i-1, i-1}$. Finally, the empty clause is derived from $A_{n}=\neg P_{N, N}$ and $P_{N, N}$, which is derived from (ii) and (iv).

Lemma 12. The following separations hold for degree-d Nullstellensatz whenever d is polynomial in n :
(a) poly(PIGEON) $\leq_{H N(d)}$ poly(OntoPIGEON) over any field F.
(b) poly(ITERATION) $\mathbb{Z}_{H N(d)}$ poly(OntoPIGEON) over any field F.
(c) poly(PIGEON) $\leq_{H N(d)}$ poly(LONELY) over any field F of characteristic 2.
(d) poly(ITERATION) $\mathbb{Z}_{H N(d)}$ poly(LONELY) over any field F of characteristic 2.

Proof. [BCE ${ }^{+} 98$, Raz98] prove that poly(PIGEON) requires $\Omega(N)$-degree Nullstellensatz refutations over any fi eld. [CEI96, Bus98b] prove the same for poly(ITERATION) (they call the principle "housesitting").

On the other hand, poly(OntoPIGEON) has constant-degree Nullstellensatz refutations over any fi eld. We have the following polynomials (let $X_{i j}$ say that pigeon i maps to hole j and let $Y_{i j}$ say that hole i maps to pigeon j for $0 \leq i, j<N$):
(i) $\left(\sum_{j=0}^{N-1} X_{i j}\right)-1$ for all i
(ii) $\left(\sum_{j=0}^{N-1} Y_{i j}\right)-1$ for all $i \neq 0$
(iii) $X_{i 0}$ for all i
(iv) $X_{i j}\left(1-Y_{j i}\right)$ for any i, j
(v) $Y_{i j}\left(1-X_{j i}\right)$ for any i, j
(vi) $X_{i j} X_{i j^{\prime}}$ for any $i, j \neq j^{\prime}$

Begin by converting each $Y_{i j}$ in (ii) to $X_{j i}$ using (iv) and (v). Now sum up all polynomials in (i) and subtract all polynomials in (ii). What remains is $\left(\sum_{i=0}^{N} X_{i 0}\right)+1$. Now we can simply cancel each $X_{i 0}$ using (iii).

Finally, poly(LONELY) has constant-degree Nullstellensatz refutations over characteristic 2 . We have the following polynomials (let $X_{i j}$ say that node i maps to node j for $0 \leq i, j<N$):
(i) $X_{i j}-X_{i j} X_{j i}$ for all $i \neq j$
(ii) $X_{i i}$ for all $i \neq 0$
(iii) $1-X_{00}$
(iv) $\left.\sum_{j=0}^{N-1} X_{i j}\right)-1$ for any i
(v) $X_{i j} X_{i j^{\prime}}$ for any $i, j \neq j^{\prime}$

Begin by summing up all polynomials in (i), (ii) and (iv): this yields $\left(\sum_{i=1}^{N-1} X_{0 i}\right)+1$. If we add $X_{0 j} X_{00}+$ $X_{0 j}\left(1-X_{00}\right)$ to this, we get simply 1.

6 Search Problem Separations

The following theorem states many of the separations that follow directly from Theorems 7 and 9, and Lemmas 10 and 12:

Theorem 13. (a) ([BCE+98]) PIGEON ${\nless{ }_{m}}$ LONELY
(b) $\left(\left[B C E^{+} 98\right]\right)$ LONELY $\not \chi_{m}$ PIGEON
(c) PIGEON $\not \chi_{m}$ WeakPIGEON
(d) ([BCE $\left.\left.{ }^{+} 98\right]\right)$ PIGEON $\not \not_{m}$ OntoPIGEON
(e) ITERATION $\not \not 又 m_{m}$ LONELY
(f) [Mor01] LONELY $\not \leq_{m}$ ITERATION
(g) [Mor01] PIGEON \not _ $_{m}$ ITERATION

By Theorem 3, this implies relative separations of all the corresponding search classes.
To (almost) complete the characterization of PLS, we prove a slightly weaker separation of ITERATION from PIGEON:

Definition 14. We say that Q_{1} is nicely reducible to Q_{2} if $Q_{1} \leq_{m} Q_{2}$ and, any instance of Q_{1} which contains exactly one solution is reduced to an instance of Q_{2} that contains exactly one solution.

Note that all common examples of reductions are nice reductions. In fact, they almost always preserve the number of solutions in general. Nice reductions are, ostensibly, much less restricted than what [BCE ${ }^{+} 98$] call strong reductions.

Lemma 15. If ITERATION is nicely reducible to PIGEON, then ITERATION is reducible to OntoPIGEON.

Proof. Consider ITERATION on a structure of size $N=2^{n}$, defi ned by the type- 2 function $\operatorname{succ}(\dot{)}$. The corresponding instance of PIGEON has size $M \leq 2^{\text {poly(n) }}$, and is defi ned by the function β. Let $\mathcal{T}=\left\{T_{\beta, p_{i}}^{n}\right\}_{i=0}^{M-1}$ be the nice reduction from ITERATION to PIGEON. Begin by creating \mathcal{T}^{\prime} : augment \mathcal{T} so that whenever a tree $T_{\beta, p_{i}}$ queries the successor of node x in the ITERATION instance, it immediately queries $\operatorname{succ}(\operatorname{succ}(x))$ whenever $\operatorname{succ}(x)>x$. Now prune all branches of these trees that contain a solution to the ITERATION instance. At this point, given any path π in $T_{\beta, p_{i}}$ and any path π^{\prime} in $T_{\beta, p_{j}}$ such that both paths lead to hole h_{k}, it must be the case that π and π^{\prime} are inconsistent. Lemma 4 of $\left[\mathrm{BCE}^{+} 98\right]$ describes how to build a forest of trees $\mathcal{H}=\left\{H_{\beta, h_{i}}\right\}_{i=1}^{M-1}$ such that each tree has height at most polynomial in n and $H_{\beta, h_{i}}$ determines which pigeon, if any, maps to hole h_{i}. If we find that no pigeon maps to hole h_{i}, we label the leaf by pigeon 0 .
We now have the appropriate objects, namely \mathcal{T} and \mathcal{H}, to pass to an oracle for OntoPIGEON. This oracle will return (1) pigeons p_{i} and p_{j} that collide, (2) a pigeon p_{i} that maps to hole h_{0}, (3) a pigeon p_{i} that maps to hole h_{k}, but hole h_{k} maps to pigeon p_{j}, or (4) a hole h_{i} that maps to pigeon p_{k}, but p_{k} maps to hole h_{j}. Cases (1) and (2) have nothing to do with \mathcal{H}, so we can fi nd a solution to ITERATION by the correctness of \mathcal{T}. In case (3), it must be that p_{i} and p_{j} collide under \mathcal{T}, so again we can fi nd a solution to ITERATION. Finally, case (4) can arise only when $k=0$ and h_{i} is left empty by \mathcal{T}. Assume that the pertinent path, π, in tree $H_{\beta, h_{i}}$ does not reveal a solution to the ITERATION instance, otherwise we are done. Create an instance of ITERATION that is consistent with π and contains only one solution. Since \mathcal{T} is a nice reduction, the corresponding instance of PIGEON has exactly one solution. Hence, there should be no hole, except perhaps h_{0}, that remains empty. Therefore $H_{\beta, h_{i}}$ must have been incorrect, so \mathcal{T} must have been incorrect.

Theorem 16. ITERATION is not nicely reducible to PIGEON.

Proof. This follows from Lemmas 15 and 12, and Theorem 9.

7 A Separation Criterion for PLS

We now present a suffi cient condition for separating a search Q from ITERATION. The condition generalizes all of the relative separations from ITERATION that appear in this work and in [CK98, Mor01]. Note that the conclusion of Theorem 17 implies that $C(Q)^{A} \nsubseteq \mathbf{P L S}^{A}$ for some oracle A :

Theorem 17. Let Φ be an \exists-sentence over a language L with no built-in predicate and no built-in function. If Φ fails in an infinite structure, then

$$
Q_{\Phi} \not \backslash_{T} \text { ITERATION. }
$$

Theorem 17 is similar to Theorem 11.3.1 of [Kra95] below.

Theorem 18. [Kra95] Let Φ be a $\exists \forall$-sentence over a relational language L without \leq. If Φ fails in an infinite structure, then the type-2 problem Q_{Φ} is not in type- $2 \mathbf{F P}^{\mathbf{N P}}$.

Theorems 17 and 18 are incomparable. Since ITERATION is in type-2 $\mathbf{F P}^{\text {NP }}$ trivially, the consequence of Theorem 18 is stronger than that of our Theorem 17. However, it does not apply to search problems defi ned by \exists-sentences (which are also $\exists \forall$-sentences) over functional languages, which is the scope of our Theorem 17. For example, Theorem 18 does not say anything about the complexity of PIGEON, since the PIGEON principle is not over a relational language. In fact, $\Phi_{\text {PIGEON }}$ is in type- $2 \mathbf{F P}^{\mathbf{N P}}$ trivially: binary search asking 'does there exist $v>k$ witnessing $\Phi_{\text {PIGEON }}$?' for various k yields a solution in polynomial-time.
Theorem 17 seems to follow from Theorem 7 and the fact that $C N F$ (ITERATION) has small tree-like Resolution refutations, via a lower bound of the style presented in [Rii01, Kra01, DR01]. If Q_{Φ} is reducible to ITERATION, then $\operatorname{CNF}\left(Q_{\Phi}\right)$ has tree-like LK refutations of size polynomial in N that mention only formulas that can be represented as poly-depth decision trees over the type-2 objects of Q_{Φ}. On the other hand, if $C N F\left(Q_{\Phi}\right)$ holds in an infi nite model, it shouldn't have such a refutation (for a treatment of similar lower bounds for LK, see [GT03]). Instead, however, we give a more direct proof that does not go through proof complexity.

7.1 Proof of Theorem 17

Throughout this section, we fix the language L to be $L=\{0, \alpha\}$, where α is a unary function, and assume that Φ is an \exists-sentence over L of the form $(\exists x) \phi(x)$. The case with arbitrary language and arbitrary \exists-sentence is analogous to the current case.

For any $n \geq 1$, a partial function $\rho_{n}: V_{n} \mapsto V_{n}$ is called a restriction. Let $\rho=\left\{\rho_{n}\right\}_{n}$ be a family of restrictions. We denote by $\left(Q_{\Phi}\right)^{\rho}$ the type-2 search problem Q_{Φ} such that the oracle for α answers queries consistently with ρ, i.e., on instance $\left(1^{n}, \alpha\right)$, if $v \in \operatorname{dom}\left(\rho_{n}\right)$, then the query ' $\alpha(v)$ ' is answered with $\rho_{n}(v)$. The size of restriction ρ_{n} is $\left|\operatorname{dom}\left(\rho_{n}\right)\right|+\left|\operatorname{ran}\left(\rho_{n}\right)\right|$ and is written $\left|\rho_{n}\right|$. We say that $\left\{\rho_{n}\right\}_{n}$ is a polysize family if $\left|\rho_{n}\right| \in n^{O(1)}$. We say that a restriction $\rho_{n}: V_{n} \mapsto V_{n}$ contains a solution for Q_{Φ} if the defi ned part of ρ_{n} contains a witness to Φ in V_{n}.

A restriction $\rho_{n}: V_{n} \mapsto V_{n}$ is said to be safe for Φ if the following conditions are met: (1) there exists an infi nite structure $\mathcal{K}=\left(K, \alpha_{K}\right)$ in which Φ fails; and (2) there exists a one-one mapping $h: V_{n} \mapsto K$ such that $\rho_{n}(v)=u$ implies $\alpha_{K}(h(v))=h(u)$. Note that, if ρ_{n} is safe for Φ, then ρ_{n} does not contain a solution for Q_{Φ}. We say that a family $\left\{\rho_{n}\right\}_{n}$ of restrictions is safe for Φ if ρ_{n} is safe for Φ for every n.
Defi ne T_{n} to be a decision tree whose internal nodes are labeled with queries ' $\alpha(v)$ ' for some $v \in V_{n}$ and whose edges are labeled with answers ' u ' for some $u \in V_{n}$. Each internal node specifi es an oracle query to α, and if the answer is ' $\alpha(v)=u$ ', then the outgoing edge with label ' u ' should be taken, which leads to the node specifying the next query. This procedure terminates when a leaf node is reached. The leaf nodes are unlabeled. Note that, for every path P of T_{n}, there exists a corresponding restriction π_{P} specifi ed by the queries and answers on P. We say that T_{n} solves Q_{Φ} on n if, for every path P of T_{n}, the corresponding restriction π_{P} contains a solution for Q_{Φ}. Let $\operatorname{Depth}_{T}(n)$ be the depth of T_{n}, i.e., the maximum length of paths from the root to a leaf node. A family $\left\{T_{n}\right\}_{n}$ of S-trees is said to be poly-depth if $\operatorname{Depth}_{T}(n) \in n^{O(1)}$. Poly-depth families of S-trees constitute a nonuniform version of type-2 FP.

Special cases of the following are implicit in [Bus86, Kra95, $\mathrm{BCE}^{+} 98$, CK98, Mor01].
Lemma 19. Let L be a language not containing \leq and let Φ be an \exists-sentence over L that fails in an infinite structure. If $\left\{T_{n}\right\}_{n}$ is a poly-depth family of S-trees over L and $\rho=\left\{\rho_{n}\right\}_{n}$ is a safe, polysize family of
restrictions, then, for all sufficiently large n, T_{n} contains a path P such that $\rho_{n} \cup \pi_{P}$ is safe for Φ.

Note that the conclusion of Lemma 19 implies that T_{n} does not solve $\left(Q_{\Phi}\right)^{\rho}$ on n. Proving Lemma 19 is not hard and left to the reader.

Now assume for the sake of contradiction that $Q_{\Phi} \leq_{m}$ ITERATION by an oracle Turing machine M that solves Q_{Φ} in polynomial-time by making one query to ITERATION and arbitrary many queries to α. Let $k(n) \in n^{O(1)}$ be the running time of M.

Claim 20. There exists a polysize family $\left\{\rho_{n}\right\}_{n}$ of restrictions such that, for sufficiently large n, the following hold: (1) ρ_{n} is safe for Φ; and (2) ρ_{n} contains the answers to all the queries to α and ITERATION made by M on $\left(1^{n}, \alpha\right)$.

Suppose Claim 20 holds and consider M on $\left(1^{n}, \alpha\right)$ for n suffi ciently large. We answer all the queries to α and ITERATION according to ρ_{n} asserted to exist by the Claim. At the end of its computation, M is forced to output some $v \in V_{n}$ as a solution, although no solution is forced by ρ_{n}. Hence, after M outputs some v, we extend ρ_{n} to some α such that $\phi(v)$ does not hold in V_{n}. This completes the proof of Theorem 17.

It remains to prove Claim 20. Fix n suffi ciently large so that all the necessary invocations of Lemma 19 hold, and let $k=k(n)$. We divide the computation of M into 3 phases: phase 2 is the ITERATION-query of M, and phase 1 and 3 consist of all the α-queries that are asked before and after the ITERATION-query, respectively. Our goal is to construct safe restrictions $\mu_{1}, \mu_{2}, \mu_{3}$ such that (1) μ_{3} extends μ_{2}, which extends μ_{1}; (2) μ_{i} contains the answers to all the queries that are asked in the first i phases of M; and (3) $\left|\mu_{i}\right| \in n^{O(1)}$.

In order to construct μ_{1}, let M^{\prime} be an oracle Turing machine that simulates M until M writes the ITERATIONquery, at which point M^{\prime} halts. Thus, M^{\prime} simulates phase 1 of M and asks at most $k \alpha$-queries. Construct a decision tree T^{\prime} from M^{\prime} by extracting all possible sequences of α queries that M^{\prime} asks. By Lemma 19 (with ρ_{n} empty), T^{\prime} contains a path P such that π_{P} is safe for Φ. Let $\mu_{1}=\pi_{P}$.
For phase 2 , let $\left(1^{m}, \beta\right)$ be the ITERATION-query that M asks, when all preceding α-queries are answered according to μ_{1}. Our task is to construct μ_{2} by extending μ_{1} enough so that a solution for ITERATION $\left(1^{m}, \beta\right)$ is specifi ed, while keeping μ_{2} safe for Φ. By defi nition of many-one reduction, $\beta: V_{m} \mapsto V_{m}$ is computable by an oracle Turing machine M_{β} in time polynomial in n using α as an oracle. For each $x \in V_{m}$, let $B(x)$ be the decision tree corresponding to the computations of M_{β} on x. We say a path P of the decision tree $B(x)$ is good if P is consistent with μ_{1} and $\mu_{1} \cup \pi_{P}$ is safe. For each $x \in V_{m}$, let $\operatorname{Good}_{B}(x)$ be the set of all good paths of $B(x)$. By Lemma 19, for all $x, \operatorname{Good}_{B}(x)$ is not empty.
There are three cases to consider.
First Case: $\operatorname{Good}_{B}\left(0^{n}\right)$ contains a path P such that the corresponding computation of M_{β} makes $\beta\left(0^{n}\right)=0^{n}$. We set $\mu_{2}=\mu_{1} \cup \pi_{P}$ and return an arbitrary $v \in V_{m}$ to M as a solution for the ITERATION-query $\left(1^{m}, \beta\right)$.
Second Case: For some $x \in V_{m}, \operatorname{Good}_{B}(x)$ contains a path P such that the corresponding computation of M_{β} makes $\beta(x)=y$ for some $y<x$. We set $\mu_{2}=\mu_{1} \cup \pi_{P}$ and return x as a solution for the ITERATION-query.
Third Case: the above two cases do not hold. Since the first case does not hold, every path in $\operatorname{Good}_{B}\left(0^{n}\right)$ corresponds to a computation of M_{β} with $\beta\left(0^{n}\right)>0^{n}$. Similarly, since the second case does not hold, every path in $\operatorname{Good}_{B}\left(1^{n}\right)$ leads to $\beta\left(1^{n}\right)=1^{n}$. Hence, by the least number principle, there exists $x \in V_{m}$ such that (1) $\operatorname{Good}_{B}(x)$ contains a path P^{\prime} that leads to $\beta(x)=y$ for some $y>x$; and (2) for all $z>x$, every path in $\operatorname{Good}_{B}(z)$ leads to $\beta(z)=z$.
Let x, y, and P^{\prime} be as in the preceding paragraph. Let $\operatorname{Better}_{B}(y)$ as the set of paths $P^{\prime \prime}$ of $B(y)$ such that $\pi_{P^{\prime \prime}}$ is consistent with $\mu_{1} \cup \pi_{P^{\prime}}$ and $\mu_{1} \cup \pi_{P^{\prime}} \cup \pi_{P^{\prime \prime}}$ is safe for Φ. By Lemma 19, $\operatorname{Better}_{B}(y)$ is not empty. Let P^{*} be
any path in $\operatorname{Better}_{B}(y)$. Set μ_{2} to be $\mu_{1} \cup \pi_{P^{\prime}} \cup \pi_{P^{*}}$ and return x to M as a solution for its ITERATION-query. Note that x is a solution because $\beta(x)=y$ and $\beta(y)=y$. This concludes the construction of μ_{2}.
μ_{3} is constructed in essentially the same way as μ_{1} by invoking Lemma 19 with μ_{2}. Finally, let $\rho_{n}=\mu_{3}$. The resulting family $\left\{\rho_{n}\right\}_{n}$ satisfi es the conditions in Claim 20.

8 Concluding Remarks and Open Problems

We have obtained a number of search problem separations from proof complexity separations and our Theorems 7 and 9 . Note that our proofs of these separations do not depend on the fact that the substitution instance of $C N F\left(Q_{\Psi}\right)$ and poly $\left(Q_{\Psi}\right)$ are uniformly generated by a Turing machine that reduces Q_{Φ} to Q_{Ψ}. Hence, all the search problem separations in this paper hold to exclude reductions by nonuniform poly-size circuits. The same is true for the separations obtained in [$\mathrm{BCE}^{+} 98$, Mor01].

All the separations we obtained in this paper are with respect to many-one reducibility. Since all the known separations from $\left[\mathrm{BCE}^{+} 98\right.$, Mor01] are known to hold with respect to Turing reducibility, it is an interesting open problem to see if this stronger separation is obtainable directly from proof complexity separation.

We made progress toward resolving the relative complexity of PLS by showing ITERATION $\not \leq m$ LONELY and ITERATION is not nicely reducible to PIGEON. We are interested in knowing whether ITERATION is many-one reducible to PIGEON or not, which still remains open. One difficulty is that the iteration principle is easy for almost all proof systems (except for Nullstellensatz, for which the hardness of the iteration principle allowed us to prove ITERATION $\not \leq_{m}$ LONELY) and the pigeonhole principle is hard for almost all proof systems.

From Theorem 9 and the fact that poly(LONELY) has constant-degree Nullstellensatz refutations, it follows that the totality of every PPA problem has low-degree Nullstellensatz proofs. This indicates that the fi xed point theorems of Brower, Nash, and Kakutani, whose corresponding search problems are in PPA, have low-complexity proofs.

Theorems 7 and 9 constructs propositional refutations from reductions. Does the converse hold? Is it true that the translation of a search problem has a small LK or Nullstellensatz refutation, then the search problem is reducible to, say, ITERATION (which is easy for $L K$) or LONELY (which is easy for Nullstellensatz)?

The theories of bounded arithmetic are introduced by Buss in [Bus86] as fragments of Peano Arithmetic with bounds on their reasoning power. Bounded arithmetic is closely related to computational complexity and proof complexity, and our results connecting these two areas naturally have some consequences on bounded arithmetic as well. For the defi nitions and relevant results, we refer the reader to [Bus86, Kra95, Bus98a].

Theorem 21. Let $\Psi(a) \in \Sigma_{\infty}^{b}(L)$, where L is an arbitrary set of symbols, and define Q_{Ψ} be a type- 2 search problem of witnessing Ψ in canonical structures. Assume that the relativized bounded arithmetic theory $S_{2}(L)$ proves $\forall x \Psi(a)$. Then PIGEON $\not \leq_{m} Q_{\Psi}$ and LONELY $\not \leq_{m} Q_{\Psi}$. In fact, $Q_{\Phi} \not \leq_{m} Q_{\Psi}$ for any Φ such that $C N F(\Phi)$ requires exponential-size refutations in any bounded-depth LK system.

Proof. The idea is that, if $S_{2}(L)$ proves $\forall x \Psi(x)$, then the propositional translations of $\Psi(a)$ has quasipolynomialsize proofs in bounded-depth $L K$ [PW85, Kra95]. From Theorem 7 it follows that, if $Q_{\Phi} \leq_{m} Q_{\Psi}$, then $C N F(\Phi)$ has subexponential-size $L K$ refutations, which contradicts the assumption.

Our Theorem 17 implies the following independence criterion for the relativized S_{2}^{2} by Riis [Rii93] in a similar way Krajicek's theorem (Theorem 18) in [Kra95] implies it.

Theorem 22. [Rii93] Let L be a language that is disjoint with the language of bounded arithmetic, and let $\Phi=\exists x \phi(x)$ be a sentence of arbitrary quantifier-complexity. If Φ fails in an infinite structure, then the relativized bounded arithmetic theory $S_{2}^{2}(L)$ does not prove $\Phi^{<a}$, where $\Phi^{<a}$ is Φ with all quantifiers bounded by a free variable a.

Proof. Krajicek has a proof of this theorem based on complexity-theoretic separation. Since our proof is similar to his, we only sketch the idea. Let Φ be of the form $\exists x_{1} \forall y_{1} \ldots \exists x_{k} \forall y_{k} \phi\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$, with ϕ quantifi er-free. Defi ne a herbrandization Φ_{I} of Φ as

$$
\exists x_{1} \exists x_{2} \ldots \exists x_{k} \phi\left(x_{1}, f_{1}\left(a, x_{1}\right), \ldots, x_{k}, f_{k}\left(a, x_{1}, \ldots, x_{k}\right)\right),
$$

where f_{1}, \ldots, f_{k} are new functions. Let $L^{\prime}=L \cup\left\{f_{1}, \ldots, f_{k}\right\}$. Since there is an infi nite structure in which Φ_{H} fails, $Q_{\Phi_{H}}$ is not reducible to ITERATION. Since ITERATION characterizes the $\Sigma_{1}^{b}\left(L^{\prime}\right)$-consequences of $S_{2}^{2}\left(L^{\prime}\right), S_{2}^{2}\left(L^{\prime}\right)$ does not prove

$$
\exists x_{1}<a \exists x_{2}<a \ldots \exists x_{k}<a\left[f_{1}\left(a, x_{1}\right)<a \wedge \ldots \wedge f_{k}\left(a, x_{1}, \ldots, x_{k}\right) \supset \phi\left(x_{1}, f_{1}\left(a, x_{1}\right), \ldots, x_{k}, f_{k}\left(a, x_{1}, \ldots, x_{k}\right)\right)\right]
$$

Let M be a model of $S_{2}^{2}\left(L^{\prime}\right)$ in which the above formula fails. It is not hard to see that $\Phi^{<a}$ fails in this model.

Acknowledgement. The second author wishes to thank S. Riis for his suggestion that his independence criterion may follow from the main result of [Mor01], which led to Theorems 17 and 22 of this paper. The fi rst author wishes to thank Toni Pitassi for some helpful discussions.

References

[$\left.\mathrm{BCE}^{+} 98\right]$ Paul W. Beame, Stephen A. Cook, Jeff Edmonds, ussell Impagliazzo, and Toniann Pitassi. The relative complexity of $N P$ search problems. Journal of Computer and System Sciences, 57:3-19, 1998.
[BK94] S. R. Buss and J. Krajicek. An application of Boolean complexity to separation problems in bounded arithmetic. Proceedings of the London Mathematical Society, 69:1-27, 1994.
[BP96] Paul W. Beame and Toniann Pitassi. An exponential separation between the parity principle and the pigeonhole principle. Annals of Pure and Applied Logic, 80:197-222, 1996.
[Bus86] S. R. Buss. Bounded Arithmetic. Bibliopolis, 1986.
[Bus98a] S. R. Buss. First-order proof theory of arithmetic. In S. R. Buss, editor, Handbook of proof theory, pages 79-147. Elsevier Science, 1998.
[Bus98b] S. R. Buss. Lower bounds on Nullstellensatz proofs via designs. In Paul W. Beame and Samuel R. Buss, editors, Proof Complexity and Feasible Arithmetics, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 59-71. American Mathematical Society, 1998.
[CEI96] M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Gröbner basis algorithm to fi nd proofs of unsatisfi ability. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pages 174-183, Philadelphia, PA, May 1996.
[CIY97] S. A. Cook, R. Impagliazzo, and T. Yamakami. A tight relationship between generic oracles and type-2 complexity. Information and Computation, 137(2):159-170, 1997.
[CK98] M. Chiari and J. Krajicek. Witnessing functions in bounded arithmetic and search problems. The Journal of Symbolic Logic, 63:1095-1115, 1998.
[DR01] Dantchev and Riis. Tree resolution proofs of the weak pigeon-hole principle. In Annual IEEE Conference on Computational Complexity (formerly Annual Conference on Structure in Complexity Theory), volume 16, 2001.
[GT03] N. Galesi and N. Thapen. The complexity of treelike systems over λ-local formulae. Manuscript, 2003.
[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal of Computer and System Sciences, 37:79-100, 1988.
[KPW95] J. Krajíček, P. Pudlák, and A Woods. Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms, 7(1), 1995.
[Kra95] J. Krajicek. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 1995.
[Kra01] J. Krajicek. On the weak pigeonhole principle. Fundamenta Mathematicae, 170:123-140, 2001.
[Mor01] T. Morioka. Classifi cation of Search Problems and Their Defi nability in Bounded Arithmetic. Master's thesis, University of Toronto, 2001. Also available as ECCC technical report TR01-82 at http://www.eccc.uni-trier.de.
[MP91] N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and computational complexity. Theoretical Computer Science, 81:317-324, 1991.
[MPW00] Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A new proof of the weak pigeonhole principle. In ACM, editor, Proceedings of the thirty second annual ACM Symposium on Theory of Computing: Portland, Oregon, May 21-23, [2000], pages 368-377, New York, NY, USA, 2000. ACM Press.
[Pap94a] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[Pap94b] C. H. Papadimitriou. On the complexity of the parity argument and other ineffi cient proofs of existence. Journal of Computer and System Sciences, 48:498-532, 1994.
[PBI93] Toniann Pitassi, Paul W. Beame, and Russell Impagliazzo. Exponential lower bounds for the pigeonhole principle. Computational Complexity, 3(2):97-140, 1993.
[PW85] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In Methods in Mathematical Logic: Proceedings of the 6th Latin American Symposium on Mathematical Logic 1983, volume 1130 of Lecture notes in Mathematics, pages 317-340, Berlin, 1985. Springer-Verlag.
[Raz98] A. A. Razborov. Lower bounds for the polynomial calculus. Computational Complexity, 7(4):291-324, 1998.
[Rii93] S. Riis. Making infi nite structures fi nite in models of second order bounded arithmetic. In P. Clote and J. Krajicek, editors, Arithmetic, Proof Theory, and Computational Complexity, pages 289-319. Oxford University Press, 1993.
[Rii01] S. Riis. A complexity gap for tree resolution. Computational Complexity, 10:179-209, 2001.
[Tow90] M. Townsend. Complexity for type-2 relations. Notre Dame Journal of Formal Logic, 31(2):241-262, 1990.
[Yan97] M. Yannakakis. Computational complexity. In E. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 19-55. John Wiley and Sons Ltd., 1997.

