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Abstract

We study the problem of non-interactive correlation distillation (NICD). Suppose Alice and
Bob each has a string, denoted by A = aga; ---a,—1 and B = bgby - - - b,_1, respectively. Fur-
thermore, for every k = 0,1,....,n — 1, (ax, bx) is independently drawn from a distribution A,
known as the “noise mode”. Alice and Bob wish to “distill” the correlation non-interactively,
i.e., they wish to each apply a function to their strings, and output one random bit, denoted
by X and Y, such that Prob [X = Y] can be made as close to 1 as possible. The problem is,
for what noise model can they succeed? This problem is related to various topics in computer
science, including information reconciliation and random beacons. In fact, if NICD is indeed
possible for some general class of noise models, then some of these topics would, in some sense,
become straightforward corollaries.

We prove two negative results on NICD for various noise models. We prove that for these
models, it is impossible to distill the correlation to be arbitrarily close to 1. We also give an
example where Alice and Bob can increase their correlation with one bit of communication (in
this case they need to each output two bits). This example, which may be of its own interest,
demonstrates that even the smallest amount of communication is provably more powerful than
no communication.

An extended abstract of this paper is to appear in the Latin American Theoretical INfor-
matics (LATIN 2004), Buenos Aires, Argentina, 2004.

1 Introduction

1.1 Non-Interactive Correlation Distillation

Consider the following scenario. Let N be a distribution over ¥ x X, where ¥ is an alphabet.
We call N' a “noise model.” Suppose Alice and Bob each receives a string A = agai---an_1
and B = boby ---b,—1, respectively, as their local inputs. For every & = 0,1...,n — 1, (ag,b)
is independently drawn from A. Now, Alice and Bob wish to engage in a protocol to “distill”
their correlation. An the end of the protocol, they wish to each output a bit, denoted by X
and Y, respectively, such that both X and Y are “random enough”, while Prob [X = Y] can be
made as close to 1 as possible, possibly by increasing n. We call such a protocol a correlation
distillation protocol. Furthermore, if Alice and Bob wish to do so non-interactively, i.e., without
communication, we call this “non-interactive correlation distillation” (NICD). Notice that in NICD,
the most general thing for Alice and Bob to do is to each apply a function to their local inputs and
outputs one bit. The problem of NICD is, for what noise model can Alice and Bob achieve this
goal?
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We note that NICD is indeed possible for many noise models. For example, if a noise model
N is in fact “noiseless,” i.e. Prob (4 cafa = b] = 1, then NICD is possible. However, we are
interested in the “noisy” noise models, for example, the binary symmetric model, where Alice and
Bob each has an unbiased bit as input, which agree with probability 1 — p, and the binary erasure
model, where Alice’s input is an unbiased bit z, and Bob’s input is z with probability 1 — p, and a
special symbol | with probability p. These models are extensively studied in the context of error
correcting codes [4, 11], where Alice encodes her information before sending it through a “noisy
channel”. It is known that there exists efficient encoding schemes that withstand these noise models
and allow Alice and Bob to achieve almost perfect correlation. However, in the case of NICD, the
“raw data” are already noisy. Can the techniques in error correcting codes be used here, and is
NICD possible for these noise models?

1.2 Motivations and Related Work

Besides the obvious relation to error correcting codes, the study of NICD is naturally motivated
by several other topics. We review these topics and discuss some of the related work.

Information Reconciliation Information reconciliation is an extensively studied topic [5, 15,
8, 9, 10] with applications in quantum cryptography and information-theoretical cryptography. In
this setting, Alice and Bob each receives a sequence of random bits drawn from a noise model,
while Eve, the eavesdropper, also possesses some information about the their bits. Alice and
Bob wish to “reconcile” their information via an “information reconciliation protocol”, where they
exchange information in a noiseless, public channel in order to agree on a random string U with
very high probability. Therefore, information reconciliation protocols are somewhat like correlation
distillation protocols. However, the primary concern for information reconciliation is privacy, i.e.,
that Eve gains almost no information about U. Intuitively, since Eve can see the conversation
between Alice and Bob, maximum privacy would be achieved if information reconciliation can be
performed without communication.

Random Beacons A random beacon is an entity that broadcasts uncorrelated, unbiased random
bits. The concept of random beacons were first introduced in 1983 by Rabin [17], who showed how
they can be used to solve various problems in cryptography. From then on, random beacons have
found many applications in security and cryptography [7, 14, 3, 12]. There are many proposals to
construct a publicly verifiable random beacon, among them are the ones that use the signals from
a cosmic source [16]. In these proposals, Alice (as the beacon owner) and Bob (as the verifier)
both point a telescope to an extraterrestrial object, e.g. a pulsar, and then measure the signals
from it. Presumably these signals contain enough amount of randomness. Then Alice converts her
measurement results into a sequence of random bits, and publishes them as beacon bits. Bob can
then verify the bits by performing his own measurement and conversion. However, it is inevitable
that there would be discrepancies in the results of Alice and Bob, due to measurement errors
(described by a noise model). These discrepancies may cause the beacon bits published by Alice
to disagree with the ones computed by Bob. One of the major concerns in the study on random
beacons is to prevent cheating in the presence of measurement error. In other words, one needs to
design a mechanism to prevent Alice from maliciously modifying her measurement data in order to
affect the beacon bits, while pretending that the modification comes from the measurement error.
Notice that in general, there is no communication between Alice and Bob. We note that if NICD
is possible, then the cheating problem would be solved, since NICD protocols can be used to distill



almost perfectly correlated bits. Then with very high probability, the bits output by Alice and Bob
should agree, and this essentially removes the measurement error.

Related Work As we have discussed, the problem of NICD lays, in some sense, at the founda-
tions of both the studies of information reconciliation and random beacons. In fact, Researchers
from both ares have, to some extent, considered the problem of NICD. In particular, a basic version
of the problem concerning only the binary symmetric noise model was discovered and proven inde-
pendently by several researchers since as early as 1991, including Alon, Maurer,and Wigderson [2]
and Mossel and O’Donnell [16]. They proved that NICD is impossible over the binary symmetric
noise model. Mossel and O’Donnell studied multi-party version of this problem, where k > 2 parties
wish to agree on some random bits. They also only considered the binary symmetric noise model.
In fact, we are not aware of any prior work that studies NICD beyond the binary symmetric noise
model.

We stress the importance of understanding the problem of NICD for general noise models. As
we have mentioned, this problem is important to both the studies of information reconciliation
and random beacons. In both studies, there is no reason to assume that the binary symmetric
noise model is the only reasonable one. As an example, the measurement of the signals from
extraterrestrial objects is not unique, and different measurements may yield different noise models.
If one of these noise models admits NICD, then the problems of information reconciliation and
random beacon could, in some sense, be solved. Therefore, a better understanding of NICD over
more general class of noise models would be very helpful.

1.3 Our Contribution

We study NICD beyond the binary symmetric noise model. First, we prove an impossibility result
for NICD over a class of so-called “regular” noise models in Section 3. Intuitively, a noise model N’
is regular if it satisfies the following three requirements: that it is symmetric, i.e., N'(a,b) = N (b, a)
for every a,b € 3; that it is locally uniform, i.e., both the distributions of the local inputs of Alice
and Bob are uniform; that it is connected, i.e., 3. cannot be partitioned into g and X1 such that
N(a,b) = N(b,a) = 0 for all a € Xy and b € X;. Notice that if a noise model is not connected,
that NICD is indeed possible for such a model. Suppose X is partitioned into 3y and ;. If Alice
and Bob interpret symbols in 33 as a “0” and symbols in 3; as a “1”, then they essentially have a
noiseless binary noise model, which admits NICD.

In section 4, we move over to the binary erasure noise model. It is the simplest noise model that
is not symmetric, and thus is not regular. The binary erasure model is also a realistic one. Consider
as example the situation where Alice and Bob receive their inputs by observing a pulsar. It is quite
likely that the noise of the measurements by Alice and Bob are of the “erasure-type”, i.e., the
corruption of information can be detected. Furthermore, it is also possible that Alice and Bob have
different measurement apparatus and different levels of accuracy. In the random beacon problem,
Alice (as the beacon owner) might own a more sophisticated (and more expensive) measuring
device with higher accuracy, while Bob (as the verifier) has a more noisy measurement device. An
extreme case would be that Alice has perfect accuracy in her measurement, but Bob’s measurement
is noisy. Such a situation can be described by the binary erasure noise model. We prove that NICD
is impossible for this noise model as well.

The impossibility results we prove suggest that for many noise models, communication is essen-
tial for correlation distillation. Thus it is interesting to ask how much communication is essential,
and in particular, if a single bit of communication helps. In Section 5, we answer this question in



positive by presenting a protocol that non-trivially distills correlation from the binary symmetric
noise model with one bit of communication. Notice that to make the problem in teresting, Alice
and Bob need to each ouput two bits. This result shows that even the minimal amount of commu-
nication is provably more powerful than no communications at all. The protocol itself may also be
of its own interest.

1.4 Organization of the Paper

We present some preliminaries and notations in Section 2. We prove an impossibility result for the
class of regular noise models in Section 3. Another negative result for the binary erasure model
is proven in Section 4. We present the one-bit protocol for distilling correlation for the binary
symmetric model in Section 5. Some of the proofs are postponed to the Appendix.

2 Preliminaries and Notations

We use [n] to denote the set {0,1,...,n—1}. We often work with symbols from a particular alphabet,
which is a finite set of cardinality ¢ and is normally denoted by ¥. We often identify ¥ with [g].

All vectors are column vectors by default. A string is a sequence of symbols from an alphabet.
We identify a string with a vector and use them interchangeably. For a string x of length n, we use
z[j] to denote its j-th entry, for j = 0,1,...,n — 1. We use 1,, to denote the all-one vector (whose
each entry is 1) of dimension n. When the dimension is clear from the context, it is often omitted.

We identify a function with its truth table, which is written as a vector. For example, we view
a function over {0,1}" also as a 2"-dimensional vector. We assume a canonical ordering of n-bit
strings.

We will work with tensor products. Let A and B both be vectors or both be matrices. We use
A ® B to denote the tensor product of A and B, and A®" to denote the n-th tensor power of A,
which is the tensor product of n copies of A.

Definition 1 (Noise Model) A noise model over an alphabet X, often denoted by N, is a prob-
abilistic distribution over ¥ X . The n-th tensor power of a noise model N is the distribution of
a pair of length-n strings (A, B), where A = apay---a,—1 and B = boby -+ by—1, and (ag,by) is
independently drawn from N for k =0,1,...,n — 1.

In this paper we study randomized, non-interactive protocols.!

For the impossibility results in Section 3 and Section 4, we assume that Alice and Bob each
outputs a single bit, since it suffices to prove a negative result on the “minimally useful” protocols.
We shall consider protocols that outputs multiple bits in Section 5.

Since Alice and Bob do not communicate, the most general thing they can do is to apply a
(randomized) function to their private inputs and outputs a bit. Therefore, we define a protocol as
a pair of functions.

Definition 2 (Protocols) A protocol P over a noise model N is a family of function pairs
(¢4, ¢B) forn > 0, where ¢2, ¢pE : " s [—1,1] are called the characteristic functions. The output
of protocol P over noise model N, denoted by P(N), is a sequence of distributions {D1,Da, ...},
where the n-th distribution Dy, is of the bit pair (X,,Yy), defined as follows.

!We do not know if randomlized protocols are strictly more powerful than determinictic ones, although we suspect
that they are. As a case in point, the “AND” protocol in Section 5 is a randomized one, and we do not know any
determinstic protocol that is locally uniform and has a comparable correlation.



(a,b) < N 2 ¢f(a),y < ¢F(b); Xn < B(14a)j2, Yo < B(iy)2  (Xn, Ya)

Where By, is the Bernoulli Distribution of parameter p, defined as By(0) =1 —p and By(1) = p.

The intuition behind the definition is as follows. Since a protocol can be probabilistic, its output
bit over any input can be a (Bernoulli) probabilistic distribuion. For different inputs, the Bernoulli
distribution of the corresponding output bit would be different. Thus we define the characteristic
functions to describe the Bernoulli distributions.

Definition 3 (Statistical Distance) The statistical distance between two probabilistic distribu-
tions A and B, denoted as SD(A, B), is defined to be SD(A,B) = 1> |A(z) — B(z)| where the
summation is taken over the support of A and B. If SD(A, B) < ¢, we say A is e-close to B.

Definition 4 (é-Locally Uniform Protocols) A protocol P is §-locally uniform over a noise
model N, if for every n > 0, both X, and Y, are é-close to the uniform distribution over {0,1},
where (Xp,Yy) is the n-th distribution of P(N). A protocol is locally uniform if it is 0-locally
uniform.

Definition 5 (Correlation of Protocols) The correlation of a protocol P over a noise model
N, denoted by Corp[P], is defined to be

Corp[P] = lim inf {2-Prob [X,, =Y,] -1} (1)

where (Xy,Yy) is the n-th distribution of P(N).

3 An Impossibility Result for Regular Noise Models
We prove a general impossibility result for NICD over the regular noise models.

Definition 6 (Distribution Matrix) Let N be a noise model over %, where |X| = q. We say a
q x g matriz M is the distribution matrix for N, if My, = N(z,y) for all z,y € .2 We write the
distribution matriz of N' by My .

Definition 7 (Regular Noise Model) A ¢ x ¢ matriz M is regular if it is symmetric, and 1,
is the unique eigenvector with the largest absolute eigenvalue. let € be the difference between M ’s
largest absolute eigenvalue and the second largest. We call q - € the scaled eigenvalue gap of M. A
noise model N is regular if its distribution matriz is reqular.

The regular noise model may appear a little counter-intuitive, and in particular, with respect
to the intuition in Section 1.3. We explain the connection below. Notice that a distribution matrix
M is non-negative (that every entry is non-negative). By the Perron-Frobenius Theorem [13], if M
is symmetric, irreducible, and has 1, as an eigenvector, then 1, is the unique eigenvector with the
largest eigenvalue, and thus M is regular.

Theorem 1 If N is a regular noise model over ¥ with scaled eigenvalue gap €, then the correlation
of any 6-locally uniform protocol over the N is at most 1 — e(1 — 462).

*Here we identify ¥ with [g].



Proof: Consider a protocol P over the noise model N. We define ¢ = |X| and identify ¥ with
[q] for the rest of the proof. We use M to denote the distribution matrix of A’ and denote the
eigenvector of M by wvg,v1,...,v4—1 with corresponding eigenvalues Ao, ..., \¢—1. We assume that
|Xo| > |A1] > -+ > |Ag=1|. Since M is regular, Xg is the unique largest eigenvalue that corresponds
to eigenvector 1,.

Since M is the distribution matrix, we know that the sum of all its entries is 1. Thus we have

T T
1=17 - M-1,=X-1T-1,= ¢,
or A\g = 1/g. Since the scaled eigenvalue gap of M is €, we know that |\| = (1 —¢€)/q.

Consider the characteristic functions ¢ and ¢2. Tt is easy to see that

1

1+ > > N, b)-qu(a)] 2)

aEX™ bexn

Clearly, M®" is the distribution matrix for N®". We will be using a result about the eigenvalues
and eigenvectors of M®, stated in Lemma 1.
Since P is d-locally uniform, we have

DD NEMa,b) - ¢ a)

aEX™ hexn

or |(¢N)T - M®™ - 1| < 26, as we identify ¢ with the ¢"-dimensional vector represented by its
truth table. Since 1, is an eigenvector of M with eigenvalue 1/g, 14n is an eigenvector of M ®™ with
eigenvalue 1/¢" (see Lemma 1). Since M is symmetric, so is M®". Thus we have

<26 (3)

1%, ¢4 <25 ™. (4)
Similarly we have
10 ¢P| <25 " (5)

Now, we consider the correlation of P. Let (X,,Y;) be the outputs of Alice and Bob. Then we
have

2:Prob [X, =V = 1= 3 3 NO"(4,B)- $(4) - 4%(B) (6)

Aexn Bexn
In other words, we have

2-Prob [X, =Y,] —1=(¢1)T - M®". 4B (7)

We diagonalize the matrix M®". First we define a natural notion of inner product: (4, B) =
an > sesn A[z]Blz]. 1t is obvious that under this inner product, both ¢ and ¢2 have norm at
most 1. Since M®" is symmetric, it has a set of eigenvectors that form an orthonormal basis.
We denote the eigenvectors of M®" by u; with corresponding eigenvalues p:, where t € [¢"].
We assume that |puo| > |p1] > -+ > |pgn—1|. By Lemma 1, the eigenvalues p; are of the form
[T71 Mk, where k; € [g]. Therefore M®" has a unique maximum eigenvalue o = A\j = 1/¢",
which corresponds to the eigenvector 1[1@’” = 14n. The second largest absolute eigenvalue of M®"
is 1| =257 [l = (1 - ¢)/g™

Now we perform a Fourier analysis to vectors ¢4 and ¢B. We write ¢4 = Zte[qn] oy up and
$B = Zte[qn] Bt - ut. Then by Parseval, we have Y, of < 1, ¥, 87 < 1. Furthermore, from (4) and
(5), we have |ag| = an|1an A < 26 and |Boy| = q%\lgn - ¢B| < 26.

6



Putting things together, we have
Coryen[P] = (¢4)7- ME" . 4P
= ¢ > o B
telg”]

e-laoBol + (1= 3 Jas- B (cigenvalue gap)
t€lqn]

€46 + (1 —¢) (Z af) (Z ﬂf) (Cauchy-Schwartz)

< 1 —e(1—46%).

IA

IA

Lemma 1 Let A be an a X a matriz of eigenvectors vy, ...,Vq—1, With corresponding eigenvalues
A0y -y Ag—1- Let B be a b X b matriz of eigenvectors ug, ..., up_1, with corresponding eigenvalues
Wos -, ho—1- Then the eigenvalues of the matriz A ® B are v; ® uj with corresponding eigenvalues
i+ g, fori € [a] and j € [b].

The proof to this lemma is postponed to Appendix A.

Definition 8 (Binary Symmetric Noise Model) The binary symmetric noise model is a dis-
tribution over alphabet {0,1}, denoted by S, and is defined as S(0,0) = S(1,1) = (1 —p)/2 and
§(0,1) = 8(1,0) = p/2.

Corollary 1 The correlation of any locally uniform protocol over the binary symmetric noise model
Sy is at most 1 — 2p.

It is easy to see that this bound is tight, since the naive protocol where both Alice and Bob outputs
their first bits is locally uniform with correlation 1 — 2p.

Proof: Notice that S is regular with scaled eigenvalue gap 2p. [

This corollary was independently discovered by various researchers, including Alon, Maurer,and
Wigderson [2], and Mossel and O’Donnell [16], and the latter attributing it as a “folklore”.

4 The Binary Erasure Noise Model

We prove a similar impossibility result for another noise model, namely the binary erasure noise
model. Intuitively, this model describes the situation where Alice sends an unbiased bit to Bob,
which is erased (and replaced by a special symbol 1) with probability p.

Definition 9 (Binary Erasure Noise Model) The binary erasure noise model is a distribution
over alphabet {0,1, L}, denoted by &, and defined as £(0,0) = £(1,1) = (1—-p)/2, £(0,L) =E(1, L

Notice that in this model, Alice’s input is the uniform distribution over {0, 1}, and Bob’s input
is 0 and 1 with probability (1 — p)/2 each, and L with probability p. A naive protocol under this
model only uses the first pair of the inputs. Alice outputs her bit, and Bob outputs his bit if his
input is 0 or 1, and outputs a random bit if his input is L. This is a locally uniform protocol with
correlation 1 — p. The next theorem shows that no protocol can do much better than the naive
protocol.



Theorem 2 The correlation of any locally uniform protocol over the noise model &, is at most
1—p(1—462).

We suspect that it is not a tight bound (we conjecture that the tight bound should be 1 — p), but

it is sufficient to show that it is bounded away from 1 and is independent from n. Therefore, even

with perfect accuracy in Alice’s measurement, NICD is impossible if Bob’s measurement is noisy.
The proof to Theorem 2 uses a more involved Fourier analysis and is postponed to Appendix A.

5 A One-bit Communication Protocol

We present a protocol that non-trivially distills correlation over the binary symmetric noise model
with one bit of communication. Recall that over no non-interactive, locally uniform protocols can
have a correlation more than 1 — 2p. Now, we consider protocols with one bit of communication.
Suppose Alice sends one bit to Bob, which Bob receives with perfect accuracy. With one bit of
communication, Alice can generate an unbiased bit x and send it to Bob, and then Alice and Bob
both output z. This protocol has perfect correlation. Thus, to make the problem non-trivial, we
require that Alice and Bob must output two bits each. Suppose Alice outputs (X7, X2) and Bob
outputs (Y1,Y2). We define the correlation of a protocol to be 2 - min;—; 9 {Prob [X; = Y;]} — 1.
In this situation, we say a protocol is locally uniform, if both (X1, X2) and (Y7, Y2) are uniformly
distributed.

Now we describe a locally uniform protocol of correlation about 1 —3p/2. The protocol is called
the “AND” protocol. Both Alice and Bob only take the first two bits as their inputs. Alice directly
output her bits, and sends the AND of her bits to Bob. Then, intuitively, Bob “guesses” Alice’s
bits using the Bayes rule and outputs them. A technical issue is that Bob has to “balance” his
output so that the protocol is still locally uniform. The detailed description is in Figure 1.

STEP I Alice computes 7 := a1 A az, sends r to Bob, and outputs
(a1,a9).

STEP II Bob, upon receiving r from Alice:

IF » =1 THEN output (1,1).
ELSE IF b; = b =1 THEN output
— (0,0) with probability p/(2 — p);
— (0,1) with probability (1 —p)/(2 — p);
— (1,0) with probability (1 —p)/(2 — p);
ELSE output (b1, bo).

Figure 1: The AND protocol: Alice receives input bits a1, a2, and Bob received input bits b, b,
where (aiaz,b1b2) is drawn from 81?2.

We can easily verify (by a straightforward computation) the following result.

Theorem 3 The AND protocol is a locally uniform protocol with correlation 1 — 371’ 1 &. [ |

This is a constant-factor improvement over the non-interactive case.



This result may seem a little surprising. It appears that Alice does not fully utilize the one-bit
communication, since she sends an AND of two bits, whose entropy is less than 1. It is tempting to
speculate that by having Alice send the XOR of the two bits, Alice and Bob can obtain better result,
since Bob gets more information. Nevertheless, the XOR does not work, in some sense due to its
“symmetry”. Here we provide some intuition. Consider the case Alice sends the XOR of her bits to
Bob. Bob can compute the XOR of his bits, and if the two XOR’s agree, Bob knows that with high
probability, both his bits agrees with Alice’s. However, if the two XOR’s do not agree, Bob knows
one of his bits is “corrupted,” but he has no information about which one. Furthermore, however
Bob guesses, he will be wrong with probability 1/2. On the other hand, in the AND protocol, if
Bob receives a “1” as the AND of the bits from Alice, he knows for sure that Alice has (1,1) and
thus he simply outputs (1,1); if r = 0 and b; = by = 1, he knows that his input is “corrupted”, and
he “guesses” Alice’s bit according to the Bayes rule of posterior probabilities. If Bob receives a “0”
as the AND and (b1, b2) # (1,1), then the data looks “consistent” and Bob just outputs his bits. In
this way, 1/4 of the time (when Bob receives a 1), Bob knows Alice’s bits for sure and can achieve
perfect correlation; otherwise Alice and Bob behave almost like in the non-interactive case, which
gives 1 — 2p correlation. So the overall correlation is about 1/4 -1+ (3/4) - (1 — 2p) =1 — 3p/2.
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A Proofs

Lemma 1 Let A be an a X a matriz of eigenvectors vy, ...,vq_1, with corresponding eigenvalues
A0y -y Ag—1- Let B be a b X b matriz of eigenvectors ug, ..., up—1, with corresponding eigenvalues
[os -y ho—1- Then the eigenvalues of the matriz A ® B are v; ® uj with corresponding eigenvalues
Xi - g, for i € [a] and j € [b].

Proof: (to Lemma 1) We prove that for every ¢ € [a] and j € [b], (A® B)(vi @ uj) = X - pj
(v; ® uj;), which will imply that (v; ® u;) is an eigenvector. Then, since (A ® B) is an (ab) x (ab)
matrix, it only has ab eigenvectors. Therefore this would imply our lemma.

Now we prove that (A ® B)(v; @ uj) = A - p15 - (v; ® uj).

(AR B) (i@ u)[(my)] = Y. (A®B)uy), s - (Vi ®u;)[(s,1)]
s€lal,ted]
= Y Ass By uils] ult]
s€al,teb]
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= [ DD Aws-uilsl | - | D2 By uylt]
s€a] te[b]

= Xz pgeugly]
= N\ i (’UZ' ® u])[(cv,y)]

Since the above equation holds for all = € [a],y € [b], we have (A® B)(v; ® uj) = A - yj - (v; ® uy).
|

Theorem 2 The correlation of any locally uniform protocol over the noise model &, is at most
V1 —p(1—4482).

Proof: We introduce more notations. A binary string is a string over alphabet {0,1}. For a
binary string z, we denote its Hamming weight by |z|, which is the number of 1’s in z. We call a
vector v over alphabet {0,1, L} an eztended bit vector, and define its degree, denoted by deg(v), to
be the number of 1’s in it. An error vector, denoted by wu is a vector over alphabet {*, L}, and its
degree also the number of L’s in it. Take a k-dimensional bit vector v and an n-dimensional error
vector u of degree (n — k), we define their composition to be an n-dimensional extended bit vector

z defined as
v[7] ifuli] =% and 7 =|{l : 0 <1< i,ulj] ==}

ali] = (8)
1 if u[i] =L

and we write this as = v>u. As an example, we have (1,0,1) > (L, *,%, L,x) = (L,1,0,L,1).
Notice that every extended bit vector z can be uniquely written as such a composition of a bit
vector v and an error vector u. So we denote v to be the extracted bit vector of x, and write it as
v = [z]; we denote u to be the error vector of x and write it as u = {z}.

For a bit vector z and an extended bit vector v, both of dimension n, we say x is consistent
with v, if for every i such that v[i] #L1, we have z[i] = v[i]. We denote this as z C v.

For a bit vector « and an error vector u of degree d, we define the restricted vector of x with
respect to u to be the unique (n — d)-dimensional bit vector v such that z C (v > u), and we write
this as v = z|y. The ezcluded vector of z with respect to u is the d-dimensional vector v’ defined
to be v/[i] = z[k] where k = |{j : 0 < j < i,u[j] = *}|. We also write z = v -~ ¢/, and say z is
joined by v and v’ with respect to u.

We now fix a protocol P and consider its characteristic functions ¢* and ¢® (we omit the
subscript n). Both are real functions over {0, 1, L}". Both since in the erasure model, the input to
Alice never contains 1, we assume that ¢4 is a function over {0,1}". We perform Fourier analysis
to ¢4, using parity functions as the orthonormal basis.

¢ (z) =) s @ (v) (9)

where we have Y, o < 1. Since P is é-locally uniform, we have
o] < 2. (10)

The analysis for ¢ is more complicated. We decompose ¢ into 2" “sub-functions”, according
to the 2™ error vectors. For error vector u, we define a function 1, that maps (n — k)-dimensional
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bit vectors to {—1,+1}, where k is the degree of u. Then we perform a Fourier analysis for every

sub-function, and write
= Z Bu,s s () (11)
S

Again we have ) ﬂﬁ, s < 1 for every error vector w.
We define A = p/(1—p), then it is easy to see that the probability that Bob receives an extended

error vector of degree d is A% (1 — p)”. Furthermore, it is easy to verify that

deg(u) __ S n k _ 1
I =k 12

ue{*,L}n k=0

For the rest of the proof, we write A% as a shorthand for \de8(®).
Finally, we estimate the correlation between the outputs. We denote it by 7 and it is not hard

to see that .
1=(157) T Tl (13)

ue{*,L}m
By substituting in the Fourier coefficients, we have

n = (1%0) S Y Y Y ase.@e

ue{*,L}n z sC{0,1}" tC{0,1}n—deg(w)
1-p\" u
= (—2 ) Z A Z Z asfy (Z 69s @t -'E‘ ))
uE{x,L}"  sC{0,1}" +C{0,1}n—des(x)

Now, we fix an error vector u of degree r, and fix sets s, t. We write s = sg U s1, such that for
every i € s, we have u[i] = x and for every i € s1, we have u[i] =L. We write this as sop = sy I
= (), we say that s is consistent with u, and we write this as s C u. Then we have

Y. @@ @(ah) = Y Y @) &y (v) & ()

ze{0,1}7 ve{0,1}7—d o/ €{0,1}¢
= Z 69806315('0) Z Ds, (UI)
ve{0,1}n—d v'€{0,1}4

So the only we we get non-zero as a result is when sy = ¢ and s; = (), which means s = t.
Therefore, we have

n = (l—p Z )‘uzab’ﬁush

ue{*,L}" sCu

1/2 24 1/2
< 1-p" Z Y . Z AY Z s Bu,sl, (Cauchy-Schwartz)
u€{x, L} u€{x, L} sCu
1/2
= (@=p)" | Y A (D] DB (Eq. 12)
ue{*,L}n sCu sCu
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(Parseval, )

(Eq. 10)
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