Electronic Collogquium on Computational Complexity, Report No. 3 (2004)

Valiant’s Model and the Cost of Computing Integers

Pascal Koiran

LIP, ENS Lyon

46, allée d’Italie
69364 Lyon Cedex 07, France
Pascal.Koiran@ens-lyon.fr

December 10, 2003

Abstract

Let 7(k) be the minimum number of arithmetic operations required
to build the integer k € N from the constants 1 and 2. A sequence
is said to be “easy to compute” if there exists a polynomial p such that
7(zk) < p(logk) for all k > 1. It is natural to conjecture that sequences
such as [2"1n2| or n! are not easy to compute. In this paper we
show that a proof of this conjecture for the first sequence would imply
a superpolynomial lower bound for the arithmetic circuit size of the
permanent polynomial. For the second sequence, a proof would imply
a superpolynomial lower bound for the permanent or P # PSPACE.

1 Introduction

Let 7(k) be the minimum number of arithmetic operations (+, — or x)
required to build the integer & € N from the constants 1 and 2. For instance,
7'(22k) = k by “repeated squaring.” A sequence zj, of integers is said to be
“easy to compute” if there exists a polynomial p such that 7(zx) < p(log k)
for all k > 1 (one can show for example that 2 is easy to compute [4]).
Otherwise the sequence is said to be “hard to compute”. The sequence is
said to be “ultimately easy to compute” if there exists another sequence
ar € N such that the sequence ajzy is easy to compute. It is natural to
conjecture that k! is not ultimately easy to compute. Shub and Smale have
shown that if this conjecture holds true then P # NP over the field of
complex numbers [8, 2]. Unfortunately, the conjecture is still open and it is
not even known that k! is hard to compute. It is very easy to come up with
other examples of sequences which seem hard to compute. For instance, it

ISSN 1433-8092

is tempting to conjecture that the sequences |2" In2], |2"x], |2"¢], |2"V2]
and [(3/2)"] are all hard to compute, but proofs seem to be elusive.

It was shown in [4] that for every ¢ > 0, almost all integers satisfy
the property 7(n) > (logn)/(log(logn))!*¢. The improved lower bound
7(n) > (logn)/(log(logn)), which holds again for almost all integers, was
established in [7]. These bounds are reminiscent of Shannon’s lower bound
in boolean complexity theory (see e.g. [10] for a textbook exposition). We
conclude that most integers have a high 7 complexity, but proving good
lower bounds for specific sequences seems to be quite difficult. This situa-
tion is again reminiscent of computational complexity theory. In this paper
we argue that for some sequences, proving good lower bounds on 7 is dif-
ficult because they would lead to the solution of major open problems in
complexity theory (for instance to a superpolynomial lower bound for the
circuit size of the permanent polynomial).

Main results

A quarter of century ago, Valiant proposed an algebraic version of the P
versus NP problem [9]. His well-known completeness result for the perma-
nent implies that the class VNP of “easily definable” families of polynomials
is equal to the class VP of “easily computable” families if and only if the
permanent family is in VP, i.e., can be computed by polynomial size arith-
metic circuits. In this paper we establish relations between Valiant’s model
and the cost of computing integers. The basic idea is quite simple: if an
integer polynomial can be evaluated efficiently, its values at integer points
are integers of low cost. One difficulty is that in Valiant’s model circuits
may use arbitrary constants from the underlying field, but we are interested
in computing integers “from scratch”. It is therefore natural to work with a
constant-free version of Valiant’s theory. Fortunately, such a theory has re-
cently been studied by Malod in his PhD thesis [6] (see section 2 for a quick
introduction). The first relations between Valiant’s model and the cost of
computing integers are established in section 3. For instance, we show in
Theorem 3 that there exists a polynomial p such that 7(|22" In2]) < p(n)
for all n under the assumption VP? = VNP (the subscript 0 is used to
denote constant-free classes). By the completeness property for the family
HC of Hamilton cycle polynomials, this assumption holds true if and only
if HC is in VP?. In section 4 we show that the same results holds true
under the (presumably) weaker assumption Permanent € VPO, In a very
different direction (derandomization of algebraic algorithms), we note that
some consequences of the hypothesis that the permanent can be computed

by arithmetic circuits of polynomial size have been studied recently in [5].
We show in Theorem 5 that k! is ultimately easy to compute if VP? = VNP?
and P = PSPACE. The conjuction of these two equalities is an extremely
strong assumption, but a refutation seems to be currently out of reach (more
on this in section 5). Finally, we give in section 6 a “generalized Valiant cri-
terion” which makes it possible to obtain polylogarithmic bounds on the 7
function. Namely, we show that |2"In2] is easy to compute if the perma-
nent is in VP, and with the additional assumption that P = PSPACE we
show that n! is easy to compute.

2 Preliminaries

2.1 Integer Computations

A computation of length [of an integer n is a sequence (n_1,ng,n1,...,7n;)
of integers such that n.; = 1, ng = 2, n = n; and for each 7 > 2 there
exists j,k < [and o € {+,—, x} such that n; = n; o ng. One sets 7(0) =
7(1) = 7(2) = 0 and for n > 3, 7(n) is by definition [4] equal to the length
of a shortest computation of n. In [2] the number 2 is not allowed as a
“starting number”, but the two corresponding complexity measures differ
by at most 1 since 2 can be obtained from 1 in one arithmetic operation.
Some basic properties of the 7 function can found in [4]. For instance,
loglogk < 7(k) < 2logk for any k (use the binary expansion of k for the
second inequality); T(22k) = k by repeated squaring; and 7(2%) < 2logk.
The sequence 2F is therefore easy to compute. The sequence 22" is hard to
compute for a trivial reason (it grows too quickly as k increases). It seems
very plausible that k! is not easy to compute: if it is then “factoring is easy”

([2], p.126).

2.2 Valiant’s Theory without Constants

Valiant’s complexity classes are defined relatively to a given field K.
Throughout the paper we will take K = Q. We first recall the notion
of an arithmetic circuit. In such a circuit all gates except the input gates
have fan-in 2, and are labelled by +, x, or —. The input gates are labeled
by variables from the set {Xi, Xo,...,Xp,...} or by constants from K. If
all these constants belong to the set {—1,0,1}, the circuit is said to be
constant-free. We will assume that there is a single output gate, so that the
circuit computes a polynomial in the input variables defined in the usual

way. We also define by induction the notion of formal degree'. The formal
degree of an input gate is equal to 1. The formal degree of an addition or
subtraction gate is the maximum of the formal degrees of its two incoming
gates, and the formal degree of a multiplication gate is the sum of these two
formal degrees. Finally, the formal degree of a circuit is equal to the formal
degree of its output gate. This is obviously an upper bound on the degree
of the polynomial computed by the circuit.

Definition 1 (Malod) A sequence (fyn) of polynomials belongs to VP° if
there exists a polynomial p(n) and a sequence (Cy) of constant-free arith-
metic circuits such that C,, computes f, and is of size (number of gates)
and formal degree at most p(n).

The size constraint implies in particular that f, depends on polynomially
many variables. The traditional (“non-constant-free”) class VP is easily
defined in terms of VP?. Indeed, one can show that a sequence (g,) of
polynomials is in VP iff there exists a sequence (f,) in VP? such that g, is
obtained from f, by replacing some of the variables by constants from K.

VNP? is the other important class in the constant-free theory. It is
defined from VP? in the natural way.

Definition 2 A sequence (fn(X1,...,Xyn))) belongs to VNP if there eax-
ists a sequence (gn(X1,..., Xym))) in VPO such that:

fn(Xl,---aXu(n)) = Z gn(Xl,...,Xu(n),E).
ec{0,1}v(n)~u(n)

Next we give a criterion which makes it easy to recognize many VNP fam-
ilies of polynomials. This result basically goes back to ([9], Remark 1).

Theorem 1 (Valiant’s criterion) Suppose that n — p(n) is a polyno-
mially bounded function, and that f : N X N — N s such that the map
1"0j — f(j,n) is in the complexity class §P/poly. Then the family (f,) of
polynomials defined by

FnXn, X)) = Y FER)XT - X0 (1)
je{o,13pm

is in VNPV,

!The formal degree is called degré formel complet in [6].

Note that we use a unary encoding for n but a binary encoding for j (ji
denotes the bit of j of weight 2¥~1). In the usual statement of this crite-
rion the conclusion is that the family (f,) is in VNP rather than VNPC.
However, an inspection of the proof (e.g., Proposition 2.20 of [3]) shows
that the corresponding construction is constant-free, so that (f,) is indeed
in the smaller class VNP’. Note also that Theorem 1 covers more families
(fn) than Proposition 2.20 of [3], which only deals with the case where f
depends only on its first argument and p(n) = n. The proof is essentially un-
changed, however. Note also that Theorem 1 is a consequence of Theorem 6
of section 6.

Recall that the Hamilton cycle polynomial HC,, is a function of n? vari-
ables z;; and is defined by the formula:

HCw =) [ziot)

o =1

where the sum ranges over all cycles o of the symmetric group S,. If X =
(zi;) is the adjacency matrix of a directed graph G, this polynomial counts
the number of Hamilton cycles in G. The following result from [6] gives a
“concrete” consequence of the hypothesis VP? = VNPO.

Theorem 2 VP? = VNP? iff the Hamilton family (HC,) is in VP,

Proof Sketch. The Hamilton family is in VNP? by Theorem 1 (the corre-
sponding function ¢ is polynomial-time computable). It is therefore in VP?
if VP = VNP?. The converse follows from the completeness property of
(HC,,): any family (f,) of VNP’ can be expressed as a projection

frn=HCym) (Y1, Ypn)2)

where p(n) is polynomially bounded and the y; are either variables or con-
stants from the set {—1,0,1} [6]. Hence (f,) is in VP if (HC,,) is in VPC.
O

In this theorem we use Hamilton polynomials rather than permanents be-
cause the completeness proof for the permanent uses divisions by 2 (this is
exactly the reason why its completeness proof fails in characteristic 2). It
is nonetheless possible to give a somewhat weaker result for the permanent:
see Theorem 4 in section 4.

3 An Algebraic Hypothesis

In this section we explore some consequences for the cost of computing
integers of the hypothesis VP? = VNP,

Proposition 1 Let (ay,) be an integer sequence such that for some integer
b and some polynomially bounded function p(n) one can write:

gp(n) _1

an= Y f(n)b (2)
j=0

where the map 10§ — f(j,n) is in §P/poly. If VP® = VNP then 7(a,) is
polynomially bounded.

Proof. Consider the family of polynomials

g X1y X)) = Y FUWXT - X0,
j€{0,1}p()

This is a VNP? family by Theorem 1. This family is therefore VP? under the
the assumption VP = VNP, and the result follows from the observation
that a, = gn(z1,...,Zp@m)) where z; = p27 O

Here is an immediate application.

Corollary 1 Let a,, = Zin:l 2k*=1 If VPO = VNP° then 7(ay) is polyno-
mially bounded.

Proof. Set b =2 and p(n) = 2n. Let f(j,n) be the bit of a, of weight 27:
f(j,n) = 1 if and only if j < 22" — 1 and j is of the form k%2 — 1. This
function is polynomial-time computable, so it is in fP. O

The applications that follow are a little more involved.

Lemma 1 There is a polynomial time algorithm which takes as inputs three
integers k, u and j (j < u) and computes the bit of |2"/k]| of weight 27.

Proof. Let N = |2"/k]. The difficulty is of course that the bit size of N
may be exponential in the input size, so we cannot afford to compute all the
bits of V.

We are looking for the bit of weight 27! of 2°/k, where s = u — j — 1.
This is also the bit of same weight of 7/k, where r is the remainder of the

Euclidean division of 2° by k. We are therefore done if r can be computed
in polynomial time. For this we use the fact that 7(2%) < 2logs [4] and
we perform modulo £ all the arithmetic operations in the corresponding
computation of 25. O

Theorem 3 Let I, = [22"In2]. If VP® = VNP°, 7(1,,) is polynomially
bounded.

Proof. We start from the formula In2 = $77% (%)k /k,
which implies

2" 2n
d o2 kk <2 m2 <14) 27k
k=1 k=1

It follows that a, — 1 <[, < a, + 2" + 1, where a,, = ZZT;I 22"~k k], A
polynomial bound for 7(I,,) would therefore follow from a polynomial bound
for 7(ay). Let f(j,n) be the number of indices k¥ € {1,...,2"} such that
the bit of weight 2/ in the radix-2 expansion of |22"%/k| is equal to 1.
By Lemma 1, the map (4,1") — f(j,n) is in fP. We can therefore put a,
under form (2) with b = 2 and p(n) = n. The result then follows from
Proposition 1. O

One can obtain the same result for several other sequences. For instance, to
deal with the sequence [22" In3], observe that In3 = 2In2 + In(3/4) where

In(3/4) = = 37 (%)k /k. Similar results can be obtained for expansions in
radix different from 2. For instance, to deal with the sequence |32" In(3/2)],
observe that In(3/2) = Y75 (%)lC /k. In order to apply Proposition 1 with

b = 3 we then use a version of Lemma 1 where the radix-3 digits of |3%/k]
are computed in polynomial time. More surprisingly, our technique can also
be applied to the sequence |22"7|. This follows from the beautiful Bailey-
Borwein-Plouffe formula [1]:

i"’ 1 4 2 1 1
= — - — — .
£«16' \8i+1 8i+4 8i+5 8i+6

For sequences such as [22"¢|, |22"v/2] or [(3/2)%"| we do not know
whether a polynomial complexity bound can be established under the hy-
pothesis VP? = VNPO.

4 Hamiltonian versus Permanent

We denote by Per,, the n X n permanent

Pern = Z ﬁﬂ]'w.(z)

g€eSy i=1

The results of the previous section rely on the hypothesis VP? = VNP?,
which by Theorem 2 is equivalent to the hypothesis that the Hamilton family
is in VP?. This hypothesis implies that the permanent family is in VP,
since it is in VNP?, The goal of this section is to show that the weaker
hypothesis Permanent € VP? implies the same results. We just need to
adapt Proposition 1 as follows.

Proposition 2 Let (ay,) be an integer sequence such that for some integer
b and some polynomially bounded function p(n) one can write:

op(n) _1

an = Z f(.j’n)b7 (3)
=0

where the map 1"0j — f(j,n) is in §P/poly. If the permanent family is in
VPO then 7(ay) is polynomially bounded.

The remainder of section 3 is unchanged. For instance, to obtain the coun-
terpart of Theorem 3 one just has to invoke Proposition 2 instead of Propo-
sition 1. The proof of Proposition 2 relies on one theorem and one lemma.

Theorem 4 Assume that the permanent family is in VPC. For every family
(fn) in VNPO, there exists a polynomially bounded function p(n) such that
the family (2P f,)) is in VP?,

Proof. By the completeness property of the permanent, any family (f,) of
VNP? can be expressed as a projection

fn = Perq(n) (y1,--- ayq(n)2)

where ¢(n) is polynomially bounded and the y; are either variables or con-
stants from Q. An inspection of the completeness proof (see for instance [3])
reveals that the constants may all be taken from the set {—1,—-1/2,0,1/2,1}.
Assuming that the permanent family is in VP?, we can therefore write
fn = Cn(Y1,--.,Yq(n)2) where Cy, is a constant-free circuit of size and formal

degree bounded by a polynomial function of n. We will now construct a cir-
cuit D,, which computes 2P(") f,,, where p(n) is the formal degree of Cy,. In
order to construct D, from C,, we replace each gate g of C,, by a subcircuit
Cy which will output 24g. where d is the formal degree of g. This construc-
tion goes by induction, starting from the input gates. For such a gate the
formal degree is equal to 1 by definition, so that Cy needs to output 2z;; if
g is labeled by the variable z;;, or a constant from the set {—2,-1,0,1,2}
if g is labeled by a constant. Assume now that g is a computation gate with
inputs g; of formal degree di, and go of formal degree dy. We first consider
the case where g is a multiplication gate. In this case Cy is made of a single
multiplication gate with inputs from Cy, and C,, since (2% g;)(2%gy) = 24¢.
If g is an addition gate, d = max(d;,ds). Assume for instance that d = d,.
Then Cy needs to output 29274 Cy, + C,,. Assuming that we have have
already computed all the powers of 2 up to 2P("), we only need one addition
and one multiplication gate. The case of subtraction gates is similar. The
resulting circuit D,, is of polynomial size, and one shows easily by induction
that the formal degree of the output gate of Cj is equal to the formal degree
of g (for a multiplication gate, use the fact that the gate which outputs
2d2—d1 ig of formal degree dy —dy). We have therefore shown that the family
(2P £,) is in VPO, O

Lemma 2 The inequality 7(u) < (2logv + 3)7(uv) holds true for any pair
of integers u,v > 1.

Proof. Let w = uv and let (1,2,z1,...,2;) be a computation of w (hence
z; = w). We will explain how to compute the sequence (g;) of the quotients
of the euclidean division of z; by v. Let r; be the remainder of this division.
Since zo = 2, we have ¢o < 2 and r9 < 2. For 7 > 1, we have x; = ; oz,
where j,k <iand o € {+,—, x}.

Consider first the case o = +. We have ¢; = ¢j + qx if 7j + 1 < v
and ¢; = gj + qx + 1 otherwise. If o = —, ¢; is either equal to ¢; — g or
to g¢; — qr — 1. In both cases, we need at most 2 arithmetic operations to
compute ¢; from the preceding quotients.

If o = X, z; = zjzp = piv + rjry where p; = qjqv + Tk + @),
and ¢; = p; + |rjrg/v]. Since |rjry/v] < w, |rjry/v] can be computed
from scratch in at most 2logv arithmetic operations. In this case ¢; can
be computed from the preceding quotients in at most 2logv + 3 arithmetic
operations. This completes the proof since u = ¢;. O

Proof of Proposition 2. Consider again the family of polynomials

gn(Xla---aXp(n)) = Z f(]an)Xfl X;I(’T(S)
je{0,13p(m)

We have seen in the proof of Proposition 1 that this is a VNP? family.
Assume that the permanent is in VP?. By Theorem 4, there exists a poly-
nomially bounded function ¢ such that the family (24(g,) is in VP?. Since
an = gn(T1, -, Tp(n)) Where z; = bzl_l, 7(29™a,,) is polynomially bounded.
Now apply Lemma 2 with v = a,, and v = 2¢()_ O

It is probably possible to obtain the same results under even weaker hypothe-
ses than Permanent € VP?. For instance, one might try to allow rational
constants of controlled bit size in arithmetic circuits for the permanent.

5 Boolean and Algebraic Hypotheses

The results of the two previous sections were obtained under hypotheses
from algebraic complexity theory (VP? = VNP?, or Permanent € VP?). In
this section we show that n! is ultimately easy to compute by adding an
hypothesis from boolean complexity theory.

Theorem 5 If VP? = VNP and P = PSPACE the sequence k! is ulti-
mately easy to compute, and in fact (2")! has polynomially bounded com-
plexity.

Proof. Let a, = (2")!. If 7(a,) < g(n) for some polynomial g, it is clear
that k! is ultimately easy to compute: given k let 2" be the smallest power
of 2 greater or equal to k. Then a,, is a multiple of k!, and 7(a,) < g(n) <
q(log k).

Let us therefore assume that VP = VNP® and P = PSPACE. It remains
to show that a, has polynomially bounded complexity. We would like to
apply Proposition 1 with f(j,n) equal to the bit of a, of weight 27, just as
in Corollary 1. In order to do this it suffices to show that the map 1"0;5 —
f(4,m) can be computed in polynomial time, or even in polynomial space
since P = PSPACE. We sketch below a parallel algorithm for computing
ap in time polynomial in n (with exponentially many processors). The
required polynomial space bound then follows from the equivalence between
space and parallel time (see for instance [10], Corollary 2.33).

The parallel algorithm is quite straightforward. We construct a multi-
plication tree of depth n where the 2™ leaves are labelled by the integers

10

between 1 and 2. Each node is supposed to compute the product of the
values computed by its two children. The root, which will contain the fi-
nal result, can be evaluated in n parallel stages. The size of the numbers
involved will grow exponentially, but the whole algorithm still runs in poly-
nomial time because the product of two M-bit numbers can be computed
in parallel in time (log M)?(") (see for instance [10], Theorem 1.23). O

This technique can be applied to other sequences, and in particular to the
sequence u, = [(3/2)%" | (note that the bit of u, of weight 27 is equal to the
bit of 32" of weight 2/+2").

The hypothesis that VP* = VNP and P = PSPACE is extremely
strong,? but apparently cannot be refuted with the known methods of com-
plexity theory. To understand just how strong this hypothesis is, note
that VPY = VNP implies NC/poly = PH/poly. This follows from The-
orem 4.5 and Corollary 4.6 in [3]. These results as stated in [3] assume
Riemann’s hypothesis (it is needed in order to eliminate constants). Here
we do not need to assume Riemann’s hypothesis since we are already work-
ing in a constant-free model. Taking into account the additional hypothesis
P = PSPACE, we conclude that NC/poly = PSPACE /poly. Note that if we
worked with a uniform version of Valiant’s model we would conclude instead
that NC = PSPACE, an equality which is in contradiction with the space
hierarchy theorem.

6 From polynomial to polylogarithmic bounds

The first result of this section is a “generalized Valiant criterion”. This name
is justified by Remark 1, which shows that Valiant’s criterion as stated in
Theorem 1 indeed follows from Theorem 6.

Theorem 6 (generalized Valiant criterion) Let f : NxN — N be such
that the map (j4,n) — f(j,n) is in the complezity class §P /poly. Let

~

p\n

fn(Xl,...,Xq(n)) :Zf(]an)Xlezz;S) (4)
=0

where j; denotes the bit of j of weight 2'=1, q(n) = 1+ [logp(n)| and
p(n) >n for all n.

21t is clear from the proof that we can replace the hypothesis P = PSPACE by the
somewhat weaker hypothesis P/poly = PSPACE/poly.

11

There ezists a VNP family (¢.(X1,...,X;,N1,...,N,,Py,...,P))
which satisfies the following property: for any n,

fn(Xla <. an(n)) = YGq(n) (X17 s 7Xq(n)7n17 -y Ng(n), P1s - - - 7pq(n)) (5)

where n; denotes the bit of n of weight 21, and p; denotes the bit of p(n)
of weight 2'71.

In contrast to Theorem 1, we use here binary encoding for j and n. To
be completely precise, we fix the following encoding: a pair (j,n) of inte-
gers is represented by a binary string of the form j; ---j,n1---n, (i.e, j is
represented by the first half of the string, and n by the second half).

Remark 1 Theorem 1 follows from Theorem 6.

Proof Sketch. Let (fy,) be a family of polynomials of the form (1). We will
assume without loss of generality that p(n) > n+2 (if not, we can reduce the
problem to this situation by adding dummy variables and coding the actual
value of p(n) in the advice function). Let F(j,n) = f(4, |[logn]). The map
(4,m) = F(j,n) is in §P /poly because the map 1"0j — f(4,n) is in P /poly.
Let P(n) = 2P(logn)) _1 and Q(n) = 1+ |log P(n)| = p|logn|). Note that
the assumption p(n) > n + 2 implies that P(n) > n. Finally, let

P(n))
Fo(X1,--, Xo) = D FUi,m)X] - X5,
=0

and let (G,) be the VNP family associated to (F,) by Theorem 6. Since
(X1, Xpy) = For (X1, .., Xpqry), it follows that the family (fy) is in
VNP : f, appears as a projection of Gpry- O

Proof of Theorem 6. The assumption that the map (j,n) — f(j,n) is in
P /poly implies that there exists a polynomially bounded function m(r)
and a family (p,) in VP such that for all j,n € {0,1}",

fGm)y= > pe(ny)

y€{0,1}m(r)

(here we identify the strings j,n € {0,1}" with the integers that they rep-
resent). This is shown for instance in the proof of Valiant’s criterion in [3],
whose outline we shall follow. Let X be a tuple of r additional variables,

and
T

H.(X,J,N,Y) =p.(J,N,Y) [[(JiX; + 1= Jy).
=1

12

Note that when ji,..., ., n1,...,n, take binary values,

fGmXT X = Y H(X,Gn,y).
ye{0,1}m ()

We will also need the existence of a family (C,.(J1,...,Jr, P1,..., P;)) in
VPY such that C,.(4,p) = 1 if j < p, and C,.(j,p) = 0 if > p. This can
be shown by induction on r, using the fact that for boolean values of the
variables and r > 1, C(j,p) is equivalent to

(pr =1Ag = O) \ (pr =Jr A Cr—l(jla s Jr=1,P1, - ,pT—l))'

Then one represents boolean operations by polynomials in the standard way
(for instance u A v is represented by UV, and u Vv by U +V —UV).
Let G,(X,J,N,Y,P) =C,(J,P)H,.(X,J,N,Y). The family

W(X,N,P)= > Y G.(X,],N,Y,P)
J€{0,1}7 y{0,1}m ()

is in VNPY since G, is in VP°. By construction, g (X,n,p) =

gzof(j,n)X{I ...X}" and (5) follows immediately by setting p = p(n)
and r = ¢(n) (here we use the assumption p(n) > n to ensure that the
binary encoding of n fits within r bits). O

Corollary 2 Let (f,) be the family of polynomials defined by (4), and as-
sume additionally that n — p(n) is a polynomially bounded function.

If VP = VNPO, (f,) can be computed by a family of constant-free cir-
cuits of size (log n)o(l).

If we assume only that the permanent is in VP? then there exists a
polylogathmically bounded function s(n) such that 25(n) £ can be computed
by a family of constant-free circuits of size (logn)©™).

Proof. If VP® = VNP?, the family (g,) of Theorem 6 is in VP°, and can
thus be computed by a a family of constant-free circuits of size r?(1). In
view of (5), we obtain a family of constant-free circuits of size (logn)°®)
for f.

Let us now assume only that the permanent is in VP?. By Theorem 4
there exists a polynomially bounded function p such that the family (2”(” 9r)
is in VP?, and the result follows again from (5). O

13

Proposition 3 Suppose that n — p(n) is a polynomially bounded function,
and that p(n) > n for all n € N. Let (a,) be an integer sequence such that
for some integer b one can write:

p(n)

apn = Z f(]a ’I’L)b7 (6)

j=0

where the map (4,n) — f(j,n) is in §P/poly. If the permanent family is in
VPO then (ay) is easy to compute.

Proof. 1t is a variation on the proof of Proposition 2. Let (fy,) be the family
of polynomials defined by (4). If the permanent is in VP?, by Corollary 2
there exists a polylogathmically bounded function s(n) and a family (C,,)
of constant-free circuits of size (logn)(") which compute 2°(f,. Since
an = fn(Z1,...,Tgr)) where z; = v 7(25Ma,) = (logn)°®. Now
apply Lemma 2 with u = a,, and v = 25("), O

Finally, we give two results which respectively improve Theorem 3 and The-
orem H.

Theorem 7 If the permanent is in VP° the sequence L, = [2" In2] is easy
to compute.

Proof. 1t is a variation on the proof of Theorem 3. Now we use the fact that
n n
oo FE <ot n2<1+) 2" Kk
k=1 k=1

It follows that A, —1 < L, < A, +n+ 1, where A, = > p_,|2"%/k]. Let
f(4,n) be the number of indices k € {1,...,n} such that the bit of weight 27
in the radix-2 expansion of [2" ¥ /k| is equal to 1. This is a P function by
Lemma 1. We can therefore put A,, under form (6) with b = 2 and p(n) = n.
It follows from Proposition 3 that (A,,) is easy to compute, and the same is
therefore true of (Ly). O

Theorem 8 If the permanent is in VP? and P = PSPACE, n! is easy to
compute.

Proof. By Proposition 3, it suffices to show that the bit of n! of weight 27
can be computed in space polynomial in the bit size of the pair (j,n). This
is done essentially as in the proof of Theorem 5. O

14

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

D. Bailey, P. Borwein, and S. Plouffe. On the rapid computation
of various polylogarithmic constants. Mathematics of Computation,
66(218):903-913, 1997.

L. Blum, F. Cucker, M. Shub, and S. Smale. Complezity and Real
Computation. Springer-Verlag, 1998.

P. Biirgisser. Completeness and Reduction in Algebraic Complezity
Theory. Number 7 in Algorithms and Computation in Mathematics.
Springer, 2000.

W. De Melo and B. F. Svaiter. The cost of computing integers. Proc.
American Mathematical Society, 124(5):1377-1378, 1996.

V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity
test means proving circuit lower bounds. In Proc. 35th ACM Symposium
on Theory of Computing, pages 355364, 2002.

G. Malod. Polynomes et coefficients. PhD thesis, Université Claude
Bernard - Lyon 1, 2003.

C. Moreira. On asymptotic estimates for arithmetic cost functions.
Proc. American Mathematical Society, 125(2):347-353, 1997.

M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellen-
satz and an algebraic version of “P=NP”. Duke Mathematical Journal,
81(1):47-54, 1996.

L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM
Symposium on Theory of Computing, pages 249-261, 1979.

H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
1999.

15

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

