Electronic Collogquium on Computational Complexity, Report No. 4 (2004)

Circuit lower bounds and linear codes

(preliminary version)

Ramamohan Paturi* Pavel Pudlak?

January 13, 2004

Abstract

In 1977 Valiant proposed a graph theoretical method for proving
lower bounds on algebraic circuits with gates computing linear func-
tions [5]. He used this method to reduce the problem of proving lower
bounds on circuits with linear gates to to proving lower bounds on the
rigidity of a matrix, a concept that he introduced in that paper. In
1990 J. Friedman proved a lower bound on the rigidity of the generator
matrices of error correcting codes over finite fields [3]. He showed that
the proof can be interpreted as a bound on a certain parameter defined
for all linear spaces of finite dimension. In this note we define another
parameter which can be used to prove lower bounds on circuits with
linear gates. Our parameter may be larger than Friedman’s and it
seems incomparable with the rigidity, hence it may be easier to prove
a lower bound using this concept.

1 Introduction

The problem of proving nontrivial lower bounds on the size of circuits is
one of the most fundamental problems in theoretical computer science. Its
simplest version—the problem of proving nonlinear lower bounds on the size
of logarithmic depth circuits computing an explicitly given function—is still
open. It is open not only for boolean circuits, but even for algebraic circuits
with gates computing linear functions. This is in spite of the apparent
simplicity of such circuits; for example, in case of the two element field the
circuits use only the parity gate. In 1977 Valiant found a reduction of the

*University of California, San Diego

tMathematical Institute, Academy of Sciences of the Czech Republic, Prague. Sup-
ported by grants no. A1019901 of the Academy of Sciences of the Czech Republic and no.
LN0056 of the Ministry of Education of the Czech Republic, pudlak@math.cas.cz

ISSN 1433-8092



latter problem to an algebraic-combinatorial problem about matrices [5]. He
introduced the concept of the rigidity function of a matrix and proved that
sufficiently large lower bounds on the rigidity of a matrix imply nonlinear
lower bounds on the size of circuits with linear gates computing the linear
transformation defined by the matrix. In spite of the considerable amount
of work done on this problem, we still lack strong bounds on the rigidity of
explicitly defined matrices. The largest lower bound was proved by Friedman
in 1990 [3]; he used generator matrices of a good code. The bound is still far
from what is needed for circuit lower bounds. Friedman observed that his
proof gives a little more: it gives a lower bound on a natural parameter of
linear codes. More recently, Alekhnovich studied a hypothesis that is related
both to the rigidity of matrices and to linear codes [1].

The theory of error correcting (and other) codes is a field with a large
body of results and most of these concern linear codes. It is a field that
extensively studies relations between algebraic and combinatorial properties
of linear spaces. Thus we think that the relations between circuit complexity
and codes deserves more attention than it was given so far. Codes with large
minimal distances were used in lower bounds for various types of circuits,
but the connection with circuits with linear gates seems to be the most
promising. Therefore we will propose another reduction in this paper. It
is also based on the graph-theoretical transformation of Valiant, but our
parameter seems to be incomparable to rigidity and sometimes it is larger
than Friedman’s. So it may be easier to prove lower bounds on the circuit
size using this parameter.

2 Circuits with linear gates

Let F' be a field. We consider circuits whose gates are functions of the form
ax + by, for a,b € F. In particular, the fan-in of all gates is 2. The size
of a circuit is the number of gates, the depth is the length of the longest
(oriented) path. Such a circuit computes a linear transformation f : F" —
F™. We shall assume that there are no constant inputs, hence f will always
be homogeneous. If m = 1, the problem of the circuit size complexity is
trivial, thus we always consider m > 1. If n = m, then there are linear
transformations whose complexity is almost quadratic, however, no non-
linear lower bound is known for an explicitly defined f. This problem is open
even with the additional restriction that the depth of the circuit be O(logn).
The well-known result of Valiant [5] is a reduction of the above problem (with
the log-depth restriction) to proving lower bounds on the rigidity of explicitly



defined matrices. It is based on the following combinatorial lemma.

Lemma 1 ([5]) Let r,6,0 be positive integers with 6 > 4o. Let G be a
directed acyclic graph with at most rlog, §/logy(d/40) edges and depth at
most 6. Then there exists a set of at most r edges such that after removing
these edges, G does not contain a path of length o.

We shall say that a vector v € F™ is s-sparse, if the number of nonzero
elements of v (the weight of v) is at most s. Valiant’s result can be stated
as follows.

Theorem 2 Letr,d,0 be as above. Suppose a linear transformation defined
by an m xn matriz M can be computed by a circuit with linear gates and with
size at most rlog, 6/(21logy(6/40)) and depth at most 6. Then the matriz
can be decomposed as follows.

M = A+ BC, (1)

where B is an m X r matriz, C is an r X n. matriz and the rows of matrices
A and C are 2°-sparse.

The concept of rigidity was derived by forgetting part of the information
contained in equation (1). Namely, one uses only the information that A
has at most sn nonzero entries, where s = 27, and that the matrix BC' has
rank at most r. The rigidity of a matrix M is the function that expresses
the dependence of the sparsity on the rank:

Ryr(r) =4¢r min{R; 3A a matrix with R nonzero entries such that rank(M—A) <r}.

For the purpose of this paper it is better to consider the function that
expresses the dependence of the rank on the sparsity. Furthermore, we shall
assume a uniform bound on the sparsity of the rows, as in Theorem 2. So
we define:

rm(s) =¢r min{r; 3A a matrix whose rows are s-sparse, and rank(M—A) = r}.

Suppose that M has fewer rows than columns. We can derive from (1)
that the row space of M is contained in the sum of the row space of A and
the row space of BC'. Since A and C are sparse matrices, we get nontrivial
information about the row space of M. We shall use this observation to
define two more functions. As they depend only on the row space of the
matrix, we shall define them for spaces instead of matrices. The first one



is based on the concept of strong rigidity of Friedman [3]. Let V C F™,
1 <s<n.

d(s,V) =g max{dim(VNU); U C F", generated by s-sparse vectors, dimU = dimV'}.

Let (M) denote the row space of M. The above two functions are related
as follows:

rank M — d(s,(M)) = dim(M) — d(s, (M)) < ra(s).

Thus upper bounds on d(s, (M)) imply lower bounds on the rigidity of M.
This relation was actually used in [3].
We define another function:

D(s,V) =g min{dimU; V CU C F", U generated by s-sparse vectors}.
The next inequality also follows immediately from the definitions.
dimV —d(s,V) < D(s,V) — dim V.

However, we do not know any nontrivial inequality involving rjs(s) and
D(s, (M)).

We already know that the rigidity of a matrix M, hence also d(s, (M))
can be used to prove a lower bound on the size of circuits computing the
transformation defined by M. The function D can be used in the same
manner. We state explicitly this corollary of Theorem 2 below. Given a
circuit C with n inputs, we shall say that a space V' C F" is generated by
the circuit C, if V = (M), where M is the matrix of the linear transformation
computed by the circuit (in the standard basis).!

Corollary 3 Let r,d,0 be as above. Suppose a space V' can be generated by
a circuit of size at most rlogy §/(21log,(8/40)) and depth at most 6. Then

D(2°,V) < dim(V) +r.

In particular, for all constants c1,co,e > 0 there exists a constant cs such
that if V' can be generated by a circuit of size at most cin and depth at most

calogn. Then

. c3n

D(nf < —_—
(n®, V) <dim(V) + Toglogn

We can also say that V is the space generated by the linear functions computed at
the output gates of C, however, it is important to say in which basis these vectors are
presented.



3 Some simple bounds

We shall start with an estimate on the maximal value of D(s, V') for spaces
of a given dimension k over GF5. Similar bounds can be proven for other
finite fields.

Proposition 4 Suppose F is GFy. Let k,s < n be arbitrary positive inte-
gers. Then there exists a space V with dimV = k such that

k
D(s,V) > ——"
k+ slogyn
In particular, if k — oo and slogn = o(k), then D(s,V) =n — o(n).
Proof. We shall use a counting argument. The number of all subspaces of

F™ of dimension k is Z ] . We shall upper bound the number of all sets of

s-sparse vectors of size d by n®?. If every space of dimension k is contained
in the space spanned by d linearly independent s-sparse vectors, then

][]

Hence,
2" —1)... (2" — 2k 1) _a\k
"E Rl o). (20 -2k 1) =
Thus
sdlogyn > k(n — d),
which proves the proposition. [ |

Hence a random space V of dimension n/2 has D(n®,V) = n — o(n),
whereas every space of dimension n/2 which can be generated by linear size
log depth circuit has only D(n®,V) = n/2 + o(n). This estimate also shows
that D(s,V) — dimV can be much larger than dimV — d(s, V). Indeed,
let s(n) = nf 0 < € < 1 a constant; choose k(n) so that k(n) = o(n) and
s(n)logn = o(k). Then we still have spaces V' such that D(s,V) = n—o(n),
but dimV —d(s,V) < dimV = k(n) = o(n). By padding these spaces we
can get spaces V such that dimV = Q(n), D(s,V) — dimV = Q(n), and
dimV —d(s,V) = o(n).

We shall present two simple lower bounds. The first one follows from

Friedman’s result; we present it only for the sake of completeness. Again,
we state it only for the two element field.



Proposition 5 Suppose F = GF,. Let C be a [n,k,d] code (a binary linear
code with length n, dimension k and minimal distance d), let s < d/2. Then

d 2sk
D >k+ —1 — .
(370)— +23 0g2< d )
Proof. Let T be the linear transformation defined by the matrix of D s-
sparse vectors. The fact that they generate C' can be equivalently stated as
C C T(FP). Let C' = T~Y(C). Then C' is a [D,k',d'] code with k' > k
and d' > d/s. According to the sphere-packing bound we have

, D
2 (d/2s) =2

whence

D E o\ %% d 25k
D>K +1 > 1 - > —1 =).
_k+og2(d/2s>_k+ Og2<<d/23> >_k+28 Og2(d)

It is possible to improve this bound by using stronger upper bounds on
the dimension of codes of a given minimal distance, but the gain is only
marginal.

Proposition 6 Let F be an arbitrary field. Let C be a code of length n
whose dual code C- has minimal distance d. Then

n—d+1

D(s,C)>d—1+ .

In particular, if C* is an MDS code (i.e., d = dimC + 1), we get

— 1
D(s,C) > dimC 4+ "=4F 1

Proof. Let M be the parity check matrix of a code of the minimal distance
d. Thus every d — 1 columns of M are linearly independent. Suppose that
there are D s-sparse vectors whose span contains C'; let N be the D x n
matrix formed by these vectors. Then every d — 1 columns of N are also
linearly independent. Take "‘T‘“’l rows of N. Since they are s-sparse, there
are d — 1 columns in which these rows have only zeros. The matrix formed

by these columns has rank d — 1, hence it must have d — 1 + "_Td“ rows. W



We do not know the best value of D(s, C) for particular MDS codes such
as the Reed-Solomon code. In general, we do not believe that linear rate
and linear distance of a code or its dual alone imply a nonlinear bound on
log-depth circuits. However, for some extreme values, for instance, for codes
that beat the Gilbert-Varshamov bound we might get larger bounds.

4 Pseudorandom generators

Our inability to prove lower bounds, even for such restricted computational
models as considered here, is frustrating. In a recent paper [1] Alekhnovich
suggested that this difficulty can be viewed also positively. Razborov and
Rudich [4] showed that if there are pseudorandom generators (with appropri-
ate parameters), then it is not possible to base certain circuit lower bound
proofs on simple properties of functions. Alekhnovich’s idea is to turn it
over and try to design new pseudorandom generators based on the assump-
tion that certain circuit lower bounds are difficult. Our lower bound setting
suggests a simple and natural construction that might be a pseudorandom
generator.

Construction. The parameters are numbers n, k, D, s. The input data
are two matrices over GF», an arbitrary k£ x D matrix A and a D X n matrix
B each of whose rows has exactly s nonzero elements. The output is AB
(the matrix product of A and B).

If kD + D[log, (?)] < kn, then the function produces more output bits
then is the number of bits needed to encode the input data. We conjecture
that for parameters of the form stated in Proposition 7) below, if A and B
are chosen uniformly, then the output is not computationally distinguishable
from the uniform distribution on all £ xn matrices, (i.e., it is a pseudorandom
generator). The following is some basic supporting evidence. (Of course, no
such statistical properties can be used to derive computational complexity.)

Proposition 7 Let 0 < a < f < 1 and 0 < € < 1/2. Let k = [an],
D = [Bn] and s an odd number, s = [n°]. Then

1. AB has full rank with probability exponentially tending to 1;

2. the distribution of every fized column of AB is exponentially close to
the uniform distribution;

3. the distribution of every fixed row of AB is exponentially close to the
uniform distribution.



Proof. 1. The probability that A does not have full rank is bounded by
27y o~ntl 4 27ntk—l < 2k=n For B we need the following claim.

Claim. Every subspace of GF}' of dimension d contains at most (d+zfl)
vectors of weight s.

Proof of the Claim. Let S be the set of supports of vectors of weight
s of a given space; they are s-element subsets of [n]. Construct a se-
quence si, S9,...,Se of elements of S and a sequence of nonempty subsets
X1,X9,...,X. C [n] as follows. s; = X; is an arbitrary element of S.
Si+1 is an element of S such that s;y1 is not a subset of X U...U X; and
such that s;41 \ (X1 U...U X;) has the minimal cardinality. Then we put
Xit1 = 8i+1 \(X1U...UX;). Since the vectors corresponding to s1, 2, ..., Se
are linearly independent, this sequence has to stop with e < d. Then every
s € S is a subset of X1 U...U X,. More precisely, every s € S is of the form
tUX; U...UX;, forsometCs;and1 <4 <...<i <e. Clearly, we get
the largest possible number of sets of this form if | X3| = ... = |X.| = 1 and
e = d, which is the bound of the Claim.

Now we can bound the probability that B does not have full rank by

s s+1 s+k—1 s+k—1 s

k-1

Oy P B BVEETEN G
G ¢ (5) (%) n—s

which is also exponentially small. Clearly, the product of two full rank

matrices of dimensions £ x D and D x n, with k < D < n, is a full rank

+ ...

matrix too.

2. The probability that a given column in B contains only zeros is
S s s €
(1 . _)D _ eDln(l_H) < e_DT ~ e—ﬂn ]
n

If A is random and B is fixed with the i-th column nonzero, then the i-th
column of AB has the uniform distribution. Hence if both A and B are
random, then the distribution of the i-th column is exponentially close to
the uniform distribution.

3. The distribution of a fixed row is given as follows. Take random
hy,---,hp € {0,1} and random vectors uj,---,up € GF™ each having
exactly s ones. Then the distribution is

D
E h;u;
i=1
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We can view it as the result of the Markov process in which we start with
the zero vector, and at each step we do nothing with probability 1/2, or add
a random vector with exactly s ones with probability 1/2. Put differently,
it is the result of D steps of a random walk on the n-dimensional Boolean
cube which starts at the zero vector, and at each step with probability 1/2
we do not move and with probability 1/2 we move to a vertex in Hamming
distance s, choosing such a vertex with uniform probability. Thus we need
only to estimate the size of the second largest eigenvalue of the matrix of this
process. The eigenvectors of this matrix are the same as the eigenvectors
of the graph G5 on {0,1}" in which two vertices are connected iff their
Hamming distance is exactly s. This graph is a Cayley graph on the additive
group of the vector space GF', hence the eigenvectors are the characters of
this group. It is well-known that they are

Xa(Z) = (—l)zTa, for a € GFy'.

We shall first estimate the eigenvalues of Gs. To compute the eigenvalue
associated with y,, it suffices to consider the vertex 0 and its neighbors.
The eigenvalue is

Xa@)™" Y Xalz) = (-1)7" .

|z|=s

The largest eigenvalue (associated with xg5) is the degree of the graph (2)
The second largest eigenvalue is at most (1 — 22)(%), for a constant y > 0
(We believe that it is precisely (1 — £)(7) and it is associated with all xq
such that a contains exactly one 1, but the weaker statement is all that we

need.) This follows from the lemma below.

Lemma 8 Let s be an odd number s = o(n) and § # X C [n]. Then the
probability that the intersection of X with a random subset S of size s is odd
is at least % for a constant v > 0 and provided that n is sufficiently large.

Proof. Let us fiz an S, |S| = s, s an odd number, and for 0 < k < n/2,
let let X be a random set of size k. Think of X as the result of the
random process of choosing distinct elements zi,---,z, € [n]. Consider
IS N {z1,---,zg_1}| and |([n] \ S) N {z1,---,zk_1}|- The distribution of

these random variables are sharply concentrated around the values s(kn_l),

respectively W Hence the probability that [S\{z1, -,z 1} > s/3
and |[([n] \ S) \ {z1,---,zk—1}| > n/3 is bigger than some constant § > 0.




Suppose this event happens. If |S N {z1,---,zx_1}| is odd, then the prob-
ability that |S N X| is odd is at least 1/3. Otherwise the probability is at
least s/(3n). Thus the probability that |S N X| is odd is at least ds/(3n).
If £ > n/2 think of X as the results of the random process of choosing
distinct elements in its complement and then argue in the same way.
|

The matrix of the Markov process is

1/n\ ! 1
— A+ =1
2 (s) * 277

where A is the adjacency matrix of G5 and I is the 2" x 2" identity matrix.
Hence the second largest eigenvalue of the Markov process is 1 — 5. Thus
the distance from the uniform distribution is bounded by ¢P¢/(2n) ~ (fn/2,
for some constant ¢ < 1. [

For sake of simplicity, we are using vectors with exactly s ones here
instead of the vectors with at most s ones used before. We think that the
difference is not essential (except that now we have to talk about s odd).
Let us see what is the connection to lower bounds on the size of circuits.
The conjecture about the generator can be restated as follows (we assume
the same parameters as in Proposition 7).

A random k-dimensional subspace of a D-dimensional space gen-
erated by vectors with s ones is not computationally distinguish-
able from a random space of dimension k. We assume that the
spaces are given by randomly chosen bases.

Thus if we had a simple test that would distinguish the outputs of the
generator from random spaces, then, probably, we could use this test to
prove a lower bound.

Notice also that the spaces are described very compactly, so we may
not be able to test properties such as the minimal distance. Hence the
conjecture is more likely than if the spaces were given by the lists of all
vectors. Therefore, it is also possible that the generator is a pseudorandom
generator and still there exists a “natural” lower bound proof.
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