Electronic Collogquium on Computational Complexity, Report No. 5 (2004)

On Graph Complexity

Stasys Jukna *!
Universitat Frankfurt, Institut fiir Informatik
Robert-Mayer-Str. 11-15, D-60054 Frankfurt, Germany
&

Institute of Mathematics and Informatics
Akademijos str. 4, LT-2600 Vilnius, Lithuania

Abstract

A boolean circuit f(z1,...,x,) represents a graph G on n vertices if for
every input vector a € {0,1}" with precisely two 1’s in, say, positions i and 7,
f(a) = 1 precisely when ¢ and j are adjacent in G; on inputs with more or less
than two 1’s the circuit can output arbitrary values.

We consider several types of boolean circuits (depth-3 circuits and boolean
formulas) and show that some explicit graphs cannot be represented by small
circuits. As a consequence we obtain that an explicit boolean function in 2m
variables cannot be computed as an OR of fewer than 22(™) products of linear
forms over GF(2). Lower bounds for this model obtainable by previously known
(algebraic) arguments do not exceed 20(vVm),

We conclude with a graph-theoretic problem whose solution would have
some intriguing consequences in computational complexity.

Keywords: Graph complexity, depth-3 circuits, Cy-free graphs, clique covering
number

AMS subject classification: 05C62, 05C35, 05C99, 68Q17, 68Q05

1 Introduction

A major challenge in computational complexity is to exhibit an explicit boolean func-
tion f : {0,1}" — {0,1} which has high combinational complexity, i.e. cannot be
computed using a small number of basic boolean operations such as OR z V y, AND
x Ay or Parity z @ y = z + y (mod 2); inputs for such a circuit are literals, i.e.

*Email: jukna@thi.informatik.uni-frankfurt.de
TResearch supported in part by a DFG grant SCHN 503/2-1.

ISSN 1433-8092

variables z; and their negations Z;. Though this problem is intensively studied for
more than fifty years there is no proof of a lower bound nonlinear in the number of
variables m. The main difficulty here is that we want the function f be explicitely
constructed—easy counting shows that almost all functions require circuits of size
25Um).

The problem of proving super-linear lower bounds is widely open even if we assume
the additional restriction of circuit depth be O(logm). As shown by Valiant [25] this
problem could be solved by proving a 2<(™/1%gle™) Jower bound for depth-3 circuits
with unbounded fanin AND and OR gates; such circuits are also called ¥3-circuits. In
the meanwhile we have exponential lower bounds for such circuits [1, 7, 26, 9, 11, 15],
but these bounds do not exceed 20vV™),

In this paper we use a graph-theoretic approach to make some further steps in
this last direction—proving high lower bounds for depth-3 circuits. In particular, we
prove that an explicit boolean function f,, in 2m variables cannot be computed as an
OR of fewer than 2™ products of linear forms over GF(2) (Theorem 3.2). That is,
we show that f,, cannot be represented in the form

fm(z1, ..., Tom) =\/ /\ @ T D Nij

i=1 j=1]CGKij

with \; € {0,1} and K;; C {1,...,2m}, unless s = 2™ This does not imply
super-linear lower bound for log-depth circuits, because we cannot carry out Valiant’s
reduction with Parity gates on the bottom (next to the inputs) level: here we need
OR gates. Still, the result may be interesting because previously known arguments
for depth-3 circuits with AND and OR gates [1, 7, 26, 9, 11, 15] do not seem to work
for this model at all, and known algebraic arguments for depth-3 circuits with AND
and Parity gates [21, 24, 8] seem to be incapable of proving lower bounds higher than
2Uvm) (see Remark 3.1 below).

Our proof uses a relatively simple graph-theoretic argument, and one of the aims
of this paper is to draw once more readers attention to graph complezity. This concept
has already led to interesting results [3, 23, 20, 22, 17, 14], and its potential seems to
be far from being exhausted.

2 Graph complexity

All graphs considered here are finite, simple and undirected. A non-edge in a graph
G = (V, FE) is a pair uv of non-adjacent vertices; if the graph is bipartite, then we
additionally require that v and v belong to different parts.

A boolean function g(X) represents the graph G if it accepts all edges and rejects
all non-edges of G. That is, g(X) represents the graph G if for every input vector
a € {0,1}* with precisely two 1’s in, say, positions v and v, f(a) = 1 precisely when

u and v are adjacent in (G; on inputs with more or less than two 1’s the circuit can
output arbitrary values.

For example, the OR g(X) =/, ¢z, with § C V represents the complement of a
clique (complete graph) on S = V'\ S, whereas the Parity g(X) = D,cs 7o represents
the graph S x SUS x S. In the case of bipartite graphs (when a bipartition of V is
fixed) an OR of variables represents a (bipartite) complement of a bipartite complete
graph, whereas a Parity represents a union of two vertex disjoint bipartite complete
graphs. To give a less trivial example, let us consider the Kneser graph K(r,t).
This graph has all t-element subsets v of {1,...,r} as vertices, and two vertices are
adjacent if the corresponding t-subsets are disjoint. It is easy to see that K (r,t) can
be represented by the following depth-2 formula:

g(X)=/\ \/ Ty where Si={v: i ¢v}.

i=1 vES;

Indeed, u # v are non-adjacent in K(r,t) iff unov # 0 iff 3 € uno iff {u,v}NS; =0
for some i iff uv is rejected by some OR \/, . s, Tv- Note that with respect to the total
number n = (;) of vertices the representation is quite compact: the formula has only
1 +7 = O(tn!'/*) gates.

The idea of the graph-theoretic approach is that a lower bound on the size of
circuits representing a given bipartite n x n graph G C U x V with n = 2™ can
be translated to a lower bound on the size of circuits computing the characteristic
function fg of G: this is a boolean function in 2m variables such that fg(u,v) =
1 if and only if (u,v) € G (here and throughout we assume that the vertices are
encoded by binary strings of length m). The translation is based on a simple but
quite interesting observation made by Pudlédk, R6dl and Savicky in [20]. In a slightly
different setting this observation—which we call the Magnification Lemma—can be
stated as follows (for completeness, we include its proof in Appendix):

Magnification Lemma. Given a circuit computing the characteristic function fg
of a bipartite graph G, it is possible to replace its input literals by ORs of variables
so that the obtained positive circuit (no negated inputs) represents the graph G. The
same holds when Parity gates are used instead of OR gates.

This fact may be particularly useful in such circuit models where computing an
OR (or a Parity) of input literals is “cheap.” For example, if the circuit ® computing
fc has unbounded fanin OR (or Parity) gates on the bottom (next to the inputs)
level, then the obtained circuit ®, represents G and has the same number of gates!
Hence, if we could prove that G cannot be represented using, say, fewer than n¢ gates,
this would immediately imply that the function fg requires at least n® = 2" gates,
which is exponential in the number 2m of variables of fg (this is where the term “mag-
nification” comes from). That is, even moderate lower bounds on the combinational
complexity of graphs would yield high lower bounds on the combinational complexity

3

of boolean functions. Thus, proving lower bounds for graphs is even harder than for
boolean functions. However, studying the graph-theoretic structure of boolean func-
tions may provide new insights into their complexity—unlike for boolean functions,
the structure of graphs is much better understood.

Such a graph-theoretic frame of proving lower bounds on the circuit size of boolean
functions was first investigated by Pudlak, R6dl and Savicky [20], and by Razborov
[23]. Their results discovered an interesting (and somewhat unexpected) fact that
there is a big discrepancy between the combinatorial and combinational complexity
of graphs: some “combinatorially complicated” graphs, like graphs with good Ramsey
properties (no large cliques or independent sets), can be represented by very small
boolean circuits of depth-3 with unbounded fanin AND and Parity gates. On the other
hand, using the graph-theoretic frame, Razborov [22], and Pudldk and Rodl [17, 18]
have found interesting measures of graphs—their affine and projective dimensions—
forcing large formula size and branching program size of their characteristic functions.

In this paper we consider the combinational complexity of graphs in the model of
depth-3 circuits and in the model of boolean formulas.

3)3 circuits

A X3 circuit consist of unbounded fanin OR and AND gates arranged in three levels:
an OR gate on the top, AND gates on the middle level, and OR gates on the bottom
(next to inputs) level. Inputs are variables and their negations; if there are no negated
inputs, the circuit is monotone. Hence, such a circuit has the form:

@(wl,...,xm):\/ /\ \/ 2k

=1 j=1 kEKij

where z, € {z,7x} and K;; C {1,...,m}; s is the top fanin, r the middle fanin
and max; ; |K;| the bottom fanin; by the size of a circuit we will mean the maximum
max{s,r} of its top and middle fanins.

Our main motivation to study such circuits comes from the result of Valiant [25]: if
a boolean function f,, in m variables can be computed by a circuit of depth O(logm)
using only O(m) constant-fanin gates, then f,, can be computed by a 33 circuit of
top fanin s < 20(m/loglogm) and middle fanin r < 2™ for arbitrarily small constant
€ > 0. Thus, strongly exponential lower bounds on the size of Y3 circuits would imply
nonlinear lower bounds on the size of logarithmic-depth combinational circuit, thus
solving a well known and more than twenty-five years old problem in computational
complexity. It is, therefore, not surprising that proving strongly exponential lower
bounds on X3 circuits is a rather difficult task. Although there was a considerable
progress in this direction ([1, 7, 26, 9, 11, 15]), the obtained lower bounds do not
exceed 2°0V™) The only known strongly exponential lower bounds were obtained in
[16] under the restriction that the bottom OR gates have fanin 2, that is, when the

4

circuit is just an OR of 2-CNFs. However, Valiant’s reduction requires bottom fanin
m® and, as noted in [16], their argument fails already when bottom fanin is 4.

Our first result concerns X3 circuits under a different restriction: instead of bound-
ing the fanin of the bottom gates we require these gates be Parity gates; we call these
circuits ¥ circuits. Such a circuit computes an OR of products of linear forms over

GF(2):
@(.’L’l,...,ﬂim):\/ /\ @ J?k@)\ij

=1 j=1 ke€K;;
where \;; € {0,1} and K;; C {1,...,m}; s is the top fanin of the circuit.

Remark 3.1. If we would require that the top gate of a circuit must also be a Parity
gate (not an OR gate), then truly exponential lower bounds 2™ for such circuits
could be obtained using the algebraic (approximation by low-degree polynomials)
techniques of [21, 24, 8]. However, these techniques seem incapable of proving such
high lower bounds for XY circuits because, in this case, we would be forced to ap-

proximate the top OR gate as well, which would invariably result in the square root
2%vm) in the final bound. !

We use a graph-theoretic argument to prove a strongly exponential lower bound
on the top fanin of ¥} circuits computing the boolean function f,, in 2m variables,
which is defined as follows. We take the desarguesian projective plane PG(2, ¢) where
g is a prime or a prime power; this plane has n = ¢+ ¢+ 1 points and n = ¢ +¢+1
lines. We then fix an (arbitrary) encoding of points and lines of PG(2,¢) by binary
strings of length m = [log(n + 1)]. The function f,, is then defined by: f,,(a,b) =1
if and only if the point encoded by a lies on the line encoded by b. According to the
well-known construction of PG(2,q) (which can be found in any textbook on finite
geometries), f,, is just the boolean version of the function f : GF(q)® — {0, 1} defined
by:

flz,y,2,a,b,c) =1 <= ax+by+cz=0 (mod q).

Theorem 3.2. Any X9 circuit computing f,, has top fanin Q(2™/2).

The function f,, is the characteristic function of the incidence graph PG, , of
PG(2,q). The graph PG, , has n = ¢* + ¢ + 1 vertices on each part. The vertices
on the left part correspond to points and the vertices on the right part correspond to
lines of PG(2, q), and (3, j) is an edge if and only if the i-th point lies on the j-th line.
The graph is (¢ + 1)-regular and contains no 4-cycles (because any two lines intersect
in precisely one point, and every two points lie on a unique line).

Since the graph PG, , has M = n(q+1) = Q(n*?) edges and contains no 4-cycles,
Theorem 3.2 follows directly from the Magnification Lemma and the following general
lower bound.

!Note added in proof: Using different arguments, Pudldk and Rodl [19] have recently proved
a lower bound of the form 27/2/(m — 2) for £ circuits with a threshold gate on the top. Their
function f,; is more complicated and is constructed using the properties of pseudorandom sets.

Theorem 3.3. Let G C U xV be a bipartite n X n graph without 4-cycles. Then any
Y9 circuit representing G has top fanin at least |G|/(2n).

Proof. A fat matching is a union of vertex-disjoint bipartite cliques. Let fat(G)
denote the smallest number of fat matchings whose union coincides with G. This
measure was already considered by several authors, [4, 6, 2] among others (here fat
matchings are called “equivalence graphs”). An upper bound fat(G) = O(n/logn) is
proved in [18].

Claim 3.4. For every bipartite graph G, fat(G) is the smallest top fanin of a XY
circuit representing G.

Proof. A double-clique in U x V is a union of two bipartite cliques A x B and A x B
where ACU, BCV,A=U\Aand B=V\ B.

Let ® be a ¥ circuit of top fanin s representing a bipartite graph G C Ux V. Let
9=, cr To ® A with A € {0,1} be a gate on the bottom level of ®. Set A=UNT
and B =V NT. Then g represents a double-clique (A x B) U (A x B), if A =0, or
a double-clique (A x B) U (A x B), if A = 1. Since the intersection of any number
of double-cliques (as well as fat matchings) is a fat matching, each AND gate on the
middle level represents a fat matching. Hence, the OR gate on the top represents a
union of these s fat matchings, implying that s > fat(G).

To show that G can be represented by a X5 circuit of top fanin fat(G), assume
that G is a union of s fat matchings M = A; x B; U---U A, X B,. Observe that
every such fat matching M can be obtained as an intersection of r double-cliques
A; x BiU(A\ A4;) x (B\ B;) in A x B where A (B) is the union of all A4;’s (B,’s).
Since each double-clique A x BUA x B can be represented by the Parity gate g(X) =
D, c4up Tv, We are done. O

>

Claim 3.5. Let G be an n X n bipartite graph. If G has no 4-cycles, then fat(G)
G|/ (2n).

Proof. Let G be a bipartite graph without 4-cycles, H = Ule A; x B; be a fat
matching, and suppose that H C G. By the definition of a fat matching, the sets
Ay, ..., Ay, as well as the sets By,..., B; are mutually disjoint. Moreover, since H
has no 4-cycles, we have that in every clique A; x B; at least one of its sides A; or B;
must have cardinality 1. Hence, if we set I = {i : |4;| = 1}, then

t t
[H| = |Ai x Bil =Y Al - [Bil = Y |Bil +) |Ai| < 2n.
=1 =1

icl il

Thus, no fat matching H C G can cover more than 2n edges of (G, implying that we
need at least |G|/(2n) fat matchings to cover all edges of G.
This completes the proof of Claim 3.5, and thus, the proof of Theorem 3.3. O

When applied to Y3 circuits, the argument used in the proof of Theorem 3.2 yields
the following trade-off between top and middle fanins.

Theorem 3.6. Let ® be a Y3 circuit with top fanin s and middle fanin r. If ®
computes f,,, then r 4+ logs = Q(m). If & computes —f,,, then slogr = Q(m).

A trade-off st = Q (m?®/(logm)®) between these parameters was recently proved
by Lokam [14] (for boolean functions arising from Hadamard matrices). The trade-off
in Theorem 3.6 is better only if one of the parameters r or s is at most m*: then the
second parameter must be at least om' ¢,

Theorem 3.6 follows directly from Claim 3.5 and the following claim. A bipartite
complement of a bipartite graph G C U x V is the graph G = (U x V) \ A x B. The
clique covering number of a bipartite graph G, denoted by cc (G), is the minimum
number of complete bipartite subgraphs of G' covering all edges of G. The non-
bipartite version of this measure was first studied in [5], and now is the subject of
extensive literature.

Claim 3.7. If a bipartite graph G can be represented by a monotone X3 circuit of
middle fanin at most r and top fanin s, then fat(G) < s2" and cc (G) < rs.

Proof. Let ® be a monotone X3 circuit of middle fanin at most r and top fanin s
representing a bipartite graph G C U x V. Each gate g = \/].ET x; on the bottom
level represents a bipartite complement of a bipartite clique A X B, where A =U\T
and B = V \ T. Each such complement is a union of two fat matchings A x B and
A x BU A x B. Hence, each AND gate on the middle level represents a union of at
most 2" fat matchings. Since G is a union of s such graphs, we have fat(G) < s2".
To prove cc (G) < r?, observe that G is an intersection of s graphs Hi, ..., Hj,
each of which is a union of r bipartite cliques. Since the intersection of any number
of bipartite cliques is a bipartite clique, we have that cc (@) <T[_,cc(H;) <r®. O

Note that in the context of boolean functions, X3 circuits cannot be efficiently
simulated by Y3 circuits: the Parity function z; @ 9 @ - - - @ z,, has an obvious ©f
circuit of size 1, whereas (as shown in [9]) this function requires X3 circuits of size
29Uvm) Tt may be, therefore, interesting that, in the context of graphs, ¥ circuits
can be simulated by monotone Y3 circuits of almost the same size.

Proposition 3.8. If a bipartite graph G can be represented by a %Y circuit of top
fanin s and middle fanin r, then G can be represented by a monotone X3 circuit of
top fanin s and middle fanin 2r

Proof. Every double-clique (A x B) U (A x B) represented by a parity gate on the
bottom level is the intersection of bipartite complements of two graphs A x B and
A x B, and each such intersection is represented by

o= (V a)r(V=)

u€AUB vEAUB

O

We conclude this section with a combinatorial characterization of graphs repre-
sented by small monotone Y3 circuits.

Definition 3.9. For a graph G let u(G) be the smallest number ¢ for which there
exist at most ¢ graphs Hy,..., H; such that G = Hy U...U H; and cc (E) < t for
all i = 1,...,t. Hence, u(G) is the smallest number ¢ such that the complement G
of G' can be represented as an intersection of at most ¢ graphs with clique covering
number at most t.

In same situations, especially when trying to give an upper bound on p(G), the
following equivalent reformulation may be more convenient: p(G) is the minimum
number ¢ for which it is possible to associate with every vertex a 0-1 matrix of
dimension ¢ X ¢ so that (u,v) is an edge precisely when, for some i (1 < i < t), the
i-th rows of the corresponding matrices are orthogonal (i.e. their scalar product over
reals is zero).

Proposition 3.10. A graph G can be represented by a monotone X3 circuit of size t
if and only if n(G) < t.

Proof. As already noted in the introduction, an OR of variables represents a com-
plement of a clique. Hence, each gate in the middle level of a monotone X3 circuit
represents an intersection H of such complements. But then H is a union of the cor-
responding cliques, implying that cc (F) is at most the middle fanin of the circuit.
Since the top OR gate is just a union of graphs, represented at the middle level, we
are done. O

Remark 3.11. Alon [2] has proved that cc (H) = O(d*logn) for every n-vertex graph
of maximal degree d. This, in particular, gives an upper bound u(G) = O(D?*?®logn)
for all n-vertex graphs of maximal degree D: simply break G into D?/® subgraphs
of maximal degree D'/3 each. In particular, u(G) = O(n*3logn) for every graph G
with n vertices.

Together with Proposition 3.10, Alon’s result implies the following

Corollary 3.12. Fvery n-vertex graph of mazimum degree D can be represented by
a monotone X3 circuit of size O(D?3logn).
4 >3 versus I3 circuits

So far, no explicit graphs requiring large monotone 33 circuits are known. But what
about monotone II5 circuits? These circuits have the form

It is worth to mention that, in the context of boolean functions, proving lower bounds
for X3 circuits is the same as proving lower bounds for the dual model of I3 circuits:
if a function is hard in the former model then its negation is hard in the later.
However, the following theorem shows that in the context of graphs the situation is
quite different: if a graph is hard for (monotone) II; circuits, then we cannot conclude
that its complement must be also hard for (monotone) X3 circuits.

Theorem 4.1. Let M, be an n to n matching. Then both the graph M, and its
complement M, can be represented by monotone X3 circuits of size O(logn), but
every monotone I3 circuit representing M, must have size at least Q(y/n).

A larger lower bound on the size of monotone II3 circuits can be obtained for
Hadamard graphs. A Hadamard matrix of oder n is an n x n matrix with entries
+1 and with row vectors mutually orthogonal. A graph associated with a Hadamard
matrix M (or just a Hadamard graph) of oder n is a bipartite n x n graph where two
vertices v and v are adjacent if and only if M (u,v) = +1.

Theorem 4.2. FEvery monotone ll3 circuit representing a Hadamard graph of oder n
must have size at least Q(n?/?).

We derive both theorems from the following property of graphs represented by
monotone I3 circuits.

Lemma 4.3. Suppose that a graph G can be represented by a monotone Il3 circuit of
sizet. Then it is possible to add to G a set H of |H| < t? edges so that cc (GU H) < t.

Proof. Let ® be a monotone II3 circuit of size ¢ representing a bipartite graph G C
U x V. Our goal is to show that then there is a graph H with |H| < t* edges such
that cc (G UH) < t. The circuit ® is an AND of at most ¢ monotone DNF's

t
\/ /\ i=1,...,t
7j=1 T

each containing (at most) ¢ monomials (ANDs of variables). Since we are interested
in the behavior of the circuit only on arcs (edges and non-edges), we may assume
that none of these monomials contains more than two variables, i.e. |T;;| < 2 for all
1,7. Each DNF D; accepts some set S; C U UV of vertices, some subset H; C G of
edges, and (apparently) some set of non-edges. Let H = U§:1 H; and call the edges
in H marked. Since each of the DNF's D, ..., D, has at most ¢ monomials of length
2, the number |H| of marked edges does not exceed t*. Let F := G \ H be the set
of remaining (non-marked) edges. We may assume that E # (), since otherwise we
would have H = G, meaning that G U H is just a complete graph.

Let us remove from the DNFs Dy, ..., D, all monomials of length 2 corresponding
to marked edges. Every non-marked edge must be accepted by all resulting DNFs

Di,...,D;. Hence, it cannot be that some D] contains only length-2 monomials,
because these monomials can accept only non-edges (length-2 monomials accepting
edges are removed), implying that the DNF D} (and hence, the whole circuit ®) would
accept none of the edges from E. This means that S; # () for all 7 = 1,...,¢. Thus,

the CNF
Wz(\/a:u)/\(\/xu>/\/\<\/xu)

u€ES1 u€Sa uESt

must accept all edges from F and do not accept any of the non-edges of G (since
otherwise such a non-edge would be also accepted by the original circuit ®). That is,
every edge from E must intersect all of the sets S, ..., S;, and every non-edge of G
must avoid at least one of these sets. Hence, if we consider the cliques R; = A; X B;
with A, =U\ S; and B; =V \ S;, then: (i) ENR; =0 forall =1,...,¢, and (ii)
G C Ry U---UR,. In other words, the cliques Ry, ..., R, cover all edges of G, and
do not cover any of the non-edges of G lying in E = G \ H. Hence, up to at most
|H| < 12 errors, the clique cover number of G does not exceed t, as claimed. O

Proof of Theorem 4.1. Let M, be an n to n matching, and M, its complement. Our
first goal is to show that both M, and M, can be represented by monotone X;
circuits of size O(logn). This follows from Proposition 3.10 and the following two
observations. First, u(M,) = O(logn) because we can associate with each vertex on
the left part its own binary code and assign to the unique matched vertex on the
right side the complement of this code. Second, u(M,) = O(logn) because we can
associate with each pair of matched (in M,,) vertices their own s x 2 matrix with
s = O(logn) rows and precisely one 1 in each row.

Let now t be the minimum size of a monotone II5 circuit representing A ,,. Then,
by Lemma 4.3, it must be possible to add a set H of |H| < t? edges to the matching
M, so that the resulting graph M, U H can be covered by at most ¢ cliques. At least
one of these cliques, say R = A x B, must contain at least |M,|/t = n/t edges of the
matching M,. But this means that |[H N (A x B)| > (n/t)*> — (n/t). Together with
|H| < ¢? this implies that ¢ must satisfy the inequality (n/t)? — (n/t) < t2, that is,
t* > n? — tn, which implies t = Q(y/n). O

Proof of Theorem 4.2. Let ® be a monotone II3 circuit of size ¢ representing a bi-
partite n x n Hadamard graph H C U x V. We may assume that ¢ < n/16, for
otherwise there is nothing to prove. We will use the known fact that any Hadamard
graph contains about the same number of edges and non-edges; in particular, both
|H|,[H| > n®/4.

By Lemma 4.3, there is a set E of |E| < t? arcs such that the graph H U E can
be covered by at most t cliques Ry, ..., Ry, thatis, i) HNR; C Eforalli=1,...,1,
and (i) HC Ry U---UR,.

Let N = |H| be the total number of non-edges in H (hence, N > n?/4) and
take a clique R € {Ry,..., R;} containing the largest number of non-edges. By (ii),

10

Ny == |RN H| > N/t. Let N, := |RN H| be the number of edges of H lying in R.
Since, by (i), R can contain only edges from E, we have that N; < |E| < t?. On the
other hand, by Lindsey’s Lemma (see, e.g. [12, Sect. 15.1.3]), |[N; — No| < +/|R| - n,
implying that

N1 2 N() - ‘R| ‘- n.

Remembering that

N _ n?
N, + Ny = > > >4
1ENo= R[22 2 4n,
we obtain N
n
2RI = VR0 = RI(1- [7) > 3
that is, Ny > N/(4t). Together with N; < #?, this implies that t> > N/4. Thus, ¢
must be at least (N/4)'/3 > (n?/16)'/3 = Q(n?/3).]

5 Boolean formulas

Our last result concerns boolean formulas of arbitrary depth with AND and OR
gates. As in the case of general circuits, inputs here are literals (variables and their
negations). The only restriction is that the fanout of each gate is 1. The size of a
formula is the number of input literals. Given a boolean function f and a graph G,
let L(f) be the minimum size of a formula computing f, and L, (G) the minimum
size of a monotone formula representing G.

If ® is a formula computing the characteristic function fg (in 2m variables) of a
bipartite n x n graph G (with n = 2™) then, by the Magnification Lemma, we can
replace each input literal in ® by a monotone formula of size at most 2n (comput-
ing the corresponding OR of variables) so that the resulting monotone formula &
recognizes G. Thus,

L(fe) = Ly (G)/(2n).

Easy counting shows that L, (G) = Q(n?/logn) for most n x n graphs G. But,
so far, no explicit graph even with L, (G) = Q(nlog®n) is known. Such a graph
would improve the strongest currently known lower bound Q(m?~°M) on the (non-
monotone) formula size of an explicit boolean function in m variables [10].

The reason, why it is difficult to show that a given graph cannot be represented
by a small (monotone!) formula, is that we only know that the formula must behave
correctly on the 2-element subsets of vertices: it must reject such a subset precisely
when it is a non-edge of (= independent set of size 2 in) G. On larger sets the
formula may output arbitrary values. In particular, it can accept independent sets of
size k > 3.

In this section we look what happens if we require that the formula must reject
all independent sets up to some size £ > 2. Namely, say that a boolean function

11

k-represents the graph G if it accepts all edges of G and rejects all independent sets
S in G of size 2 < |S| < k. (Hence, a function represents G in a sense considered
above precisely when it 2-represents G.) If the graph G = (V, E') has n vertices then
it can be n-represented by a trivial monotone formula

of size 2|E|. This formula accepts all edges and rejects all independent sets in G.
Can we essentially decrease the formula size by requiring that it must reject only
independent sets up to some size £ < n? Using a rank-argument it can be shown
that, for some graphs, this is not possible unless k£ is smaller than two times the
maximum degree of G.

Theorem 5.1. Let G = (V, E) be a graph with mazimum degree d > 2. If G has no
triangles and no 4-cycles, then any monotone formula (2d — 2)-representing G must
have size at least |E|/2.

Proof. Let k = 2d — 2 and let ® be a monotone formula k-representing the graph G.
That is, the formula must accept all edges of G and reject all independent sets of size
up to k. For a vertex u € V, let S, be the set of its neighbors. For an edge e € E, let
Se be the set of all its proper neighbors; that is, v € S, precisely when v € e and v is
adjacent with an endpoint of e. Each set S, with y € V U FE has size at most 2d — 2.
Moreover, since G has no triangles and no 4-cycles, the sets S, are independent and
the formula ® must reject them; we will concentrate only on these independent sets.

Let M = Ex(EUV) be an empty matrix whose rows are labeled by edges whereas
columns are labeled by edges and by vertices of G. A rectangle in M is a submatrix
A x B C M with the property that there is a vertex v such that

vex—Syforallz € Aand y € B;

we call v a common element of the rectangle (we consider vertices as one element and
edges as two element sets). It is well known and can be easily shown by induction
on the size of ® (see, e.g. [13, 22] or [12, Sect. 15.2.2]) that the size of the formula
® must be at least the minimum number of mutually disjoint rectangles covering the
whole matrix M. So, let R be such a covering. Fill the entries of M with constants
0 and 1 by the following rule:

M,,=1ifand only if z Ny # 0 (1)

Let R = A x B be a rectangle in R, and let v be its common element. Then v € x
for all edges x € A. Hence, for each y € B, the corresponding column in R is either
the all-1 column (if v € y) or the all-0 column (if v ¢ y) because in this last case the
second endpoint of x cannot belong to y (for otherwise, the first endpoint v would

12

belong to Sy). Thus, either the rectangle R is monochromatic or we can split it into
two monochromatic rectangles. This way we obtain a covering R’ of M by at most
2|R| mutually disjoint monochromatic rectangles. To estimate their number we use
the rank argument. Let rk(M) stand for the row-rank of M over GF(2). Since the
rectangles in R' are mutually disjoint and have rank 1, it follows that |R'| > rk(M).
Hence, it remains to prove that M has full row-rank over GF'(2).

Take an arbitrary subset) # F C E of edges. We have to show that the rows
of the submatrix Mg of M corresponding to the edges in F' cannot sum up to the
all-0 row over GF'(2). If F is not an even factor, that is, if the number of edges in
F containing some vertex v is odd, then the column of v in Mp has an odd number
of 1’s, and we are done. Hence, we may assume that F' is an even factor. Take an
arbitrary edge e = uv € F, and let H C F be the set of edges in F' incident to at
least one endpoint of e. Since both vertices v and v have even degree (in F'), the edge
e has a nonempty intersection with an odd number of edges in F: one intersection
with itself and an even number of intersections with the edges in H \ {e}. Hence, the
colum of e in My contains an odd number of 1’s, as desired.

Thus, size(®) > [R| > [R'|/2 > tk(M)/2 > |E|/2. O

Remark 5.2. Note that if we would only know that the formula 2-represents the
graph G (the case interesting in the context of boolean functions), then the same
rank argument with the matrix M defined by the rule (1) would not work. In this
case we would have that M, , = 1 if and only if |z Ny| =1 (edge and non-edge can
share at most one vertex). That is, M would be just a matrix of scalar products (over
the reals) of the characteristic vectors of edges = and non-edges y, and (even over the
reals) the rank of M would not exceed n.

6 Conclusion and open problem

We have proved that some explicit graphs cannot be recognized by :J circuits of
small top fanin (Theorem 3.2). This gives the first truly exponential lower bound
on the size of XY circuits computing an explicit boolean function. Using the same
argument we have proved an exponential tradeoff between the top and middle fanins
in X3 circuits (Theorem 3.6). We have also observed (Corollary 3.12) that the upper
bound on the clique covering number, given by Alon in [2], implies that any n-vertex
graph can be represented by a monotone X circuit of size O(n?/® logn), which is much
better than the trivial upper bound n. Then, in Theorem 4.1, we have established
an exponential trade-off between the size of monotone II3 and Y5 circuits: there are
explicit graphs G on n vertices such that both the graph G and its complement G
have monotone X3 circuits of size O(logn), but every monotone II3 circuit for G must
have size at least Q(y/n). This contrasts with the case of boolean functions, where no
such (exponential) trade-off is possible because any 33 circuit for a boolean function
f is at the same time a Il circuit for its complement —f. Finally, we have also

13

shown that the main difficulty in proving that a given graph requires large monotone
formulas is that the formula is required to reject only independent sets of size 2 (i.e.
non-edges): if the formula is required to reject larger independent sets, then lower
bounds are relatively easy to prove (Theorem 5.1).

In the context of this paper the most interesting problem remains to prove that
1(G) is large for some ezplicit n-vertex graphs G:

Problem 6.1. Exhibit a bipartite nxn graph G C U xV which cannot be represented
as an intersection of a small number of graphs, whose clique covering number is small.
That is, find a graph which cannot be represented in the form

t t t

¢
G:nUAinBij or in the form GZUﬂm

i=1j=1 i=1j=1
unless ¢ is large.

Graphs G with ¢t = Q(logn) are easy to find: such is, for example, the n to n
matching. On the other hand, easy counting shows that ¢t = Q(y/n) for almost all n-
vertex graphs G. However, to obtain some important consequences in computational
complexity, we need a lower bound of the form ¢ > n€ for explicit graphs G. If proved
with € = w(1/y/logn), this would give the first explicit boolean function in m variables
requiring (non-monotone) Y3 circuit of size 2¢(V™_ If proved with ¢ = w(1/loglogn),
this would give a nonlinear lower bound for log-depth circuits, thus solving an old
problem in computational complexity.

Acknowledgments

I would like to thank Noga Alon for interesting conversations concerning the measure
1(G) of graphs (Remark 3.11), and Alexander Razborov for useful remarks concern-
ing the impossibility to obtain truly exponential lower bounds for X§ circuits using
previously known techniques for depth-3 circuits (Remark 3.1).

References

[1] Ajtai, M. (1983): ¥l-formulae on finite structures, Ann. Pure and Appl. Logic 24,
1-48.

[2] Alon, N. (1986): Covering graphs by the minimum number of equivalence relations,
Combinatorica 6, 201-206.

[3] Bublitz, S. (1986): Decomposition of graphs and monotone size of homogeneous func-
tions, Acta Informatica 23, 689-696.

14

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Duchet, P. (1979): Représentations, noyauz en théorie des graphes et hypergraphes.
Thése de doctoral d’Etat, Université Paris V1.

Erdés, P., Goodman, A. W. and Pésa, L. (1966): The representation of a graph by set
intersections, Can. J. Math. 18, 106-112.

Frankl, P. (1982): Covering graphs by equivalence relations, Annals of Discrete Math.
12, 125-127.

Furst, M., Saxe, J. and Sipser, M. (1984): Parity, circuits and the polynomial time
hierarchy, Math. Systems Theory 17, 13-27.

Grigoriev, D. and Razborov, A. (2000): Exponential lower bounds for depth 3 arith-
metic circuits in algebras of functions over finite fields, Applicable Algebra in Engineer-
ing, Communication and Computing 10:6, 465-487.

Hastad, J. (1989): Almost Optimal Lower Bounds for Small Depth Circuits. Advances
in Computing Research, ed. S. Micali, Vol 5, 143-170.

Hastad, J. (1998): The shrinkage exponent of de Morgan formulas is 2, STAM J. Com-
put. 27:1, 48-64.

Hastad, J., Jukna, S. and Pudldk, P. (1995): Top-down lower bounds for depth 3
circuits, Computational Complezity 5, 99-112.

Jukna, S. (2001): Eztremal Combinatorics: With Applications in Computer Science,
Springer-Verlag.

Karchmer, M. and Wigderson, A. (1988): Monotone circuits for connectivity require
super-logarithmic depth. In: Proc. 20th ACM STOC, 539-550.

Lokam, S. V. (2003): Graph complexity and slice functions, Theory of Computing
Systems 36:1, 71-88.

Paturi, R., Pudldk, P., Zane, F. (1997): Satisfiability coding lemma. In: Proc. of 39-th
IEEE FOCS, pp. 566-574.

Paturi, R., Saks, M., Zane, F. (2001): Exponential lower bounds for depth three
boolean circuits, Computational Complexity 9:1, 1-15.

Pudldk, P. and R&dl, V. (1992): A combinatorial approach to complexity, Combina-
torica 14, 221-226.

Pudlék, P. and R6dl, V. (1994): Some combinatorial-algebraic problems from com-
plexity theory, Discrete Mathematics 136, 253-279.

Pudlék, P. and Rodl, V. (2004): Pseudorandom sets and explicit constructions of
Ramsey graphs. Manuscript.

15

[20] Pudldk, P., Rodl, V., Savicky, P. (1988): Graph complexity, Acta Informatica 25,
515-535.

[21] Razborov, A. A. (1987): Lower bounds for the size of circuits of bounded depth with
basis {A, @}, Math. Notes of the Academy of Sciences of the USSR 41:4, 333-338.

[22] Razborov, A. A. (1990): Applications of matrix methods to the theory of lower bounds
in computational complexity, Combinatorica, 10:1, 81-93.

[23] Razborov, A. A. (1988): Bounded-depth formulae over the basis {&,®} and some
combinatorial problem. In Problems of Cybernetics. Complexity Theory and Applied
Mathematical Logic, S.I. Adian (ed.), VINITI, Moscow, pp. 149-166. (Russian)

[24] Smolensky, R. (1987): Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In: Proc. of 19-th Ann. ACM Symp. Theor. Comput., T7-82.

[25] Valiant, L. (1977): Graph-theoretic methods in low-level complexity. In: Proc. of 6-
th Conf. on Mathematical Foundations of Computer Science, Springer Lect. Notes in
Comput. Sci., vol. 53, 162-176.

[26] Yao, A. C. (1985): Separating the polynomial time hierarchy by oracles. In: Proc.
26-th Ann. IEEE Symp. Found. Comput. Sci., pp- 1-10.

Appendix: Proof of the Magnification Lemma

In the lemma below, by a circuit we will mean an arbitrary computational model
whose inputs are literals, i.e. variables z; = x; and their negations 29 = T;. A boolean
function g is isolating if g(a) = 0 for the all-0 string a = (0,...,0), and g(b) = 1
for all strings b contains precisely one 1; on other input strings the function can
take arbitrary values. Since OR and Parity functions are isolating, the Magnification
Lemma is a special case of Lemma 6.2 below.

Let G C U x V be a bipartite graph with |U| = |V| =n = 2™, and

fG(yl"")ymﬁzli""ZTn)

be its characteristic function; that is, fg(@,7) = 1 iff (u,v) € G (remember that
vertices u are encoded by binary strings @ of length m). Suppose we have a circuit
® computing fg. A positive extension of ® has 2™*! variables z, with v € U and z,
with v € V, and is obtained from & by replacing input literals 7 and 2 by functions

Y =g{zy:ueU; i) =0c}) and Z7 =h({x, :veV;0(i) =0})

3

16

where g and h are arbitrary isolating functions, and (i) is the i-th bit in the binary

code 4 of the vertex u.

Lemma 6.2. Let G C U x V be a bipartite n X n graph. If a circuit ® computes the
characteristic function fg of G, then every its positive extension ®T represents the

graph G.

Proof. For an arc (u,v) € U x V, let @,, be the vector in {0,1}Y"Y with precisely
two 1’s in positions u and v. Suppose now that the original circuit ® computes the
characteristic function fg of G. Then (u,v) € G iff ®(@, ¥) = 1. Hence, it remains to
show that ®*(a,,) = 1 iff ®(«, ¥) = 1. The only difference of the circuit ®* from @ is
that instead of input literals it takes the corresponding isolating functions as inputs.
Hence, it is enough to show that on input strings @, , these isolating functions output
the same values as the corresponding literals do on input strings (@, 7). We show this
only for y-variables (for z-variables the argument is the same).

Let y¢ be some input literal of ®. On every input (u,7) € {0,1}*™, y?(@,v) = 1
iff @(i) = 0. By the definition, the function Y;” depends only on the variables z,
corresponding to the left part U of the bipartition such that (i) = 0. Each input of
the form @, , assigns precisely one 1 to these variables, and this 1 is in the position

x,. Hence, Y?(d,,) = 1 iff 4(i) = o, which happens precisely when y? (¢, ?) = 1. O

17

ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

