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Abstract

A circuit complexity of a graph is the minimum number of union and in-
tersection operations needed to obtain the whole set of its edges starting from
stars. Our main motivation to study this measure of graphs is that it is related
to the circuit complexity of boolean functions.

We prove some lower bounds to the circuit complexity of explicitly given
graphs. In particular, we use the graph theoretic frame to prove that some ex-
plicit subsets of GF (2)n cannot be covered by fewer than 2Ω(n) affine subspaces
of GF (2)n.

We conclude with several graph-theoretic problems whose solution would
have intriguing consequences in computational complexity.
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1 Introduction

A major challenge in computational complexity is to exhibit an explicit boolean func-
tion f : {0, 1}m → {0, 1} which has high computational complexity, i.e. cannot be
computed using a small number of basic boolean operations such as OR x ∨ y, AND
x ∧ y or Parity x ⊕ y = x + y (mod 2); inputs for such a circuit are literals, i.e.
variables xi and their negations xi. Though this problem is intensively studied for
more than fifty years there is no proof of a lower bound super-linear in the number of
variables m. The problem of proving super-linear lower bounds is widely open even
if we assume the additional restriction of circuit depth be1 O(log m). The main dif-
ficulty here is that we want the function f be explicitely constructed—easy counting
shows that almost all functions require circuits of size 2Ω(m).
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Pudlák, Rödl and Savický [32] observed that in oder to construct boolean func-
tions requiring large circuits it would be enough to construct graphs that cannot be
computed with a small number of union and intersection operations starting from
some “simplest” graphs, like stars or cliques. In this paper we follow this approach
in the case when input graphs are stars.

1.1 Graphs and circuits

Given a graph G = (V, E) we associate to each its vertex v a boolean variable xv, and
let X = {xv : v ∈ V }. We say that a boolean function (or a circuit) f(X) accepts a
subset of vertices S ⊆ V if f(aS) = 1 where aS ∈ {0, 1}V is a binary vector with 1’s
in positions u for all u ∈ S, and 0’s elsewhere.

Definition 1.1. A boolean function f(X) represents a graph G if it accepts all edges

and rejects all non-edges of G.

Hence, f(X) represents the graph G if for every input vector a ∈ {0, 1}X with
precisely two 1’s in, say, positions u and v, f(a) = 1 if uv is an edge, and f(a) = 0
if uv is a non-edge of G. Note that if uv is neither an edge nor a non-edge (in the
bipartite case) or if a contains more or less that two 1’s, then the value f(a) may be
arbitrary.

For example, the quadratic function fG(X) =
∨

uv∈E xuxv of a graph G = (V, E)
represents G and can be computed by a trivial monotone depth-2 formula containing
|E| + 1 gate: |E| fanin-2 AND gates and one OR gate of fanin |E|. Hence, no n-
vertex graph G of degree d requires circuits of size larger than dn. However, this
trivial upper bound may be exponentially far from the truth: a result of Alon [2] on
the bipartite covering number of graphs implies (see Proposition 5.2 below) that every
n-vertex graph G of degree d can be represented by a monotone CNF (conjunctive
normal form) f(X) =

∧r
i=1

∨

v∈Si
xv with r = O(d2 log n). In particular, every graph

of constant degree can be represented by a monotone depth-2 formulas of logarithmic
size.

In this paper we are interested in graphs which cannot be represented by small
circuits. Although proving lower bounds on the circuit complexity of graphs may be of
independent interest, we (just like the authors of [32]) consider the graph complexity
mainly as a tool for proving lower bounds for boolean functions.

The translation of lower bounds for graphs to lower bounds for boolean functions
is given by the following lemma (we give its proof in the Appendix). With every
bipartite n × n graph G ⊆ U × W with n = 2m and U = W = {0, 1}m one may
associate a boolean function f in 2m variables—the characteristic function of G—
such that fm(uv) = 1 if and only if uv ∈ G.

Magnification Lemma: Given a circuit computing the characteristic function f of
a bipartite graph G, it is possible to replace its input literals by ORs of variables
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so that the obtained monotone circuit (no negated inputs) represents the graph
G. The same holds when Parity gates are used instead of OR gates.

This fact may be particularly useful in such circuit models where computing an
OR (or a Parity) of input literals is “cheap.” For example, if the circuit computing f
has unbounded fanin OR (or Parity) gates on the bottom (next to the inputs) level,
then the obtained circuit represents G and has the same number of gates! Hence, if
we could prove that a bipartite n × n graph G with n = 2m cannot be represented
using, say, fewer than nε gates, this would immediately imply that the characteristic
function f of G requires at least nε = 2εm gates, which is exponential in the number
2m of variables of fm (this is where the term “magnification” comes from). That is,
even moderate lower bounds on the computational complexity of graphs would yield
high lower bounds on the computational complexity of boolean functions.

Note, however, that proving lower bounds for graphs may be more difficult task
than for boolean functions. For example, the Parity function x1⊕x2⊕· · ·⊕xm cannot
be computed by a constant-depth circuit using a polynomial number of unbounded
fanin AND and OR gates ([17]) whereas the corresponding to this function graph
is just a union (A × B) ∪ (A × B) of two vertex-disjoint bipartite complete graphs,

and can be represented by a circuit (
∨

u∈A∪B xu)∧
(

∨

v∈A∪B xv

)

using just three gates!
This also demonstrates that the Magnification Lemma has no inverse: if a graph can
be represented by a small circuit, this does not imply that its characteristic function
can be computed by a small circuit.

On the other hand, non-trivial lower bounds on graph complexity even in the
class of depth-3 circuits would resolve some old problems in the circuit complexity
of boolean functions. Of particular interest is the case of Σ3 circuits. These circuits
consist of unbounded fanin AND and OR gates which are organised in three levels:
the bottom (next to the inputs) level consists of OR gates, the middle level consists
of AND gates, and the top level consists of a single OR gate. Inputs are variables and
their negation. If there are no negated inputs then the circuit is monotone. The total
number of gates is the size of a circuit. If all gates have fanout 1, then the circuit is
a formula.

Our motivation to study representation of graphs by depth-3 circuits comes from
the following result due to Valiant [38]: if a boolean function f in m variables can
be computed by a log-depth circuit of size O(m) then f can be computed by a Σ3

formula of size 2O(m/ log log m); here a log-depth circuit is a circuit of depth O(log m)
using any boolean functions in constant number of variables as gates. Together with
the Magnification Lemma, this implies the following:

Valiant’s Lemma: If a bipartite n× n graph cannot be represented by a monotone
Σ3 formula of size nε with ε = ω(1/ log log log n), then its characteristic function
cannot be computed by a log-depth circuit of linear size.

In last two decades there was a considerable progress in proving lower bounds
on the size of small-depth circuits [1, 12, 39, 17, 34, 37, 13, 19, 28]. However, for
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Σ3 circuits these lower bounds are of the form 2Ω(
√

m), and hence, are too weak to
imply lower bounds for log-depth circuits. The only known strongly exponential
lower bounds were obtained in [29] under the restriction that the bottom OR gates
have fanin 2, that is, when the circuit is just an OR of 2-CNFs. However, Valiant’s
reduction requires bottom fanin mε and, as noted in [29], their argument fails already
when bottom fanin is 4.

1.2 Results

In this paper we are trying to obtain higher lower bounds for small depth circuits
using the graph-theoretical frame. So far, we have not succeeded to do this for “pure”
Σ3 circuits but are able to do this for some of their variants. Among others we prove
the following.

1. If a bipartite n × n graph G has M edges and contains no copies of Ka,b, then
any Σ3 circuit with Parity gates on the bottom needs at least M/(a+ b)n gates
to represent G (Theorem 3.2). This immediately yields strongly exponential
lower bounds for many explicit boolean functions. In particular, this implies
that any such circuit, detecting whether two given subsets of {1, . . . , m} are
disjoint, needs 2Ω(m) gates (Corollary 3.5).

2. Any Σ3 circuit which has Parity gates on the bottom and an arbitrary threshold
gate on the top needs at least Ω(

√
n) gates to represent an n × n Hadamard

graph (Corollary 3.9). Again, this yields strongly exponential lower bounds for
explicit boolean functions—including the Inner Product function—in this more
general model.

3. There are explicit n × n graphs G such that both G and G can be represented
by monotone Σ3 circuits of size O(log n) but every monotone Π3 circuit for G
must have size Ω(

√
n); a Π3 circuit is a dual version of Σ3 circuits. Nothing

similar holds in the context of boolean functions: the size of minimal a Π3 circuit
computing a function f does not exceed the size of any Σ3 circuit computing ¬f .

4. If a graph G = (V, E) has no triangles and no 4-cycles, then any mono-
tone formula (of arbitrary depth) computing the quadratic function fG(X) =
∨

uv∈E xuxv has length Θ(|E|) (Theorem 7.3).

One of the aims of this paper is to draw once more readers attention to graph

complexity. This concept has already led to interesting results [7, 36, 32, 35, 30,
26], and its potential seems to be far from being exhausted. As we will see, the
circuit complexity of a graph is just a generalisation of its (edge) clique covering
number, a well-known and widely studied measure of graphs. We show that non-
trivial lower bounds on this generalised measure would have interesting consequences
in computational complexity.
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Notation

We shall use standard graph theory notation. In particular, Ka,b is a biclique (bipartite
clique, complete bipartite graph) A × B, A ∩ B = ∅ with parts of size a = |A|
and b = |B|. We shall look at bipartite graphs G with a fixed bipartition V = U ∪W
as sets G ⊆ U × W of their edges. By an n to n matching we will mean a bipartite
graph Mn consisting of n vertex-disjoint edges. The (bipartite) complement of a
bipartite graph G ⊆ U × W is a bipartite graph G = (U × W ) \ G. A non-edge is a
pair uv of non-adjacent vertices. A non-edge in a bipartite graph with a bipartition
V = U ∪ W is a pair uv of non-adjacent vertices with u ∈ U and v ∈ W ; hence,
pairs of vertices within one part of a bipartition are neither edges nor non-edges. The
degree of a graph is the maximum degree of its vertices.

We will also use some well known graph covering measures of graphs. A fat

matching is a union of vertex-disjoint bipartite cliques. A fat covering of a graph
G is a family of fat matchings such that each of these fat matchings is a (spanning)
subgraph of G and every edge of G is an edge of at least one member of the family.
Similarly, a bipartite clique covering of G is a family A1×B1, . . . , At ×Bt of complete
bipartite subgraphs of G such that every edge of G is an edge of at least one member
of the family. The number t of subgraphs in such a covering is the size and the total
number

∑t
i=1(|Ai| + |Bi|) of vertices is the weight of the covering.

Let cc(G) denote the minimum size and ccw(G) the minimum weight of a bipartite
covering of G. These measures were first studied in [10], and now are the subject of
extensive literature. In particular, it is known that ccw(G) = O(n2/ log n) for every
n-vertex graph, and there exist graphs matching this upper bound [8]. Let fat(G)
denote the minimum number of fat matchings in a fat covering of G. This measure
was also considered by several authors, [9, 11, 2, 31] among others (here fat matchings
are called “equivalence graphs”). In particular, it is known that fat(G) = O(n/ log n)
for every n-vertex graph [31]. In this paper we will use these measures to describe
the circuit complexity of graphs.

2 Depth-2 circuits

To “warm-up” we start with the simplest model of circuits whose gates are arranged
in two levels. Such circuits are easy to deal with, and the only goal of this section is to
show that, even in this model, there may be a big discrepancy between the combina-

torial and computational complexity of graphs: some “combinatorially complicated”
(or “combinatorially interesting”) graphs can be represented by very small circuits
and some “combinatorially simple” graphs require large circuits (of the same type).

Example 2.1. The Kneser graph K(r, k) (r > 2k ≥ 4) has all k-element subsets v
of {1, . . . , r} as vertices, and two vertices are adjacent iff the corresponding k-subsets
are disjoint. These graphs were introduced by Lovász [27] in his famous proof of
Kneser’s conjecture [23] that whenever the k-subsets of a (2k +s)-set are divided into
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s + 1 classes, then two disjoint subsets end up in the same class. It is not difficult
to see that K(r, k) can be represented by the following depth-2 circuit:

f(X) =
r
∧

i=1

∨

v∈Si

xv (1)

where Si = {v : i 6∈ v}. Indeed, u 6= v are non-adjacent in K(r, k) iff u ∩ v 6= ∅ iff
∃i ∈ u ∩ v iff {u, v} ∩ Si = ∅ for some i iff uv is rejected by some OR

∨

v∈Si
xv. Note

that with respect to the total number n =
(

r
k

)

of vertices the representation is quite

compact: the circuit has only 1 + r = O(kn1/k) gates (r OR gates and one AND
gate).

Example 2.2. An Hadamard matrix of oder n is an n × n matrix with entries ±1
and with row vectors mutually orthogonal. A graph associated with an Hadamard
matrix M (or just an Hadamard graph) of oder n is a bipartite n×n graph Hn where
two vertices u and v are adjacent if and only if M(u, v) = +1. An example of an
Hadamard graph is the Sylvester graph S(n). This is a bipartite n × n graph with
n = 2r vertices on each part identified with subsets of {1, . . . , r}; two vertices u and
v are adjacent iff |u ∩ v| is odd. It is easy to see that (for even r) this graph can be
represented by a depth-2 circuit

f(X) =
r
⊕

i=1

∨

v∈Si

xv (2)

with Si = {v : i 6∈ v}. Indeed, u and v are adjacent in S(n) iff |u ∩ v| is odd iff
r − |u ∩ v| is odd iff the number of sets Si containing at least one of u and v is odd.
Again, the representation is quite compact: the circuit has only r +1 = log(2n) gates
(r OR gates and one Parity gate of fanin r + 1). On the other hand, each Hadamard
graph (including the graph S(n)) is “combinatorially complicated” because, as shown
in [32], it contains an induced subgraphs on

√
n vertices which is Ramsey, meaning

that it does not contain cliques or independent sets of size ω(log n). By setting the
corresponding variables in the circuit (2) to 0, we obtain that this Ramsey graph can
be represented by a depth-2 circuit of size O(logn). Razborov in [36] has shown that
also some other “combinatorially complicated” graphs can be represented by small
circuits of constant depth.

On the other hand, some “combinatorially simple” graphs—like an n to n match-
ing Mn or its complement—cannot be represented by depth-2 circuits using fewer
than Ω(n) gates. If a graph G is represented by a depth-2 circuit of the form (1) with
top fanin r then its complement is just a union of r cliques. Hence, r = Ω(n) for any
such circuit representing Mn.

High lower bounds for depth-2 circuits of the form (2) can be obtained via simple
rank argument: every such circuit representing a graph G must have size at least
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rk(G)/2 where rk(G) is the rank over GF (2) of the adjacency matrix of G (just
because each graph represented by an OR gate is a complement of a clique, and hence,
has rank at most 2). Hence, r = Ω(n) for any circuit of the form (2) representing Mn.

These examples show that proving high lower bounds for depth-2 circuits is a
relatively easy task. However, the case of depth-3 circuits turns out to be much more
difficult. And this is not surprising because, as we already mentioned above, high
lower bounds on the size of such circuits (of the form nε where ε may even tend
slowly to 0) would resolve some old problems in computational complexity of boolean
functions, including the problem of proving a super-linear lower bound for log-depth
circuits.

3 Depth-3 circuits with Parity gates on the bottom

By Valiant’s Lemma, high lower bounds on the size of monotone Σ3 circuits rep-
resenting an explicit bipartite graphs would give us super-linear lower bounds for
logarithmic depth circuits. Pudlák, Rödl and Savický asked in [32] whether C4-free
graphs are hard for such circuits.

It turns out that this question can be answered affirmatively if the OR gates on
the bottom are replaced by Parity gates; we call such circuits Σ⊕

3 circuits. Such a
circuit of top fanin s and middle fanin r is just an OR of s boolean functions, each
of which is a product of r linear forms over GF (2):

g(x1, . . . , xm) =
r
∏

i=1

⊕

j∈Ii

xi ⊕ λi

where λi ∈ {0, 1} and Ii ⊆ {1, . . . , m}. If all scalars λi are equal 0, the circuit is
positive.

Remark 3.1. If we would require that the top gate of a circuit must also be a Parity
gate (not an OR gate), then truly exponential lower bounds 2Ω(m) for such version
of Σ⊕

3 circuits could be obtained using the algebraic (approximation by low-degree
polynomials) techniques of [34, 37, 13]. However, these techniques seem incapable
of proving such high lower bounds for Σ⊕

3 circuits themselves because, in this case,
we would be forced to approximate the top OR gate as well, which would invariably
result in the square root 2Ω(

√
m) in the final bound.

Theorem 3.2. Let G ⊆ U × W be a bipartite n× n graph. If G contains no copy of

Ka,b, then any Σ⊕
3 circuit computing the characteristic function of G has top fanin at

least
|G|

(a + b)n
.

Theorem 3.2 follows directly from the Magnification Lemma and the following two
lemmas.
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Lemma 3.3. For every bipartite graph G ⊆ U ×W , fat(G) is the minimum top fanin

of a Σ⊕
3 circuit representing G.

Proof. First note that in the case of graphs we can safely restrict ourselves to positive
circuits, because

⊕

u∈A∪B xu represents the same graph as 1 ⊕⊕

u∈A∪B xu.
Let g =

⊕

v∈A∪B xv with A ⊆ U and B ⊆ W be a gate on the bottom level of a
Σ⊕

3 circuit representing G. Then g represents a fat matching (A×B)∪ (A×B) where
A = U \ A and B = W \B. Since the intersection of any number of fat matchings is
a fat matching, each AND gate on the middle level represents a fat matching. Hence,
if the circuit has top fanin s, then the OR gate on the top represents a union of these
s fat matchings, implying that s ≥ fat(G).

To show that G can be represented by a Σ⊕
3 circuit of top fanin fat(G), assume that

G is a union of s fat matchings. Observe that every fat matching M = A1×B1∪· · ·∪
Ar×Br can be obtained as an intersection of r fat matchings Ai×Bi∪(A\Ai)×(B\Bi)
in A × B where A (B) is the union of all Aj’s (Bj’s). Since each fat matching
A × B ∪ A × B can be represented by the Parity gate g(X) =

⊕

v∈A∪B xv, we are
done.

Lemma 3.4. Let G ⊆ U × W be a bipartite n × n graph. If G contains no copy of

Ka,b then

fat(G) ≥ |G|
(a + b)n

.

Proof. Let H =
⋃t

i=1 Ai × Bi be a fat matching, and suppose that H ⊆ G. By the
definition of a fat matching, the sets A1, . . . , At, as well as the sets B1, . . . , Bt are
mutually disjoint. Moreover, since G contains no copy of Ka,b, we have that |Ai| < a
or |Bi| < b for all i. Hence, if we set I = {i : |Ai| < a}, then

|H| =
t
∑

i=1

|Ai × Bi| =
t
∑

i=1

|Ai| · |Bi| ≤
∑

i∈I

a · |Bi| +
∑

i6∈I

|Ai| · b ≤ (a + b)n.

Thus, no fat matching H ⊆ G can cover more than (a + b)n edges of G, implying
that we need at least |G|/(a + b)n fat matchings to cover all edges of G.

There are many explicit bipartite n×n graphs which are dense enough and do not
have large bicliques. Theorem 3.2 immediately yields truly exponential lower bounds
(i.e. lower bounds of the form 2Ω(m)) on the top fanin of Σ⊕

3 circuits computing
the characteristic functions of these graphs; recall that these functions have only
m = 2 log n variables. Here we restrict ourselves with few examples.

The disjointness function is a boolean function DISJ2m in 2m variables such that

DISJ2m(y1, . . . , ym, z1, . . . , zm) = 1 if and only if
m
∑

i=1

yizi = 0.

Corollary 3.5. Every Σ⊕
3 circuit computing DISJ2m has top fanin 2Ω(m).
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Proof. The function DISJ2m is the characteristic function of the Kneser-type bi-
partite graph K(r) ⊆ U × V where U and W consist of all n = 2r subsets of
[r] = {1, . . . , r}, and uv ∈ K iff u ∩ v = ∅. The graph K(r) can contain a com-
plete bipartite a × b subgraph ∅ 6= A × B ⊆ K only if a ≤ 2k and b ≤ 2r−k for some
0 ≤ k ≤ r, because (

⋃

u∈A xu) ∩ (
⋃

v∈B xv) = ∅. In particular, K(r) does not contain
a copy of Ka,a with a > 2r/2 =

√
n. Since this graph has

|K(r)| =
∑

u∈U

d(u) =
∑

u∈U

2r−|u| =
r
∑

i=0

(

r

i

)

2r−i = 3r ≥ n1.58

edges, Theorem 3.2 yields that any Σ⊕
3 circuit representing K(r) must have top fanin

at least |K(r)|/(2an) = Ω(n0.08). It remains to apply the Magnification Lemma.

Remark 3.6. In the context of boolean functions, Σ⊕
3 circuits cannot be efficiently

simulated by Σ3 circuits: the Parity function x1 ⊕ x2 ⊕ · · · ⊕ xm has an obvious Σ⊕
3

circuit of size 1, whereas (as shown in [17]) this function requires Σ3 circuits of size
2Ω(

√
m). It may be, therefore, interesting to note that, in the context of graphs, the

situation is entirely different: if a graph can be represented by a Σ⊕
3 circuit of size

L then G can be represented by a monotone Σ3 circuit of size at most 2L. This
holds because we can just replace each parity gate

⊕

u∈S xu on the bottom level by

an AND (
∨

u∈S xu) ∧
(

∨

u6∈S xu

)

of two OR gates; the obtained monotone Σ3 circuit

will represent the same graph. Moreover, the graph K(r) shows that Σ⊕
3 circuits may

be even exponentially weaker : this graph can be represented by a monotone CNF of
length O(log n) (see (1)) but requires Σ⊕

3 circuits of top fanin at least Ω(nε).

A prominent example of a dense bipartite graph without K2,2 is the incidence n×n
graph Pn ⊆ U × W of a projective plane PG(2, q) of order q (n = q2 + q + 1). This
graph is k-regular with k = q + 1 and contains no copies of K2,2. Hence, the graph
has Ω(n3/2) edges. This is almost optimal because, as shown in [24], no bipartite
n × n graph without a copy of K2,2 can have more than (1 + o(1))n3/2 edges. By
Singer’s theorem ([16], p. 128) there exist 0 ≤ a1 < a2 < . . . < aq+1 < n such that Pn

is isomorphic to the bipartite graph will parts U = W = {0, 1, . . . , n − 1} in which
u ∈ U is joined to v ∈ W iff u = (v + ai)modn for some 1 ≤ i ≤ q + 1.

For the characteristic function π2m of this graph, Theorem 3.2 yields

Corollary 3.7. Every Σ⊕
3 circuit computing π2m has top fanin Ω(2m/2).

For every constant a > 1 explicit constructions of n × n graphs (so-called norm-

graphs) with Ω(n2−1/a) edges and no copies of Ka,a!+1 were found by Kollár, Rónyai
and Szabó in [25]; explicit graphs without Ks,r with larger values of r and s were
earlier constructed by Andreev [4]. For the characteristic functions f a

2m of these
graphs, Theorem 3.2 yields

Corollary 3.8. For every constant a > 1, every Σ⊕
3 circuit computing f a

2m has top

fanin Ω(2m−1/a).
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The only previously known truly exponential lower bound for Σ⊕
3 circuits we are

aware of was proved by Grolmusz [14] for the Inner Product function

IP2m(y1, . . . , ym, z1, . . . , zm) =
m
∑

i=1

yizi (mod 2).

Quite recently Pudlák and Rödl [33] have also proved such a lower bound for the
characteristic functions of particular pseudorandom sets. Both proofs employ non-
trivial facts—the probabilistic communication complexity of IP in [14] and some
properties of pseudorandom sets in [33].

Actually, the lower bounds in [14] and [33] were proved for a more general model
of Σ⊕

3 circuits: instead of an OR gate they allow an arbitrary threshold gate on the
top level. (Recall that a threshold-k function accepts an input iff it contains at least
k 1’s.) Let us show that lower bounds for this extended model can be proved in the
context of graphs as well.

At this point, let us note that in some cases it can even make sense to reprove

known lower bounds for boolean functions in the frame of graphs. For example,
reproving known lower bound 2Ω(

√
m) for Σ3 circuits—or even proving a much weaker

lower bound 2(log m)ω(1)
—in the graph-theoretic frame would give us a graph outside

the second level of the communication complexity hierarchy introduced in [5].

Corollary 3.9. Any Σ⊕
3 circuit which has an arbitrary threshold gate on the top and

represents an n × n Hadamard graph must have top fanin Ω(
√

n).

Since the inner product function IP2m is the characteristic function of an Hada-
mard n × n graph Hn with n = 2m, Corollary 3.9 and the Magnification Lemma
immediately yield a lower bound Ω(2m/2) for IP2m in this class of circuits.

For the proof of Corollary 3.9 we need the so-called “discriminator lemma” for
threshold gates. Let F be a family of subsets of a finite set X. For a subset A ⊆ X,
let thrF(A) denote the minimum number t for which there exist t members B1, . . . , Bt

of F and a number 0 ≤ k ≤ t such that, for every x ∈ X, x ∈ A if and only if x
belongs to at least k of Bi’s. A set A is an ε-discriminator for a set B if

∣

∣

∣

∣

∣

|A ∩ B|
|A| − |A ∩ B|

|A|

∣

∣

∣

∣

∣

≥ ε.

Lemma 3.10. ([15]) If thrF(A) ≤ t then A is a 1/t-discriminator for some B ∈ F .

Proof. Let B1, . . . , Bt ∈ F be a threshold-k covering of A, i.e. x ∈ A iff x belongs to
at least k of Bi’s. Our goal is to show that then A is a 1/t-discriminator for at least
one Bi. Since every element of A belongs to at least k of the sets A∩Bi, the average
size of these sets must be at least k. Since no element of A belongs to more than
k − 1 of the sets A ∩Bi, the average size of these sets must be at most k − 1. Hence,

1 ≤
t
∑

i=1

|A ∩ Bi|
|A| −

t
∑

i=1

|A ∩ Bi|
|A|
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≤ t · max
1≤i≤t

∣

∣

∣

∣

∣

|A ∩ Bi|
|A| − |A ∩ Bi|

|A|

∣

∣

∣

∣

∣

.

Proof of Corollary 3.9. Let A be an n × n Hadamard graph. Lindsey’s lemma (see,
e.g. [3] or [5]) says that the absolute value of the difference between the number of
+1′s and −1′s in any a×b submatrix of A is at most

√
abn. This, in particular, implies

that both A and A have Θ(n2) edges. Hence, by Lemmas 3.3 and 3.10, it is enough
to show that ||A ∩ B| − |A ∩ B|| = O(n3/2) for every fat matching B =

⋃t
i=1 Si × Ri.

By Lindsey’s lemma, the absolute value of the difference between |A∩ (Si ×Ri)| and
|A∩(Si×Ri)| does not exceed

√
sirin where si = |Si| and ri = |Ri|. Since,

∑t
i=1 si ≤ n

and
∑t

i=1 si ≤ n, we obtain

∣

∣

∣

∣

|A ∩ B| − |A ∩ B|
∣

∣

∣

∣

=

∣

∣

∣

∣

t
∑

i=1

|A ∩ (Si × Ri)| −
t
∑

i=1

|A ∩ (Si × Ri)|
∣

∣

∣

∣

≤
t
∑

i=1

∣

∣

∣

∣

|A ∩ (Si × Ri)| − |A ∩ (Si × Ri)|
∣

∣

∣

∣

≤
t
∑

i=1

√
sirin ≤ √

n
t
∑

i=1

si + ri

2
≤ n3/2.

4 A tradeoff for Σ3 circuits

We now use the graph theoretic frame to prove a trade-off between top and middle
fanins in Σ3 circuits, where middle fanin of a circuit is the maximum fanin of a gate
in the middle level.

Theorem 4.1. If IP2m is computed by a Σ3 circuit with top fanin s and middle

fanin r, then both s2r and rs must be at least 2Ω(m).

A trade-off sr = Ω (m3/(log m)5) between these parameters for IP2m was recently
proved by Lokam [26] (also using the graph-theoretic frame). The trade-off in The-
orem 4.1 is better only if one of the parameters r or s is at most mε—the second
parameter must then be at least 2Ω(m1−ε).

Theorem 4.1 follows directly from Lemma 3.4 and the following

Lemma 4.2. If a bipartite graph G can be represented by a monotone Σ3 circuit of

middle fanin r and top fanin s, then cc(G) ≤ s2r and cc(G) ≤ rs.

Proof. Take a monotone Σ3 circuit of middle fanin at most r and top fanin s, and let
G ⊆ U ×W be the bipartite graph represented by this circuit. Each gate g =

∨

i∈S xi

11



on the bottom level represents a (bipartite) complement of a bipartite clique A × B,
where A = U \ S and B = W \ S. Each such complement is a union of two bipartite
cliques A × B and A × W . Since the intersection of any number of bipartite cliques
is a (possibly empty) bipartite clique, each AND gate on the middle level represents
a union of at most 2r bipartite cliques. Since G is a union of s such graphs, we have
cc(G) ≤ s2r.

To prove cc(G) ≤ rs, observe that G is an intersection of s graphs H1, . . . , Hs,
each of which is a union of r bipartite cliques. Since the intersection of any number
of bipartite cliques is a bipartite clique, we have that cc(G) ≤ ∏s

i=1 cc(Hi) ≤ rs.

5 Combinatorics of Σ3 circuits

In this section we give a combinatorial characterisation of graphs represented by
monotone Σ3 circuits. Recall that each such circuit is just an OR of CNFs (conjunctive
normal forms), where a CNF of length t is an AND

g(X) =
(

∨

u∈S1

xu

)

∧ · · · ∧
(

∨

u∈St

xu

)

(3)

of t clauses, each of which is an OR of variables. Let cnf(G) denote the minimum
length of a CNF representing G, and let Σ3(G) be the minimum number t such that
G can be represented as a union of at most t graphs H such that cnf(H) ≤ t.

The length of CNFs can be described combinatorially in terms of the clique cov-
ering number as well as in terms of set-intersections. Say that a bipartite graph
G ⊆ U × W admits an intersection representation of size t if it is possible to asso-
ciate with every vertex u ∈ U ∪ W a subset Au of {1, . . . , t} so that for every arc
uv ∈ U × W , uv ∈ G iff Au ∩ Av = ∅. Let int(G) denote the smallest t for which G
admits such a representation.

Proposition 5.1. For every bipartite graph G we have cnf(G) = cc(G) = int(G).

Proof. An OR of variables represents a complement of a biclique (and each comple-
ment of a biclique can be represented by an OR gate). Hence, a bipartite graph G
can be represented by a CNF of the form (3) iff G is an intersection of complements
of t bicliques, or equivalently, iff the complement G can be represented as a union of
t bicliques, implying that cnf(G) = cc(G).

The equality cc(G) = int(G) is also easy to show. Given an intersection rep-
resentation of G ⊆ U × W by subsets Au of {1, . . . , t} for u ∈ U ∪ W , the t sets
Ii = {u : i ∈ Au} are independent and cover all non-edges of G. On the other hand,
given a covering of the non-edges of G by independent sets I1, . . . , It, one can take
Au = {i : u ∈ Ii}.

Proposition 5.1, together with an obvious observation that every bipartite clique
A × B can be represented by a CNF consisting of two clauses

∨

u∈A xu and
∨

v∈B xv,

12



gives a general upper bound

Σ3(G) ≤ min
{

cc(G), cc(G)
}

. (4)

By (4), Σ3(G) ≤ cc(G) ≤ n is a trivial upper bound for every n-vertex graph G.
For graphs of small degree we have a better upper bound.

Proposition 5.2. For every n-vertex graph G of degree d, cnf(G) = O(d2 log n) and

Σ3(G) = O(d2/3 log n)

Proof. Alon [2] has proved (using a probabilistic argument) that cc(G) = O(d2 log n).
Together with Proposition 5.1 this yields the first claim. To get the second claim,
simply break G into d2/3 subgraphs of maximal degree d1/3 each.

Proposition 5.3. If H is a fat matching then both cnf(H) and Σ3(H) are at most

2 log n. Moreover, if Mn is an n to n matching then Σ3(Mn) = Ω(log n).

Proof. Let us first look how an n to n matching Mn can be represented by a monotone
CNF of length O(log n). Let t = 2 log n and associate with each vertex ui on the left
side its own t/2-element subset Ai of {1, . . . , t}, and assign to the unique matched
vertex vi on the right side the complement Bi = Ai of this subset. It is clear that
then Ai ∩ Bj = ∅ iff i = j. Hence, cnf(Mn) = int(Mn) ≤ t = 2 log n. The same
argument clearly works for any fat matching H. The upper bound Σ3(H) ≤ 2 log n
follows from the upper bound (4).

To prove the lower bound Σ3(Mn) = Ω(log n), let t = Σ3(Mn). Then there exists
a matching H ⊆ Mn containing |H| ≥ n/t edges and admitting an intersection
representation of size t. Since the sets of neighbours of any two vertices in H are
distinct, all the sets Au associated with vertices u on the left (resp. on the right)
part of the bipartition must be distinct. This implies 2t ≥ |H| ≥ n/t, and hence,
t = Ω(log n).

So far we do not know of any explicit n-vertex graphs G with Σ3(G) substantially
larger than log n. The best what we know is the lower bound of the form Σ3(Hn) ≥
(log n)3/2−o(1) proved by Lokam in [26] for an Hadamard graph Hn.

6 Σ3 versus Π3 circuits

As mentioned above, no explicit n-vertex graphs requiring monotone Σ3 circuits of
size (log n)ω(1) are known. On the other hand, if we replace the ANDs by ORs and
vice versa, then the situation is much easier. The obtained “dual” circuits are known
as Π3 circuits and have the form:

f(X) =
s
∧

i=1

r
∨

j=1

∧

v∈Sij

xv;
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by the size of such a circuit we again mean max{s, r}. Since ANDs of more than 3
variables do not contribute to the representation of graphs, such circuits are just a
slight generalisation of CNFs. And indeed, the representation power of such circuits is
much weaker than that of monotone Σ3 circuits. To see this, take an n to n matching.
We already know that both Mn and Mn can be represented by monotone Σ3 circuits
of size O(log n). Moreover, Mn has also a monotone Π3 circuit of logarithmic size,
because cnf(Mn) = O(logn). On the other hand, we have

Theorem 6.1. Every monotone Π3 circuit representing Mn must have size at least Ω(
√

n).

Note that nothing similar holds in the case of boolean functions: every Σ3 circuit
for a boolean function f can be tranformed to a Π3 circuit of the same size for its
complement ¬f .

A larger lower bound on the size of monotone Π3 circuits can be obtained for
Hadamard graphs.

Theorem 6.2. Every monotone Π3 circuit representing an Hadamard graph of oder

n must have size at least Ω(n2/3).

We derive both theorems from the following property of graphs represented by
monotone Π3 circuits.

Lemma 6.3. Suppose that a graph G can be represented by a monotone Π3 circuit of

size t. Then it is possible to add to G a set E of |E| ≤ t2 edges so that cc(G∪E) ≤ t.

Proof. Suppose that a graph G ⊆ U × W can be represented by a monotone Π3

circuit of size t. Such a circuit is an AND of at most t monotone DNFs D1, . . . , Dt,
each containing at most t monomials (ANDs of variables). Since we are interested in
the behaviour of the circuit only on arcs (edges and non-edges), we may assume that
none of these monomials contains more than two variables. Hence, each of the DNFs

Di =
∨

u∈Si

xu ∨
∨

uv∈Fi

xuxv

accepts some set Si ⊆ U ∪ W of vertices and some set Fi of |Fi| ≤ t arcs. Let
E =

⋃t
i=1 Ei where Ei = Fi ∩ G is the set of edges of G accepted by the i-th DNF;

hence, |E| ≤ t2. We may assume that the set G \H of remaining edges is non-empty,
since otherwise we would have H = G, meaning that G∪E is just a complete graph.
By what was said, the CNF (

∨

u∈S1
xu) ∧ · · · ∧ (

∨

u∈St
xu) must represent the graph

G \ E. Hence, by Proposition 5.1, cc(G ∪ E) = cc(G \ E) = cnf(G \ E) ≤ t.

Proof of Theorem 6.1. Let now t be the minimum size of a monotone Π3 circuit rep-
resenting Mn. Then, by Lemma 6.3, it must be possible to add a set E of |E| ≤ t2

edges to the matching Mn so that the resulting graph Mn ∪ E can be covered by
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at most t cliques. At least one of these cliques, say A × B, must contain at least
|Mn|/t = n/t edges of the matching Mn. But this means that

|H ∩ (A × B)| ≥ (n/t)2 − (n/t).

Together with |E| ≤ t2 this implies that t must satisfy the inequality (n/t)2− (n/t) ≤
t2, that is, t4 ≥ n2 − tn, which implies t = Ω(

√
n).

Proof of Theorem 6.2. Let t be the minimum size of a monotone Π3 circuit represent-
ing a bipartite n × n Hadamard graph H = Hn. We may assume that t ≤ n/16, for
otherwise there is nothing to prove. We will use the known fact that any Hadamard
graph contains about the same number of edges and non-edges; in particular, both
|H| and |H| are at least n2/4.

By Lemma 6.3, there is a set E of |E| ≤ t2 edges such that the graph H ∪ E
can be covered by at most t cliques R1, . . . , Rt, that is, H ∪ E = R1 ∪ · · · ∪ Rt.
Let N = |H| be the total number of non-edges in H (hence, N ≥ n2/4) and take
a clique R ∈ {R1, . . . , Rt} containing the largest number of non-edges of H; hence,
N0 := |R ∩ H| ≥ N/t. Let N1 := |R ∩ H| be the number of edges of H lying in R.
Since R ∩ H can contain only edges from E, we have that N1 ≤ |E| ≤ t2. On the

other hand, by Lindsey’s Lemma, |N1 − N0| ≤
√

n|R|, implying that

N1 ≥ N0 −
√

n|R|.

Remembering that

N1 + N0 = |R| ≥ N

t
≥ n2

4t
≥ 4n,

we obtain

2N1 ≥ |R| −
√

n|R| = |R|
(

1 −
√

n

|R|
)

≥ N

2t
,

that is, N1 ≥ N/(4t). Together with N1 ≤ t2, this implies that t3 ≥ N/4. Thus, t
must be at least (N/4)1/3 ≥ (n2/16)1/3 = Ω(n2/3).

7 Quadratic functions of graphs

In oder to obtain high lower bounds on the non-monotone circuit complexity of
boolean functions it would be enough, by the Magnification Lemma, to show that
any monotone boolean function f(X) representing a given graph G requires large
monotone circuits. That is, it is enough to deal with monotone circuits, but the
lower bound must hold for all monotone boolean functions f(X) representing G.

A natural monotone boolean function representing a given graph G = (V, E) is
the quadratic function fG defined by

fG(X) =
∨

uv∈E

xuxv.

15



It is therefore useful (as the first step) to understand for what graphs these functions
require large monotone circuits.

7.1 Quadratic functions and Σ3 circuits

A complete star in a graph with n vertices is a set of n−1 edges sharing one endpoint
in common. If the graph is bipartite, then a complete star is a set of edges joining
all vertices of one part with a fixed vertex of the other part. A graph is star-free if it
contains no complete stars.

Theorem 7.1 ([20]). Let G = (V, E) be a star-free graph of degree d, and let F be

a monotone Σ3 circuit computing fG. Then F has at least
√

|E|/d gates. If F is a

formula, then F has at least |E|/d2 gates.

Since every Σ3 circuit is an OR of CNFs, the theorem is an easy consequence of
the following lemma—we include its proof to demonstrate the kind of difficulties one
faces when trying to obtain similar lower bounds for circuits recognising the graph G.
Let cnf(fG) denote the minimum length of (i.e., the number of clauses in) a monotone
CNF computing fG. A complete star in a graph with n vertices is a set of n−1 edges
sharing one endpoint in common.

Lemma 7.2. If H is a star-free graph with M edges and degree d, then cnf(fH) ≥
M/d2.

Proof. Let F be monotone CNF of length t = cnf(fH) computing fH . Since H has no
complete stars, this CNF must contain at least two clauses. Take any of these clauses
C =

∨

u∈S xu and consider the shrinked CNF F ′ = F \ {C}. Since C must accept all
edges of H, each of these edges must have at least one endpoint in S. But any one
vertex in S can be an endpoint of at most d edges, implying that |S| ≥ M/d.

Since F is a shortest CNF computing fH , the shrinked CNF F ′ must make an
error, i.e. it must (wrongly) accept some independent set of H. That is, there must
be an independent set I such that every clause of F ′ contains a variable xv with v ∈ I.
Since F ′ has only t − 1 clauses, we may assume that |I| ≤ t − 1. This error must be
corrected by the clause C, implying that every vertex u ∈ S must be adjacent (in H)
with at least one vertex in I, for otherwise F would wrongly accept the independent
set I ∪ {u} of H. Hence, at least one vertex v ∈ I must have at least |S|/|I| ≥ M/td
neighbours in H. Since the degree of v cannot exceed d, the desired lower bound
t ≥ M/d2 follows.

Note that the main reason why such a simple argument does not work for cnf(H)
is that in this last case the vertices of S need not have neighbours in I unless I = {v}
(F ′ accepts a single vertex), in which case v must have large degree (at least |S|).
The only interesting errors made by F ′ are non-edges of H. Let T be the set of
endpoints of these non-edges. Observe that T must be an independent set in H: if
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uv and u′v′ are two non-edges accepted by F ′, then uv′ cannot be an edge, because
then we would be forced to include at least one of its endpoints u and v ′ in S, and
the original CNF F would wrongly accept one of these two non-edges. Hence, T is
an independent set, and and it is enough that S ∩ T = ∅ to correct all these errors.
In particular, if S = T then the clause C =

∨

u∈S xu rejects all non-edges wrongly
accepted by F ′, and accepts all edges.

7.2 Quadratic functions and boolean formulas

In this section we consider circuits of arbitrary depth with unbounded fanin AND and
OR gates; inputs are literals (variables and their negations). The depth of a circuit is
the length of a longest path from an input to the output gate. A formula is a circuit
with all gates having fanout 1, i.e. the underlying graph in this case is just a tree.
The length of a formula is the number of input literals.

Given a boolean function f and a graph G, let L(f) (resp., L+(f)) be the minimum
length of a formula (resp., monotone formula) computing f , and L+(G) the minimum
length of a monotone formula representing G.

If F is a formula computing the characteristic function f (in 2m variables) of a
bipartite n × n graph G (with n = 2m) then, by the Magnification Lemma, we can
replace each input literal in F by a monotone formula of length at most 2n (computing
the corresponding OR of variables) so that the resulting monotone formula recognises
G. Thus,

L(f) ≥ L+(G)/(2n).

Easy counting shows that L+(G) = Ω(n2/ log n) for most n × n graphs G. Pudlák,
Rödl and Savický have proved in [32] that L+(G) = Ω(n log(n/a)) for any n×n graph
G such that neither G nor its complement contains a copy of Ka,a. But, so far, no

explicit graph with L+(G) = Ω
(

n log3 n
)

is known. Such a graph would improve the

strongest currently known lower bound Ω(m3−o(1)) on the (non-monotone) formula
length of an explicit boolean function in m variables [18].

The reason, why it is difficult to show that a given graph G = (V, E) cannot be
represented by a short (monotone!) formula F , is that we only know that the formula
must behave correctly on the 2-element subsets of vertices: for all S ⊆ V with |S| ≤ 2

F (S) = 0 if and only if S is an independent set in G. (5)

On larger sets the formula may output arbitrary values. In particular, it can accept
independent sets of size k ≥ 3.

In this section we look what happens if we require that the formula F must reject
independent sets only up to some size k ≥ 2. That is, this time we require that (5)
must hold for subsets S ⊆ V of size |S| ≤ k.

Note that the quadratic function fG(X) =
∨

uv∈E xuxv recognises all independent
sets of G, but the corresponding formula has length 2|E|. Can we essentially decrease
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the length of the formula by relaxing this condition and requiring that it must reject
only independent sets up to some size k < n? Using a rank-argument it can be shown
that, for some graphs, this is not possible unless k is smaller than two times the
degree of G.

Theorem 7.3. Let G = (V, E) be a triangle-free graph without 4-cycles and of de-

gree d. Let f be a monotone boolean function which accepts all edges and rejects all

independent sets of G of size at most 2d. Then any monotone circuit computing f
has depth at least log |E| − 1, and any monotone formula computing f has length at

least |E|/2. In particular, L+(fG) = Θ(|E|).

Proof. We look at vertices as one element and edges as two element sets. For a vertex
y ∈ V , let Iy be the set of its neighbours. For an edge y ∈ E, let Iy be the set of all
its proper neighbours; that is, v ∈ Iy precisely when v 6∈ y and v is adjacent with an
endpoint of y. Since G has no triangles and no 4-cycles, the sets Iy are independent
sets of size at most 2d and must be rejected by f ; we will concentrate only on these
independent sets.

Let M be a matrix whose rows correspond to edges x ∈ E, columns to edges and
vertices y ∈ V ∪ E, and

Mx,y = x \ Iy.

A rectangle in M is a submatrix A×B ⊆ M with the property that there is a vertex
v such that

v ∈ x \ Sy for all x ∈ A and y ∈ B;

we call v a common element of the rectangle. Let R be a smallest possible set of
mutually disjoint rectangles covering the whole matrix M . It is well known that
every monotone circuit computing f has depth at least log |R| (see [21]), and every
monotone formula has length at least |R| (see [35]). Hence, it remains to prove that
|R| ≥ |G|/2.

To do this, re-fill the entries of M with constants 0 and 1 by the following rule:

Mx,y = 1 if and only if x ∩ y 6= ∅ (6)

Let R = A′×B′ be a rectangle in R, and let v be its common element. Then v ∈ x for
all edges x ∈ A′ and v 6∈ Iy for all y ∈ B′. Hence, for each y ∈ B ′, the corresponding
column in R is either the all-1 column (if v ∈ y) or the all-0 column (if v 6∈ y) because
in this last case the second endpoint of x cannot belong to y (for otherwise, the first
endpoint v would belong to Iy). Thus, either the rectangle R is monochromatic or
we can split it into two monochromatic rectangles. This way we obtain a covering
R′ of M by at most 2|R| mutually disjoint monochromatic rectangles. To estimate
their number we use the rank argument. Let rk(M) stand for the rank of M over
GF (2). Since the rectangles in R′ are mutually disjoint and have rank 1, it follows
that |R′| ≥ rk(M). Hence, it remains to prove that M has full row-rank over GF (2).
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Take an arbitrary subset ∅ 6= F ⊆ E of edges. We have to show that the rows
of the submatrix MF of M corresponding to the edges in F cannot sum up to the
all-0 row over GF (2). If F is not an even factor, that is, if the number of edges in
F containing some vertex v is odd, then the column of v in MF has an odd number
of 1’s, and we are done. Hence, we may assume that F is an even factor. Take an
arbitrary edge y = uv ∈ F , and let H ⊆ F be the set of edges in F incident to at
least one endpoint of y. Since both vertices u and v have even degree (in F ), the edge
y has a nonempty intersection with an odd number of edges in F : one intersection
with itself and an even number of intersections with the edges in H \ {y}. Hence, the
colum of y in MF contains an odd number of 1’s, as desired.

For the incidence n×n graph Pn of a projective plane PG(2, q) Theorem 7.3 yields

Corollary 7.4. L+(fPn
) = Θ(n3/2).

Note that if we would only know that the formula must reject non-edges (indepen-
dent sets of size 2)—the case interesting in the context of boolean functions—then
the same rank argument with the matrix M defined by the rule (6) would not work.
In this case we would have that Mx,y = 1 if and only if |x∩y| = 1 (edge and non-edge
can share at most one vertex). That is, M would be just a matrix of scalar products
(over the reals) of the characteristic vectors of edges x and non-edges y, and (even
over the reals) the rank of M would not exceed n.

7.3 Saturated graphs

If a circuit computes fG then it also represents the graph G. This holds for all graphs
and all circuits. In general, however, the converse may not hold because the circuit
representing a graph needs not to reject independent sets with more than two vertices.
Hence, in general, lower bounds for circuits computing fG do not imply lower bounds
for circuits representing G. Still, there are graphs for which this holds.

A natural way to force a circuit representing a graph G to compute fG is to “kill
of” all large independent subsets by including additional edges. This is a standard
trick in boolean complexity to obtain so-called “slice functions.”

For a bipartite graph H ⊆ U × W , we define its saturated extension as a (non-
bipartite) graph G = (V, E) such that V = U ∪ W , and uv ∈ E iff either uv ∈ H or
both vertices u, v lie in U or in W . That is, the induced subgraphs of G on U as well
as on W are complete graphs.

Lemma 7.5. If G is the saturated extension of a star-free bipartite graph, then every

monotone boolean function representing G coincides with fG.

Proof. Let G = (V, E) be a saturated extension of a bipartite graph H ⊆ U × W .
Suppose that H has no complete stars, and let f be a monotone boolean function
representing G. Take an arbitrary subset S ⊆ V of vertices. If fG(S) = 1 then S
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contains both endpoints of some edge uv ∈ E. This edge must be accepted by f and,
since f is monotone, f(S) = 1. If fG(S) = 0 then S is an independent set of G.
But the only independent sets in G are single vertices and non-edges of H. Hence,
f(S) = 0 because f represents H and H contains no complete stars.

Note, however, that proving lower bounds on the monotone complexity of quadratic
functions fG of saturated graphs is a difficult task. In particular, Theorem 7.1 and
Theorem 7.3 both fail for such functions.

8 Open problems

In the context of this paper the most interesting problem remains to prove that some
explicit bipartite n×n graph requires large monotone Σ3 circuits. The difficult thing
here is to prove this for an explicit graph—easy counting shows that Σ3(G) = Ω(

√
n)

for almost all bipartite n × n graphs G. Explicit graphs with Σ3(G) = Ω(log n) are
easy to find: we have already shown that such is, for example, the an n to n matching
Mn. However, to obtain some important consequences in computational complexity,
we need an explicit graph G with Σ3(G) ≥ nε. If proved with ε = ω(1/

√
log n), this

would give the first explicit boolean function in m variables requiring (non-monotone)
Σ3 circuit of size 2ω(

√
m). If proved with ε = (log log n)ω(1)/ log n, this would give an

explicit boolean function outside the second level of the communication complexity
hierarchy introduced in [5]. If proved with ε = ω(1/ log log log n), this would give the
first super-linear lower bound for log-depth circuits, thus resolving a long-standing
open question in computational complexity.

If a graph G has a small monotone Σ3 circuit, then some its dense subgraph H
must have a small CNF. We already know (see Proposition 5.1) that cnf(H) is the
minimal number of independent sets covering all non-edges of H. Hence, in oder
to show that H cannot be represented by a small CNF one could try to show that
no independent set of H can cover too many non-edges. If the original graph is a
good expander, then one could hope that also H will have good enough expanding
properties. As the initial graph with good expanding properties one could take, for
example, the incidence graph Pn of the projective plane PG(2, q). As shown in [3],
every set X of vertices on one side of Pn has at least n − n3/2/|X| neighbours on
the other side. Hence, every independent set of Pn can cover at most O(n3/2) non-
edges, implying that cnf(Pn) = Ω(

√
n). However, removing edges may destroy the

expansion property so that the remaining graph H may contain large independent
sets. For example, the adversary could remove all edges of Pn lying in an (n/c)×(n/c)
clique for a large enough constant c > 0. Since no m × m C4-free graph can have
more than (1 + o(1))m3/2 edges [24], the resulting graph H will still have a constant
fraction of edges of Pn but the corresponding independent set will already cover a
constant fraction of all its non-edges. Hence, we need an argument allowing us to
show that cc(H) is large even when some independent sets of H are large.
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Problem 8.1. Is there a constant ε > 0 such that cc(H) ≥ Dε for every subgraph
H of Pn of average degree at least D?

We already know (Theorem 6.1) that the monotone Π3 circuit size for an n to n
matching Mn is exponentially smaller than that for Mn.

Problem 8.2. Exhibit an explicit bipartite graph G for which Σ3(G) is exponentially
larger than Σ3(G).

The following problem does not require a graph be explicitely given, and hence,
may be apparently easier. Let E be the set of all bipartite n×n graphs G with Σ3(G) ≤
exp ((log log n)c) for some constant c > 0. Let co−E be the set of complements of
graphs from E .

Problem 8.3. Prove that E 6= co−E .

This would separate the second level of the communication complexity hierarchy
([5]) and hence resolve a long-standing open question in communication complexity.

A somewhat more ambitious task is to prove non-trivial lower bounds on the
minimum number of bits sent by the players on the worst case input in the following
“edge/non-edge” game between two players, Alice and Bob: Alice gets an edge x of
G, Bob gets a non-edge y of G, and their goal is to determine a vertex v ∈ x \ y; at
the end of the game on input (x, y) this vertex v must be known to both players. The
graph G itself is known to players long before the game starts; hence, they may agree
upon what characteristics of the graph they will use to encode the information about
their inputs. It is clear that at least log2 n bits of communication are necessary (Bob
must know the answer) and 2 log2 n bits are enough (Alice can just send her entire
edge).

As mentioned in Sect. 7.2, the number of communicated bits on the worst case
input is at least the logarithm of the minimum number R(G) of disjoint rectangles
needed to cover the communication matrix M of this game (see [21]). Rows of this
matrix are labelled by edges and columns by non-edges of G; the (x, y)-th entry is
Mx,y = x \ y. That is, each entry of M is either a single vertex or a pair of adjacent
vertices. As before, a rectangle in M is a submatrix A × B ⊆ M with the property
that there is a vertex v such that v ∈ x and v 6∈ y for all x ∈ A and y ∈ B.

Problem 8.4. Exhibit an n-vertex graph G on which the edge/non-edge game needs
at least log2 n + a log log n bits of communication for some a ≥ 2, or equivalently, for
which R(G) = Ω (n loga n).

If proved with a = 2 this would give a graph-theoretic proof of Khrapchenko’s
classical lower bound Ω(m2) on the size of non-monotone formula on m variables [22].
If proved with a ≥ 3 this would improve the strongest currently known lower bound
Ω(m3−o(1)) due to H̊astad [18].
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Finally, let us recall yet another problem for graphs which would solve an old
problem in circuit complexity. An ACC circuit is a constant-depth circuit with un-
bounded fanin AND, OR and MODk gates for arbitrary positive integers k, where
MODk(x1, . . . , xm) = 1 iff x1 + . . . + xm = 0 modulo k. Exponential lower bounds for
such circuits are known only if one is allowed to use MODk gates for prime numbers k
[36, 37]. However, the case of composite moduli k— even the case of circuits with
gates AND, OR and MOD6—remains widely open.

Let α(G) denote the minimum number t for which there exist t bipartite complete
graphs H1, . . . , Ht and a subset L ⊆ {0, 1, . . . , t} such that for every arc uv of G,
uv ∈ E if and only if the number of the graphs Hi that contain uv is a member
of L. Equivalently, α(G) is the minimal number t for which there exists a subset
L ⊆ {0, 1, . . . , t} and an assignment u 7→ Au ⊆ {0, 1, . . . , t} such that for every arc
uv of G, uv ∈ E if and only if |Au ∩ Av| ∈ L.

Problem 8.5. Exhibit a bipartite n × n graph G with α(G) = exp
(

(log log n)ω(1)
)

.

Together with the Magnification Lemma and the reduction [40, 6] of ACC circuits
to depth-2 circuits with a symmetric gate on the top, this would yield an exponential
lower bound for ACC circuits computing the characteristic function of G.

More combinatorial problems related to circuit complexity of boolean functions
can be found in a survey paper of Pudlák and Rödl [31].
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Appendix: Proof of the Magnification Lemma

In the lemma below, by a circuit we will mean an arbitrary computational model
whose inputs are literals, i.e. variables x1

i = xi and their negations x0
i = xi. A

boolean function g is isolating if g rejects the all-0 vector (0, . . . , 0) and accepts all
vectors containing precisely one 1; on other vectors the function can take arbitrary
values. Since OR and Parity functions are isolating, the Magnification Lemma is a
special case of Lemma 8.6 below.

Let G ⊆ U × W be a bipartite graph with U = W = {0, 1}m, and

f(y1, . . . , ym, z1, . . . , zm)

be its characteristic function; that is, f(uv) = 1 iff uv ∈ G. Suppose we have a circuit
F computing f . A positive extension of F has 2m+1 variables {xu : u ∈ U}∪{xv : v ∈
V }, and is obtained from F by replacing input literals ya

i and za
i by functions

Y a
i = g ({xu : u ∈ U, u(i) = a}) and Za

i = h ({xv : v ∈ V, v(i) = a})

where g and h are arbitrary isolating functions, and u(i) is the i-th bit of u ∈ {0, 1}m,
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Lemma 8.6. Let G ⊆ U × W be a bipartite n × n graph. If a circuit F computes

the characteristic function of G, then every its positive extension F + represents the

graph G.

Proof. For an arc uv ∈ U ×W , let Xu,v be the vector in {0, 1}U∪V with precisely two
1’s in positions u and v. Let F be a circuit computing the characteristic function of
G. Then uv ∈ G iff F (uv) = 1. Hence, it is enough to show that F +(Xu,v) = 1 iff
F (uv) = 1.

The only difference of the circuit F + from F is that instead of input literals it
takes the corresponding isolating functions as inputs. Hence, it is enough to show
that on an input vector Xu,v these isolating functions output the same values as the
corresponding literals do on the input vector uv. We show this only for y-literals (for
z-literals the argument is the same).

Let ya
i be some input literal of F , and u, v ∈ {0, 1}m. By the definition, the

function Y a
i = g ({xu : u ∈ U, u(i) = a}) depends only on the variables xu corre-

sponding to the left part U of the bipartition such that u(i) = a. Each input of the
form Xu,v assigns precisely one 1 to these variables, and this 1 is in the position xu.
Hence, Y a

i (Xu,v) = 1 iff Y a
i depends on xu which can happen if and only if u(i) = a.

On the other hand, we also have that ya
i (uv) = 1 if and only if u(i) = a. Thus,

Y a
i (Xu,v) = ya

i (uv), and we are done.

Note that Lemma 8.6 holds not only for bipartite graphs but also for arbitrary
k-partite hypergraphs G ⊆ V1 × V2 × · · ·× Vk with |V1| = |V2| = . . . = |Vk| = n = 2m.
The only difference is that then the characteristic function f of such a hypergraph
has km instead of 2m variables.

If we use OR gates as isolating functions in Lemma 8.6 then the only we need to
obtain a positive extension F + of F is to simltineausly compute 4m = 4 log n boolean
sums. Pudlák, Rödl and Savický [32] have shown that, for any k ≥ 1, any r boolean
sums built out of n variables can be computed using at most kn + k2dr/ke+1 fanin-2
AND and OR gates. Together with Lemma 8.6 this yields the following lower bound
for fanin-2 circuits.

Corollary 8.7. Let f be the characteristic function of a bipartite n × n graph G. If

G cannot be represented by a monotone circuit of size L, then f cannot be computed

by a non-monotone circuit using fewer than L − 24n gates.
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