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Abstract

It is known [BHZ87] that if every language in ������� has a constant-round interactive proof system,
then the polynomial hierarchy collapses. On the other hand, Lund et al. [LFKN92] have shown that	�

���

, the
	 � -complete function that outputs the number of satisfying assignments of a Boolean for-

mula, can be computed by a linear-round interactive protocol. As a consequence, the ������� -complete set

���
has a proof system with linear rounds of interaction.

We show that if every set in ������� has a polylogarithmic-round interactive protocol then the expo-
nential hierarchy collapses to the third level. In order to prove this, we obtain an exponential version
of Yap’s result [Yap83], and improve upon an exponential version of the Karp-Lipton theorem [KL80],
obtained first by Buhrman and Homer [BH92].

1 Introduction

Bábai [Báb85] and Bábai and Moran [BM88] introduced Arthur-Merlin Games to study the power of ran-
domization in interaction. Soon afterward, Goldwasser and Sipser [GS89] showed that these classes are
equivalent in power to Interactive Proof Systems, introduced by Goldwasser, Micali, and Rackoff [GMR85].
Study of interactive proof systems and Arthur-Merlin classes has been exceedingly successful [ZH86,
BHZ87, ZF87, LFKN92, Sha92], eventually leading to the discovery of Probabilistically Checkable Proofs
[BOGKW88, LFKN92, Sha92, BFL81, BFLS91, FGL � 91, AS92, ALM � 92].

Interactive proof systems are successfully placed relative to traditional complexity classes. In particular,
it is known that for any constant � , �������������! " [BM88], and ���#� $&%('*)+��,-�/.+�10#2!3 [Sha92]. However, the
relationship between coNP and interactive proof systems is not entirely clear. On the one hand, Boppana,
Håstad and Zachos [BHZ87] proved that if every set in coNP has a constant-round interactive proof system,
then the polynomial-time hierarchy collapses below the second level. On the other hand, the best interactive
protocol for any language in coNP comes from the result of Lund et al. [LFKN92], who show that 45.+076 ,
a problem hard for the entire polynomial-time hierarchy [Tod91], is accepted by an interactive proof system
with 859;:�< rounds of interaction on an input of length : . Can every set in coNP be accepted by an interactive
=
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proof system with more than constant but sublinear number of rounds? Answering this question has been
the motivation for this paper.

We show in this paper that coNP cannot have a polylogarithmic-round interactive proof system unless the
exponential hierarchy collapses to the third level, i.e., � 3�� � ��� � ,�� 3�� � ��� � for any �
	�� . Three principal
steps lead to the proof of our main result. Although we use Arthur-Merlin protocols to obtain our results, our
main theorem holds for general interactive proof systems as well, due to the result of Goldwasser and Sipser
[GS89], who showed that an interactive proof system with 
 rounds can be simulated by an ��
���� -move
Arthur-Merlin protocol.

� Using a result of Goldreich, Vadhan, and Wigderson [GVW02], we show that an Arthur-Merlin proto-
col with polylogarithmic moves can be simulated by a two-move Arthur-Merlin protocol where both
Arthur and Merlin send at most quasipolynomial ( ����� � ��� ��� ) number of bits (Corollary 3.3).

� If � is accepted by a two-move AM protocol where both Merlin and Arthur send quasipolynomially
many bits, then � belongs to the advice class �����! $&% '*) (Lemma 3.4).

� If coNP �"�����! �$ % '*) (equivalently ��� � coNP �� �$ % '*) ) then the exponential hierarchy collapses to

.$#&%  " ' ��(*) �+��3,��� ��� ��-/. %0��3,��� ��� � (Theorem 4.2) 1
In addition to these results, we improve upon a result of Buhrman and Homer [BH92], showing that if every
set in ��� has a quasipolynomial-size family of circuits, then � 3�� � (*) , . %2� 3�� � (*) , .4305 )" .

2 Preliminaries

For definitions of standard complexity classes, we refer the reader to Homer and Selman [HS01]. The
exponential hierarchy is defined as follows:

3�� � ,76 #&%  8:9 ��3,��� ,;6 #&%  <=9 � 3�� ��(*) ,;6 #&%  " 9
and in general, for �
>+? , 6 #&%  @ � < ,A��3,���

��� � 1
For every �B>�? ,

� #&%  @ ,DC��FEE �HGI6 #&%  @KJ 1
We define $ % '*) ' %2L ,7M @�N 8 ' %2L @ : and  �$ % '*) ,;����� � ��� ����,;M @�N 8 � � ��� �0O .
The quasipolynomial hierarchy has been studied before [BH92]. Buhrman and Homer [BH92] call it

the ��P -hierarchy. Define 6�Q ��� � �8 ,7R ��STP$U-,WVX N 8ZY 6 �\[ 3�9&�
� ����] O < 9

6^Q �_� � �< ,��`R �^STP�U , VX N 8 ��6 �\[ 3#9&�
� �a��] O < 9

and in general, for �
>Db , 6 Q ��� � �@ � < ,��TR ��STP$U ��� � 1
For every �B>�? ,

�cQ ��� � �@ ,DC�� EE �HGI6^Q �_�
� �@ J 1
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Similar to the relationship between the polynomial and the linear-exponential-time hierarchy, there is a re-
lationship between the quasipolynomial hierarchy and the exponential hierarchy. Given a set � , let Tally( � )
= C$b O������ EE � G � J , where � is the 2-adic representation of the integer :79 � < . Clearly, � � �	��
&' %2L :79 � < for
some constant 
 	�? .
Proposition 2.1 For every �B	�? ,

� GI6 #&%  @ � 6�
 ' '*)�9 ��<^GI6�Q ��� � �@ 1
As a consequence, there is no tally set in 6 Q ��� � �@ � 6 Q ��� � �@�� < if and only if 6 #&%  @ , 6 #&%  @�� < . Therefore, if the
quasipolynomial hierarchy collapses at level � , then the exponential hierarchy collapses to the � -th level as
well. The following proposition is easy to see.

Proposition 2.2 If 6^Q ��� � �@ , � Q ��� � �@ , then the quasipolynomial hierarchy collapses to the � -th level.

We note that the analogous result is not known for the exponential hierarchy.
Let � be a complexity class. A set � G�� �! �$ % '*) if there is a function ��� b ��� 6 � , some constant

�
	+? , and a set �DG�� such that

1. For every : , � � 9�b O <������ � �a� �0O , and

2. For all � , � G � � 9�� 9 � 9�b�� % � <�<^G � . Here � is called the witness language.

It is easy to see that ! �"� �! �$ % '*) if and only if
.
%#! �

.
%#� �� �$&%('*) .

Bábai [Báb85] introduced Arthur-Merlin protocol, a combinatorial game that is played by Arthur, a
probabilistic polynomial-time machine, and Merlin, a computationally unbounded Turing machine. Arthur
can use random bits, but these bits are public, i.e., Merlin can see them and move accordingly.

Given an input string � , Merlin tries to convince Arthur that � belongs to some language � . The game
consists of a predetermined finite number of moves with Arthur and Merlin moving alternately. In each
move Arthur (or Merlin) prints a finite string on a read-write communication tape. Arthur’s moves depend
on his random bits. After the last move, Arthur either accepts or does not accept � .

Definition 2.3 ([Báb85, BM88]) For any 
 	 ? , a language � is in 0T[ � 
 � (respectively [ 0 � 
 � ) if for
every string � of length :� The game consists of 
 moves

� Arthur (resp., Merlin) moves first

� After the last move, Arthur behaves deterministically to either accept or not accept the input string

� If �IG � , then there exists a sequence of moves by Merlin that leads to the acceptance of � by Arthur
with probability at least $%

� if �H�G � then for all possible moves of Merlin, the probability that Arthur accepts � is less than
<% .

Bábai and Moran [BM88] showed that 0T[ ��� � , where �
	Db is some constant, is the same as 0T[ � ���1,�0T[ .
Note that [ 0 � � �&,A[ 0 , 0T[ � b��1,'& � � , and [ 0 � b �&,A[ ,���� . Bábai [Báb85] proved that [ 0-� 0 [ .

We note the following standard proposition.

Proposition 2.4 Let ( be an event that occurs with probability at least $% . Then, for any polynomial )�9+* <
such that )�9;:�<`> : , there is a constant 
 such that within ,.- #0/,1
324)�9;:�< independent trials, ( occurs for
more than 5" times with probability 9�b � <

" �7698;: < .
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We define . #&%  " as the exponential version of the . " operator defined by Russell and Sundaram [RS98]
and Canetti [Can96]. A set � is in . #&%  " ' � if there is some �
	+? and �DG � such that for every � G C ? 9 b J O ,

� G � , � ������� 9 � 9 � 9 � <,G � 9 and

�H�G � , � �	�
��� 9 � 9 � 9 � <T�G � 9
where � � � 9 � � ����� O � . Similarly, we define . Q �_� � �" as the quasipolynomial version of the . " operator.

Similar to . ) " - #0/, . " ' � , the class . #&%  " ' � ( .$Q ��� � �" ' � ) can be thought of as a game between two provers
and a verifier. Let � G�. #&%  " ' � (respectively, in . Q �_� � �" ' � ). On any input � of length : , the Yes-prover
attempts to show that � G�� , and the No-prover attempts to show that �7�G � . Both the proofs are at most
exponentially (respectively, quasipolynomially) long in � � � . If �7G7� , then there must be a proof by the
yes-prover (called a yes-proof) that convinces the verifier that ��GA� no matter what proof the no-prover
(called a no-proof) provides; symmetrically, if ���GA� , then there must exist some no-proof such that the
verifier rejects � irrespective of the yes-proof. For every input � , there is a yes-prover and a no-prover
such that exactly one of them is correct. The verifier has the ability of the class � ; for example, if � , � ,
then the verifier is a deterministic polynomial-time Turing machine, and if � , � (Z) , then the verifier is a
polynomial-time oracle Turing machine with SAT as the oracle. It is easy to see that if � is closed under
complement, then . #&%  " ' � (respectively, . Q ��� � �" ' � ) is also closed under complement.

We concentrate on the classes . 3�5 )" - #0/, . #&%  " ' � , . #&%  " ' � (*) , and .�Q ��� � �" ' � (Z) . The proofs of Russell
and Sundaram can be easily modified to show the following.

Proposition 2.5

1. .4305 )" �"� 3�� � (*) - . %0��3,��� (Z) .

2. ��3,��� (*)
� . %2��3,��� (*) ��. #&%  " ' � (*) �"� 3�� � ��� � - . %2��3,��� �	� � .

3. �TR ��STP$U (*)
� . %0�TR �^STP�U (Z) � .$Q ��� � �" ' � (Z) �+�TR �^STP�U �	� � - . %2�`R ��S`P�U ��� � .
Proof We give a short proof of the second inclusion of item (2). Other inclusions are easy to verify. Note
that since . #&%  " ' � (Z) is closed under complement, it suffices to show that . #&%  " ' � (Z) is a subset of ��3,��� � � � .
Let �HG . #&%  " ' � (*) ; therefore, � �B	+? 9 ���*G � (*) such that

� G � , � ������� 9�� 9 � 9 � <�G � � 9 and

�H�G � , � �	�
��� 9�� 9 � 9 � <`�G � � 9
where � � � 9 � � ������� % � � . We define the language

� , C�9 � 9 � 9 ? "�� ���
�
< EE ��� 9 � 9 � 9 � <`�GI� � J 1

� is in 6  " . We define a NEXP machine � that decides � with � as an oracle. On input � , � guesses
� 9 � � � � � � % � � , and accepts � if and only if 9 � 9 � 9 ? " � ���

�
< �G � . If �+G+� , then for the correctly guessed � ,

9 � 9 � 9 � <cG ��� for every � ; therefore, � accepts � . On the other hand, if �A�G � , then there is a � such that

for every � , 9 � 9 � 9 � <`�G � � , and therefore, 9 � 9 � 9 ? " � ���
�
<�G � and � rejects � . This completes the proof. �

4



Proposition 2.6 � G . #&%  " ' �,(Z) � 6�
 ' '*)�9 ��<^G .�Q ��� � �" ' �,(Z) 1
Proof We simply show the if direction; the only if direction is similar. Let �HG . #&%  " ' � (*) ; therefore, there
exists �B	�? and � G � (*) such that

� GI� , � � � ��� 9�� 9 � 9 � <�G��
and

�H�GI� , � ��� ��� 9�� 9 � 9 � <`�G�� 9
where � � � 9 � � ���;� � % � � . If � G � , let � % be the string such that ��� 9 � 9 � % 9 � < G�� , and if �"�G � , let � % be the
string such that ��� 9�� 9 � 9 � % <`�G�� .

We need to show that Tally( � ) is in .4Q �_� � �" ' � (Z) . Let � , b O�� % � be the input. Note that � � ��� 
&' %2L � � �
for some 
 	;? . On input 9 � 9 � 9 � < , the � (*) verifier constructs � from � (this requires time polynomial in
� � � , : 9�� < ) and accepts if and only if 9�� 9 � 9 � <�G�� . If � G 6�
 ' '*)�9 ��< , then � G � and � % will convince the
verifier; on the other hand, if � �G 6�

' '*) 9 �/< , then �;�G � , and for � , � % , the verifier will reject no matter
what � is provided. Since � � % � 9 � � % ����� � % �

�
��� X � � �a� � � � � , this defines an .$Q ��� � �" ' � (Z) protocol for Tally( � ).�

The following proposition follows immediately.

Proposition 2.7 . #&%  " ' � (Z) ,�� 3�� � � � � if and only if there is no tally set in �`R �^STP�U � � � � .�Q ��� � �" ' � (*) .

3 Arthur-Merlin Games with Polylogarithmic Moves

We apply a theorem of Goldreich, Vadhan, and Wigderson [GVW02, Theorem 2.3] to obtain Corollary 3.3,
where we prove that if coNP has a polylogarithmic-move Arthur-Merlin protocol, then coNP can be accepted
by a two-move Arthur-Merlin protocol where both Arthur and Merlin exchange quasipolynomially many
bits. As a consequence, using Lemma 3.4, we obtain that if coNP has a polylogarithmic-move Arthur-Merlin
protocol, then coNP can be solved by nondeterministic polynomial-time machines with quasipolynomial-
length advice.

Definition 3.1 ([GVW02]) A set � G 0 [ � � 9;:�< 9 
 9;:�< � if for every string of length : there is an 
 9;:�< -move
Arthur-Merlin protocol where Arthur moves first and Merlin sends a total of at most �
9;:�< bits. Note that the
running time of Arthur is bounded by polynomial in : and � 9;:�< .

In this manner the notion of Arthur-Merlin protocols is modestly extended to allow for the possibility
that Arthur is not polynomial-time-bounded. Below we will consider two-move Arthur-Merlin protocols
where � 9 : < is a quasipolynomial; that is, we will consider the class 0 [ �  �$ % '*) 9 � � .
Proposition 3.2 ([GVW02])

0 [ ��� 9 : < 9 
 9;:�< � � 0T[ � 9�� 9;:�< *�
 9 : <�<
� �
	 � O � 9 � � 1

We denote 0T[ ��� 9 � � by 0T[ 9
�1< .
Corollary 3.3 For any �
	+? , there is a 
 	+? such that

0T[ � ' %�L @ :&��� 0 [ 9 � � �a��] O < 1
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Proof Let �7G 0T[ � ' %2L @ :&� . Assume that Arthur and Merlin exchange at most : - bits during every move
of the protocol that accepts � , where � 	 ? is some constant. Therefore, � G 0 [ � : - ' %2L @ : 9 ' %2L @ :&� . By
Proposition 3.2, there is a constant � � such that 0T[ � : - ' %2L @ : 9 ' %2L @ :&� � 0T[ 9�9;: - ' %2L @ : 25' %2L @ :�< @�� � �a�

� O
< .

Note that for large enough : ,

9;: - ' %�L @ : 2 ' %2L @ :�< @ � � ���
�0O
�-9&� - � �a�

O
� " @$� ��� � ��� O < @ � � ��� �2O

�-9&� � " @ � -
� � ��� O < @ � � �a� �0O ,7� @ � � " @ � -

� � ��� �����_O ��� � �a� ��� � O 1
Taking 
#, �`�"� , we have that �HG 0T[ � � � �a� ] O 9 � � . This completes the proof.

�

The following lemma is an extension of the result 0 [ ��� �^� $&% '*) , which in turn is an extension of
Adleman’s result that &!� � � P � poly [Adl78].

Lemma 3.4 0T[ 9  �$&%('*)&<��"�����! �$ % '*) 1
Proof Let �HG 0 [ 9&� � ��� � O < . Consider any input � of length : . There is a constant � and a polynomial-time
predicate � such that

� G � , � �	�
 � ��� � 9 � 9 � 9 � < � >
�
�

and

�H�G � , � �	�
 � ��� � 9 � 9 � 9 � < � � b� 9
where � � � 9 � � � �7� � ��� �0O . Note that by repeating the above protocol 
 < : times, for some constant 
 < , we can
reduce the probability of error to

<
" 8 ��� . Therefore, for every � G C ? 9 b J O , we get

� GI� , � �	�
 � �	� � 9�� 9 � 9 � < � >Db � b� O � <
and

�H�G � , � �	�
 � ��� � 9 � 9 � 9 � < � � b� O � < 9
where � � ����
 < : 2 � � �a� �0O ,7� � ��� �2O � � �a� X � � � ��� O ��� � �a��] O for some appropriate 
T	 � . There are at most � O
many strings of length : , and for every � the error probability is at most

<
" 8 ��� . Therefore any random � will

be correct on every input string with probability at least b � 9&� O 2 <
" 8 ��� <T	 ? . Hence there must be some�� 9 � �� � ��� � ��� ] O such that the following holds for every � of length : :

� G � , � �	� � 9�� 9 �� 9 � <
and

�H�G � , � ����
 � 9�� 9 �� 9 � < 1
This shows that � G �����2� � ����] O 1 �

Corollary 3.5 For any constant �B	+? , there is a constant 
T	+? such that

coNP � 0 [ � ' %2L @ :1� , � coNP �+� �^��� � ��� ] O 1
Proof This follows directly from Corollary 3.3 and Lemma 3.4.

�
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4 Quasipolynomial advice for NP

In this section, we study the consequences of the existence of quasipolynomial length (i.e., � ��� � ��� ��� -length)
advice for NP. This question was first studied by Buhrman and Homer [BH92]. They showed that if every set
in NP has a quasipolynomial-size family of circuits, then the exponential hierarchy collapses to the second
level (i.e. ��3,��� (*) , . %0��3,��� (Z) ). In Theorem 4.6, we improve this collapse to . 3�5 )" . In Theorem 4.2 we
obtain an exponential version of Yap’s theorem [Yap83]. We prove that if NP is contained in coNP �� �$&%('*) ,
then the exponential hierarchy collapses to . #&%  " ' � (Z) . We use this theorem to obtain the central technical
result of this paper, which is Theorem 4.3.

We note that Cai et al. [CCHO03] improved Yap’s theorem . They use self-reducibility of a language in��� � (for any set � ) to show that ��� � coNP � $&%('*) , � � � ,-. " ' � (Z) . Theorem 4.1 in this section is
somewhat similar in form to the result of Cai et al. However, we use a completely different technique from
theirs. Furthermore, in Theorem 4.7 below, we will use our technique to give an independent (and hopefully
easier) proof of their result.

Theorem 4.1 � � �
.
%0� �^�� �$ % '*) , � �TR ��STP$U � � � , . %0�TR �^STP�U � � � , .�Q ��� � �" ' � (*) .

Proof Since . Q ��� � �" ' � (*) is closed under complement, it suffices to show under the hypothesis that�`R ��STP$U � � � , .$Q �_� � �" ' � (Z) . Let � G �`R �^STP�U � � � via some quasipolynomial-time nondeterministic

oracle machine � that has some 6  " language � as an oracle. For any input �FG�C ? 9 b J O , � runs in � � ��� � O
time. Therefore, any query that � makes to � is also of length � � ��� � O , and the number of queries is also
bounded by � � ��� �0O .

For any string � , � G � � ���������	� 
	
 �G .+0 6 . Note that ���	� 
	
 can be constructed from � and ��� in time
polynomial in � � � .

For any string � of length � � ��� �0O , let � � �	� 
	
 � be denoted by 
 (some quasipolynomial in : ). By our
assumption, .+076 is in

.
%0� �^�� �$&%('*) ; let us assume that a correct advice for strings of length 
 is � , where

� � � ,D� ��� � ��� ��� �
	 � ,D� � ����] O for some constant 
 , and let ��G . %0��� be the witness language. For any string
� ,

� �G � � ��� � � �	� 
	
 G . 076
� ��� � 9 � �	� 
	
 9 � <�G��
� 9
� 9 � <^G�� 9

where � ,DC�9
� 9 � < EE ��� � 9 � �	� 
	
 9 � <�G�� J .
We define a � (*) -definable relation � 9�� 9 � < 9 � " < as follows. It may help to think of � < as the proof of

the yes-prover, and � " as the proof of the no-prover.

1. � 9 � 9 � < 9 � " < holds only if � < encodes an accepting computation of � on � , with queries, their answers,
and for every query � that is answered “yes”, the string � � as described above. In addition, the formulas� �	� 
 
 for the yes answers must be unsatisfiable. (This requires making queries to the NP oracle that �
can access.)

2. If � < is of the form specified in item 1, then � 9�� 9 � < 9 � " < holds unless all of the following are true:

(a) � " encodes an advice for strings of length 

(b) There is a query � that is answered “no” in the path encoded by � < but 9
� 9 � " < �G�� (here also �

requires access to the NP oracle)

(c) The search procedure described below yields a string � � for this query � such that � �	� 
	
 �G . 076
7



Now we describe the search procedure. Assume that a query � has been answered “no” in the path
encoded by � < , but 9 � 9 � " < �G � . Recall that � , C 9
� 9 � < EE � � � 9 � � � 
	
 9 � < �G�� J . Since � is in NP, � uses a
prefix search algorithm that accesses an NP oracle to construct � � .

If � G � , then let � < be the string encoding the correct accepting computation of � on � , including the
queries and their answers. Since the “no” queries are answered correctly on this path, for every “no” query
� , � �G � , and therefore, ��� � � �	� 
 
 G . 076 . Therefore, the search procedure cannot yield any � � for which� �	� 
	
 �G .+076 . As a consequence, � 9 � 9 � < 9 � " < will hold.

On the other hand, if �A�G � , then let � " be a correct advice string for strings of length 
 . Any � < that
satisfies item 1 must be incorrect about some query � that is in � but is answered “no” on the computation
path encoded in � < . For any such � , 9
� 9 � " < �G � , and the search procedure will yield some � � such that� �	� 
	
 �G .+076 . Therefore, � 9�� 9 � < 9 � " < cannot hold.

Finally, we need to argue that the proofs are of quasipolynomial length. The length of an advice string
is � � �a� ] O for some constant 
 . Due to the quasipolynomial bound on the running time of � , on the number
of queries made by � , on the length of each query made by � , and on the length of � � for any � , the length
of � < is at most quasipolynomial in : as well. The relation � clearly takes time polynomial in � � < � and � � " � .
This completes the proof. �

Theorem 4.2 � � �
.
%2�����! $&% '*) implies that the exponential hierarchy collapses to . #&%  " ' � (Z) �� 3�� � � � � -
. %2� 3�� � � � � .

Proof By Theorem 4.1, under the hypothesis, the quasipolynomial hierarchy collapses to . Q ��� � �" ' � (*) . As
a consequence, the exponential hierarchy collapses to . #&%  " ' � (Z) .

�

Now we prove our main theorem.

Theorem 4.3 For every constant � , if coNP � 0T[ � ' %�L @ :&� , then the exponential hierarchy collapses to
. #&%  " ' � (Z) �"��3,��� �	� �`- . %2� 3�� � �	� � .

Proof If every language in coNP has an Arthur-Merlin proof system with ' %2L @ : moves for any �B	�? , then
by Corollary 3.5, we obtain that

.
%2� � �A� �^��� � ��� ] O for some constant 
 	A? . This is equivalent to saying

that ��� �
.
%2�����2� � �a� ] O . By Theorem 4.2, we get the consequence that the exponential hierarchy collapses

to . #&%  " ' � (Z) �"� 3�� � � � � -
. %2� 3�� � � � � . This completes the proof.
�

Corollary 4.4 If every set in � � has an interactive proof system where the prover sends a total of at most
polylogarithmic bits, then the exponential hierarchy collapses to . #&%  " ' � (*) �"��3,��� � � � - . %2� 3�� � � � � .

Proof Goldreich, Vadhan, and Wigderson [GVW02, Corollary 3.8] have shown that if a set � has an
interactive proof system where the prover sends a total of at most polylog bits, then � G 0T[ 9  �$&%('*)&< .
Therefore, if every set in NP has such an interactive proof system, then

.
%2� � � 0T[ 9  $&% '*) < , and therefore,

by Lemma 3.4,
.
%0��� �"�����! $&% '*) . This is equivalent to saying that � � �

.
%0� �^�� �$ % '*) . By Theorem 4.2,

we obtain the consequence that the exponential hierarchy collapses to . #&%  " ' � (*) �"� 3�� � � � � -,. %2� 3�� � � � � .�
We can prove a version of Theorem 4.3 for 9;' %�L�:�< � ��� � ��� O -round interactive proof for .+0 6 . Let � 3 3�� �

be the set of languages that can be decided by a nondeterministic Turing machine that takes at most � " 8
�

time on an input of length : , and let
.
%2� 3 3�� � ,DC�� EE � G � 3 3,��� J .
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Let ����� $ , V@�N 8 C � EE � � � 9�� <���� "�� ���
� J 1

Define 6 ����� �< ,A��3�3�� � ,�� 6!�a[ 3 9 ���	� $ < , and for �B	 b ,
6 �
��� �@ ,A��3�3�� � ��� ��� � 1

Theorem 4.5 If . 076 G 0T[ � 9 ' %2L : < � ��� � ��� O � , then 6 �
��� �% , 6 ����� �$ , and therefore, the double exponential
hierarchy collapses to the third level.

Proof Suppose � G 6 �
��� �% via a ��3�3�� � machine 
 that has some oracle � GD6  $ . We will design a
machine � that accepts � with a 6  " oracle. Let us assume that the running time of 
 on an input of length

: is 
 ,7� " 8 ] .
On an input � , � � � , : , � guesses an accepting path of 
 with queries � < 9 � " 9 * *�* . The number of

queries, as well as the length of each query, is bounded by 
 . We know that there is a polynomial ) 90* < and
some polynomial-time predicate � such that ��� , � � 
 ,

�	� G � � ����������� � 9
�	� 9 � 9 � 9 � <
� � ����� 9
� � 9 � 9 � <�G�� 9

where � G � � . Let �*9 � � 9 � 9 � <�� , 
 � , where 
 � is some polynomial in 
 . We know from the hypothesis
that ��� �

.
%2�����2� � �a� O ] � ����� ��� 8 . Let the witness language be � G . %2��� , and let � be an advice string for

words of length 
 � . Since 
 � ,D� " 8�� , for some �
	A? , we have � � � ,D� � " 8	� � ] 8	� �;� " 8	� , for some constant� . Then,
�	� G � � � ����� 9
��� 9 � 9 � 9 � <�G�� 9

and therefore,
�	� G � � ��� 9 �	� 9 � 9 � <^G�� 9

where � is in
.
%2��� . Therefore,

��� G � � 9
��� 9 � <^G�� � 9
where � �*GI6� " . As a consequence, if � is given a correct advice string � , then � can simply make queries
to the 6  " set � � to obtain the answers to the queries � � . The time taken by � is polynomial in � � � , which is
still doubly exponential in : .

We now show how � can obtain a correct advice string � for words of length 
 � . This will complete
the proof.

We describe an NP oracle machine � � with oracle . 076 and we let

INCORR-ADVICE ,A�#9 � � � �"! < 1
Thus, the set INCORR-ADVICE is in 6  " .

On input � of length � , � � guesses a formula � of length � � such that � is the length of the advice for
formulas of length � � . Note that � G . 076 � 9 � 9 � <�G�� 1
� � makes two queries: whether � G .+0 6 , and whether 9 � 9 � <`G � . � � accepts � if and only if both the
queries are answered identically.

We claim that � is not in the set INCORR-ADVICE if and only if � is a correct advice string. If � is
the correct advice string, for every formula � , � G . 076 � 9 � 9 � <cG � . Therefore, for no formula � , will
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both the queries be answered the same. On the other hand, if � is not the correct advice string, there must
be a formula � such that either � G .+0 6 and 9 � 9 � < �G � , or � �G .+076 and 9 � 9 � < G � . For the path of � �
that guesses this formula � , the path will accept. This shows that � is a correct advice string if and only if� is not in INCORR-ADVICE. Recall that INCORR-ADVICE is in 67 " .

To generate a correct advice string � , � simply guesses a string � of appropriate length and asks the 6  "
oracle whether � is in INCORR-ADVICE. Since there is at least one correct advice string, at least one of
the guessed strings will not be in INCORR-ADVICE, and therefore, will be identified by � to be a correct
advice string. This completes the proof. �

In the following theorem, we improve the result of Buhrman and Homer [BH92, Theorem 1], who
showed under the same hypothesis that the exponential hierarchy collapses to ��3,��� (*) .

Theorem 4.6 If every set in ��� has a quasipolynomial-size family of circuits, then the exponential hierar-
chy collapses to .43�5 )" �"� 3�� � (*) -/. %0��3,��� (Z) .

Proof Buhrman and Homer showed under the same assumption that the exponential hierarchy collapses to� 3�� � (*) . Since . 3�5 )" ��� 3�� � (*) -/. %2� 3�� � (*) (Proposition 2.5), it suffices to show that ��3,��� (Z) ,
.4305 )" .

We can assume that any circuit for SAT outputs not only 1 or 0 indicating whether the input formula is
satisfiable or not, but also outputs a satisfying assignment when it claims that the input formula is satisfiable.
This can be done by a polynomial blow-up in the size of the circuit, and therefore, the size of the circuit still
remains quasipolynomial.

Let �HG � 3�� � (Z) be accepted by a nondeterministic machine � with SAT as an oracle. There is some
� 	�? such that � runs in time � O � on any input of length : . Therefore, the formulas queried by � on any
input of length : are of size 
 ��� O � , and therefore, have circuit size �!�_� � � � �a� �
	 � ,;� O ] , for some 
 .

Let � 9 � � �+, : , be an input. We define a polynomial-time relation � 9�� 9 � < 9 � " < as follows. It may help
to think of � < as the proof of the yes-prover, and � " as the proof of the no-prover.

1. � 9 � 9 � < 9 � " < holds only if � < encodes an accepting computation of � on � , with queries, their answers,
and for every query � that is answered “yes”, the satisfying assignment of � .

2. If � < is of the form specified in item 1, then � 9�� 9 � < 9 � " < holds unless all of the following are true:

(a) � " encodes a circuit � 	 for strings of length 
 . Recall that � 	 should output a satisfying
assignment when the input formula � is satisfiable

(b) There is a query � that is answered “no” in the path encoded by � < but � 	 9 � < outputs an
assignment that satisfies �

It is easy to see that this relation requires at most polynomial time in 97� � � � � � < � � � � " � < . If � G � , then
let � < be the string encoding the correct accepting computation of � on � , including the queries and their
answers. Since the “no” queries are answered correctly on this path, for every “no” query � , � �G .+076 ,
and therefore, no circuit (correct or otherwise) can output a satisfying assignment of � . As a consequence,
� 9�� 9 � < 9 � " < will hold.

On the other hand, if �A�G � , then let � " be the encoding of a correct circuit � 	 for formulas of length
 . Any � < that satisfies item 1 must be incorrect about some query � that is in .+076 but is answered “no” on
the computation path encoded in � < . For any such � , � 	 9 � < will output a satisfying assignment for � , and
therefore, � 9�� 9 � < 9 � " < cannot hold.
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Finally, we need to argue that the proofs are of exponential length. The length of a circuit is � O ] for
some constant 
 . Due to the exponenial bound on the running time of � , on the number of queries made by
� , on the length of each query made by � , and on the length of � � , for any � , the length of � < is at most
exponential in : as well. This completes the proof. �

Now we improve Yap’s theorem.

Theorem 4.7 If � � � coNP �
$ % '*) , then � � , . " ' � (*) .

Proof Since . " ' � (Z) is closed under complement, it suffices to show under the hypothesis that � � ��� � ,
. " ' � (*) . Let ��G � � � � � via some polynomial-time nondeterministic oracle machine � that has some 6  "
language � as an oracle. For any input � G C ? 9 b J O , � runs in : @ time. Therefore, any query that � makes
to � is also of length : @ , and the number of queries is also bounded by : @ .

For any string � , � G � � ���������	� 
	
 �G .+0 6 . Note that ���	� 
	
 can be constructed from � and ��� in time
polynomial in � � � .

For any string � of length : @ , let � � � � 
	
 � be denoted by 
 (some polynomial in : ). By our assumption,
.+0 6 is in

.
%2�����
$&%('*) ; let us assume that � is a correct advice for strings of length 
 , where � � � ,

$&%('*) 9 
 <7, : X for some constant 
 , and let � G . %2��� be the witness language. For any string � ,
� �G � � ��� � � �	� 
	
 G . 076

� ��� � 9 � �	� 
	
 9 � <�G��
� 9
� 9 � <^G�� 9

where � ,DC�9
� 9 � < EE ��� � 9 ���	� 
	
 9 � <�G�� J .
We define a � (*) -definable relation � 9�� 9 � < 9 � " < as follows. It may help to think of � < as the proof of

the yes-prover, and � " as the proof of the no-prover.

1. � 9 � 9 � < 9 � " < holds only if � < encodes an accepting computation of � on � , with queries, their answers,
and for every query � that is answered “yes”, the string � � as described above. In addition, the formulas� �	� 
 
 for the yes answers must be unsatisfiable. (This requires making queries to the NP oracle that �
can access.)

2. If � < is of the form specified in item 1, then � 9�� 9 � < 9 � " < holds unless all of the following are true:

(a) � " encodes an advice for strings of length 

(b) There is a query � that is answered “no” in the path encoded by � < but 9
� 9 � " < �G�� (here also �

requires access to the NP oracle)

(c) The search procedure described below yields a string � � for this query � such that � �	� 
	
 �G . 076
Now we describe the search procedure. Assume that a query � has been answered “no” in the path

encoded by � < , but 9 � 9 � " < �G � . Recall that � , C 9
� 9 � < EE � � � 9 ��� � 
	
 9 � < �G�� J . Since � is in NP, � uses a
prefix search algorithm that accesses an NP oracle to construct � � .

If � G � , then let � < be the string encoding the correct accepting computation of � on � , including the
queries and their answers. Since the “no” queries are answered correctly on this path, for every “no” query
� , � �G � , and therefore, ��� � � �	� 
	
 G . 076 . Therefore, the search procedure cannot yield any � � for which� �	� 
	
 �G .+076 . As a consequence, � 9 � 9 � < 9 � " < will hold.

On the other hand, if �A�G � , then let � " be a correct advice string for strings of length 
 . Any � < that
satisfies item 1 must be incorrect about some query � that is in � but is answered “no” on the computation
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path encoded in � < . For any such � , 9
� 9 � " < �G � , and the search procedure will yield some � � such that� �	� 
	
 �G .+076 . Therefore, � 9�� 9 � < 9 � " < cannot hold.
Finally, we need to argue that the proofs are of polynomial length. The length of an advice string is : X

for some constant 
 . Due to the polynomial bound on the running time of � , on the number of queries made
by � , on the length of each query made by � , and on the length of � � for any � , the length of � < is at most
polynomial in : as well. The relation � clearly takes time polynomial in � � < � and � � " � . This completes the
proof. �

4.1 Interactive Proof Systems

Let � � � � 9 : < � denote an interactive proof system with �19;:�< rounds in the Goldwasser, Micali and Rackoff
[GMR85] formalization. Goldwasser and Sipser [GS89] proved that ����� � 9 : < ��� 0T[ � ���19;:�< �+�(� as long
as � 9 : < is bounded by a polynomial. Thus, if � G � � � ' %2L @ :1� , then � G 0T[ � ' %�L @ � < :&� . So the following
corollary follows immediately from Theorem 4.3.

Corollary 4.8 If every set in coNP has a polylogarithmic-round interactive proof system, then the quasipoly-
nomial hierarchy collapses to

.$Q ��� � �" ' �,(Z) ,A�TR �^STP�U � � � - . %2�`R ��S`P�U � � � 1
Hence, under the same hypothesis, the exponential hierarchy collapses to

. #&%  " ' ��(*) ,�� 3�� � � � � - . %0��3,��� � � � 1
5 Conclusions

We have shown that if coNP has polylogarithmic-round interactive proofs then the exponential hierarchy
collapses to the third level. An obvious extension would be to obtain consequences of .+076 having :�� -round
interactive proof systems for some � �Db .

One longstanding open problem in this area is to show that if SAT has polynomial-sized circuits, then
PH collapses to AM. Since coNP � 0 [ implies that PH collapses to AM, it suffices to show under this
hypothesis that coNP is included in AM. Moreover, Arvind et al. [AKSS95] have shown that if SAT has a
polynomial-size family of circuits, then [ 0 , 0T[ . Since [ 0 � . ) " , this would improve the best-known
version of Karp-Lipton theorem [KL80] (by Sengupta, reported in Cai [Cai01]).

Aiello, Goldwasser and Håstad [AGH90] have shown that 0T[ is properly included in 0T[ � $ % '*)+' %�L �
in a relativized world. Goldreich, Vadhan, and Wigderson [GVW02, Theorem 3.10] showed that 0T[ is a
proper subset of 0T[ � $ % '*) ' %2L � unless 45. 076 has a two-move Arthur-Merlin protocol where Merlin can send
at most subexponentially many bits.
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