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Abstract

We study a simple Markov chain, known as the Glauber dynamics, for generating
a random k-coloring of a n-vertex graph with maximum degree A. We prove that the
dynamics converges to a random coloring after O(nlogn) steps assuming k& > kg for
some absolute constant kg, and either: (i) /A > o* = 1.763 and the girth g > 5, or (ii)
k/A > B* ~ 1.489 and the girth g > 6. Previous results on this problem applied when
k = Q(logn), or when k > 11A/6 for general graphs.

1 Introduction

Markov Chain Monte Carlo (MCMC) is an important tool in sampling from complex distri-
butions. It has been successfully applied in several areas of Computer Science, most notably
computing the volume of a convex body [6], [13], [14] and estimating the permanent of a
non-negative matrix [11].

Generating a (nearly) random k-coloring of a n-vertex graph G = (V, E) with maximum
degree A is a well-studied problem in Combinatorics [2] and Statistical Physics [16]. Jerrum
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[10] proved that a simple, popular Markov chain, known as the Glauber dynamics, converges
to a random k-coloring after O(nlogn) steps, provided k£/A > 2. This led to the challenging
problem of determining the smallest value of k/A for which a random k-coloring can be
generated in time polynomial in n.

Vigoda [17] gave the first significant improvement over Jerrum’s result, reducing the lower
bound on k/A to 11/6 by analyzing a different Markov chain. There has been no success
in extending Vigoda’s approach to smaller values of k£/A, and it remains the best bound for
general graphs.

Dyer and Frieze [5] introduced a promising approach, known as the burn-in method, which
improved the lower bound on k/A for the class of graphs with large maximum degree and
large girth. They reduced the bound to k/A > « for any a > o* where

o ~ 1.763

is the root of
a = ee,

They required lower bounds on the maximum degree A = Q(logn) and on the girth g =
Q(log A). With the same restrictions on the maximum degree and girth, Molloy [15] improved
the lower bound to k/A > 3 for any 3 > 8* where

B* ~0 1.489

is the root of
(1- e_l/’g)2 + Be_l/ﬁ =1.

However, the girth and maximum degree requirements were still significant obstacles.

The girth assumptions were the first to be (nearly) removed. Hayes [7] reduced the girth
requirements to g > 5 for k/A > o* and g > 6 for k/A > p*. Subsequently, Hayes and
Vigoda [8] (using a non-Markovian coupling) reduced the lower bound on k/A to (1 + €)
for all € > 0, which is nearly optimal. Their result requires girth ¢ > 9. However, the large
maximum degree restriction remained a serious bottleneck for extending the burn-in approach
to general graphs. The assumption A = (logn) is required in all of the improvements relying
on the burn-in approach.

We dramatically improve the maximum degree assumption, only requiring A to be a suffi-
ciently large constant, independent of n.



Before formally stating our theorem we will define the Glauber dynamics. All of the afore-
mentioned results (except Vigoda’s [17]) analyze the Glauber dynamics, which is a simple and
popular Markov chain for generating a random k-coloring.

Let K denote the set of proper k-colorings of G. For technical purposes, the state space of
the Glauber dynamics is Q = [k]Y 2 K where [k] = {1,2,...,k}. From a coloring Z; € (), the
evolution Z; — Z;, is defined as follows:

(a) Choose v = v(t) uniformly at random from V.

(b) Choose color ¢ = ¢(t) uniformly at random from the set of colors
[k] \ Zi(N(v)) available to v. The set N(v) denotes the neighbors of vertex v.

(c) Define Z;,1 by
Zyia(u) = {Zt(u) uFv

Cc u="7v

It is straightforward to verify that the stationary distribution is uniformly distributed over
the set K. For ¢ > 0, the mizing time Tmix(d) is the number of transitions until the dynamics
is within variation distance at most ¢ of the stationary distribution, assuming the worst initial
coloring 7.

We prove the following theorem.

Theorem 1. Let o = 1.763 and B* ~ 1.489 be the constants defined earlier. For all € > 0,
there exists C' > 0, such that for every graph G on n vertices with mazimum degree A and
girth g, if either:

(a) k> max{(1+¢)a*A,C} and g > 5, or
(b) &> max{(1+¢)8*A,C} and g > 6,

then for all § > 0, the mizing time of the Glauber dynamics on k-colorings of G satisfies

Tix(8) < Clog(n/9).

Our proof analyzes a simple coupling over 7' = ©(n) steps for an arbitrary pair of colorings
which initially differ at a single vertex vy. We prove that the expected Hamming distance
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after T steps is at most 3/4. We do this by breaking the analysis into two scenarios. In the
advantageous scenario, during the entire 7" steps, the Hamming distance stays small and all
disagreements are close to vy. If both of these events occur, after an initial burn-in period of
Ty, < T steps, every updated vertex near vy will have certain local uniformity properties (the
same properties used by [5, 15, 7]). It will then be straightforward to prove that the Hamming
distance decreases in expectation over the final 7" — T}, steps. In the disadvantageous scenario
where one of the events fails, we use a crude upper bound on the Hamming distance.

2 Preliminaries

For X;,Y; € Q, denote their difference by

Dy ={v: Xi(v) # Yi(v)},

and their cumulative difference by

D; = JD.

<t

Denote their Hamming distance by Hy; = |Dy|, and let H} = |Df|. For z,y € V, let d(z,y)
denote the length of the shortest path from z to y in the graph G. Finally, for vertex v, let
d(v) denote its degree and N(v) denote its neighborhood.

We will prove convergence using path coupling [3] for 7" steps of Glauber dynamics, where T’
will be defined shortly. Therefore, to prove Theorem 1, for all Xy, Yy € €2 where Hy = 1, we
need to define a coupling such that

E(H(Xr,Yr)) < (1)

=~ w

Applying the path coupling approach of Bubley and Dyer [3], it is clear this implies the mixing
time satisfies

Tmix(6) = O(T log(n/9)).

We use Jerrum’s optimal one-step coupling [10]. At every time ¢ we choose a random vertex
v = v(t), and update v in both chains X; and Y;. We maximally couple the available colors
for v to define X;,1(v) and Y41 (v).



It will be useful to consider the notion of the propagation of disagreements. If for some
t,v = v(t) we have X;(v) = Yy(v) and X;,1(v) # Yiy1(v) then there exists a neighbor w of
v which propagating its disagreement to v in the following sense: in chain X we chose color
c(t+1) = Yi(w) or in chain Y we chose ¢(t + 1) = X;(w). In this way, a new disagreement at
time ¢ can be traced back via a path of disagreements to v, the initial vertex of disagreement.

3 Proof of Theorem 1(a)

Fix a small positive constant 6 > 0 and assume that £ = (1 + 6)a*A. (For convenience we
can assume that § < 1/4; larger ¢ are covered by Jerrum’s result [10]).

Our proof makes use of various constants which we list here for convenience.

Cb = 200 111(1/5) Tb = Cbn C= 1001,/5
T == CTL Dmax = 6200 R = ln(DmaX)
©9 = (1—-9/2)kexp(—A/k)

Consider a pair Xy, Yy € Q where Dy = {vy}, and we will prove (1) holds. We begin with
the definitions of the “bad” events of interest during our coupling period of 7" steps. If none
of these events occur, we will prove that the Hamming distance contracts in expectation over
the remaining 7" — 7}, steps. If any of these events occur, we will use a crude upper bound on
the Hamming distance.

Let B = {y € V| d(vy,y) < R} denote the ball of radius R centered at vy where Dy = {vg}.
For t > T}, we define the following bad events:

e D(t) denotes the event H; > D ax.

e ;(t) denotes the event D; Z Bp.

e B,(t) denotes the event that there exists Cyn < 7 < ¢ such that at time 7 there exists
v € Bg such that
|U(X,v)| < Oy,

where U(X,,v) = [k] \ X (N (v)).



Then we let

B(t) = Bi(t) U By(t).
and finally we define our good event to be

G(t) =D(t)NB(1).

For all of these events when the time ¢ is dropped, we are referring to the event at time 7.
For an event A, we will use the notation 1, to refer to the {0, 1}-valued indicator variable for

the event A, i.e.,
1, — 1 ifA
7o i A

We will bound the Hamming distance by conditioning on the above events in the following
manner,

E (HT) = E (HT]-D) +E (HTlfllg) +E (HT]_g)
S E (HT]-D) —+ DmaxPr (B) —+ E (HTlg) (2)

We will bound each of the terms in (2) by 1/4, thus ensuring that E(Hr) < 3/4. This will
verify (1) and Theorem 1(a).

Lemma 2. E (Hrlp) < 1/4.

Proof We will prove that for every integer 1 < D < n,
Pr (Hj > D) < exp(—De %), (3)

For 1 < i < D, let t; be the time at which the 7’th disagreement is generated (possibly
counting the same vertex multiple times). Denote to = 0. Let 7; := t; — t;_1 be the waiting
time for the formation of the #’th disagreement. Conditioned on the evolution at all times
in [0, ¢;], the distribution of 7; stochastically dominates a geometric distribution with success
probability ip, where p = A/kn. This is because at all times prior to ¢; we have H; < i
and thus the set H; increases with probability at most iA/kn at each step, regardless of the
history. Hence 7, + - - - 4+ np stochastically dominates the sum of independent geometrically
distributed random variables with success probabilities p, 2p, ..., Dp. Now for any real x > 0,

Pr(ms > 7) = (1—ip)1®1=1 > exp {— :r} > ¢2ir

1—1ip
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since ip <np=A/k < 4/7.

Thus n; +- - -+np stochastically dominates the sum of exponential random variables (1, (o, - .
(p with parameters 2p,4p, ..., Dp.

°

Now consider the problem of collecting D coupons, assuming each coupon is generated by a
Poisson process with rate 2p. The delay between collecting the 7’th coupon and the 7 + 1’st
coupon is exponentially distributed with rate 2(D — i)p. Hence the time to collect all D
coupons has the same distribution as (; + - - - + (p. But the event that the total delay is less
than 7T is nothing but the intersection of the (independent) events that each coupon is hit in
[0,T]. The probability of this is at most

(1 — e_QT”)D < exp (—De_QC) .
This completes the proof of (3).
We can now bound the expected Hamming distance at time 7" as follows:
E(Hrlp) < E(Hjlp)

= zn: D Pr(H; = D)

D=Dmax

= DunaxPr(H; > Dna)+ »,  Pr(Hj > D)

D:Dmax+1
< Y DuuPr(H; > D)
D>Dimax
< Z Dinax exp(—De™2¢) by (3)
D>Dimax

Dmax exp(_DmaXe_ZC)

1 — exp(—e2C)
< Dmax €xp(3C — Dyaxe %)

Since Dpax = €2°C, the above quantity is e®¢~¢""" < 1/4. This completes the proof of the
Lemma. O

To prove Lemma 4 (below) we use the following lemma from Hayes [7].

Lemma 3. For every € > 0, for all sufficiently large A > Ay(€), for every graph G = (V, E)
having girth > 5 and mazimum degree A, for k > (1 4 €)A, for every t > 1001In(1/¢), all
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weV,
Pr (U(X,,w) < (1 — e)kexp(—A/k)) < exp(—€*A/100).

Lemma 4. Pr(B) < 1/4Dyax.

Proof Let R = In(Dyay). We can bound the probability of the event B; by a standard
paths of disagreement argument. Recall Dy, = €2°.

o (T 1
8 (R) (n(k — A))F
< (2Ce/R)%
< 1/8Dpmax. (4)

IN

Pr (Bl)

To bound the probability of the event By, we first bound the number of re-colorings of interest.
Let

S={T, <t<T:v(t) € Br}.
For 0 = 100C AR+

T-T,
g

Pr(|S| > o) < ( )(AR+1 /n)° < (CeARH /0)7 < 1/16 Do (5)

At each time t € S, by Lemma 3, with € = §/2, the desired bound on the number of available
colors of v(t) fails with probability at most exp(—3§2A/400). Therefore,

Pr (B;) < 1/16Dpax + 0 AR exp(—6%A/400) < 1/8Dpmax. (6)

O
Lemma 5. E (Hrlg) < 1/4.
Proof Let A; = V' \ D; be the set of vertices whose colors agree in X and Y at time t.
Thus H(Xt,}/;) = |Dt|

Define a;(v) = |{u € N(v) : u € Ay}| if v € Dy, and by(v) = |{u € N(v) : u € D;}| if v € A;.



Using Jerrum’s coupling, the probability that different colors are chosen in X and Y for a
vertex v € A; is at most b;(v)/O(v,t) where

O(v, 1) = min{|U(Xy, v)|, [U(Y:, v)[}
and U(X;,v) = [k] \ X¢(N(v)) is the set of unused colors in the neighbourhood of v.

Similarly, if v ¢ A; the probability that the same color is chosen in X and Y is at least
1 — (A —ay(v))/O(v,t). Thus, given X;, Y,

E(H (X1, Y41)) — H(X,, YY) < L ( o) Z (1 a A@_(Tatt()v))> . (7)

n vEA: @(U’ t) vEDy

Now O(v,t) > k — A > 3A/4 and

D b)) =) av). (8)

VEA; v€E Dy
Therefore, given X;, Y,
1 d(v) A —a(v)
E(H (X1, Y1) - H(X, V) < - (Z 3A/4 Z (1 ~ A/
vEAL vE Dy
- 233
n 5. 3
1
= —H(X,Y)). 9
LH(X,,Y) )

This bound will only be used for the burn-in phase of Tj, steps. We will need to do significantly
better for the remaining 7" — T}, steps of an epoch.

Let us now re-write (7) as

E(H(X,11, Yi1) — H(X, V7)) <

bt v A — as(v
E (UeAt @(5),1) Loy~ (1 — Wt())) 1021,(0) . (10)

vEDy

Note that assuming the bad event By(t) does not occur, we can replace the terms O(v,t) in
(10) by the bound ©g, E(1,—y)) by 1/n and then use (8) to obtain

E(H(Xi41,Yi1) — H(X, Y)) < %Z <_1+ @éﬂ)

vED:

0
< —H(X, V). (1)



Let t € [Ty, T — 1]. Then

E (Hi1lgy) = E(E(Hilgy | Xo, Yo, ..., X, V1))
E (E (Ht+1 | X07 YvO? SR Xt7 Y;)]-g(t))
(1 —6/4n)E (H;1g())

<

The above derivation deserves some words of explanation. In brief, the first equality is Fubini’s
Theorem, the second is because G(t) is determined by Xy, Yy, ..., Xy, ¥;. The first inequality
uses (11) and the definition of G(¢), and the second inequality uses G(t) C G(t — 1).

By induction, it follows that

E (HTlg) < (1 - 5/4n)T_Tb E (HTb]'g(Tb))'

And by (9) and the exact same argument for ¢ € [0, T, — 1],

E (Hrlg) < (1—6/4n)" ™ (1+1/3n)™ H,. (12)

The result follows from our choice of constants (recall that we assumed Hy = 1.) O

4 Proof of Theorem 1(b)

Fix a small positive constant 6 > 0 and assume that £ = (1 + d)a*A. (For convenience we
can assume that § < .3; larger § are covered by part (a)). Let p = 6/16.

4.1 Path coupling

We use a weighted Hamming distance as was done by Molloy [15]. For v € V let its weight
¢(v) be defined by

() = {4p if d(v) < pA

1  otherwise
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Let D, be as before. For a pair X;,Y; € Q) define their weighted Hamming distance as

H, = Z ¢(v)

vEDy

We will define a coupling for all Xy, Yy € Q with |[Dy| = 1 such that
~ 3
E (HT) < $H, (13)
The length T is a function of the pair X, Yy. If Dy = {vg} then we have T =1 if d(vy) < pA,
and T = cn if d(vg) > pA. Since the coupling length 7" is not fixed, we can not immediately
apply the path coupling approach. Instead we use the variable length coupling approach of

Hayes and Vigoda [9] to justify this choice of 7. While it is intuitively clear that (13) is
sufficient for out purpose, we refer the reader to [9] (Theorem 3) for a proper justification.

The analysis is straightforward for pairs Xy, Yy € Q with ﬁo = 4p. As such Xy, Y} differ only
at a single vertex v with d(v) < pA. With probability 1/n, the chains update v, and the
chains are identical after the coupled transition. If the chains update a neighbor w of v, then
with probability at most 1/(k— A), vertex w receives a different color in the two chains. Thus,

for k > 4A/3,

~ ~ 4p pA P o
E(H—H)<—— <=
! 0) = n+(k—A)n_ n 16n

It remains to bound E (f-\IT) for pairs Xy, Yy € Q with Dy = {vp} with d(vy) > pd. Therefore,

in the remainder of the proof we consider such a pair Xy, Y5. The analysis will be similar to
the proof of Theorem 1(a).

4.2 Definitions

We now redefine the constants of the previous section. There is an additional factor of log A
in the definition of C,. The constant A in the definition of Cj is the same A postulated in
Lemma 7 below.

Cy=Aln(1/d)log A Ty = Cyn

C =40Cy/6 T=Cn

Dyox = €3¢ R = In(Dpax)
©o=(1—-10/2)kexp(—A/k) Uy =(1-6/2)A(1 — exp(—A/k))?
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4.3 Events

We will follow the same basic proof strategy as in part (a). We first re-define B(t) by adding
two more bad events Bs(t), B4(t) defined as follows:

e B5(t) denotes the event that there exists Cyn < 7 < ¢ such that at time 7, there exists
v € Bp such that
{w e N(v): X,(w) # Y (w)}| > A2

e B,(t) denotes the event that there exists Cyn < 7 < ¢ such that at time 7, there exists
v € Bp such that
{we N?(v) : Xr(w) # Ye(w)} > A%,

e For colours ¢; ¢y, v €V, timet and 1 > p > 0 let
L(X3,v,c1,¢9,p) = |[{w € N(v) : {e1,¢e2} & Xy(N(w) \ {v}) and d(w) > pA}|

be the number of neighbours w of v which have large degree and ¢; and/or ¢, do not
appear on N(w) \ {v}.

Bs(t) denotes the event that there exists Cyn < 7 < ¢ such that at time 7, v(7) € Bg
and there exists v € By and colours ¢, ¢ such that

L(X'ra v, C1, Cg, P) 2 ‘IIO-

Then as before we let
B(t) = Bi(t) U By (t) U Bs(t) U By(t) U Bs(t)-
and finally we define our good event to be

G(t) = D(t) N B(t).

4.4 Proof of Lemmas

Since the weighted Hamming distance is bounded by the Hamming distance we can use an
analog of inequality (2). More precisely, we prove

E (ﬁT) < E (Hr1p) + DpaxPr (B) + E (ﬁT1g). (14)
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We will again bound each of the terms by 1/4.

We first remark that the proof of Lemma 2 is unaffected by the increase in Cj,. Restating the
lemma we have

Lemma 6. E (Hrlp) < 1/4.

To prove the equivalent of Lemma 4 we need another lemma from Hayes [7]:

Lemma 7. For every e, p' > 0, there exists A > 0 such that for every graph G = (V, E) with
mazimum degree A > A and girth > 6, for k > (1 +¢€)A, for every t > Anlog(1/e)log A, all
v €V, for every pair of colours c1,co € [k],

Pr(L(X;,v,c1, 2, 0') > (14 €)A(1 — e72/%)2) < exp(—€A/100).

With this we can prove

Lemma 8. Pr(B) < 1/4D,,5.

Proof The proofs of (4) and (6) are still valid, although now we will replace their right-
hand sides by 1/20Dax.

We can bound the probability of the event Bs(t) by a standard paths of disagreement argument.

ee) < 2 ) (a0s) = e

2 Al/3
< AR Ae“Cn
A2/3n(k —A)
< 1/20Dpax-

We can bound the probability of the event B,(¢) in a similar way.

Pr(Bs(t)) < AF (AA;3> (A,I;/g) (n(k _1A))A2/3

< AR Aze2Cn \A°
AY3n(k — A)

< 1/20Dpax.
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To bound the probability of the event B;(¢) we first observe that (5) continues to hold, even
with the right-hand side reduced to 1/32Dy,,x. At each time such that v(t) € Bg, by Lemma
7, with € = §/2,p' = p, the desired bound on L(Xy,v, ¢y, c) fails with probability at most
exp(—32A/400). Therefore,

Pr (Bs(t)) < 1/32Dmayx + k20 AR exp(—62A/400) < 1/16D ay. (15)
O

We now prove the equivalent of Lemma 5:

Lemma 9. E (ﬁTlg) <1/4.

Proof Equation (9) continues to hold and so we must concentrate on the process after
the burn-in period ¢ > Cyn.

We will bound the expected change in H (X;,Y;) using path coupling. Thus, let Wy =
X, Wi, W, ..., W), = Y} be a sequence of colourings where h = H(X,,Y;) and W;,; is ob-
tained from W; by changing the color of one vertex v from X;(v) to Y;(v). Assume that G(t)
holds. Then for 0 < i < h, v € Bg, ¢1,¢3 € [k], we have
UWi,v) > ©p=6,—A?
L(Wi,v,c1,00,p) < Wy = T+ A2,

We maximally couple W; and W;y, in one step of the Glauber Dynamics to obtain Wj, W}, ;.

If d(v;) > pA then

7] 7 1 Ui +4pA
E(H( i,+1:m,)_H(Wi+1,M)) < _;+OT
0
< ——
- 8n
If d(v;) < pA then, for k > 4A/3,
H A 4p pA
H(W, ;) — H(W; i) < ——
E( (I/Vz-i—laVVZ) (W+1,W)) < n —+ (k_ A)n
PO
N n  16n
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Analogous to Inequality (11), we now have,
~ ~ 4]
E(H(Xt-l-la}/t-I—l) - H(Xtan)) S _EH(XI‘JK) (16)

Identical to the proof of Inequality (12), we now have,

E (ﬁIT1g) < (1-6/16n)""™ (1 +1/30)™ H,. (17)
The result follows from the choice of constants (note, Hy = Hy = 1). O

5 Remarks

There seem to be several obstacles to extending the & > (1 + €)A result of [8] to constant-
degree graphs. In order to locally guarantee Molloy’s burn-in property, it is necessary to run
for Q(nlog A) steps. However, Hayes and Vigoda assume that H;, = o(A), an assumption
which is almost sure to fail after Q(nlog A) steps without the full set of burn-in properties.

One approach to getting around this obstacle would be to directly define a non-Markovian
coupling without using path coupling.
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