Electronic Colloquium on Computational Complexity, Report No. 10 (2004)

Tolerant Property Testing and Distance Approximation

Michal Parnas Dana Ron
The Academic College Department of EE — Systems
of Tel-Aviv-Yaffo Tel-Aviv University
Tel-Aviv, ISRAEL Ramat Aviv, ISRAEL
michalp@mta.ac.il danar@eng.tau.ac.il

Ronitt Rubinfeld
NEC Research Institute
Princeton, NJ
ronitt@research.nj.nec.com

January 26, 2004

Abstract

A standard property testing algorithm is required to determine with high probability whether
a given object has property P or whether it is e-far from having P, for any given distance
parameter €. An object is said to be e-far from having property P if at least an e-fraction of
the object should be modified so that it obtains P. In this paper we study a generalization of
standard property testing where the algorithms are required to be more tolerant. Specifically,
a tolerant property testing algorithm is required to accept objects that are e;-close to having
a given property P and reject objects that are es-far from having P, for some parameters
0 < €1 < €5 < 1. Another related natural extension of standard property testing that we study,
is distance approximation. Here the algorithm should output an estimate € of the distance of
the object to P, where there are certain provable upper and lower bounds on € in terms of the
correct distance.

We first formalize the notions of tolerant property testing and distance approximation and
discuss the relationship between the two tasks, as well as their relationship to standard testing.
We then study two problems: The first is distance approximation for monotonicity, and the sec-
ond is tolerant testing of clustering. We present and analyze algorithms whose query complexity
is either polylogarithmic or independent of the size of the input. Our distance approximation
algorithm for monotonicity works by defining a certain tree structure by which upper and lower
bounds on the distance of the function to monotonicity can be obtained, and then constructing
only a small number of random paths in the tree. Our tolerant testing algorithms for clustering
exploit a general framework (based on [CS02]) which may be applicable for tolerant testing of
other cost measures for clustering, as well as for tolerant testing of other properties.

ISSN 1433-8092

1 Introduction

The past decade or so has seen a surge of research in the area of property testing [RS96, GGR98].
Property testing can be viewed as a relaxation of decision problems. In a typical decision problem
it is required to determine whether an object has or does not have a given property P. In property
testing it is required to determine with high probability whether the object has property P or
whether it is far from having P. An object is said to be e-far from having property P if at least
an e-fraction of the object should be modified so that it obtains P. This relaxation allows for very
efficient algorithms, whose complexity is sublinear in the input size and in many cases independent
of the input size. In the past few years, many results have been given in this framework. Examples of
objects for which testing algorithms were developed are functions, graphs, strings, and geometrical
objects (see [Gol98, Fis01, Ron01] for surveys).

In all that follows we refer to the original notion of property testing as standard property testing.
As defined above, a standard property tester should accept with high probability objects that have
the property, but it is allowed to reject objects that are very close to having the property. For
example, if the object is a function f : {1,...,n} — R and the property is monotonicity, then the
algorithm may reject the function even if it can be made monotone by modifying the function on
just a single point.

In this paper we study a generalization of standard property testing where the algorithms are
required to be more tolerant. Specifically, a tolerant property testing algorithm is required to accept
objects that are e;-close to having a given property P and reject objects that are ea-far from having
P, for some parameters 0 < e; < ez < 1. It is of course desirable for the tolerant algorithm to run
for any given €; and €z, and for its query complexity and running time to be sublinear in the input
size and polynomial in 1/(e2 — €1). However, we allow for other variants as well, such as when ¢;
and/or e are fixed. In particular, if we set e; = 0 and allow €3 to be a parameter, then we get the
standard definition of testing.

As touched upon above, this is not only a natural generalization of standard property testing
but in many cases it is the desired notion of testing. For example, when evaluating the clusterability
of a set of points, a standard testing algorithm is required to accept with high probability if it is
possible to cluster all n input points into at most &k clusters with a bounded diameter (radius),
and is required to reject with high probability when more than en points should be removed (or
moved) so that the remaining points can be clustered as desired (or possibly with a slightly larger
diameter or radius). However, in many applications we would like an algorithm that is ensured to
accept with high probability even when there is no good clustering of all points but rather there is
such a clustering of all but a small fraction of the points. A tolerant testing algorithm will allow
exactly this.

Another natural extension of standard property testing that we study is distance approzimation.
Namely, we seek efficient algorithms that approximate the distance of an object to a given property
P. Here the algorithm should output an estimate é of the distance of the object to P, where
there are certain provable upper and lower bounds on € in terms of the correct distance. Clearly,
the closer the upper and lower bounds that one can prove, the better the quality of the distance
approximation.

It is not hard to verify, and we discuss this in more detail in Section 3, that every distance
approximation algorithm can be used for tolerant testing (where the settings of €; and e for which
the tolerant testing algorithm works depend on the quality of the estimate € that the distance
approximation algorithm obtains). In some cases tolerant testing algorithms can be used to obtain

a distance approximation. However, this is not always the case, and hence there is a need to allow
for both notions.

As we further discuss subsequently, there are quite a few tolerant testing results and distance
approximation results implied by previous work. These results are mostly implicit and sometimes
weak (in terms of the tolerance or approximation quality), but there are some explicit and stronger
results. In this paper we are interested in putting the spotlight on these generalizations of standard
property testing as well as presenting new results that cannot be derived from known results for
standard testing.

1.1 Owur Results

As stated above, we define the notions of tolerant property testing and distance approximation and
discuss the relationship between the two tasks. We then present the following results.

Distance Approximation for Monotonicity. Our first result deals with the property of
monotonicity, which has been studied quite extensively in the context of standard property test-
ing [EKK*00, GGL*00, DGL 99, BRW99, FLN*02, HK03b]. Our algorithm is given query access
to a function f : [n] — R, and outputs an estimate ¢ such that with probability at least 2/3 it
holds:

(1/2)émon(f) =0 < € < emon(f) +9

where emon(f) is the distance of f to the closest monotone function, and § is any given parameter.
The query complexity and running time are polynomial in logn and 1/4.

In higher dimensions, that is when f : [n]? — R, we can use a dimension-reduction lemma of
Halevy and Kushilevitz [HK03a] to obtain an algorithm that outputs an estimate € such that with
probability at least 2/3 it holds: (1/(d4%!))emon(f) —6 < € < €mon(f) + 6. The running time of
the algorithm is polynomial in logn and 1/4. Thus this extension is appropriate for small values
of d.

Tolerant Testing of Clustering. We present efficient tolerant testing algorithms for clustering
for both general metrics and the Euclidean metric under the diameter cost. A set X of points is
said to be (k, b)-clusterable under the diameter cost if X can be partitioned into k clusters so that
the diameter of each cluster (i.e., the maximum distance between a pair of points in the cluster)
is at most b. The algorithms we present accept with probability at least 2/3 if X is e;-close to
(k, b)-clusterable, and reject with probability at least 2/3 if X is eo-far from (k, (1+ 3)b)-clusterable,
where is either a fixed constant or a parameter to the algorithm. Specifically,

- In the case of general metrics the query complexity of the algorithm is © (@ —1651)2 -log = k 61)

and 8 = 1. We also note that an analogous result holds for clustering with respect to the radius
cost.

- When X is in d-dimensional Euclidean space then for any given 0 < 8 < 1, the query complexity
is © (ﬁ (14 (2/5))d). As shown in [ADPRO03], the exponential dependence on d, as
well as some dependence on 1//3, are unavoidable.

Furthermore, as is the case for many standard testing algorithms, our tolerant testing algorithm

can actually be used to obtain an approximately good clustering of the input points. More
precisely, if the set of points is e;-close to being (k,b)-clusterable, then with high probability the

algorithm outputs an implicit representation of a (k, (1 + 8)b)-clustering of all but an e;-fraction
of the points. In an “implicit representation” we mean a partition of a small subset of points that
can be used to induce the desired (approximately good) clustering.

A general framework for tolerant testing. Owur tolerant testing algorithms for clustering
exploit a general framework which may be applicable for tolerant testing of other cost measures
for clustering, as well as for tolerant testing of other properties. The framework presented in this
paper builds on the abstract combinatorial programs of Czumaj and Sohler [CS02] and expands
the ideas presented there to fit the requirements of tolerant property testing. For the ease of the
presentation, and since our application of the framework is to clustering, we focus on presenting the
framework in the context of clustering. We later show how the framework can be easily adapted to
tolerant testing of hereditary graph partition properties.

1.2 Techniques

Monotonicity and an imposed tree structure. Most standard property testing algorithms
work by trying to find evidence that the tested object does not have the property in question: If
evidence is found then the algorithm rejects, otherwise it accepts. Clearly, a single piece of evidence
does not suffice for a tolerant testing algorithm to make a decision or for a distance approximation
algorithm to come up with a good estimate for the distance to the property. A natural extension
of this idea would be to make a decision, or find an estimate, based on the “amount of evidence”
found in the answers to the queries. In the case of distance approximation to monotonicity, a naive
suggestion would be to simply take a uniform random sample of points and compute the relative
distance to monotonicity on the sample. It is not hard to verify that this algorithm fails miserably
(even for standard testing). Alternatively, one may consider taking a biased random sample (as
done in standard testing algorithms for monotonicity). The difficulty with this approach is that
the function can actually be close to monotone, but the biased sample may tend to select those
points which give rise to violations of monotonicity.

Here we suggest a different approach: We define a certain tree structure that can be determined
for any given function f : [n] — R. This tree contains information that can be used to obtain upper
and lower bounds on the distance of the function to monotonicity. While reading all information in
the tree would take linear time, we show that it actually suffices to obtain information from a small
number of tree nodes that are selected randomly (and furthermore, one does not need the exact
information from each node). The difficulty is that we do not actually have query access to the tree
but rather to the function. However, we can show that by querying the function, the algorithm can
effectively query the tree. Namely, the algorithm uses queries to the function in order to adaptively
construct a small random partial tree and to estimate the information at its nodes so as to obtain
the desired estimate.

The framework for tolerant testing. As stated in the previous subsection, our tolerant testing
algorithms for clustering exploit a general framework which is suitable for proving the correctness
of certain tolerant testing algorithms and which builds on the work of Czumaj and Sohler [CS02].
Below we briefly discuss the ideas behind this framework.

Assume for the sake of discussion that the object tested is a function and the property tested is
‘P. Many of the previous standard testing algorithms applied the “natural” algorithm, which selects
a small sample and checks if the sub-function defined by this sample has property P. Although

the algorithm is simple, it is usually not an easy task to prove that it works correctly (if at all).
The common method of proof applied was to view the sample as two sub-samples, where the first
sub-sample is used as a skeleton that induces certain constraints on many points in the domain
of the function. These constraints are always satisfied in case the function has the property. The
heart of the proof is then focused in showing that in case the function is far from having P, then
necessarily there are many points that violate the constraints induced by the skeleton. The second
sub-sample is then used to provide witnesses to these violations. In order to circumvent the use
of two sub-samples, Czumaj and Sohler defined a few conditions that should hold regarding the
skeletons and the witnesses (once these are defined properly), from which the correctness of the
natural algorithm follows.! This allows to separate between the combinatorial structure of the
proof and the error probability analysis.

In the case of tolerant property testing, the framework of [CS02] described above is not suitable
as it is, since there may be witnesses to violations also when the function is €j-close to P. Thus
the natural algorithm has to be modified so that it accepts also samples that are close to having
P. This change requires to prove that if the function is e1-close to P then the sub-function induced
by a small sample is also close (as a function of €;) to P, and on the other hand if the function is
eo-far from P then all skeletons will provide many (as a function of €;) witnesses to the violations.
We would like to emphasize that while this framework points the way to the claims that need to
be proved, it is still necessary to define in an appropriate manner (which is problem specific) the
skeletons and witnesses, and to prove that all necessary requirements are met.

1.3 Related Results Implied by Previous Work

Many standard testing algorithms ask queries that are uniformly distributed (though not necessarily
independent). It is not hard to show, as we do in Section 3.2, that any such standard testing
algorithm A implies a tolerant testing algorithm with roughly the same query complexity. The
tolerant testing algorithm works for every €; and ey such that ¢; = O(1/Qua(e,n)) and e = ¢,
where Q 4(e,n) is the query complexity of the standard testing algorithm (with parameters ¢ and
n). Since in many cases the query complexity of the standard testing algorithm grows like 1/¢?
where d > 2, the tolerance we get is quite weak. In cases where the query complexity is only linear
in 1/e (e.g., for linearity [BLR93]) we get a stronger result: A constant ratio between €; and es.

In what follows we briefly mention a few specific examples of results that we are aware of, which
are either implicit or explicit in previous work. We stress that this is not a comprehensive list of
all tolerant testing and distance approximation results that can be deduced from previous work.

Tolerant Testing for the Edit Distance. Consider the property of pairs of strings that have
small edit distance. Note first that it is trivial to construct a standard property tester which passes
pairs of strings that are identical and fails strings that have high enough edit distance. However,
there are many practical situations, such as that of trying to determine which DNA sequences are
similar, in which some degree of tolerance is required, since the similar DNA sequences are almost
never identical. In [BEK 03], a tolerant property tester is constructed which given a pair of strings,
each of length n, and a fixed parameter o < 1, accepts when their edit distance is O(n?), and rejects
when their edit distance is ©(n). The running time of the algorithm is O(n™max{e/22a—1})

'We note that Czumaj and Sohler use a slightly different terminology (of “bases” and “violation functions”).

Distance Approximation for k-Colorability and Other Partition Problems. The
standard testing algorithm for k-colorability (and in particular for bipartiteness) in dense
graphs [GGR98, AK02] works by taking a uniformly selected sample of vertices of size poly(1/e),
and querying on all pairs of vertices selected in order to obtain the induced subgraph. Thus its
queries are uniformly distributed and by the discussion at the start of this subsection it is actually
a tolerant testing algorithm. However, since it asks poly(1/e) queries, its tolerance is quite low.
Nonetheless, stronger tolerance, and moreover, a good distance approximation algorithm, can be
obtained. Specifically, one should consider algorithms that approximate the size of the maximum
k-cut to within an additive error of én? (for any given 0 < § < 1, using poly(1/d,k) queries).
Such algorithms are given in [GGR98, FK99]. Since every partition that maximized the number
of cut edges, minimized the number of (“violating”) edges within each part of the partition, such
algorithms can be used to obtain estimates to the distance to k-colorability. Similar distance ap-
proximation results can be obtained for other partition properties [GGR98] such as being a clique
of a certain size.

Approximate Clustering with Outliers. The recent work [COP03] deals, among other things,
with streaming algorithms for clustering with outliers. One of their results is an algorithm for finding
approximately good k-clustering with respect to the radius cost under a general metric. Specifically,
similarly to what we obtain (for general metrics and the radius cost), if the input set X is e;-close
to being (k, b)-clusterable, then their algorithm finds (with high probability) & centers of a (k, 3b)
clustering of all but an ex-fraction of the points. The sample size used by the algorithm depends
polynomially on 1/(ea — €1), but as opposed to our algorithm, also has a logarithmic dependence
on n = |X| (even when required to work only with high constant probability) while we have no
such dependence.

Testing Properties of Distributions. In a somewhat different model that is related to property
testing, one is given samples of a distribution and would like to determine whether the distribution
has, or is close to having, a certain property. For example, given a pair of distributions whose
support is of size n, one would want to distinguish distributions that are close from those that
are far in some distance such as the L; or Ly distance. Using the techniques of [GRO00], one can
approximate the Ly distance between pairs of distributions in time independent of n. In [BFR00]
a tester is given which passes distributions that are within e/nl/ 3 from each other in L; norm, and
fails distributions that are further than € in L norm.

1.4 Organization

e Section 2: Definitions of tolerant testing and distance approximation.

e Section 3: Discussion of the relation between tolerant testing and distance approximation,
and between standard testing and tolerant testing.

e Section 4: A distance-approximation algorithm for monotonicity.
e Section 5: A tolerant property testing algorithm for clustering.

e Section 6: Here we show how to modify the framework developed for tolerant clustering in
order to test hereditary graph partition properties.

2 Definition of Problems

We consider two types of related problems. We describe them with respect to functions, but they
are easily adaptable to other objects whose natural representation is not necessarily functional. We
first define the distance between functions and the distance of a function to a property. In what
follows n is the size of the domain of the functions. With a slight abuse of notation we let g € P
mean that the function g has the property P.

Definition 1 (Distance to a Property) For two functions f and g over the same domain X,

we let dist(f, g) def Pr[f(z) # g(z)] denote the distance between the two functions, where x is chosen

according to the uniform distribution over the domain X.

For a function f and a property P, we let dist(f, P) def mingep dist(f, g) denote the distance of

f to having property P. We shall sometimes use the shorthand ep(f) for dist(f,P). For a distance
parameter 0 < e < 1 we say that f is e-far from P if ep(f) > €, otherwise f is e-close to P.

We are now ready to define tolerant testing and distance approximation.

Definition 2 (Tolerant Property Testing) Let P be a property, and let 0 < €1 < €2 < 1. An
(e1,€2)-Tolerant Testing algorithm for property P is given query access to an unknown function f.
The algorithm should accept with probability at least 2/3 if f is e1-close to property P, and should
reject with probability at least 2/3 if f is ea-far from the property.

Ideally we would like the algorithm to work for every given pair €1, €2 such that €; < e, where
we allow the complexity of the algorithm to grow with 1/(e2 — €1). However, one may also want to
consider tolerant testers that work for some specific values of €; and €g, or it may be the case that
the algorithm works for every e; but where e; = h(ez,n) for some function h : [0,1] x N — [0,1]
(e.g. €1 = €5/logn). Note that in the latter case, if we let h be the all-0 function then we get the
standard (non-tolerant) definition of property testing.

Definition 3 (Distance Approximation) Let hi,hy : [0,1] X N — [0,1] be any two functions
that are monotonically increasing in their first parameter and monotonically non-decreasing in
their second parameter. An (hy, ho)-Distance Approximation algorithm for property P is given query
access to an unknown function f. The algorithm should output an estimate € to the distance of f to
the property P, such that with probability at least 2/3 it holds that hi(ep(f),n) < € < ha(ep(f),n).

It is desired of course for the functions h; and ho to be independent of n. In particular, the
strongest definition of distance approximation is obtained when hi(ep(f),n) = (1 —) - ep(f) and
hao(ep(f),n) = (1 4+) - ep(f), so that we actually consider a family of pairs of functions where
each pair in the family is determined by the parameter 7. In such a case the complexity of the
algorithm would be allowed to grow with 1/ep(f) as well as with 1/y. We will be interested in
a slightly weaker notion in which hy and ho are of the form hq(ep(f),n) = c¢1 - ep(f) + 6 and
ho(ep(f),mn) = c2 - ep(f) — & where ¢; and co are constants, and 0 < § < 1 is a parameter. In
this case we allow the complexity of the algorithm to depend on 1/§. Ideally for functions of this
form, we would like that ¢; = c¢o = 1, but we may only be able to achieve weaker multiplicative
approximations.

Parameterized Properties

For some properties we may want to consider the case that P = {Ps} is a parameterized family of
properties. For example, we consider testing whether a set of points can be clustered into at most
k clusters, each having diameter b. Then the size parameters of the property are & and b. In such
a case we may want to relax the definition of tolerant testing so as to allow a small modification in
the size parameter.

Definition 4 (Tolerant Testing of Parameterized Properties) Let P = {Ps} be a parame-
terized family of properties where s € R¢ is a vector of size parameters, and let 0 < €; < e < 1 and
B:RE— RE An (e, e, B)-Tolerant Testing algorithm for the family P is given s € R¢ and query
access to an unknown function f. The algorithm should accept with probability at least 2/3 if f is
e1-close to property Ps, and should reject with probability at least 2/3 if f is ea-far from Ppy).

For example, in the case of clustering, we ask that the algorithm accept if at most an e;-fraction
of the points should be removed so that the remaining points can be clustered into & clusters with
diameter at most b, and we ask that it reject if more than an es-fraction of the points should be
removed so that the remaining points can be clustered into k clusters with diameter at most ', for
b’ not much larger than b.

3 General Observations

3.1 On the Relation between Tolerant Testing and Distance Approximation

Given any distance approximation algorithm, we can directly obtain a corresponding tolerant testing
algorithm. The actual values of €; and €2 for which the tolerant testing algorithm can be applied,
depend of course on the functions h1 and hy for which the distance approximation algorithm works.

Claim 1 Let A be an (hy, ho)-distance approximation algorithm. Then for every €1 and €2 and n
that satisfy ho(€e1,m) < hi(e2,n), we can obtain an (€1, €2)-tolerant testing algorithm B, where the
query complexity of B is the same as that of A.

Proof: Let € and €3 be such that ho(e1,n) < hi(e2,n). Algorithm B runs the distance approxima-
tion algorithm A to get an approximation €. If € satisfies € < hy(e1,n), then B accepts, otherwise
B rejects.

By definition of A, if ep(f) < €1 then with probability at least 2/3,

€ < ha(ep(f),n) < ha(er,n)

and B accepts as required, where the second inequality follows from the fact that A9 is monotonically
increasing in its first parameter.

On the other hand, if ep(f) > €2 then with probability at least 2/3,

€ > hi(ep(f),n) > hi(ez,n)

and B rejects, as required. W

Consider for example the special case where A works for hi(ep(f),n) = ¢1 - ep(f) — d and
ho(ep(f),m) = ca - ep(f) + & (so that the functions hy and he are parameterized by). Let the

number of queries that algorithm A performs be @ 4(d,n), and let its running time be T'4(d, n). Then
we obtain a tolerant testing algorithm B that works for every pair €1, €2 that satisfy co-€1 < ¢1 - €9,
where the query complexity of B is Q4 (61622&, n) and its running time is T4 (%, n)
What about transforming tolerant testing algorithms to distance approximation algorithms? If
we have a tolerant tester for a parameterized property, as in Definition 4, where the function g is not
the identity function, then clearly there is no transformation. This is also the case when we have a
tolerant testing algorithm that works only for specific fixed values of €; and e;. Thus, tolerant testing
may be strictly weaker than distance approximation. However, sufficiently strong tolerant testing
algorithms can be transformed into corresponding distance approximation algorithms, where again,
the actual functions h; and ho for which the latter algorithms work, depend on the settings of €;
and ey for which the former algorithms work. For simplicity, below we give one such transformation.

Claim 2 Let A be a tolerant testing algorithm that works for every setting of €1 < €2, whose query
and time complezities are Q(e2 — €1,n) and Ty(ez — €1,n), respectively. Then we can obtain an
(h1, he)-distance approzimation algorithm B where hi(ep(f),n) = ep(f) — 0 and ha(ep(f),n) =
ep(f) + 0, whose query complezity is O(log(1/6)(loglog(1/d)) - Qa(2d,n) and whose running time
is O(log(1/6)loglog(1/6)) - Ta(24,n).

Proof: We use algorithm A and a binary-search like procedure in order to find a value € such that
ep(f) — 0 < é<ep(f)+ 0. In each search step we decrease the search interval by a factor of 2/3.
Specifically, we start by running algorithm A O(loglog(1/4)) times with ¢, = 1/3 and ez = 2/3.
If A accepts in a majority of the executions then we continue the search in the interval [0,2/3],
and if it rejects in a majority of the executions then we continue the search in the interval [1/3,1].
Namely, in the former case we continue by running A O(loglog(1/6)) times with ¢; = 2/9 and
€2 = 4/9, and in the latter case we do so with e; =1/242/9 and €3 = 1/2+4/9. We terminate the
search when the search interval has size at most 20, and let € be the mid-point of the final interval.

Hence, the number of search steps is O(log(1/4)). In each step the number of queries performed
is at most O(loglog(1/4)) - Q4(26,n) and the running time of each step is at most O(loglog(1/4)) -
T4(26,n). It is easy to verify that the resulting distance approximation algorithm errs only if in one
of the search steps algorithm A gives an incorrect answer in a majority of its executions. Namely,
ep(f) < e1 but in a majority of the executions A rejects, or ep(f) > €2 but in a majority of the
executions A accepts. But, since the probability of error in any particular execution is at most 1/3,
by a multiplicative Chernoff bound, for each particular step the probability the majority err is at
most exp(—loglog(1/6)) = O(1/log(1/6)). The claim follows by applying a union bound. W

We note that it is possible to get a slightly better, but more cumbersome, expression for the
complexity of algorithm B, by taking into account that the differences between €; and ey in the
different search steps, are different.

3.2 Standard Testing and Tolerant Testing

In some cases a standard tolerant testing algorithm can be easily transformed into a tolerant testing
algorithm, as the following claim shows.

Claim 3 Let A be a standard property testing algorithm for property P, whose queries are uniformly
distributed and with query complezity Q(e,n). If A is a one-sided error algorithm then for any given
€, A is an (€1, €2)-tolerant testing algorithm for e; = € and €1 = 1/(3Q(e,n)). If A is a two-sided
error algorithm then using A we can obtain an algorithm B such that for any given €, B is an

(€1, €2)-tolerant testing algorithm for e = € and €1 = 1/(c1Q(€,n)), where B performs caQ (e, n)
queries and c1 and co are constants.

Proof: Consider first the case that A has a one-sided error. The fact that A rejects with probability
at least 2/3 every object that is €3 (= €)-far from having property P follows from the fact that A
is a standard property testing algorithm. The reason that A accepts with probability at least 2/3
every object that is e, = 1/3Q(e,n)-close to having property P is simple as well: Consider any
object O that is €;-close to having property P, and let O’ be the closest object to O which has
property P. Then the probability that A performs a query that falls in the symmetric difference
of the two objects is, by the union bound, at most €; - Q(¢,n) = 1/3. But if A does not perform
any such query then it must accept, since it has a one-sided error.

We now turn to the case in which A has a two-sided error. The stated algorithm B is only a
slight variant of algorithm A: it runs A for ¢y times and accepts if A accepts in a majority of the
executions. Otherwise, B rejects. If the object O is e (= €)-far from P, then the probability that
B accepts (i.e., A accepts in at least [¢/2] of its executions) is 3~ [¢2/2] . ([65721), which is at most
1/3 for an appropriate choice of ca.

Assume now that O is €;-close to P and let O’ be the closest object to O which has property
P. Then the probability that B rejects O is upper bounded by the sum of the probabilities of the
following two events. The first event is that all queries of B do not fall in the symmetric difference
of O and O'. Since B rejects O it must also reject O' in this case. The probability that this happens
is at most 3 [c2/2] . ([02072]), since A should reject O’ with probability at most a 1/3. The second
event is that B performs a query that falls in the symmetric difference of the two objects. This
occurs with probability of at most €1 - ¢ - Q(e,n) = ﬁ—f For an appropriate choice of ¢; and co, the
total probability of the two events is a 1/3, as required. W

Tolerant Testing for Linearity. As an example of an application of the transformation de-
scribed above, which gives a relatively good ratio between e; and ez, consider linearity testing.
In [BLRY3], the standard property tester for linear functions makes O(1/¢€) uniformly distributed
queries. Thus, by the above, we get a tolerant tester for linearity where the ratio between ¢; and
€9 is 0(1)

3.3 Agnostic Learning and Distance Approximation

An Agnostic learning algorithm [KSS94] for a class of functions H (working under the uniform
distribution and which is allowed membership queries) is defined as follows. The algorithm is given
an approximation parameter ¢ and a confidence parameter 6. For an unknown function f, the
algorithm is given query access to f. The requirement of the algorithm is that with probability
at least 1 — § (over its choice of queries), it outputs a hypothesis h € H for which the following
holds: dist(h, f) < minge g dist(f, g) +e¢, where dist(, f) is the distance between h and f measured
with respect to the uniform distribution. It is easy to see that agnostic learning of H with small
query complexity implies distance approximation of the property of belonging to H with small
query complexity as well. Specifically, by first running the agnostic learning algorithm and then
estimating the distance between f and the hypothesis h that the learning algorithm outputs (using
an independent sample), we can estimate the distance of f to the closest function in H. This
observation is similar to what was observed in [GGR98] concerning the relation between standard
property testing and proper learning.

4 Distance Approximation to Monotonicity

In this section we present a distance approximation algorithm to monotonicity for a function f in
one-dimension. That is, f is of the form f : [n] = R, where [n] = {1,...,n}. We later show how
to extend the algorithm to higher dimensions (albeit with weaker performance bounds).

Let emon(f) denote the distance of f to the closest monotone function. Our main theorem in
this section is the following:

Theorem 1 There exists a distance approximation algorithm that given query access to a function
f :[n] = R and an approximation parameter 6, outputs an estimate €, such that with probability at
least 2/3

(1/2)emon(f) =6 < € < €mon(f) +6 . (1)

The query complezity and running time of the algorithm are O((logn)?/6%).

We assume from now on that all values {f(1),..., f(n)} are different. If this is not the case then
we can regard the values of f as pairs (f(i),4) without changing the distance to monotonicity. The
following definition will be useful throughout this section.

Definition 5 (Order of an Element) For a finite set S C R and an element i € S, we say that
1 has order k in S if it is the k’th smallest element in S.

Let errmon(f) . €mon(f). In the next subsection we define an auxiliary graph in terms of
which it is possible to give upper and lower bounds on errmon(f).

4.1 The Violation Graph

The wviolation graph of a function f was previously defined in [DGLT99]. The vertices of the
graph are the indices {1,...,n} and there is an edge between every pair %, j such that ¢ < j but
f(@) > f(j). The size of a matching M in the graph is denoted by |M| and is equal to the number
of edges participating in the matching M. The size of a vertex-cover C in the graph is denoted by
Cl.

Claim 4 Let M be any matching in the violation graph of f, and let C be any vertex-cover in the
graph. Then |M| < errmon(f) < |C|.

Proof: Clearly every monotone function differs from f on at least one of the end points of each
edge in M. Since M is a matching, errmon(f) > |M|.

We turn to the upper bound on errmon(f). We first observe that since C is a vertex-cover,
there are no edges between pairs of vertices z,y ¢ C. Namely, all points that do not belong
to the vertex-cover constitute an independent set, implying that they are a monotonic increasing
subsequence. Let us hence define a function g as follows. For every z ¢ C, let g(z) = f(z). For
every point y € C, let g(y) = f(x), where z is the largest point not in C that is smaller than y (If
there is no such point then we let g(y) be the minimum value of f.). Clearly g is monotone and
dist(f,g) = |C|/n. W

10

4.2 The Index-Value Tree

In this subsection we describe the tree that is mentioned in the introduction and which can be used
to obtain an upper bound and a lower bound on errmyen(f). We refer to this tree as an indez-value
tree for f, and denote it by T;. Before defining the tree in detail, we provide a high level idea of
its structure and usage.

4.2.1 The idea behind the tree

Given Claim 4 we are interesting in finding good estimates of the sizes of a vertex cover C, and a
matching M, in the violation graph of f, such that C is not much larger than M. Recall that an
edge in the violation graph of f corresponds to a pair of indices ¢ < j such that f(i) > f(5).

Consider first all edges between pairs i,j such that 7 € {1,...,n/2} and j € {n/2+1,...,n}
(where we assume for simplicity that n is even). For any fixed value x, where the choice of z is
discussed momentarily, consider the following two disjoint subsets of indices:

B ={ie{l,...,n/2}: f(i)>z}, By={je{n/2+1,....n}: f(j) <z}

Observe that for every pair 4, such that i € {1,...,n/2} \ Bf and j € {n/2+1,...,n}\ B3,
we have that f(i) < f(j), and so there is no edge between i and j in the violation graph. In
other words, the union BY U Bj covers all edges between pairs 7, j such that ¢ € {1,...,n/2} and
j € {n/2+1,...,n}. Furthermore, we have a complete bipartite subgraph between Bf and BJ,
and hence we have a matching of size min{|B{|,|B5|} in this subgraph. If we take = to be the
median value among all values of f, then the ratio between the size of the resulting cover and the
size of the resulting matching, is minimized. Note that if we are unable to find the exact median
value, but rather can find a value z whose order in {f(j) =1 is close to the median order, then we
get a slightly worse ratio.

Suppose that we put all vertices in Bf U BJ in the vertex cover C, and put a matching of size
min{|BT|,|Bj|} between B and Bj into the matching M. We can then remove Bf U BJ from the
violation graph and continue recursively on both halves of the remaining graph. Specifically, in the
next step we consider the subsets ST = {1,...,n/2}\ B} and S§ = {n/2+1,...,n}\ BS separately.
By continuing recursively in this manner we can obtain a vertex cover of all edges of the original
violation graph, and a matching that is half the size of the vertex cover.

This recursive procedure can be captured by a tree, where each node in the tree corresponds
to a stage in the recursion in which we find a cover and a matching in a bipartite subgraph of the
original violation graph. The set of vertices S of each such subgraph is contained in some interval
I ={i,...,j}, and does not include any vertex that was selected already for the vertex cover in
some ancestor node in the tree. Ideally we would like to have for each node in the tree both the
median index of the set of vertices S that are associated with the node, and the median value of
f on these vertices. However, since we are not necessarily able to obtain these two exactly, we
allow for a more general definition. Using the more general definition, we can give upper and lower
bounds on errmon(f) in terms of the tree.

4.2.2 Definition of Ty

We associate with each node v in Ty an interval of integers I(v) C {1,...,n}, and a subset of indices
S(v) C I(v). With each internal node we also associate two values, denoted ind(v) and val(v).
The value of ind(v) may be any indez in S(v) except the largest index, while val(v) is the value

11

assigned by f to some element in S(v), that is, val(v) € {f(j) : j € S(v)}. As is explained in more
detail below, the index ind(v) is used to partition the interval I(v) and consequently the set S(v)
into indices that are smaller than ind(v), which may be “passed” to the left child of v, and indices
that are greater or equal to ind(v), which may be passed to the right child of v. The value val(v)
is used to determine which indices are “good” and in fact are passed to the children, and which
indices are “bad” and can serve as evidence to the non-monotonicity of the function f (these bad
indices will be part of a vertex cover of the violation graph as was described in Subsection 4.2.1).
All concepts that are defined below are illustrated in Figures 1 and 2.

In what follows we use the following shorthand: We say that ind(v) has order k if it has order k&
in the set S(v) (i.e., it is the k’th smallest index in the set S(v)), and we say that val(v) has order
k if it has order k in the set {f(j): j € S(v)}.

A Special case of Interest. A special case that will interest us is the case in which ind(v)
and val(v) have the same order k. Even more specifically, it will be instructive to think of k as
being the median of {1,...,|S(v)|}, that is, & = [|S(v)|/2]. Suppose that for every v, ind(v)
and val(v) indeed have the same order. It is not hard to verify that if f is monotone, then in
such a case, for every node v, val(v) = f(ind(v)). However, this is not necessarily true for every
function. Consider for example the function f : [n] — R such that f(i) = i for every i # [n/2],
and f([n/2]) = n+ 1. Let S(v) = {1,...,n}, and let £ = [n/2]. Then ind(v) = [n/2] and
val(v) = [n/2] + 1, but f(ind(v)) = n + 1 which not only differs from val(v) but actually has the
highest order in {f(j) : 7 € S(v)}.

The “Bad” Subsets. In order to define I(v) and S(v) in a precise manner for every node in the
tree, we must also associate with each internal node v in the tree two (disjoint) subsets B<(v) C S(v)
and B (v) C S(v), which we refer to as the “bad” subsets of v. These are defined as follows:

B<(v) & {j € SO) : j < ind(v) and f(j) > val(v)}

Bo(v) ¥ {j € S() : j > ind(v) and f(j) < val(v)}. (2)

For example, consider the case that v = vy is the root, and assume that ind(vy) = [n/2] is the
median of the set S(vg) = {1,...,n} and val(vg) is the median value of {f(1),...,f(n)}. Then
B«(vp) includes all indices 1 < j < [n/2] such that f(j) is larger than the median value, and B> (vg)
includes all indices [n/2] < j < n such that f(j) is at most the median value. These subsets are
“bad” since they violate the conditions of monotonicity, and for every such pair i € B<(vg) and
J € Bx(vp) there is an edge in the violation graph of f. It is not hard to verify that if f is monotone,
then for every node v such that ind(v) and val(v) have the same order, both B<(v) and B (v)
must be empty, while if ind(v) and val(v) do not have the same order, then at least one of the two
subsets is empty.

Defining I(v) and S(v). We now describe precisely how I(v) and S(v) are defined for every
node v in the tree. We denote the root of the tree by vy, and associate with it the interval of
integers I(vg) = {1,...,n}, and the complete set of indices S(vg) = {1,...,n}. In general, the
interval associated with node v will be denoted by I(v) = {find(v),...,rind(v)}, where find(v)
and rind(v) denote the left-most index and right-most index, respectively, of v’s interval. It remains
to explain how I(v) and S(v) are defined for a given v, other than the root vy. Let p be the parent
of v in the tree. Then it will hold that I(v) C I(p) and S(v) C S(p). Furthermore I(v) and S(v)
are determined by I(p) and S(p) together with ind(p) and val(p) as follows:

12

e The interval I(v) = {find(v),...,rind(v)} is determined as follows: If v is the left child
of p then flind(v) = find(p) and rind(v) = ind(p), while if v is the right child of p then
tind(v) = ind(p) + 1, and rind(v) = rind(p).

For example, if p = vy is the root and v is the left child of vy then I(v) = {1,...,ind(vy)},
while if v is the right child of vy then I(v) = {ind(vo) + 1,...,n}.

e The set S(v) C I(v) is determined as follows: If v is the left child of its parent p then
S(v) = (I(v)NS(p))\ B<(p), and if v is the right child of p then S(v) = (I(v)NS(p))\ B> (p)-
Recalling the definitions of the bad subsets, this means that S(v) includes all indices in S(p)
that belong to the interval I(v) ezcept those on which the value of f is “incorrect” (larger
than val(v) when it should be smaller or equal, or vice versa).

Each leaf v in the tree either corresponds to a set S(v) that contains a single element, or it is
the case that S(v) is empty. If v is the left child of its parent p then the latter occurs when
B<(p) = S(p) N I(v), and if v is the right child of p then this occurs when B (p) = S(p) N I(v).
For every leaf v we let B<(v) = Bx(v) = 0.

12 3 5.6 7 8
|10‘11 ‘12‘@‘14 15 ‘16‘17|

1.34

5 [6] 7 s
o fi0]12] 13
/N /

(> [
7

® =

(@[] (@]
/ \ / \ / \

Figure 1: An illustration of an index-value tree of the monotone function f which is defined as f(i) =i+ 10
for every 1 < i < 8. Each node v in the tree contains an array which represents the interval I(v) corresponding
to v, and the values of f in this interval. The elements which correspond to indices in S(v) are denoted
by white cells. Since the function is monotone there are no bad indices here, and thus S(v) = I(v) in this
case for every v. The index ind(v) is marked by a square around it, and in this example it is simply the
median index of S(v). The element corresponding to val(v) is denoted by a circle around it, and here it is
the median value of f on indices in S(v).

oo

Remarks. The following remarks will be helpful in understanding the usage of index-value trees.

1. By definition of the intervals it holds that in every level of the tree the intervals associated
with the nodes in that level are disjoint. Furthermore, for every level h such that there are
no leaves in levels ' < h we have that the union of all intervals I(v) corresponding to nodes
in level h is {1,...,n}.

2. If u and v are the two children of p in the tree then S(v) U S(u) = S(p) \ (B<(p) U B> (p)).

13

1234567910111213141516

12//57 4 17 (9 (11 12@%1615 14

1 2[3]4 s 6 7 8 9 10 [u]12 13 14 15 16

1|2 5 Y 7| |09 11@- 15] 14

23 4516 78 9] 1 1213 14 [13 16

10]
2 .* 9 |@D[12 /@//
1 |E|/1o /15\
--I @\ .-.

:

@H

Figure 2: An illustration of an index-value tree of a non monotone function f which is described in the
array in the root of the tree. Again, all relevant data of each node v is described as in Figure 1. Since this
function is not monotone there are bad indices here. For each node v, the elements which correspond to
indices that belong to B<(v) and Bs(v) are denoted by striped cells, and the elements corresponding to
indices in the bad subsets of the ancestors of v are denoted by gray cells. Also here ind(v) was selected as
the median index of S(v) and val(v) is the median value of f on indices in S(v). Note for example that
B (vg) = {4,6} and B (vg) = {12,13} where v is the root of the tree.

3. All bad subsets associated with all nodes in the tree are disjoint.

As a further demonstration of these definitions, suppose that f is monotone. In such a case, if
for every v, ind(v) and val(v) have the same order, then for every node v, the bad subsets B<(v)
and Bs (v) are empty. Note that if f is monotone but for some node v, ind(v) and val(v) do not
have the same order, then at least one of the two subsets B<(v) and B (v) must be empty (which
subset is empty depends on whether the order of ind(v) is smaller than the order of val(v) or vice
versa).

On the other hand, if f is not monotone, then it is possible that the subsets B<(v) and B (v)
are both non-empty (even if ind(v) and val(v) have the same order). However, as we shall see in
the next subsection, if we consider all indices that do not belong to any bad subset (i.e., are located
in one of the leaves), then the function f is monotonically increasing on them.

4.2.3 The Index-Value Tree and Monotonicity

In this subsection we show that given an index-value tree Ty, we can use the sizes of all bad subsets
in the tree to get upper and lower bounds on the distance of f from monotone (using Claim 4).

For any node v in T, let b<(v) def |B<(v)|, and let b (v) = def | B> (v)| denote the sizes of the bad

14

subsets that are associated with v. Let L; denote the set of nodes in level h of the tree T, and let

BE | J (B<(v)UB>(v)) -
veTf

Lemma 5 Let Ty be any indez-value tree for f. Then the values of f on all indices that do not
belong to B form a monotonically increasing sequence, and

S min {b<(0),5> ()} < errmon(f) < Y (b< (o) + b5 (0)

veTy veTy

Proof: We first show that B is a vertex-cover of the violation graph. Namely, we show that for
every pair i,j ¢ B, such that i < j, we also have f(i) < f(j) (that is, there is no edge between
i and j in the violation graph). Consider any such fixed pair 7 < j, ,j7 ¢ B. By definition of an
index-value tree, since both ¢ and j do not belong to B, there exist leaf nodes v and w such that
S(u) = {i} and S(w) = {j}. Let v be their least common ancestor. Then, once again by definition
of the tree, we have i,7 € S(v) and i < ind(v) < j. By definition of the set B, if i < ind(v) < j
and 1,j ¢ B then f(i) <wal(v) < f(j), and so f(i) < f(j), as required. The first part of Lemma 5
concerning the values of f on indices ¢ ¢ B directly follows, and the upper bound on errmon(f)
follows from Claim 4.

To establish the lower bound on errmen(f), consider any node v, and the bad subsets B<(v)
and B (v) associated with it. By definition of these sets, for every i € B<(v) and j € B> (v), i < j,
while f(j) < wal(v) < f(i). Thus there is an edge between ¢ and j in the violation graph. It directly
follows that there exist a matching of size min{b<(v), b~ (v)} between the two subsets. Furthermore
the bad subsets (of all nodes in the tree), are disjoint. Therefore by taking the union over all nodes
v of these matchings between pairs of bad subsets, we obtain a matching in the violation graph,
which has size ZueTf min{b<(v), b~ (v)}. The lower bound follows by applying Claim 4. W

We next consider index-value trees that are approximately balanced (as defined below), and use
Lemma 5 to obtain an upper bound on errmon(f) in terms of ZveTf min{b<(v), b> (v)}.

Definition 6 (vy-Balanced Trees) We say that an indez-value tree Ty is y-balanced, if for ev-
ery node v in Ty we have that the orders of ind(v) and val(v) are each at least [|S(v)|/2] —
min{y|I(v)|, §1S(v)[} and at most [|S(v)|/2] + min{y|I(v)], 5|S(v)]}.

Lemma 6 Let Ty be an indez-value tree for f that is y-balanced for some v = v(d,n). Then there
are at most 2logn levels in Ty and

errmon(f) <2 Z min {b<(v), b> (v)} +2v-logn - n.
’UETf

In order to prove Lemma 6, we shall need the following claim.

Claim 7 Let v be a node in an indez-value tree Ty. If the orders of ind(v) and val(v) differ by at
most r, then |b<(v) — bs(v)| < r.

Proof: Let S(v) = {i1,...,ix}, let the the order of val(v) be s, and let the order of ind(v) be t.
Thus, ind(v) = i; and val(v) is the s’th smallest value in {f(i1),..., f(ix)}-

15

We look at two partitions of the set S(v). One is the partition {S1,S2} such that S; contains
all indices j € S(v) for which f(j) < wal(v), and the set Sy contains all indices j € S(v) for which
f(j) > wal(v). Thus |S1| = s. The second partition {T1,T2} of S(v) is such that T} contains all
indices j < ind(v) in S(v) and T» contains all indices j > ind(v) in S(v). Thus |T| = t.

Since

|Sl ﬂT1| + |Sl ﬂT2| = |51| =3s

while
IT1NSi|+|T1NSe| =T =t,
we have that
[1S1NTa| —|SeNTh| | = s —t].
But §; NT, = By (v) whereas So N Ty = B<(v) and |s — t| < r. The claim follows. H
Proof of Lemma 6: The claim concerning the number of levels in T follows directly from the
definition of an approximately balanced tree (since for every node v, |S(v)| < (5/8)|S(p)| where p

is the parent of v). We hence turn to the upper bound on errmen(f). We first observe that by the
premise of Lemma 6 and by Claim 7, for every node v we have that

(b<(v) + b5 (v)) < 2min{b< (v), b5 (v)} + 7 I (v)] .

Therefore,

Y (<) +b5(v)) <2 Y min{b<(v), b5 ()} + D v+ |[I(v)] -

’UETf ’UETf ’UETf
Using the upper bound in Lemma 5, it remains to show that

Z v - [I(v)| < 2ynlogn
UETf

But this follows directly from the fact that for every level h, 37 ., |I(v)| < n, and the upper
bound of 2logn on the number of levels in Ty. W

4.3 The Distance Approximation Algorithm

Notice that if we can construct a 7y-balanced index-value tree for v = O(log -

and Lemma 5, we get the following lower and upper bounds on errmon(f):

), then using Lemma, 6

Z min {b<(v),b>(v)} < errmen(f) <2 Z min {b< (v),b> (v)} +26 -n .

’UETf ’UETf

In other words, setting ¢ = 2 ZveTf min {b<(v), b~ (v)} we get an approximation é to monotonicity
that satisfies: %emon(f) — 3§ < €< emonlf).

This immediately suggests a distance approximation algorithm for monotonicity. However this
algorithm is not sublinear in n since it requires us to fully construct the tree, and for each node in

the tree to find the exact values of b<(v) and b (v). In the next two subsections we show how to
overcome these problems. We do so in two stages.

16

Stage 1: A Mental Experiment. We first assume, as a mental experiment, that our algorithm
has approzimate query access to a y-balanced index-value tree for f (where v = O(; Og —))- Namely,
the algorithm can choose to query any node v in the tree, and by querying v it obtains estimates
135 (v) and b (v) of b<(v) and b (v), respectively. We show in Subsection 4.3.1 that under certain
conditions on these estimates at the nodes, it is possible to obtain a good estimate of erryon(f) by

performing only O(log®n/é%) queries into the tree.

Stage 2: The Actual Algorithm. The main insight gleaned from the above mental experiment
is that while constructing an index-value tree (or even an approximate one) takes linear time, it
suffices to access only poly(logn/d) nodes in the tree. Hence, our algorithm, which is described
in detail in Subsection 4.3.1, will construct only parts of such a tree according to its “needs” (i.e.,
the approximate queries it would like to perform). Furthermore, for each node or path that it
constructs in the partial tree, it will perform only poly(logn/d) queries to the function f. Thus
our algorithm can be viewed as emulating the mental experiment algorithm with small overhead
in terms of the number of queries to the function that are performed per query to the tree. As a
result we get a distance approximation algorithm whose query complexity is poly(logn/d).

4.3.1 A Mental Experiment: Performing Approximate Queries

In this and the next subsection we complete the description of the algorithm for distance approxi-
mation to monotonicity. As discussed briefly earlier, we start by describing, as a mental experiment,
an algorithm that has query access to an index-value tree with certain properties. Details follows.

Let Ty be a ~y-balanced index-value tree for v = O(%), where § is the given approximation
parameter, as in Equation (1). Suppose that it was possible to perform “approximate queries” of
the following form. For any given node v in the tree, we could obtain non-negative estimates BS(U)
and bs (v) in the range {0,...,|I(v)|} which are good estimates of b<(v) and b~ (v), respectively.
Since eventually we will obtain these estimates by sampling, a slight complication arises for nodes
v for which the size of S(v) is too small (with respect to I(v)). For such nodes, obtaining a good
estimate to the size of their bad subsets may not be possible using a sample that is not sufficiently
large. For reasons that will become more clear in the next section, we let “smallness” be a hereditary

property. Namely:

Definition 7 (y-Small Nodes) A node v in an indez-value tree is called y-small (or simply small)
if for some ancestor w of v, |S(w)| < y|I(w)| (where v is considered an ancestor of itself).

We can now define good estimates as follows:

Definition 8 (y-Estimate) We say that IA)SEU) and b (v) are a y-estimate for b<(v) and bs(v)
if either (i) |b<(v) —b<(v)| < - |I(v)] and |bs>(v) — b (v)| < v - |I(v)]; or (ii) v is y-small and
be(v) = b (v) — 0.

We next show that by performing O(log®n/é?) queries to a 7-balanced index-value tree that
contains in each node such y-estimates, we can obtain, with high probability, an estimate € to
emon(f) that satisfies Equation (1).

Recall that Lj denotes the set of nodes in level h of the tree Tr. Let m = 7% - loglogn for

some sufficiently large constant ¢ that will be specified below. The algorithm will sample (with
repetitions) m nodes from each level, and will use the b estimates for the selected nodes.

17

Algorithm 1 (Approximation of distance to monotone: Mental Experiment)
1. For levels h =0 to 2logn do:
o Initialize by, = 0.

e Repeat the following m times: Select node v € L, with probability [I(v)|/n. If
> ver, (V)| <n then with probability 1 — (3, <, [/(v)])/n no node is selected. If

a node v is selected then update IA)h = Bh + T .

e Let éh = %bh

2. Set €=, én.

Observe that the number of queries made into the tree is O(mlogn) = O(log®n/§%). We note
that in levels A < logm we could actually consider all (at most m) nodes in Lj, without need for
sampling. However, for simplicity we perform the same sampling process in all levels. We can now
prove the following lemma, about the quality of the estimate € that is output by Algorithm 1.

Lemma 8 Let Ty be an indez-value tree that is y-balanced and assume that for every v in Ty the
estimates b<(v) and b (v) are y-estimates of b<(v) and b (v), respectively, where v < §/(5logn).
Then with probability at least 9/10, the output € of Algorithm 1 satisfies:

(1/2)émon(f) =0 < € < emon(f) +6.

Proof: We first observe that by Lemma 6 the number of levels in T} is indeed at most 2logn so
that the algorithm considers all levels in the tree. For each level h, let

en 3 minfbe(0),b: (0)} ©)
veELp,
By Lemmas 5 and 6,
(1/2)€émon(f) — 7 -logn < Z €n < €mon(/f) (4)

h

We would like to show that with high probability over the choice of the samples selected by the
algorithm, for all levels h, €, is a good estimate to €.

For a fixed level h, let x;, ..., Xm be independent random variables, where each x; attains with
probability |I(v)|/n the value W, for v € Ly, and with probability 1 — 1 > wer, ()],

x; = 0. The expected value of each x; is hence:

Bepf] = 3 Lol mO<W:B 0} _ LS ingbe), s ().)

e, 1 (v)| e,

Let us denote this expected value by uj. We first show that by our assumption on IA)S (v) and 13>(v),
we have that

en —y < pn < ep+ 7. (6)

To establish Equation (6) we partition the nodes in level h into two disjoint subsets. The
first subset, V;!, consists of those nodes v in level h for which |b<(v) — b<(v)| < - |I(v)| and
b (v) — bs (v)| < - |I(v)]. The second subset, V;2, consists of those nodes v that do not belong

18

to V;!, are y-small, and satisfy IA)S (v) = bs(v) = 0. Since for every v in Ty the estimates IA)S (v) and
bs (v) are assumed to be y-estimates of b<(v) and b (v) respectively (recall Definition 8), we have
that Vh1 U Vh2 = Lj. By definition of Vhl,

1 . ~ 1) 1

LS minhe)b @)} & 3 minfbe(@) b @)} < - S A0 (@)
veV)! veVy! veVy!

Turning to the nodes in V}2, we have that for every v € V}2, 135 (v) = bs (v) = 0 so that

> min{b<(v),bs (v)} = 0.

veV?

On the other hand, for every v, B<(v) U Bs(v) C S(v), and thus:

Z min{b< (v v)} < Z |S(v)

veV;? veV?

Since all vertices in Vh2 are y-small, we can deduce that

Yo IS@I<y Y 1)

veV? veV?
and so
=Y minfbe(v), b ()} - - 3 minfbe(v) b @)} < oy 3 1) ®)
- <(v),bs (v - min{b<(v), b>(<z
veV? veV? veV}!
Equation (6) follows by combining Equations (7) and (8) with the fact that > ., [I(v)| < n.

We next apply an additive Chernoff bound in order to bound the deviation of ¢, = % Y i Xi
from the expected value pp. Since the x;’s are independent random variables that attain values
between 0 and 1 and whose expected value is up,

Pr[sz fih

where the last inequality holds for m > %l glogn. By applying a union bound over all levels h

1
20logn

(9)

> 7] < 2exp(—2my?) <

in which we sample, and using Equation (6) we get that with probability at least 9/10, for every
such level h,
en — 2y < é, <ep+2v. (10)

The lemma follows by combining Equations (4), (6) and (10) with the bound on the number of
levels of the tree and the upper bound on v. W

A Remark concerning monotone functions. Note that if f is a monotone function then for
every node v either b<(v) = 0 or b5 (v) = 0, so that min{b<(v),b>(v)} = 0. Suppose that we
slightly strengthen the definition of a y-estimate and require that b<() = 0 whenever b<(v) = 0,
and that bs (v) = 0 whenever bs (v) = 0. It directly follows that if f is monotone then the output,
€, of the mental experiment algorithm is 0.

19

4.3.2 The Sublinear Algorithm

Observe that while the size of a fully constructed index-value tree for f is linear in n, the above
mental-experiment algorithm required to access only poly(log n/J) nodes in the tree. Hence, instead
of fully constructing the index-value tree, and then accessing a small fraction of it, as done above, our
algorithm will construct only parts of such a tree according to its “needs” (i.e., the approximate
queries it would like to perform). Furthermore, for each node or path that it constructs in the
partial tree, it will perform only poly(logn/d) queries to the function f. Thus we get a distance
approximation algorithm whose query complexity is poly(logn/J).

The Partial Tree. We associate, as before, with every node v in the partial tree (with the
exception of nodes that are small, in a sense closely related to that of Definition 7) an interval
I(v), a subset S(v) C I(v), subsets B<(v),Bx(v) C S(v), an index ind(v) € S(v), and a value
val(v) € {f(j) : j € S(v)}. We shall ensure that with high probability ind(v) and val(v) do not
deviate by much from the median index in S(v) and the median value of f in S(v), respectively.
We also assign to each node v two additional values: fval(v) and rval(v) which constitute a lower
bound and an upper bound, respectively, on the value of f on indices in S(v). These values can be
determined from existing values associated with ancestor nodes of v, but it will be convenient to
explicitly associate them with v. (In fact, this claim about redundancy is true of all information
associated with the nodes with the exception of ind(v) and wval(v), which determine all other
information.)

Specifically, for the root vy we set fval(vg) = —oo and rval(vg) = oo. For any other node v
in the tree, let p denote the parent of v. If v is the left child of p then fval(v) = fval(p) and
rval(v) = val(p), and if v is the right child of p then fval(v) = val(p) and rval(v) = rval(p). It is
not hard to verify that for every v,

S(w) ={j € I(v) : tval(v) < f(j) < rval(v)} .

Sampling into the Tree. One issue that should be addressed when the partial tree is constructed
is how to sample nodes in each level according to |I(v)|/n. This issue is easily handled as follows.

In order to select a node v in level h of the tree with probability |I(v)|/n, we first uniformly
select a point z € {1,...,n}. We then go down the tree, starting from the root, and find the node
v in level h for which z € I(v) (if such a node v exists), constructing nodes that were not yet
constructed as we go down the tree. Clearly each node v in level h is selected with the appropriate
probability. The case in which there is no node v in level h such that z € I(v) because a leaf was
reached before getting to level h, corresponds to the case in the mental experiment algorithm where
a node is not selected in some trial.

In “constructing a node” u we mean computing ind(u) and val(u), which with high probability
will have orders close to [|S(u)|/2]. These index and value are used for determining the rest of the
path to the node v in level h such that x € I(v). If along this path we reach a node u for which
|I(u)| is smaller than some threshold (4/7), then we stop sampling and actually construct all the
subtree rooted at u by viewing all values f(j) of points j € I(v) (and using exact median indices
and values).

Finally, once we reach v we use ind(v) and val(v) (as well as £ind(v) and rind(v)) to compute
estimates b<(v) and b~ (v) of b<(v) and b~ (v), respectively.

20

Empirically Small Nodes. As mentioned briefly in the previous subsection, a second technical
issue that should be addressed is dealing with nodes v for which S(v) is very small compared
to I(v). For such nodes it is not possible to obtain with a sample that is not sufficiently large
an index ind(v) and a value val(v), whose order is close to [|S(v)|/2]. To clarify this point,
observe that given /ind(v) and rind(v) we can easily obtain uniform samples from I(v) since
I(v) = {¢ind(v),...,rind(v)}. However, in order to obtain uniform samples from S(v), so as to
set ind(v) and val(v), we need to first sample from I(v) and then, for each point j selected, check
whether it belongs to S(v) by checking whether fval(v) < f(j) < rval(v). Since we require that
the orders of ind(v) and val(v) deviate by at most min{g|S(v)|,y|I(v)|} from [|S(v)|/2], the size
of the sample required grows with |I(v)|/|S(v)|-

To deal with this issue we first compute an estimate §(u) of |S(u)| for each new node u con-
structed. If this estimate is below a certain threshold, where the threshold is set at (3v/4)|I(u)],
then we consider the node u and all its descendents as empirically small nodes. For each empirically
small node u we do not compute ind(u) and val(u) (and these values remain undefined), and we
simply set IA’S (u) = bs (u) = 0. Since we do not compute ind(u) and val(u), we cannot continue and
construct the subtree rooted at u. However, since every possible descendent v of u is empirically
small and we always set b<(v) = bs(v) = 0, we do not actually need to construct this subtree
because we can use these 0 estimates. The notion of an empirically small node is clearly closely
related to the notion of a small node in Definition 7. Specifically, with high probability a node that
is (y/2)-small as in Definition 7, will be empirically small, and a node that is not y-small will not
be empirically small.

Procedures. The approximation algorithm will use two procedures: Procedure 1 is used to
approximate the size of the subsets S(u), B<(u), and B (u) for the nodes u we construct, and
Procedure 2 is used to obtain ind(u) and val(u). These simple sampling procedures are described
following the algorithm. Since Procedure 1 can be used, given a node u, to estimate both the size of
S(u) and the sizes of the bad subsets B<(u) and B (u), it receives also as parameters two indices
indy and inds and two values val; and vals. The indices determine the interval of indices in which
to sample, and the values determine the range of values allowed in this interval according to the
type of subset whose size we are trying to estimate.

We assume that if for some node u in the tree, the size of S(u) has already been estimated,
then this size estimate, denoted §(u), is maintained at the node for future use. The algorithm and

the accompanying procedures are given below.

_0
5logn

and let m = 7% -loglogn be as in the previous subsection. Also define s =

Let v =
<

el log(n) for an appropriate constant ¢

21

Algorithm 2 (Approximation of distance to monotone)
e For level h = 0:

1. Construct the root node vy of the tree: Let I(vg) = {1,...,n}, ind(vo) = [n/2], find(vy) =
1, rind(vo) = n, Lval(vg) = —o0, rval(ve) = oo, and let §(vg) = n. Set val(vg) by calling
Procedure 2 for vy (and ignoring the index it returns for ind(vy)).

2. Estimate I;S(vo) by calling Procedure 1 with parameters: ind; = 1, indy = [n/2], val; =
val(vg) and waly = co. Estimate bs (vg) by calling Procedure 1 with parameters: ind; =
[n/2] + 1, indz = n, val; = —oo and valy = val(vg).

3. Set &, = L - min{b<(vo),b> (vo)}.

e For levels h =1 to 2logn do:

1. TInitialize by = 0.

2. Uniformly and independently select m points z},,...,2}" from {1,...,n}. Denote the
multi-set of points selected by Xj. (These points are used to select nodes in level h.)

3. For each point a:it € Xy, do:

(a) Find the leaf w in the current partial tree such that w% € I(w). Set z + w.

(b) While h(z) < z, 2z is not an empirically small node and [I(z)| > s:

i. Ifz) <ind(z) then add aleft child to z, and if 2} > ind(z) then add a right child.
Let u denote this new child. Set find(u), rind(u), fval(u) and rval(u) based on
lind(z), rind(z), fval(z) rval(z) and val(z), as described earlier in this section.

ii. Compute §(u) by calling Procedure 1 with parameters: ind; = find(u),inds =
rind(u),val; = fval(u) and vals = rval(u). If §(u) > (3v/4) - |I(u)], then set
ind(u) and wval(u) by calling Procedure 2 for u. Else u is an empirically small
node.

iii. Set z + w.

(¢) If|I(z)| < s then construct all nodes in the subtree rooted at z by looking at all values
{f(§) : j € I(2)} and for each node v in this subtree selecting ind(v) to be the median
index in S(v) and val(v) to be the median value. If there exists a node v in this subtree
belonging to level h such that a:fl € I(v) then update by, = by, + M?I((Uv))\bﬂ (Note
that b<(v) and b (v) can be calculated exactly in this case.)

(d) Otherwise, if h(z) = h and z is not empirically small then do the following: Es-

timate I;S(z) by calling Procedure 1 with parameters: ind; = flind(z),ind> =
ind(z),val; = val(z) and val, = oo; Estimate bs(z) by calling Procedure 1 with
parameters: ind; = ind(z) +1,indy = rind(z),valy = —oo and vals = val(z); Update
by = by, + min{be(2).b>(2)}
(=)
4. Set ¢, = % 'I;h.

e Return é =3, é.

Procedure 1 (Given indices ind; < indy and values val; < valy, approximate the size of the
set T ={j: ind, < j <indy and val; < f(j) < wals})

1. Uniformly and independently select s indices from I = {indy,...,ind>}. Denote the subset of
indices sampled by Z.

2. Let a be the fraction of indices j in Z for which valy < f(j) < vals.
3. Let £ = a - |I|, and return .

22

Procedure 2 (Approximate median index and median value for node u)

1. Uniformly and independently select s indices from I(u) = {€ind(u),...,rind(u)}, and denote
the set of indices selected by Z. Let Y C Z be the subset of indices j for which fval(u) <

f(G) < rval(u).

2. If Y is non-empty then let ind(u) be the median index in Y, and let val(u) be the median
value of f on indices j € Y. If Y is empty then exit the procedure and the algorithm with an
error message.

3. Return ind(u) and val(u).

We first establish two claims concerning Procedure 1 and Procedure 2, respectively.

Lemma 9 Let indy < inds and valy < valy be inputs to Procedure 1, and let

T ={j: ind; <j <indg and valy < f(j) <wals} .

If the sample size used by Procedure 1 is s = O(log(n)/v?), then with probability at least 1 — m,

T| = (v/2)lI] < T < |T|+ (v/2)1]

where I = {indy,...,inds} and is the output of the procedure.

Proof: The Lemma, follows immediately by applying an additive Chernoff bound. For each selected
sample point j € I, the probability that j € T is |T'|/|I|, so that the expected value of « is |T'|/|I|.
Since the sample is of size s = ©(logn/v?), the probability that deviates by more than /8 from
its expected value is exp(—O(logn)) = m. Since ¢ = « - |I|, the claim follows. W
Lemma 10 Let u be a node in the partial tree constructed by Algorithm 2 such that |S(u)| >
(v/2)|I(u)|. If the sample size used by Procedure 2 is s = ©(logn/vy?), then with probability at least
1- m, the orders of ind(u) and val(u) each deviate by at most (v/16) - |I(u)| from [|S(u)|/2].
Proof: Let £ = |S(u)| and recall that by the premise of the lemma, £ > (v/2)|I(u)|. Also recall
that Y is the subset of indices sampled by Procedure 2 that belong to S(u), and denote s = |Y|.
Similarly to what was shown in Lemma 9, we can ensure that with probability at least 1 — m,
5/s > £/|I| — (y/4), implying that Y is non-empty. Assume from now on that this is in fact true.
We next prove that with high probability, the order of ind(u) deviates by at most (v/16)-|I(u)]
from [£/2]. The claim concerning the order of val(u) is proved analogously. Let the indices in S(u)
be 71 < j1 < ... < jg. Define

S1(w) = {1, b2 (r/16) 10w }
So(u) = {dre/21—(y/16) 1) +15 - - - > J1€/2]+(v/16) T(w) }
Ss(u) = {dry21+(6)1@)+15 - - de}

~— ~—

We want to show that with high probability, ind(u) € S2(u). By applying an additive Chernoff
bound once more, we have that with probability at least 1— m the number of sample points that

belong to S1(u) does not deviate by more than (y/16)-s from its expected value (% — (7/16)) 8,

and a similar claim holds for S2(u) and Ss(u). But in such a case, since ind(u) is chosen to be

23

the median index in Y C S(u), we have that ind(u) € Sz(u), as desired. The lemma follows by
summing all the probabilities of failure. M

We are now ready to prove that Algorithm 2 satisfies Theorem 1, which was stated at the
beginning of Section 4.

Proof of Theorem 1: We start by bounding the sample size. The algorithm considers O(log n)
levels, and for each level it selects at most m nodes. For each node selected the algorithm needs
to construct at most all O(logn) ancestors of this node, where the construction requires a sample
of size O(s). Hence the total query complexity is O(log?n - m - s) = O((logn)”/é*). The running
time of the algorithm is linear in the query complexity.

We next turn to prove the correctness of the algorithm. Instead of directly analyzing Algo-
rithm 2, we analyze a process that is different (and in particular does not have a sublinear sample
and time complexity), but whose output is distributed exactly the same as that of Algorithm 2. By
analyzing this alternative process we are able to separate between the errors Algorithm 2 incurs in
the construction of the nodes (e.g., deviations of the indices ind(v) from the median or deviations
in the estimates ZA)S (v) and b (v)), and the errors it incurs due to the random choice of nodes in
the tree. While it is possible that a direct analysis of Algorithm 2 can be performed, care is needed
in the slightly subtle probabilistic aspects of this analysis.

Consider the following two-stage process: First we fully construct the tree T, together with
estimates 55 (v) and bs (v) for every node v (in a manner that is explained momentarily), and then
we apply Algorithm 1, which samples nodes from each level & of the constructed tree. Note that this
sampling of nodes in level h can be implemented in a similar way to what is done in Algorithm 2.
That is, the algorithm uniformly selects points z € {1,...,n} and for each z selected it finds the
node v in level h such that = € I(v).

CONSTRUCTION OF THE TREE. The tree is constructed in the same manner as the partial tree is
constructed in Algorithm 2 with the following two exceptions: (1) For every level h, we consider
all nodes u in level h — 1 that are not empirically small, and for each such node v we add both its
children to the tree. For each such child v we compute §(v), and if §(v) > (3v/4)|I(v)| (so that
v is not empirically small), then we compute ind(v), val(v), BS (v), and bs (v). (2) Whenever the
algorithm adds a node u such that the estimated size §(u) of S(u), is less than (3v/4)|I(u)| (i-e., u
is empirically small, but its parent is not), then the subtree rooted at u is constructed as follows.
For every descendent v of u (starting from u itself and continuing down the subtree), we let ind(v)
be the median of S(v) and we let val(v) be the median value in {f(j) : 7 € S(v)}. Finally, we set
Eg (v) = bs (v) = 0. Recall that in the construction of the partial tree, if we have a node u for which
3(u) < (3v/4)|I(u)| then every descendent v of u in the partial tree is considered empirically small,
and we set the estimates 55 (v) = b (v) = 0 as in the tree built by the process whose construction
is described above.

By definition of Algorithm 2 and Algorithm 1, the distribution over the output € according
to Algorithm 2 is exactly the same as in this two-stage process. The important things to note
here are the following: (1) A node v in level h is indeed selected with probability |I(v)|/n by
Algorithm 2 (unless it is a descendent of an empirically small node, in which case its actual identity
is immaterial since for such a node IA)S (v) = bs (v) = 0); (2) The random choice of m nodes selected
in level h, is determined by a uniform choice of m points in {1,...,n}, and is hence independent of
the randomized construction of the partial/fully constructed tree; (3) The setting of m is the same
in both algorithms. In other words, if we first fully construct the tree and only then select the nodes
(as done in the two step process), or we first select the nodes (implicitly, by selecting the z7’s) and
then construct the partial tree, then we get exactly the same distribution on the estimates 85(’0)

24

and bs (v).

Therefore, in order to establish Theorem 1 it suffices to prove that if we construct a tree T}
as described above, then with probability at least 9/10 it satisfies all the properties required by
Lemma 8. The remainder of the proof is dedicated to establishing this claim.

PROPERTIES OF THE TREE. Recall that the premise of Lemma 8 is that for v < §/(51logn) the tree
T} is y-balanced and that for every node v in the tree, 55 (v) and bs (v) are y-estimates of b<(v) and
b~ (v), respectively (where y-estimates are as in Definition 8). Let us refer to these requirements
as requirements R1 and R2, where we slightly strengthen the first requirement. That is, for every
node v we have:

R1. If |S(v)| < (7v/2)|I(v)| then the orders of ind(v) and val(v) are each [|S(v)|/2], and otherwise
the orders of ind(v) and val(v) are a least [|S(v)|/2] — (v/16)|I(v)| and at most [|S(v)|/2] +

(v/16)[1(v)].

R2. 135 (v) and bs (v) are y-estimates of b<(v) and b (v), respectively.

It is easy to verify that if R1 holds for all nodes v, then the tree is y-balanced. We shall add one
more requirement that will aid us in our analysis.

R3. If the size 5(v) of S(v) is estimated by the algorithm, then |3(v) — [S(v)|| < 3 - [I(v)].

The tree is constructed top-down, starting from the root. We shall prove that for each node u
constructed, conditioned on requirements R1-R3 holding for all its ancestors, the probability that
one of the requirements is violated for node u is 1/poly(n). By a union bound, with probability at
least 1 — (1/poly(n)) all requirements hold for all nodes in the tree, as desired.

We start with the root node, vy, whose construction is slightly different from that of all other
nodes. By construction, ind(vo) = [n/2] and I(vg) = S(vo) = {1,...,n}. Hence the first part of
requirement R1, concerning the order of ind(vg), always holds. The second part of requirement R1
concerning the order of val(vy) holds with probability 1 — 1/poly(n) by Lemma 10 (using the fact
that |S(vo)| = |I(vo)]). Requirements R2 and R3 hold with probability 1 — 1/poly(n) by Lemma 9.

Next consider the case in which u is an empirically small node: Requirement R1 holds by
construction (since for an empirically small node, the orders of ind(u) and val(u) are [|S(u)|/2]).
It remains to establish requirements R2 and R3 in this case:

1. If the parent p of u is not empirically small, we know that $(u) was computed so that we
need to establish R3. But by Lemma 9, requirement R3 holds with probability 1 —1/poly(n).
Conditioned on R3 holding, since u is set to be empirically small because §(u) < (3v/4)|I(u)|,
we know that |S(u)| < 7|I(u)|, and so the estimates Bg(u) = by (u) = 0 satisfy R2.

2. If on the other hand the parent p of u is empirically small, then we do not need to establish
R3. To establish R2 in this case, consider the empirically small ancestor w of u which is
furthest from u. That is, §(w) < (3v/4)|I(w)|, and so |S(w)| < v|I(w)| (since R3 holds for
this ancestor). Hence R2 holds for u in this case as well.

Finally, if u is not empirically small: by applying Lemma 9 we know that R2 and R3 hold with
probability 1 — 1/poly(n). Conditioned on R3 holding, and since by our assumption that u is not
empirically small we know that §(u) > (3v/4)|I(u)|, we have that |S(u)| > (v/2)|I(u)|. Hence we
can apply Lemma 10 to establish R1 with probability 1 — 1/poly(n). W

25

4.4 Monotonicity in Higher Dimensions

In this section we consider testing whether a function f : [n]¢ — R, where d > 1, is monotone.

The following notation will be useful.

Definition 9 Let f be a function from [n]¢ to R, where we denote the distance of f to the closest
monotone function over [n]¢ by € (f).

For j € {1,...,d} and n € [n]*" we define the one-dimensional projection of f determined by j
and n as follows: For each z € [n], fin(x) = f(Ms---sMj=1, T, M1, -+ -5 Md—1)-

Finally, for any fized index j € {1,...,d} we let Expl, . (f) = Exp, [€mon(fjn)], and we let

Expmon(f) = Expj,n[emon(fj,n)]'

For example, when d = 2 and we view f as a two-dimensional n X n matrix, then each function
fin(-) corresponds to either a row (in case j = 1) or a column (in case j = 2), Exph.(f) is the
average distance to monotonicity taken over all rows of the matrix, and Exp,,,,(f) is the average

taken over all rows and columns.
It is easy to verify that for every index j € {1,...,d}, €4 ..(f) > Expl..(f), and so, in

particular,
€mon(f) > ExPryon(f) - (11)

Halevy and Kushilevitz [HK03a] prove the following dimension reduction lemma.

Lemma 11 ([HKO03a]) For every function f : [n]¢ — R,

1
Expmon(f) > megnon(f) .

Thus for example, when d = 2, the expected distance to monotonicity, taken over all one-
dimensional projections of a function f : [n]?2 — R, is at least an 1/8 of its distance to monotonicity.

This lemma immediately suggests a distance approximation algorithm for higher dimensions:
Simply obtain an estimate for Exp,,,,(f) and use it as an estimate for eZ, (f).

Specifically, let (j1,m1),..., (ji,n:) be t = ©(1/62?) uniformly and independently selected pairs
where j, € {1,...,d} and 7, € [n]¢"! for each 1 < £ < t. We can define ¢ random variables,
X1,---, Xt as follows: For each 1 < £ <'t, x4 = €mon(fj,n,)- By definition, for each ¢, Exp[x,] =
Exppon(f). Let € = %Ee x¢ be the average of these random variables. By an additive Chernoff
bound and our choice of ¢, with probability at least 9/10,

Exppon(f) = 6/2 < € < Expyon(f) + /2. (12)

Now, for each pair (jg,7¢), by running our algorithm for one-dimensional functions (Algo-
rithm 2), we can obtain a value & such that with high probability

(1/2)xe — 6/2 < & < xe+6/2. (13)

In “with high probability” we mean with probability at least 1 —1/(6%): It is not hard to verify that
the success probability of Algorithm 2 can be increased from 2/3 to 1 — 1/(6¢) at a multiplicative
cost of O(logt) = O(log(1/6)) in the query complexity.

Let € = %Ze €¢. It follows that with probability at least 2/3 (taken over the selection of the
n¢’s and over the ¢ executions of Algorithm 2), we get that

(1/2)Expmon(f) -9 < € < Expmon(f) + 4. (14)

26

But then, by Lemma 11 and Equation (11) we have that

1 R
mefnon(f) -0 <e< 6fnon(f) + 4. (15)

5 Tolerant Property Testing of Clustering

Let X be a set of n points, and let d : X x X — R be a distance function defined over pairs of
points in X. Let C : 2X — R be a cost measure on sets of points, defined based on the underlying
distance function d(-,-). For a given k-way partition Px = {X;}¥ | of X, the cost of the partition
Px is defined as max; C(X;), and with a slight abuse of notation is denoted by C(Px). 2

In particular, we shall be interested in the case when C(+) is the diameter cost measure. Namely,
for a given subset S C X, C(S) = maxgyes{d(z,y)}. Another cost measure we consider is the
radius cost measure, for which C(S) = min, maxycgs d(z,y).

Definition 10 ((k, b)-clusterable) Let k be an integer and let b be a real value. We say that a
set X is (k,b)-clusterable with respect to the cost function C(-) (and the underlying distance function
d(-,-)), if there exists a k-way partition Px = {X;}¥_, of X such that C(Px) < b.

Definition 11 (Hereditary Cost Measures) We say that the cost measure C(-) is an hereditary
clustering cost if for every k and b, whenever X is (k,b)-clusterable with respect to C(-), then so is
every subset Y of X.

Note for example that the diameter cost measure is hereditary.

Definition 12 (e-far) A set X is said to be e-far from (k, (1+ B)b)-clusterable with respect to C(-)
for a given 0 < e <1 and 8 > 0, if for every subset Y C X of size at most (1 —€)|X|, and for every
k-way partition Py = {Y;}£_, of Y, we have C(Py) > (1 + B)b.

We consider the following “natural” algorithm for tolerant testing of clustering.

Algorithm 3 (Tolerant Testing Algorithm for (k, b)-Clustering with respect to cost C(+))

1. Uniformly at random select m points from X (where m will be specified later). Denote
the set of points selected by U.

2. Let § = ea —€1. If U is (€1 + §/2)-close to (k,b)-clusterable with respect to C(-) then
accept, otherwise reject.

Recall that a tolerant testing algorithm should accept X with probability at least 2/3 if X is
e1-close to (k,b)-clusterable with respect to C(-). The following lemma, which can be easily proved
using an additive Chernoff bound, ensures that this is the case whenever the cost measure C(-) is
an hereditary clustering cost and the sample size m is sufficiently large.

Lemma 12 Let C(-) be an hereditary clustering cost, and let X be a set of points that is €1-close to
being (k,b)-clusterable with respect to C(-). Then with probability at least 2/3 over the choice of a
random subset U C X of size m = Q(1/62), the subset U is (€1 +6/2)-close to being (k,b)-clusterable
with respect to C(-).

2 An alternative is to consider the average cost of the subsets in the partition, where the average may be weighted
according to the sizes of the subsets X;. For simplicity, and since this will be the case of our particular applications,
we consider only taking the maximum cost over all subsets.

27

The focus of the analysis of Algorithm 3 is hence on proving that, for an appropriate choice of
the sample size m, if X is es-far from being (k, (1 4+ 3)b)-clusterable with respect to C(-), then it is
rejected with probability at least 2/3.

In what follows we describe a framework under which such claims can be proved. As stated in
the introduction, this framework generalizes the abstract combinatorial programs of Czumaj and
Sohler [CS02]. We later apply this framework to establish the correctness of Algorithm 3 when:
(1) The cost measure is either the diameter cost or the radius cost, and the distance function d(-,)
is a general metric, that is, it obeys the triangle inequality; (2) The cost measure is the diameter
cost and the distance function d(-,-) is the Euclidean metric, where X C R%.

We also discuss in Section 6 how the framework can be generalized to tolerant testing of graph
properties.

5.1 A Framework for tolerant testing of clustering: Skeletons and Witnesses

We start by introducing the notions of skeletons and witnesses as described briefly in the introduc-
tion.

Definition 13 (Skeletons) A skeleton defined over a set X of points is a partition Ps = {S;}}_;
of a subset S C X. We let S;,(X) be any set of skeletons over X, such that for every skeleton
Ps € S5 p(X), we have that |S| < s, and for every subset S C X, there are at most p skeletons
Pg € Ss,p(X).

Intuitively we may think of skeletons as being representatives of partitions (clusterings) of all points
in X, or of almost all points in X, where each S; is a subset of a different cluster X;. For example,
we may let a skeleton simply be a partition of at most k points into singletons, where each point
represents a different potential cluster.

Definition 14 (Witnesses) Let w : S5 p(X) x X — {0,1} be a witness function. If w(Ps,z) =1
then we say that x is a witness for Pg.

Intuitively, witnesses are points that in some sense provide evidence to imperfections of skeletons.
In continuation to the example described above, a witness may simply be a point that is at distance
greater than b from every skeleton point.

Definition 15 (Good Subsets) A subset U C X is a-good with respect to S ,(X), if there exists
a skeleton Pg € S;p,(X) such that S C U, and there are at most « - |U| points u € U, such that

w(Ps,u) = 1 (that is, u is a witness for Ps). Otherwise the subset U is a-bad with respect to
Ss p(X).

The following Lemma will allow us to prove the correctness of Algorithm 3 under certain con-
ditions on the set of skeletons S ,(X).

Lemma 13 Let S ,(X) be a set of skeletons defined over X, and let 0 < o,y < 1. Suppose that
every skeleton in S, ,(X) has at least (a+y) - | X| points x € X that are witnesses for it. Consider
selecting, uniformly and independently, a subset U of m =) ((logp + slog(s/*y))/'YQ)) points from
X. Then with probability at least 2/3, the subset U is a-bad with respect to Ssp(X).

28

Proof: Let m = s+ m', where m’ is set subsequently, and let uq,...,u,, be the m elements
selected uniformly and at random. For each subset of indices I C [m], I = {41,...,is}, of size s, let
U; be the (multi)set {u;,,...,u;,}. Note that if we take the union over all I C [m] of the skeletons
Pg € S, ,(X) such that S C Uy, then we get all skeletons contained in U (where some skeletons are
counted more than once).

When considering any particular I, it will be convenient to think of the selection process of U
as first selecting Ur and then Up,)\ ;. For a fixed subset of indices I, and a fixed skeleton Pg, where
S C Ur. Let Er p; denote the event that among the m' = m — s vertices in Upm\1 there are less
than (a + y/2)m’ witnesses to Ps. By an additive Chernoff bound,

Pr[Er,pg] < exp(—2m/(v/2)?)

Let Et denote the union over all Ef py, for a fixed I. That is, it is the event that for some
skeleton Ps, S C Ur, there are less than (a +y/2)m' witnesses to Ps in U}, ;- Since the number
of such skeletons is at most 2° - p, by a union bound,

Pr(E7] < 2°-p-exp(—2m'(v/2)?)
Finally, let £ denote the union over all I of £;. Then
Pr[E] < (2m)° - p - exp(—2m'(v/2)?)

If we select m’ = Q(y~2(logp+ slog(s/v))) then we get that with probability at least 2/3, for every
skeleton in U, there are at least (a+7/2)m’ witnesses for the skeleton. Since m’ > 25/, this is at
least a - m, as desired. W

It is now possible to prove the correctness of Algorithm 3, assuming that there exists a set of
skeletons S;,(X) which satisfies the two conditions that are specified below. The theorem also
requires the sample size m taken by the algorithm to be some large enough function of €1, €3 and
of s and p.

Theorem 2 Let C(:) be a hereditary clustering cost, and let 0 < 8 < 1. Suppose that S; ,(X) is a
set of skeletons that satisfy the following:

1. For any given 0 < a < 1, if X is a-far from (k, (14)b)-clusterable with respect to C(-), then
every skeleton in Ss p(X) has at least o+ | X| witnesses for it in X.

2. For any given 0 < a <1, if a subset U C X is a-bad with respect to S; ,(X), then U is a-far
from (k,b)-clusterable with respect to C(-).

Let m = Q ((logp + slog(s/8))/6%)) where § = €2 — €1. If X is e-close to (k,b)-clusterable with
respect to C(-), then Algorithm 8 accepts with probability at least 2/3, and if X is ex-far from
(k, (1 + B)b)-clusterable with respect to C(-), then Algorithm 3 rejects with probability at least 2/3.

We note that it is possible to slightly relax the two requirements on the set of skeletons that are
stated in the theorem, and still obtain the same result. In relaxing we mean that in the first item
we require that there be a least o/|X| witnesses in X, where o is slightly smaller than « (say,
o' = a — §/4) and in the second item to require that U be o'-far from (k, b)-clusterable.

Proof: The first part of the theorem directly follows from Lemma 12, since C(-) is assumed to be
hereditary, and m = Q(1/6?). We turn to the second part.

29

Suppose that X is ex-far from (k, (1 + §8)b)-clusterable with respect to C(-). By the first item
in the premise of the theorem, every skeleton in S, ,(X) has at least ez - | X| witnesses for it in X.
By Lemma 13, if we set @ = €3 — §/2 and v = §/2, then with probability 2/3 over the choice of
the sample U, the set U is (e — §/2)-bad. But by the second item in the premise of the theorem,
for each such U, the set U is (e — §/2)-far from being (k, b)-clusterable. Since ez — /2 = €1 + §/2,
each such U would cause Algorithm 3 to reject, and the second part of the theorem follows. M

Note that in order to use this theorem to prove the correctness of Algorithm 3 for specific
cost measures, such as the diameter cost measure, we have to define a skeleton set S, ,(X) and
witnesses for the specific cost measure at hand. Furthermore, we must prove that the two conditions
in Theorem 2 hold, and that s and p are bounded so that the sample size m will not be too large.
In the next sub-sections we show that it is possible to do so for the diameter and the radius cost
measures when the distance function is a general metric, and for the diameter cost measure when
the distance function is the Euclidean metric.

5.2 Clustering Under a General Metric

In this subsection we show how to apply Theorem 2 so as to obtain the following theorem for the
diameter cost. At the end of this subsection we give an analogous theorem for the radius cost.
Recall that § = €2 — €7.

Theorem 3 Let C(-) be the diameter cost, and let d(-,-) be any underlying distance function that
obeys the triangle inequality. Suppose that we run Algorithm 3 with m = O((k/62)log(k/s). If X
is €1-close to (k,b)-clusterable, then with probability at least 2/3 Algorithm 8 accepts X, while if X
is eg-far from (k,2b)-clusterable the with probability at least 2/3 it rejects X .

In order to apply Theorem 2 we define skeletons and witnesses as follows:

Definition 16 (Skeletons and Witnesses for General Metrics) A skeleton Pg is a partition
of a subset S C X, |S| < k into singletons. A point x € X is a witness for a skeleton Ps, if it is
at distance greater than b from every point in S.

Since the partition Pg is uniquely defined by the set S, we simply use S to denote a skeleton. Let
S(X) denote the set of all skeletons over X, where the subscripts s and p (which in this case are k
and 1, respectively) are eliminated for sake of succinctness.

The next two lemmas establish that the two items in Theorem 2 hold for S(X) as defined above.
Theorem 3 directly follows using the fact that s = k and p = 1.

Lemma 14 Let 0 < o < 1. If X is a-far from (k,2b)-clusterable then every skeleton in S has at
least | X| witnesses in X.

Proof: Assume, contrary to the claim, that there exists a skeleton S with less than «|X | witnesses
in X. Consider the subset Y C X that consists of all points in X that are not witnesses for S.
By definition of skeletons and witnesses in this case, each point in Y is at distance at most b from
some point in S. We can now assign each point in Y to the closest point in the skeleton S. All
points that are assigned to the same skeleton point must be at distance at most 2b from each other
(using the triangle inequality). Thus Y is (k, 2b)-clusterable, and has size at least (1 — «)| X|. But
this means that X is a-close to (k, 2b)-clusterable, and we have reached a contradiction, as desired.

30

Lemma 15 Let 0 < a < 1. If a subset U C X is a-bad with respect to S(X), then U is a-far from
(k,b)-clusterable.

Proof: Assume, contrary to the claim, that U is a-close to (k,b)-clusterable. We will show that
U is a-good (thus reaching a contradiction) by presenting a skeleton S C U with at most «|U]|
witnesses in U with respect to S.

Since U is a-close to (k,b)-clusterable, there exists a subset W C U, of size at least (1 — a)|U|
that can be clustered into k clusters of diameter at most b. We now choose a point from each
cluster in W to obtain a skeleton S C W C U. The skeleton S has at most «|U| witnesses in U
(that is, the points that do not belong to W), as claimed. W

5.2.1 Clustering with respect to the radius cost

We next show how a very similar analysis can be applied to clustering with respect to the radius
cost.

Theorem 4 Let C(-) be the radius cost, and let d(-,-) be any underlying distance function that
obeys the triangle inequality. Suppose that we run Algorithm 8 with m = ©((k/6%)log(k/d). If X
is €1-close to (k,b)-clusterable, then with probability at least 2/3 Algorithm 8 accepts X, while if X
is eg-far from (k,2b)-clusterable the with probability at least 2/3 it rejects X .

In order to apply Theorem 2 and establish Theorem 4 we need to slightly modify the definition
of witnesses that was given for the diameter cost. The definition of skeletons remains the same.

Definition 17 (Skeletons and Witnesses for General Metrics and the Radius Cost) 4
skeleton Pg is a partition of a subset S C X, |S| < k into singletons. A point x € X is a witness
for a skeleton Pg, if it is at distance greater than 2b from every point in S.

It is easy to verify that Lemmas 14 and 15 hold for the radius cost using the above definition and
the triangle inequality. Theorem 4 directly follows using the fact that s = k and p = 1.

5.3 Clustering Under the Euclidean Metric

In this subsection we consider the case that the set of points X lies in Euclidean space and the
underlying distance function is the Euclidean distance. The cost measure C(-) is the diameter cost.

Theorem 5 Let C(-) be the diameter cost, let X C R¢ for some integer d, and let the underlying
distance d(-,-) be the Euclidean distance between points. Then for any given 0 < f < 1, if we run
Algorithm 8 with m = O(k - 62 - (1 + (2/6))%), then with probability at least 2/3 it accepts X if
X is e1-close to (k,b)-clusterable, and with probability at least 2/3 it rejects X if X is ea-far from
(k, (1 + B)b)-clusterable.

Here too we shall apply Theorem 2, but we shall need slightly more sophisticated notions of
skeletons and witnesses. The definitions used here are taken from [CS02], which in turn are partly

based on ideas introduced in [ADPRO3].

Definition 18 (Intersections of Balls) For any subset Y C X let I(Y) denote the intersection
of all d-dimensional balls of radius b centered at the points in Y.

31

Definition 19 (Violating and Influential Points) Let Y C X, such that I(Y) # (0. A point
z € X isviolating for Y C X if x ¢ I(Y). The point x is influential with respect to' Y if z € 1(Y)
and for every y € Y it holds that dist(z,y) > (b.

Definition 20 (Skeletons and Witnesses for the Euclidean Distance) A skeleton is de-
fined inductively as follows:

1. The k-partition Py = {0,...,0} is a skeleton (that is, all k parts are empty).

2. If Ps = {S1,...,Sk} is a skeleton and x € X \ S is an influential point with respect to S; for
some 1 <i <k, then Psy(zy = {S1,---,8i-1,8:U{z}, Sit1,...,8Sk) is a skeleton. (Note that
there may be more than one way to add = to the skeleton Ps.)

A point z € X is a witness for a skeleton Ps = {S1,..., Sk}, if for every 1 < i < k the point x
1s either violating or influential with respect to S;.

Here to we denote by S(X) the set of all skeletons defined over X. Clearly, for every set S,
if |S| < s, then the number of partitions Py € S(X) is bounded by k° (where this upper bound
will suffice for our purposes). The following lemma which bounds the size s of the sets S that
participate in skeletons is from [CS02].

Lemma 16 Let Ps = {S;}f_| be a skeleton in S(X). Then |S| < k(1 + (2/8))¢.

Lemmas 17 and 18, stated and proved below, establish the two items in Theorem 2 for the set
of skeletons S(X) as defined above. Theorem 5 readily follows (using lemma, 16).

Lemma 17 Let 0 < o < 1. If X is a-far from (k,b(1 + B))-clusterable, then every skeleton in
S(X) has at least a|X| witnesses in X.

Proof: Assume, contrary to the claim, that there exists a skeleton Ps = {S;}¥_; with less than
a|X| witnesses in X. Let Z C X be the subset of all points that are not witnesses with respect
to Ps. Hence |Z| > (1 — «)|X|. We next show that Z is (k, (1 + ()b)-clusterable, and reach a
contradiction to the premise of the lemma.

For each z € Z there exists an index ¢, 1 < ¢ < k such that z is not violating and non-influential
with respect to S;. We assign such a point z to the #’th cluster, where initially the i'th cluster
consists of S;. We next show that the distance between any two points in the 7’th cluster is at most
(14 B)b.

First observe that all points in S; are at distance at most b from each other. This holds by
construction of skeletons, since a point £ can be added to S; only if it is influential with respect to S;,
which in particular requires that € I(S;). As to points z € Z that were assigned to the 7’th cluster:
note that any such point z was non-violating and non-influential with respect to S;. Hence z € I(.S;)
and there exists a point y € S; such that dist(z,y) < Bb. Using the triangle inequality, we get that
for any other point z in the 7’th cluster it holds that dist(z,z) < dist(z,y) + dist(y, z) < (1 + B)b.
Thus Z is (k, (1 + B)b)-clusterable, as claimed. W

Lemma 18 Let 0 < a < 1. If a subset U C X is a-bad with respect to S(X), then U is a-far from
(k,b)-clusterable.

32

Proof: Assume, contrary to the claim, that U is a-close to (k, b)-clusterable. That is, there exists
a subset W C U, [W| > (1 —)|U|, and a partition, {W;}¥_,, such that the diameter of each W; is
at most b.

We next prove that there exists a skeleton Ps = {S;}¥_,, S; C W; C U, with at most a|U|
witnesses in U. We will build Ps in the following iterative manner:

1. We start with the skeleton Py = {0,...,0}.

2. Let Pg; = {SZJ k | be the skeleton at the beginning of the j’th iteration. If there exists
an index ¢ and a point z € W; that is an influential point with respect to S/, then we let
S9! = 87 U{z} and Pgj+1 ={S7,...,8/_1, 8] U{z}, S 1,..., 50}

3. When for every i, the subset W; does not contain any influential points with respect S; then
we stop.

Let Pg = {Si}le be the final resulting skeleton. Notice that for every ¢, the subset W; does not
contain a violating point with respect to S; C W;, because all points in W; are at distance at most
b from each other. Also when we finish building Ps = {Si}le, the subset W; contains no influential
points with respect to S;. Thus all points in W; are not witnesses with respect to Ps. Since there
are at most «|U| points in U that do not belong to any cluster W;, then there are at most «|U|
witnesses with respect to Ps. W

5.4 Finding Approximately Good Clusterings

As stated in the introduction, our tolerant testing algorithm for clustering can be easily modified
to obtain an algorithm that outputs an approximately good clustering of most input points. More
precisely, for any given parameters €; < €9, if the set of points X is €;-close to being (k,b)-
clusterable, then with high probability the modified algorithm outputs an implicit representation
of a (k, (145)b)-clustering of all but an es-fraction of the points of X. In an “implicit representation”
we mean a partition of a small subset of points that can be used to determine the cluster to which
each point in X belongs to (but at most e2|X| of the points). Specifically, we prove:

Theorem 6 Let C(-) be a hereditary clustering cost, and let 0 < 8 < 1. Suppose that S, ,(X) is a
set of skeletons for X that satisfy the following:

1. For any given skeleton Ps € S, ,(X), the subset of all points in X that are not witnesses for
Ps is (k, (1 + B)b)-clusterable.

2. For any given 0 < a < 1, if a subset U C X is a-close to (k,b)-clusterable with respect to
C(), then U is a-good with respect to Ssp(X).

Then the following holds for Algorithm /4 specified below: for any given parameters €1 < €g, if X
is €1-close to (k,b)-clusterable with respect to C(-), then with high constant probability Algorithm 4
outputs an implicit representation of a (k, (1 + B)b)-clustering of all but at most an ea-fraction of
the points in X. By an “implicit representation” we mean a skeleton in S;p(X) that can be used
to determine the cluster to which each point in X belongs to (but at most e2|X| of the points).

33

Algorithm 4 (Approximate Clustering Algorithm given a set of skeletons S (X))

1. Uniformly at random select m = © ((logp + slog(s/8))/4?)) points from X, where § =
€y —€].

2. If U is (e1 + 0/2)-close to (k, b)-clusterable with respect to C(-) then do:

e Find a subset S C U such that Ps € S;,(X) and such that there exist at most
(e1 +0/2) - |U| witnesses to Ps in U.

3. Output Ps.

Proof of Theorem 6: Let X be a set of points that is e;-close to (k, b)-clusterable with respect
to C(-), and recall that C(-) is an hereditary cost measure. By Lemma 12, given the size m of
the sample U that is selected by Algorithm 4, with high probability the subset U is (&1 + 6/2)-
close to being (k, b)-clusterable. By Condition (2) in Theorem 6, this implies that the subset U is
(€1 + d/2)-good with respect to S, ,(X). That is, it contains a subset S such that Ps € S p(X)
and such that there are at most (e; + d/2) - |U| witnesses to Ps in U.

By the proof of Lemma 13 we can ensure that with high probability over the choice of U, for
every skeleton Pg € S, ,(X) such that S C U and there are more than e3|X| witnesses to Pg in X,
the fraction of witnesses to Ps in U is more than €, — d/2 = €; + /2. Assuming that this event
holds, then for every subset S C U such that Py € S;,(X) and U contains at most (e; + 3/2) - |U|
witnesses to Pg, the skeleton Ps has at most €3] X | witnesses in X. By Condition (1) in Theorem 6,
every such skeleton (and in particular the one output by Algorithm 4) is an implicit representation
of a (k, (1 4+ B)b)-clustering of all but an eg-fraction of the points in X. H

Applying Algorithm 4 to specific cost measures. It is not hard to verify that the conditions
in Theorem 6 hold for each of the cost measures studied in the previous subsections (Subsections 5.2
and 5.3). Specifically, observe that the first condition in Theorem 6 is a slight strengthening of
the first condition in Theorem 2, and the second condition is equivalent to the second condition
in Theorem 2. We have shown that the second condition holds for the cases we have studied in
the previous subsections. It is easily verified that the proofs that the first condition in Theorem 2
holds for these cases, in fact give the first condition in Theorem 6. Hence for these cases, the query
complexity of Algorithm 4 is the same as that of the tolerant testing algorithm.

It is also easy to verify that for the cases studied in the previous subsections, given a skeleton
Ps € S, ,(X) and a point z € X, it is possible to efficiently determine w(Ps, z) (that is, to determine
whether z is a witness for Pg). Moreover, if w(Ps,z) = 0 then it is possible to efficiently assign x
to a cluster (so that we obtain a (k, (1+)b)-clustering of all points {z : w(Ps,z) = 0}, as required
in the first condition in Theorem 6). In particular, all we need to do in order to determine w(Pg, z)
(and if w(Ps,z) = 0, to determine the cluster that z belongs to) is to compute the distances
between = and the points in S.

The running time of Algorithm 4 for a specific cost measure, depends, as before, on the com-
plexity of determining whether U is (€1 +¢/2)-close to (k, b)-clusterable. In addition it now depends
on the complexity of finding the desired Pg. In the cases studied in the previous subsections, the
latter task can be done efficiently provided that a clustering of all but an (e; + 6/2)-fraction of the
points in U is indeed found (see the proofs to Lemmas 15 and 18).

34

6 Tolerant Testing of Graph Properties

Let G = (V, E) be a graph where we denote by Gy the subgraph of G induced by a subset U C V.
If @ is a property of graphs, then the following is a “natural” candidate for a tolerant testing
algorithm for graph property Q.

Algorithm 5 (Tolerant Testing Algorithm for Graph Property Q)

1. Uniformly and independently select m wvertices from V and denote the resulting
subset by U.

2. Let 6 = ea—ey1. If Gy is (e1+0/2)-close to having property Q then accept, otherwise
reject.

The framework described in Subsection 5.1 can be adapted to graphs and partition properties
of graphs, similarly to what was done for non-tolerant testing by Czumaj and Sohler [CS02]. Using
their framework they obtain results for standard property testing of colorability (of dense graphs).
In this case the set of points X is the set of graph vertices V', and skeletons are partitions of subsets
of vertices.

Definition 21 (Hereditary) A property Q of graphs is hereditary if for every graph G that has
property Q, it is the case that every subgraph of G also has the property Q.

Lemma 19 Let QQ be an hereditary property of graphs, and let 0 < €1,0 < 1. If G is e1-close to
having property Q, then with probability at least 2/3 over the choice of a random subset U of size
m = Q(log(1/6)/62), the subgraph Gy is (e1 + 6/2)-close to having Q.

Proof: Let G' be a graph having property @ such that G is at most e;-far from G’. That is,
|A{E(G), E(G")}| < en®, where

A{E(G),E(G")} € {B(G) \ E(G")} U{E(G") \ E(G)}

denotes the symmetric difference between the two sets of edges. For convenience of our analysis,
we view each edge in E(G) (similarly, E(G')), as an ordered pair. Recall that since @ is hereditary,
then every subgraph of G’ has property Q. We would like to show that with probability at least
2/3 over the choice of U, the subgraphs Gy and Gy; are (€1 + ¢)-close. The lemma, directly follows.

For each vertex v, let D(v) denote the subset of vertices u, such that (u,v) € A{E(G), E(G")},
and let d(v) = |D(v)|/n. By these definitions, and our assumption on G, we have that

% 3 dw) < e (16)

veV

Let U = {v1,...,vm}, where each v; is chosen uniformly and independently. Since the expected
value of d(v;), for every i, is at most €1, then by an additive Chernoff bound,

Pr %id(v,) > €1+ 6/4| < exp(—2m(§/4)?) (17)

35

which for m = Q(1/62), is at most 1/10. Thus we have that with sufficiently high probability, the
average value of d(v;) taken over the sample U, is not much larger than e;.

For each i =1,...,m, let U; = U \ {v;}, and define the event E; as follows:
‘D(’U,) n UZ|

FE;:
! m—1

> d(vi) +6/4 (18)
Once again, if we apply an additive Chernoff bound then we get that for each 1 <7 < m,
Pr(E;] < exp(—2(m —1)(6/4)*) (19)

For m = (log(1/4)/62, this probability is at most 1/(10m). By a union bound, with probability
at least 9/10 none of the events E; holds and hence for every 1 < ¢ < m, we have that
[D(vi) NUi| _ d
m—1 -

(v;) +6/4 (20)

Combining the above we have that with probability at least 2/3

A{E(Gu), B(Gy)} = Y |D(vi) NUjl
i=1

< me S (d(wg) +6/4)
i=1
< me > dlw) + w574
i=1
< m2(ep +6/4) +m?(6/4)
< (e1+6/2)m? (21)

as desired. W

As was done above for clustering, it is possible to define skeletons and witnesses, however here
these concepts are defined with respect to the set of vertices V.

Theorem 7 Let Q be an hereditary partition property of graphs. Suppose that S, (V') is a set of
skeletons defined over V', which satisfy the following:

1. For any given 0 < a < 1, if G is a-far from property Q then for every skeleton in S ,(V)
there are at least a - |V| witnesses in V.

2. For any given 0 < a < 1, if a subset U C V is a-bad with respect to S; ,(V'), then Gy is a-far
from Q.

Let m = Q ((logp + slog(s/8))/8?)) where § = €3 — 1. If G is €1-close to having property Q then
Algorithm 5 accepts with probability at least 2/3, and if G is ex-far from having property Q then
Algorithm 5 rejects with probability at least 2/3.

Proof: The first item in the theorem directly follows from Lemma 19.

To prove the second item, consider a graph G that is (e; = €1 + §)-far from Q. By the first item
in the premise of the theorem, every skeleton in S, has at least e - |[V| elements v € V' that are
witnesses for it. By Lemma 13, if we set o = €2 — §/2 and v = §/2, then with probability 2/3 over
the choice of U, the set U is (e2 — §/2)-bad. But by the second item in the premise of the theorem,
for each such U, the graph Gy is (e2 — 0/2) far from Q. Since €3 — /2 = €; + §/2, each such U
would cause Algorithm 5 to reject, and the second item of the theorem follows. W

36

References

[ADPRO3]
[AK02]

[BEK 03]

[BFR™00]

[BLR93]
[BRW9Y]

[COP03]

[CS02]

[DGL*99]

[EKKT00]

[Fis01]

[FK99]

[FLN+02]

[GGL*00]

[GGRYS]

N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. SIAM Journal on
Discrete Math, pages 393-417, 2003.

N. Alon and M. Krivelevich. Testing k-colorability. SIAM Journal on Discrete Math,
15(2):211-227, 2002.

T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and Rahul
Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings

of the Thirty-Seventh Annual ACM Symposium on the Theory of Computing, pages
316-324, 2003.

T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White. Testing that distribu-
tions are close. In Proceedings of the Forty-First Annual Symposium on Foundations of
Computer Science, pages 259-269, 2000.

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to nu-
merical problems. JACM, 47:549-595, 1993.

T. Batu, R. Rubinfeld, and P. White. Fast approximate PCPs for multidimensional
bin-packing problems. In Proceedings of RANDOM, pages 245-256, 1999.

M. Charikar, L. O’Callaghan, and R. Panigraphy. Better streaming algorithms for
clustering problems. In Proceedings of the Thirty-Seventh Annual ACM Symposium on
the Theory of Computing, pages 30-39, 2003.

A. Czumaj and C. Sohler. Abstract combinatorial programs and efficient property
testers. In Proceedings of the Forty-Third Annual Symposium on Foundations of Com-
puter Science, pages 83-92, 2002.

Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky.
Improved testing algorithms for monotonocity. In Proceedings of RANDOM, pages 97—
108, 1999.

F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.
JCSS, 60(3):717-751, 2000.

E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of
the European Association for Theoretical Computer Science, 75:97-126, 2001.

A. Frieze and R. Kanan. Quick approximation to matrices and applications. Combina-
torica, 19(2):175-220, 1999.

E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samrodnit-
sky. Monotonicity testing over general poset domains. In Proceedings of the Thirty-Sixth
Annual ACM Symposium on the Theory of Computing, pages 474-483, 2002.

O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing mono-
tonicity. Combinatorica, 20(3):301-337, 2000.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. JACM, 45(4):653-750, 1998.

37

[Gol98]

[GROO]

[HKO03a]
[HKO03b)]

[KSS94]

[Ron01]

[RS96]

O. Goldreich. Combinatorial property testing - a survey. In Randomization Methods in
Algorithm Design, pages 45—60, 1998.

O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Electronic
Collogium on Computational Complexity, 7(20), 2000.

S. Halevy and E. Kushilevitz. Private Communications, 2003.

S. Halevy and E. Kushilevitz. Distribution-free property testing. In Proceedings of
RANDOM, pages 302-317, 2003.

M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning.
Machine Learning, 17(2-3):115-141, 1994.

D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597-649,
2001.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

ECCC ISSN 1433-8092

38 http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

