
Counting with Counterfree Automata

Christian Glaßer
University at Würzburg, Germany

glasser@informatik.uni-wuerzburg.de

16th January 2004

Abstract

We study the power of balanced regular leaf-languages. First, we investigate (i) regular languages
that are polylog-time reducible to languages in dot-depth 1/2 and (ii) regular languages that are
polylog-time decidable. For both classes we provide

• forbidden-pattern characterizations, and

• characterizations in terms of regular expressions.

Both classes are decidable. The intersection of class (i) with their complement is exactly class (ii).

We apply our observations and obtain three consequences.

1. Gap theorems for balanced regular-leaf-language definable classes C and D:

(a) Either C is contained in NP, or C contains coUP.

(b) Either D is contained in P, or D contains UP or coUP.

Also we extend both theorems such that no promise classes are involved. Formerly, such gap
theorems were known only for the unbalanced approach.

2. Polylog-time reductions can tremendously decrease dot-depth complexity (despite that they
cannot count). We exploit a weak type of counting possible with counterfree automata, and
construct languages of arbitrary dot-depth that are reducible to languages in dot-depth 1/2.

3. Unbalanced starfree leaf-languages can be much stronger than balanced ones. We construct
starfree regular languages Ln such that the balanced leaf-language class of Ln is contained
in NP, but the unbalanced leaf-language class of Ln contains level n of the unambiguous
alternation hierarchy. This demonstrates the power of unbalanced computations.

1 Introduction

Regular languages are described by regular expressions. These consist of single letters which are com-
bined by three types of operations: Boolean operations, concatenation, and iteration. If we forbid iter-
ation, then these restricted regular expressions define starfree regular languages (starfree languages for
short). The class of these languages is denoted by SF. SF is a subclass of REG, the class of regular
languages.

Throughout the paper all automata are deterministic. Call a minimal finite automaton permutation-
free if the following holds for all n ≥ 2, all words w, and all states s: If s on input wn leads to s,
then already s on input w leads to s. While regular languages are accepted by finite automata, starfree
languages are accepted by permutationfree finite automata [Sch65, MP71] (permutationfree automata
for short). By definition, if any state in a permutationfree automaton has a loop wn, then it has already
a loop w. Therefore, permutationfree automata cannot count the length of their inputs modulo some
m > 1. For this reason, McNaughton and Papert [MP71] call such automata counterfree.

1

Electronic Colloquium on Computational Complexity, Report No. 11 (2004)

ISSN 1433-8092

Dot-Depth Hierarchy. The most interesting aspect of starfree languages is the dot-depth hier-
archy which was introduced by Brzozowski and Cohen [CB71, Brz76]. The dot-depth measures the
complexity of starfree languages. It counts the minimal number of nested alternations between Boolean
operations and concatenation that is needed to define a language. Classes of the dot-depth hierarchy
consist of languages that have the same dot-depth. Fix some finite alphabet that has at least two letters
(the hierarchy collapses for unary alphabets). Define Pol(C), the polynomial closure of C, to be C’s clo-
sure under finite (possibly empty) union and finite (possibly empty) concatenation. Similarly, let BC(C)
be the Boolean closure of C. For n ≥ 0 define the classes (or levels) of the dot-depth hierarchy:

B0
df
= {L

∣

∣ L is finite or cofinite}

Bn+ 1

2

df
= Pol(Bn)

Bn+1
df= BC(Bn+ 1

2

)

The dot-depth of some language L is defined as the minimal m such that L ∈ Bm where m = n/2
for some integer n. At first glance, the definition of levels n + 1/2 looks a bit artificial. The reason
for this kind of definition is of historic nature: Originally, Brzozowski and Cohen were interested in the
full levels Bn and therefore, defined the dot-depth hierarchy in this way. Later Pin and Weil [PW97]
considered both, the levels Bn and their polynomial closure. To be consistent with Brzozowski and
Cohen, they extended the dot-depth hierarchy by half levels Bn+1/2.

By definition, all levels of the dot-depth hierarchy are closed under union and it is known that
they are also closed under intersection, under taking inverse morphisms, and under taking residuals
[PP86, Arf91, PW97]. The dot-depth hierarchy is strict [BK78, Tho84] and it exhausts the class of
starfree languages [Eil76].

Does there exist an algorithm that computes the dot-depth on input of a starfree language? This
question is known as the dot-depth problem. Today, more than 30 years after it was discovered by
Brzozowski and Cohen, it is still an open problem. Most researchers consider the dot-depth problem as
one of the most difficult problems in automata theory.

The problem remains hard, if we ask for decidability of single classes of the dot-depth hierarchy.
However, we know that the 4 lowest classes of the dot-depth hierarchy are decidable. B0 is decidable
for trivial reasons. Pin and Weil [PW97] proved decidability of B1/2, Knast [Kna83] proved decidability
of B1, and Glaßer and Schmitz [GS00] proved decidability of B3/2. Other levels are not known to
be decidable, but it is widely believed that they are. The decidability results for B1/2 and B3/2 share an
interesting property: Both classes, B1/2 and B3/2, have forbidden-pattern characterizations. This means
that a language L belongs to B1/2 if and only if L’s minimal automaton does not have a certain pattern.
This immediately implies decidability.

Weak Counting. We come back to the result by Schützenberger [Sch65] and McNaughton and
Papert [MP71]: The class of languages accepted by permutationfree automata (or counterfree automata)
is exactly the class of starfree languages. This suggests the intuition that starfree languages cannot count
(modulo some m > 1). For instance the set of even-length words is not starfree. In contrast, there
do exist starfree subset of all even-length words. This is possible, since sometimes counting can be
reformulated as local properties. For instance L = (01)∗ is starfree, since a word belongs to L if and
only if it starts with 0, ends with 1, and neither has 00 nor has 11 as factor. This example adjusts our
intuition: Starfree languages cannot do arbitrary counting, but counting in a restricted sense is possible.
In this paper we will exploit the phenomenon of weak counting.

Leaf Languages. The concept of leaf languages was independently introduced by Bovet, Crescenzi,
and Silvestri [BCS92] and Vereshchagin [Ver93]. Let M be any nondeterministic polynomial-time-
bounded Turing machine such that every computation path stops and outputs one letter. M(x) denotes
the computation tree on input x. Call a nondeterministic polynomial-time-bounded Turing machine M
balanced if there exists a polynomial-time computable function that on input (x, n) computes the n-th

2

path of M(x). Let leafstringM (x) be the concatenation of all outputs of M(x). For any language
B, let Leafp

u(B) be the class of languages L such that there exists an (unbalanced) nondeterministic
polynomial-time-bounded Turing machine M as above such that for all x,

x ∈ L ⇐⇒ leafstringM (x) ∈ B.

If we assume M to be a balanced, nondeterministic polynomial-time-bounded Turing machine, then
this defines the class Leafp

b(B). For any complexity class C let Leafp
u(C) =

⋃

B∈C Leafp
u(B) and

Leafp
b(C) =

⋃

B∈C Leafp
b(B). If C ⊆ REG and D = Leafp

u(C), then we say that D is a unbalanced
regular-leaf-language definable class. Analogously define balanced regular-leaf-language definable
classes. Since in this paper, C will always be a subclass of REG, we will use the term (un)balanced
leaf-language definable class as abbreviation.

Connection between Hierarchies. Starfree languages have a very nice connection with complexity
theory. In the concept of leaf languages, classes of the dot-depth hierarchy correspond exactly to classes
of the polynomial-time hierarchy. For n ≥ 1,

Leafp
b(Bn−1/2) = Leafp

u(Bn−1/2) = ΣP
n .

This connection allows a translation of knowledge about dot-depth classes into knowledge about com-
plexity classes. Here the forbidden-pattern characterizations come into play. They allows us to identify
gaps between leaf-language definable complexity classes. We sketch this very nice approach with help
of an example which goes back to Pin and Weil [PW97] and Borchert, Kuske, and Stephan [BKS98].

Consider B1/2. If B belongs to B1/2, then, by the mentioned correspondence, B’s leaf-language
is contained in NP. Otherwise, B does not belong to B1/2. So B’s minimal automaton contains the
forbidden pattern [PW97]. This knowledge about B can be exploited to show that B’s leaf-language is
powerful enough to solve coUP [BKS98]. Therefore, between NP and coUP there are no unbalanced
leaf-language definable classes. We call this a gap theorem.

Another gap theorem is known for P. Borchert [Bor95]1 showed that the following holds for any
unbalanced leaf-language definable class C: Either C is in P, or C contains at least one of the following
classes: NP, coNP, MODpP for some prime p.

Balanced vs. Unbalanced. We are essentially interested in gap theorems similar to the ones showed
by Borchert [Bor95] and Borchert, Kuske, and Stephan [BKS98]. However, this time we consider
balanced leaf languages which show a new situation.

For the unbalanced case the following holds: For any regular B in dot-depth 1/2, Leaf p
u(B) is in

NP; for any regular B not in dot-depth 1/2, Leafp
u(B) is not in NP (unless coUP ⊆ NP). This does not

hold anymore for the balanced case. It is possible to construct a starfree language C (Example 3.7) such
that C is outside dot-depth 1/2, but Leafp

b(C) ⊆ NP (and therefore does not robustly contain2 coUP).
Even more, there is a regular D that is not starfree, but still Leaf p

b(D) ⊆ NP (e.g., D = (AA)∗ for any
alphabet A). In this sense, the classes of the dot-depth hierarchy do not fit to balanced leaf languages.
The reason for this becomes clear with help of a theorem discovered by Bovet, Crescenzi, and Silvestri
[BCS92] and Vereshchagin [Ver93].

B≤pltC ⇔ for all oracles O, Leafp
b(B)O ⊆ Leafp

b(C)O

So Leafp
b(B) ⊆ NP not only for all B in dot-depth 1/2, but also for all B that are polylog-time reducible

to a language in dot-depth 1/2.
Our Contribution. We start the paper with a study of the power of polylog-time reductions

restricted to regular languages. More precisely, we study two classes:

1In contrast to the chronological order, we first mentioned the result by Borchert, Kuske, and Stephan [BKS98] and then
Borchert’s result [Bor95]. The reason is that our paper first proves a result similar to the one by Borchert, Kuske, and Stephan,
and then derives a result similar to Borchert.

2This means containment relative to all oracles.

3

1. Rplt (B1/2) ∩ REG, the class of regular languages that are polylog-time reducible to a language
in dot-depth 1/2 (Section 3), and

2. PLT ∩ REG, the class of regular languages that are polylog-time decidable (Section 4).

For both classes we prove two characterizations:

• a forbidden-pattern characterization, and

• a characterization in terms of regular expressions.

This immediately implies decidability of the classes. Moreover, we show that both classes are strongly
connected:

Rplt (B1/2) ∩ coRplt (B1/2) ∩ REG = PLT ∩ REG.

We derive three consequences from the characterizations above.
Consequence 1: Two gap theorems. We obtain gap theorems for balanced leaf-language definable

classes C and D:

1. Either C is contained in NP, or C contains coUP.

2. Either D is contained in P, or D contains UP or coUP.

We translate both theorems into gap theorems that do not involve promise classes.

1. Either C is contained in NP, or C contains at least one of the following classes: coNP, co1NP,
MODpP for some prime p.

2. Either D is contained in P, or D contains at least one of the following classes: NP, coNP, 1NP,
co1NP, MODpP for some prime p.

Formerly, such gap theorems were known only for the unbalanced case [Bor95, BKS98].
Consequence 2: Polylog-time reductions can decrease dot-depth complexity. We come back

to counting with counterfree automata. Here we are interested in the question to what extend polylog-
time reductions can use weak counting. We mentioned a starfree language outside dot-depth 1/2 that
is polylog-time reducible to a language in dot-depth 1/2 (Example 3.7). Hence, although polylog-time
reductions cannot count (e.g., the number of letters a in a word), they can decrease dot-depth complexity.
We show that this decrease can be tremendous: For n ≥ 1 there exist starfree languages Ln that are not
in Bn but still in Rplt(B1/2).

This is only possible, since counterfree automata can do weak counting. We use starfree languages
with high dot-depth complexity. These languages have the property that words not in the language have
a regular3 pattern of letters b. We can locally test whether a given word has this regular pattern. If so,
then by looking at the position of the last b we can gain information about the number of a’s and b’s in
the word. This tells us immediately whether the word belongs to the language. Otherwise, if a word
does not have the regular pattern, then it is in the language by definition. All these computations can
be done by a polylog-time reduction function. So polylog-time reductions can drastically decrease the
dot-depth complexity of these languages.

Consequence 3: Unbalanced starfree leaf-languages can be much stronger than balanced ones.
Remember that Ln /∈ Bn, but still Ln ∈ Rplt (B1/2). We exploit this to obtain conclusions for leaf-
language definable complexity classes. We prove lower bounds for the complexity of Leaf p

u(Ln):

• Leafp
b(Ln) ⊆ NP, but

3Here we aim at the natural meaning of the word ‘regular’.

4

• Leafp
u(Ln) contains level n of the unambiguous alternation hierarchy.

It is expected that level n of the unambiguous alternation hierarchy is not contained in level n− 1 of the
polynomial-time hierarchy. If this is true, then for every n ≥ 1, Leaf p

b(Ln) ⊆ NP, yet Leafp
u(Ln) 6⊆

ΣP
n−1. Therefore, our result gives evidence that for starfree languages, unbalanced leaf-languages are

much stronger than balanced ones.

2 Preliminaries

N denotes the set of natural numbers. We fix a finite alphabet A such that |A| ≥ 2. A∗ denotes the set of
words (including the empty word ε). Throughout the paper all languages and all classes of the dot-depth
hierarchy are considered with respect to A. Polylog-time reductions are defined as follows.

Definition 2.1 A function f : A∗ → A∗ is polylog-time computable if there exist two polynomial-time-
bounded oracle transducers R : A∗ × N → A and l : A∗ → N such that for all x,

f(x) = Rx(|x|, 1)Rx(|x|, 2) · · · Rx(|x|, lx(|x|))

where R and l access the input x as an oracle. A language A is polylog-time reducible to a language
B, A≤pltB, if there exists a polylog-time computable f such that for all x, x ∈ A ⇔ f(x) ∈ B.

PLT denotes the class of languages that have polylog-time computable characteristic functions. We
summarize connections between dot-depth hierarchy and polynomial-time hierarchy.

Theorem 2.2 ([HLS+93, BV98, BKS98]) The following holds for n ≥ 1 and relative to all oracles.

1. P = Leafp
b(PLT) = Leafp

b(B0) = Leafp
u(B0)

2. ΣP
n = Leafp

b(Bn−1/2) = Leafp
u(Bn−1/2)

3. ΠP
n = Leafp

b(coBn−1/2) = Leafp
u(coBn−1/2)

4. BC(ΣP
n) = Leafp

b(Bn) = Leafp
u(Bn)

5. NP(n) = Leafp
b(B1/2(n)) = Leafp

u(B1/2(n))

Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] showed an important connection
between polylog-time reducibility and balanced leaf-language definable classes.

Theorem 2.3 ([BCS92, Ver93]) For all languages B,C ,

B≤pltC ⇔ for all oracles O, Leafp
b(B)O ⊆ Leafp

b(C)O.

Definition 2.4 Let A be a finite automaton with set of states S and extended transition function δ. For
every word w, let δw be the function S → S such that δw(s) df= δ(s, w). A nonempty word u is called
idempotent if δuu = δu.

Note that all δw form the syntactic monoid of A. The next lemma shows that for every fixed automaton,
we can factorize any word into idempotents of constant length.

Lemma 2.5 ([GS00]) For every finite automaton there exists a constant c such that every nonempty
word w can be factorized as w = v0u1v1 · · · umvm where vi and ui are nonempty words of length < c
and all ui are idempotent.

5

s1 s2

u

�

u

�-v

+ −

? ?
z z

Figure 1: Forbidden pattern for Rplt(B1/2) ∩ REG where |v| = |u|.

3 Regular Languages that are ≤plt-reducible to B1/2

In this section, with Theorem 3.2, we prove two characterizations of regular languages that belong to
the polylog-time closure of B1/2:

• a forbidden-pattern characterization, and

• a characterization in terms of regular expressions.

In Theorem 3.1 we separately formulate and prove the most difficult direction of these characterizations.
As a consequence, we obtain a gap theorem for balanced leaf-language definable complexity classes
C: Either C is contained in NP, or C contains coUP. Additionally, we describe this gap so that no
promise classes are involved: Either C is contained in NP, or C contains at least one of the following
classes: coNP, co1NP, MODpP for some prime p. Formerly, such gap theorems were known only for
the unbalanced case [BKS98].

Moreover, in this section we see that the regular part of the polylog-time closure of B1/2 coincides
with the regular part of B1/2’s closure under a weaker form of polylog-time reduction: Here the reduction
function is only allowed to ask a constant number of queries.

Finally, the forbidden-pattern characterization implies decidability of Rplt (B1/2) ∩ REG.

Theorem 3.1 Let L be a regular language such that the pattern in Figure 1 does not appear in the
minimal automaton of L. There exists d ≥ 1 such that L is a finite union of languages of the form
w0(A

d)
∗
w1 · · · (A

d)
∗
wn where n ≥ 0 and wi ∈ A∗.

Proof Let A denote the minimal automaton of L with transition function δ and initial state s0. Let c be
the constant from Lemma 2.5.

d
df
= c!

For every idempotent u define B(u) df=((Ad)
∗
∩ A∗u) ∪ {ε}.

Claim: Let E = w0u0B(u0) · w1u1B(u1) · · ·wn−1un−1B(un−1) · wn such that each ui is idempotent
of length < c and E ⊆ L. There exists E ′ = w′

0u
′
0B(u′

0) · w
′
1u

′
1B(u′

1) · · ·w
′
m−1u

′
m−1B(u′

m−1) · w
′
m

such that each u′
i is idempotent of length < c,

1. |w′
0u

′
0 · · ·w

′
m−1u

′
m−1w

′
m| ≤ 2c|A|cd|A|, and

2. E ⊆ E′ ⊆ L.

6

With this claim at hand we argue as follows. For any w ∈ L let E ′
w be the expression we obtain

when we apply the claim to E = w. By statement 1 of the claim, the length of E ′ is bounded by a
constant. Therefore,

L =
⋃

w∈L

E′
w,

where the union is finite. It remains to show that every E ′
w is a finite union of languages of the form

w0(A
d)

∗
w1 · · · (A

d)
∗
wn. This is easy to observe, since for every u,

B(u) =
⋃

v∈A∗,
|v|=d−|u|

(Ad)
∗
vu ∪ {ε}.

This proves the theorem.

Proof of the Claim: Assume the claim does not hold. So there exists a counter example E such that
there is no E ′ as stated in the claim. We choose E minimal in the sense that |w0u0 · · ·wn−1un−1wn| is
minimal. Hence the claim holds for all shorter expressions. Note that

|w0u0 · · ·wn−1un−1wn| > 2c|A|cd|A|. (1)

Case 1: n ≥ |A|cd|A|.

There are less than |A|c idempotents of length < c. Hence there exists an idempotent u such that
u = ui for more than d|A| words ui. We mark d|A|+1 such appearances of u. Say these are the factors
ui0 , ui2 , and so on. Consider the word w df=w0u0 · · ·wn−1un−1wn and denote the prefix that reaches up
to the end of uij by

yj
df
=w0u0 · · ·wijuij .

We are now interested in two things:

• the length of yj modulo d, and

• the state in A we reach after reading yj .

Since we consider d|A|+1 words yj , there exist two such words yj and yk such that |yj| ≡ |yk| (mod d)
and δ(s0, yj) = δ(s0, yk). This means that (i) the positions of uij and uik in w are equivalent modulo
d, and (ii) when A reads w, then it reaches uij with the same state it reaches uik . Ẽ is defined as
the expression obtained from E when we replace the part between uij and wik+1 by B(u). So the
expressions E and Ẽ can be aligned as follows.

E = w0u0B(u0) · · ·wij uij B(uij) · · ·wikuikB(uik)wik+1uik+1 · · ·wn−1un−1B(un−1) · wn

Ẽ = w0u0B(u0) · · ·wij uij · B(u) · wik+1uik+1 · · ·wn−1un−1B(un−1) · wn

We show
E ⊆ Ẽ ⊆ L. (2)

Assume for the moment that (2) has been proved. Then Ẽ satisfies the requirements for E in our claim.
Moreover, Ẽ is shorter than E, i.e.,

|w0u0 · · ·wij uij · wik+1uik+1wn−1un−1wn| < |w0u0 · · ·wn−1un−1wn|.

Therefore, the claim holds for Ẽ. We obtain an E ′ that corresponds to Ẽ. Together with (2) it follows
that E ⊆ Ẽ ⊆ E′ ⊆ L. This contradicts the choice of E.

7

To finish Case 1 it remains to show (2). For E ⊆ Ẽ it suffices to observe

B(uij)wij+1uij+1B(uij+1) · · ·wikuikB(uik) ⊆ B(u).

Note that u = uij = uik . Therefore, it is enough to show

B(uij)wij+1uij+1B(uij+1) · · ·wikuikB(uik) ⊆ (Ad)
∗
.

Words in any B(·) are of length ≡ 0 (mod d). So it remains to show

|wij+1uij+1 · · ·wikuik | ≡ 0 (mod d).

This is easy to see, since yk = yj ·wij+1uij+1 · · ·wikuik and |yk| ≡ |yj | (mod d). This shows E ⊆ Ẽ.

Finally we show Ẽ ⊆ L. The word w0u0 · · ·wn−1un−1wn belongs to E and therefore to L. From
δ(s0, yj) = δ(s0, yk) it follows that

w0u0 · · ·wij uij · wik+1uik+1 . . . wn−1un−1wn ∈ L.

We show that there does not exist v ∈ B(un−1) such that

w0u0 · · ·wij uij · wik+1uik+1 . . . wn−1un−1 · v · wn /∈ L.

If such v exists, then |v| ≡ 0 (mod d) and un−1 is suffix of v. Therefore, after reading

w0u0 · · ·wij uij · wik+1uik+1 . . . wn−1un−1

the automaton reaches a state s1 such that

• s1 has a loop un−1 (since un−1 is idempotent),

• s2
df= δ(s1, v) has a loop un−1 (since un−1 is suffix of v),

• δ(s1, wn) accepts, and δ(s2, wn) rejects.

Since |v| is divisible by d = c!, it is in particular divisible by |un−1|. Let k
df
= |v|/|un−1|. Both states s1

and s2 have a loop uk
n−1 where |uk

n−1| = |v|. So the pattern in Figure 1 appears in A; this contradicts
our assumption. This shows that our choice of v is not possible. Therefore,

w0u0 · · ·wij uij · wik+1uik+1 . . . wn−1un−1 · B(un−1) · wn ⊆ L. (3)

Analogously we obtain:

w0u0 · · ·wijuij · wik+1uik+1 · · ·wn−2un−2B(un−2)wn−1un−1B(un−1)wn ⊆ L

...

w0u0B(u0) · · ·wij uij B(uij) · wik+1uik+1B(uik+1) · · ·wn−1un−1B(un−1)wn ⊆ L

This shows Ẽ ⊆ L and finishes Case 1.

Case 2: n < |A|cd|A|.

We reduce this case to Case 1 where we already obtained a contradiction. The sum of lengths of all
ui is ≤ cn. From equation (1) it follows that the sum of lengths of all wi is > c|A|cd|A|. So there exists
j such that |wj | > c. By Lemma 2.5, there exist nonempty words v0, v1, and u such that wj = v0uv1

8

where u is idempotent of length < c. We define Ẽ to be the expression obtained from E when we insert
B(u) between u and v1. The expressions E and Ẽ can be aligned as follows.

E = w0u0B(u0) · · ·wj−1uj−1B(uj−1) · v0u · v1 · ujB(uj) · · ·wn−1un−1B(un−1) · wn

Ẽ = w0u0B(u0) · · ·wj−1uj−1B(uj−1) · v0u · B(u) · v1 · ujB(uj) · · ·wn−1un−1B(un−1) · wn

Assume there exists w ∈ Ẽ − L. Let w = x · v0uvv1 · z be the factorization according to expression
Ẽ where v ∈ B(u). Analogous to the argumentation for equation (3) we find the pattern from Figure 1
between s1

df= δ(s0, xv0u) and s2
df= δ(s0, xv0uv). (Here v1z leads from s1 to an accepting state and

from s2 to a rejecting state.) This is a contradiction and it follows that E ⊆ Ẽ ⊆ L. Therefore, by our
assumption, also for Ẽ there does not exist an expression E ′ as stated in the claim. Note that E and
Ẽ have the same size, i.e., when dropping the expressions B(·) in E and Ẽ, then the resulting words
have same size. So Ẽ is a minimal counter example for the claim, and compared to E it contains one
more expression B(·). By iterating this procedure we obtain a minimal counter example that contains
|A|cd|A| expressions B(·). For this counter example we obtain a contradiction by Case 1. This finishes
the proof the claim. 2

Theorem 3.2 For every regular L the following are equivalent.

1. L ∈ Rplt (B1/2).

2. The pattern in Figure 1 does not appear in the minimal automaton of L.

3. There exists d ≥ 1 such that L is a finite union of languages of the form w0(A
d)

∗
w1 · · · (A

d)
∗
wn

where n ≥ 0 and wi ∈ A∗.

Proof 2 ⇒ 3: Follows from Theorem 3.1.
3 ⇒ 1: Let a, b be different letters from A. It suffices to show w0(A

d)
∗
w1 · · · (A

d)
∗
wn≤

pltA∗bA∗.
On input w the reduction produces a word w′ such that

|w′| = 2dlog |w|e(n+1).

The k-th letter of w′ is computed as follows: We interpret k as (n + 1)-tuple (p0, . . . pn) of positions
in w. First we make sure that p0 = 0, pn = |w| − |wn|, and p0 ≤ p1 ≤ · · · ≤ pn. If either of these
conditions does not hold, then output letter a. Otherwise, for every i we verify that factor wi appears
at position pi in w. Again, output a if either of these does not hold. Finally, for i ≥ 1, verify that
pi − pi−1 − wi−1 ≡ 0 (mod d). If this does not hold, then output a. Otherwise output b. Observe that
this polylog-time function reduces w0(A

d)
∗
w1 · · · (A

d)
∗
wn to A∗bA∗.

1 ⇒ 2: There exists L′ ∈ B1/2 such that L≤pltL′. By Theorem 2.3, relative to all oracles,
Leafp

b(L) ⊆ Leafp
b(L

′). By Theorem 2.2, relative to all oracles, Leafp
b(L

′) ⊆ NP. Hence, relative
to all oracles,

Leafp
b(L) ⊆ NP. (4)

Assume that the pattern in Figure 1 appears in L’s minimal automaton A (with initial state s0 and
transition function δ). Choose x such that δ(s0, x) = s1. We exploit the pattern and show that Leafp

b(L)
contains coUP. For this, consider any UP machine M . We modify M by adding an artificial first path
which outputs x and an artificial last path which outputs z. Moreover, any rejecting path outputs u and
any accepting path outputs v. If w ∈ U , then the leaf word of M(w) belongs to xu∗vu∗z ⊆ L. If
w /∈ U , then the leaf word of M(w) belongs to xu∗z ⊆ L. Therefore, L(M) ∈ Leafp

b(L) and hence,
coUP ⊆ Leafp

b(L). Since our construction relativizes, coUP ⊆ Leaf p
b(L) relative to all oracles. From

equation (4) we obtain that relative to all oracles,

coUP ⊆ NP. (5)

9

This is a contradiction, since an oracle relative to which coUP 6⊆ NP is known [GW03]. 2

Let ≤plt
const denote the restricted type of polylog-time reductions where the reduction is only allowed

to ask a constant number of queries (i.e., can access only constantly many letters of the input word).
Clearly, we can assume that these are nonadaptive queries.

Corollary 3.3 Rplt (B1/2) ∩ REG = Rplt
const (B1/2) ∩ REG.

Proof The inclusion ⊇ holds trivially. If L ∈ Rplt (B1/2) ∩ REG, then by Theorem 3.2, L is a finite

union of languages of the form w0(A
d)

∗
w1 · · · (A

d)
∗
wn. In the proof of Theorem 3.2 we look at the

implication 3 ⇒ 1. There we actually show w0(A
d)

∗
w1 · · · (A

d)
∗
wn≤

plt
constA

∗bA∗. 2

Corollary 3.4 Let C = Leafp
b(L) for some regular L.

1. If L ∈ Rplt(B1/2), then C ⊆ NP.

2. If L /∈ Rplt(B1/2), then coUP ⊆ C.

Proof If L ∈ Rplt (B1/2), then from the Theorems 2.2 and 2.3 it follows that C ⊆ Leaf p
b(B1/2) = NP.

Otherwise, L /∈ Rplt(B1/2). Let A be the minimal automaton of L. By Theorem 3.2, A contains the
pattern in Figure 1. We can exploit this pattern to show coUP ⊆ C (see direction 1 ⇒ 2 in the proof of
Theorem 3.2). 2

Corollary 3.4 shows a gap for balanced leaf-language definable classes above NP: Any such class
higher than NP contains coUP. Since coUP is a promise class, it would be most welcome to show a
similar gap that does not involve any promise class. Borchert, Kuske, and Stephan [BKS98] show how
to do this. By iterating the coUP pattern they obtain a list of non-promise complexity classes such that
every unbalanced leaf-language definable class higher than NP contains at least one class from the list.
The same idea works here for the balanced setting.

Corollary 3.5 Let C = Leafp
b(L) for some regular L.

1. If L ∈ Rplt(B1/2), then C ⊆ NP.

2. If L /∈ Rplt(B1/2), then coNP ⊆ C, or co1NP ⊆ C, or for some prime p, MODpP ⊆ C.

Proof The proof is based on an idea of Borchert, Kuske, and Stephan [BKS98]. If L ∈ Rplt(B1/2),
then by Theorems 2.2 and 2.3, C ⊆ Leafp

b(B1/2) = NP. Now assume L /∈ Rplt (B1/2). Let A be the
minimal automaton of L with transition function δ. By Theorem 3.2, A contains the pattern in Figure 1.
Without loss of generality, we may assume that if we start in any state in A and read v, then we end in a
state that has a loop u. When we are in s1 and read v, then we reach s2. In s2 we read v once again and
reach some state s3. We continue this repeated reading of v’s until one of the following cases holds.

Case 1: We reach a state sm such that δ(sm, v) = sm.

We are interested in the acceptance behavior of δ(si, z) for 0 ≤ i ≤ m. Choose the largest j such
that δ(sj , z) accepts and δ(sj+1, z) rejects.

Case 1a: For all i > j, δ(si, z) rejects.

If we use um and vm instead of u and v, then we see that A has the balanced coNP pattern (Figure 2).
It follows that coNP ⊆ Leafp

b(L) = C.

Case 1b: There exists k > j such that δ(sk, z) rejects and δ(sk+1, z) accepts.

10

u

�

u

�-v

+ −

? ?
z z

}
v

Figure 2: Balanced coNP pattern where |v| = |u|.

u

�

u

�-v

+ +
? ?

z z
}

v

u

�

+
?

z

u

� -v

−
?

z

u

� -v

+
?

z

Figure 3: Balanced co1NP pattern where |v| = |u|.

By the choice of j, for all i ≥ k, δ(si, z) accepts. Therefore, if we use uk and vk instead of u and v,
then we see that A has the balanced co1NP pattern (Figure 3). It follows that co1NP ⊆ Leaf p

b(L) = C.

Case 2: We reach a state sm such that δ(sm, v) = si for some i < m.

Therefore, for n = m − i + 1, A has the balanced n-counting pattern (Figure 4). We may assume
that n is a prime (otherwise A has the balanced p-counting pattern for every prime factor p of n). Since
n is prime, any MODnP computation can be modified such that the number of accepting paths either is
≡ 0 (mod n) (acceptance) or is ≡ 1 (mod n) (rejection). This shows MODnP ⊆ Leafp

b(L) = C. 2

Corollary 3.6 It is decidable whether a given regular language is ≤plt reducible to a language in B1/2.

Proof This follows from Theorem 3.2, since it is decidable (in nondeterministic logarithmic space)
whether a given automaton contains the pattern in Figure 1. 2

Example 3.7 A starfree language outside B1/2 that is ≤plt reducible to a language in B1/2. 4

We consider automaton E (Figure 5). E is minimal and permutationfree. So L(E) is starfree. The
automaton contains the forbidden pattern for B1/2 [PW97]. Therefore, L(E) /∈ B1/2. Moreover, E

4Some of the following properties of this example were discovered during a discussion with Bernhard Schwarz, Victor
Selivanov, and Klaus W. Wagner.

11

�

i

o

�

z

R

6

�

:

~

?

�

s1

s2

s3

s4

s5

s6sn

v

v

v v

v

v

u

u

u

u

u

u

u

R
?

	

�

}�

-+

−

z

z

z

z

z

z

z

?
?

?

??

Figure 4: Balanced n-counting pattern where |v| = |u|.

s0

s1

s4

s2

s3

�

0 1

�

0 1

-
1

k

�R =0 0

1

0, 1+

+ −

+

+

Figure 5: Automaton E with initial state s0.

does not contain the pattern in Figure 1. Therefore, by Theorem 3.2, L(E) ∈ Rplt(B1/2) (e.g., L(E)
polylog-time reduces to A∗1A∗). L(E) can be characterized in different ways:

L = (AA)∗ ∪ L0

= (01)∗ ∪ L0

= (01)∗1(01)∗

where
L0

df=A∗00A∗ ∪ A∗111A∗ ∪ A∗11A∗11A∗ ∪ A∗0 ∪ 11A∗ ∪ 1A∗11A∗.

It follows that L(E) ∈ B1/2 ∨ coB1/2 which is the complement of the second level of the Boolean
hierarchy over B1/2. In particular, L(E) ∈ B1. Moreover,

Leafp
b(L) = NP and

Leafp
u(L) = co1NP.

12

4 Regular Languages that are Polylog-Time Decidable

This section is similar to Section 3. Here we consider PLT ∩ REG instead of Rplt (B1/2) ∩ REG.
First, with Theorem 3.2, we provide a characterization of Rplt (B1/2) ∩ coRplt (B1/2) ∩ REG which
immediately implies

Rplt (B1/2) ∩ coRplt (B1/2) ∩ REG = PLT ∩ REG.

This strong connection between Rplt (B1/2) and PLT allows a translation of results about Rplt (B1/2)
(Section 3) to results about PLT. Beside the equation above we obtain two characterizations of regular
languages that belong to PLT:

• a forbidden-pattern characterization, and

• a characterization in terms of regular expressions.

While the first characterization is new, the latter one is already known [Wag01]. As a consequence of
the forbidden-pattern characterization, we obtain a gap theorem for balanced leaf-language definable
complexity classes C: Either C is contained in P, or C contains UP or coUP. Additionally, we describe
this gap so that no promise classes are involved: Either C is contained in P, or C contains at least one
of the following classes: NP, coNP, 1NP, co1NP, MODpP for some prime p. Formerly, such gap
theorems were known only for the unbalanced case [Bor95].

Finally, the forbidden-pattern characterization implies decidability of the class PLT ∩ REG.

Theorem 4.1 If L ∈ Rplt (B1/2) ∩ coRplt (B1/2) ∩ REG, then there exists d ≥ 1 such that L is a finite

union of singletons {u} and languages v(Ad)
∗
w where u, v, w ∈ A∗.

Proof Choose L according to the theorem. By Theorem 3.2, there exists d ≥ 1 such that L is a finite
union of languages v0(A

d)∗v1 · · · (A
d)∗vm. Call these languages the terms of L. Let L′ be the comple-

ment of L. So there exists e ≥ 1 such that L′ is a finite union of languages w0(A
e)∗w1 · · · (A

e)∗wn.
Call these languages the terms of L′.

Claim 4.2 We may assume that d = e.

Proof In the terms of L and L′ we replace (Ad)∗ and (Ae)∗ according to the following equations.

(Ad)∗ =
⋃

0≤i<e

⋃

w∈Ad·i

(Ad·e)∗w (6)

(Ae)∗ =
⋃

0≤i<d

⋃

w∈Ae·i

(Ad·e)∗w (7)

This implies the claim, since the unions in (6) and (7) are finite. 2

Let T = v0(A
d)∗v1 · · · (A

d)∗vm be a term of L, and let T ′ = w0(A
d)∗w1 · · · (A

d)∗wn be a term of
L′. We say that T and T ′ are compatible if all of the following holds:

1. m > 0 and n > 0

2. v0 is prefix of w0 or w0 is prefix of v0

3. vm is suffix of wn or wn is suffix of vm

4. |v0v1 · · · vm| ≡ |w0w1 · · ·wn| (mod d)

13

s1 s2

u

�

u

�-v

s3 s4

? ?
z z

Figure 6: Forbidden pattern for PLT ∩ REG where |v| = |u| and s3 accepts ⇔ s4 rejects.

Claim 4.3 If T is a term of L and T ′ is a term of L′, then T and T ′ are not compatible.

Proof Let T = v0(A
d)∗v1 · · · (A

d)∗vm be a term of L, and let T ′ = w0(A
d)∗w1 · · · (A

d)∗wn be a term
of L′ such that T and T ′ are compatible. Hence m > 0 and n > 0. Moreover, v0 is prefix of w0 or w0

is prefix of v0. So there exists a word v such that v0 and w0 are prefixes of v and |v| ≡ |v0| (mod d).
Similarly, there exists w such that vm and wn are suffixes of w and |w| ≡ |wn| (mod d). Let u be any
word that has a length ≡ −|v0v1 · · · vm−1| (mod d).

z df= v v1v2 · · · vm−1 u w0w1 · · ·wn−1 w

Observe that |uw0w1 · · ·wn−1w| ≡ |uw0w1 · · ·wn| ≡ |uv0v1 · · · vm| ≡ |vm| (mod d). Therefore,
uw0w1 · · ·wn−1w ∈ (Ad)∗vm. Together with v ∈ v0(A

d)∗ this shows z ∈ T . Similarly, observe
|vv1v2 · · · vm−1uw0| ≡ |v0v1 · · · vm−1uw0| ≡ |w0| (mod d). Hence vv1v2 · · · vm−1uw0 ∈ w0(A

d)∗.
Together with w ∈ (Ad)∗wn this shows z ∈ T ′. Hence T ∩ T ′ 6= ∅ and therefore L ∩ L′ 6= ∅. 2

Claim 4.4 Let T = v0(A
d)∗v1 · · · (A

d)∗vm be a term of L such that m > 0. Define T̃
df
= v0(A

d)∗Arvm

where r
df
= |v1v2 · · · vm−1|. Then T ⊆ T̃ and T̃ ∩ L′ is finite.

Proof Clearly T ⊆ T̃ . Assume T̃ ∩ L′ is infinite. There must exist T ′ = w0(A
d)∗w1 · · · (A

d)∗wn, a
term of L′, such that T̃ ∩T ′ is infinite. Hence n > 0. Words in T̃ have lengths ≡ |v0v1 . . . vm| (mod d).
Words in T ′ have lengths ≡ |w0w1 . . . wn| (mod d). Therefore,

|v0v1 . . . vm| ≡ |w0w1 . . . wn| (mod d).

By Claim 4.3, T and T ′ are not compatible. So at least one of the following is false:

1. v0 is prefix of w0 or w0 is prefix of v0

2. vm is suffix of wn or wn is suffix of vm

It follows that T̃ ∩ T ′ = ∅. This contradicts our assumption. 2

Consider the terms of L and replace all T = v0(A
d)∗v1 · · · (A

d)∗vm where m > 0 by T̃ . Let L̃ denote
the language defined in this way. L̃ is a finite union of singletons {u} and languages v(Ad)

∗
w where

u, v, w ∈ A∗. By Claim 4.4, L ⊆ L̃ and L̃ ∩ L′ is finite. So L is a finite modification of L̃. Therefore,
L is a finite union of singletons {u} and languages v(Ad)

∗
w as well. 2

Now we are going to show an analog of Theorem 3.2. This time we provide characterizations of
PLT. We want to point out that the equivalence of statements 1 and 4 in Corollary 4.5 has been shown
by Wagner [Wag01].

14

Corollary 4.5 For every regular L the following are equivalent.

1. L ∈ PLT.

2. L ∈ Rplt (B1/2) ∩ coRplt (B1/2)

3. The pattern in Figure 6 does not appear in the minimal automaton of L.

4. There exists d ≥ 1 such that L is a finite union of singletons {u} and languages v(Ad)
∗
w where

u, v, w ∈ A∗.

Proof Let L′ be the complement of L. A (resp., A′) denotes the minimal automaton of L (resp., L′).
Note that A′ is obtained from A just by inverting the acceptance behavior.

1 ⇒ 3: Assume L ∈ PLT and A contains the pattern from Figure 6. So L′ ∈ PLT. If s3 accepts
and s4 rejects, then A has the pattern from Figure 1. Otherwise, A′ has the pattern from Figure 1. By
Theorem 3.2, L /∈ Rplt (B1/2) or L′ /∈ Rplt(B1/2). So L /∈ PLT or L′ /∈ PLT. This is a contradiction.

3 ⇒ 2: Assume the pattern in Figure 6 does not appear in A. Therefore, neither A nor A ′ contain
the pattern in Figure 1. By Theorem 3.2, L and L′ belong to Rplt (B1/2).

2 ⇒ 4: By Theorem 4.1.
4 ⇒ 1: Trivial. 2

Corollary 4.6 Let C = Leafp
b(L) for some regular L.

1. If L ∈ PLT, then C ⊆ P.

2. If L /∈ PLT, then UP ⊆ C or coUP ⊆ C.

Proof If L ∈ PLT, then by Theorem 2.2, C ⊆ P. Otherwise, L /∈ PLT. Let L′ be the complement
of L. By Corollary 4.5, L /∈ Rplt (B1/2) or L′ /∈ Rplt(B1/2). By Corollary 3.4, coUP ⊆ Leafp

b(L) or
coUP ⊆ Leafp

b(L
′) = coLeafp

b(L). 2

So we found a gap for balanced leaf-language definable classes above P: Any such class higher than
P contains UP or coUP. Similar to the gap above NP (Corollary 4.6) we obtain a gap that does not
involve any promise class.

Corollary 4.7 Let C = Leafp
b(L) for some regular L.

1. If L ∈ PLT, then C ⊆ P.

2. If L /∈ PLT, then at least one of the following classes is contained in C: NP, coNP, 1NP, co1NP,
MODpP for some prime p.

Proof By Corollary 4.6, Item 1 holds. Let L /∈ PLT and let L′ be the complement of L. By Corol-
lary 4.5, L /∈ Rplt (B1/2) or L′ /∈ Rplt (B1/2). By Corollary 3.5, at least one of the following holds:

1. coNP ⊆ Leafp
b(L), or co1NP ⊆ Leafp

b(L), or for some prime p, MODpP ⊆ Leafp
b(L)

2. coNP ⊆ Leafp
b(L

′) = coLeafp
b(L), or co1NP ⊆ Leafp

b(L
′) = coLeafp

b(L), or for some prime p,
MODpP ⊆ Leafp

b(L
′) = coLeafp

b(L)

This proves the corollary, since for every prime p, MODpP is closed under complement. 2

Corollary 4.8 It is decidable whether a given regular language belongs to PLT.

Proof This follows from Corollary 4.5, since it is decidable (in nondeterministic logarithmic space)
whether a given automaton contains the pattern in Figure 6. 2

15

sn
-s0 s1 s2- - -a a a a

	

b

s2n
-sn+1 sn+2- - -a a a a

	

b

−-

b b

-a

s(n−1)n

a

s+

accepting sink

	

Figure 7: Automaton Ap where p ≥ 3, n = p − 1, s0 is initial state, s(n−1)n is the only rejecting state,
and all undefined transitions lead to the accepting sink s+. All Ap are minimal. For any prime p ≥ 3,
L(Ap) ∈ SF ∩Rplt (B1/2) but L(Ap) 6∈ Bp−3.

5 Balanced versus Unbalanced Computations

In Example 3.7 we have seen that there exist starfree languages L that are not in B1/2, but ≤plt reducible
to languages in B1/2. For such L, Leafp

b(L) ⊆ NP. These observations raise two questions:

1. Does Rplt (B1/2) ∩ SF fall into some level of the dot-depth hierarchy?

2. Can we characterize the complexity of Leafp
u(L) for L ∈ Rplt (B1/2) ∩ SF?

In this section we give a ‘no’ answer to the first question. For n ≥ 1 there exist starfree languages Ln

that are not in Bn but still in Rplt (B1/2). Regarding the second question, we prove lower bounds for the
complexity of Leafp

u(Ln). More precisely,

• Leafp
b(Ln) ⊆ NP, but

• Leafp
u(Ln) contains level n of the unambiguous alternation hierarchy.

It is expected that level n of the unambiguous alternation hierarchy is not contained in level n− 1 of the
polynomial-time hierarchy. If this is true, then for every n ≥ 1, Leaf p

b(Ln) ⊆ NP, yet Leafp
u(Ln) 6⊆

ΣP
n−1. Therefore, our result gives evidence that for starfree languages unbalanced leaf-languages are

much stronger than balanced ones.

Before we present the formal proof, we want to give some intuition why it is possible to construct
languages of arbitrary dot-depth that are still polylog-time reducible to languages in B1/2. Choose any
prime p ≥ 3. We argue that the language L accepted by automaton Ap (defined in Figure 7) is not in
dot-depth p − 3 but is polylog-time reducible to A∗aA∗.

Why does L not belong to dot-depth p − 3? Thomas [Tho84] constructed a family of languages
that separate dot-depth classes. From this family we use a language L′ that is not in dot-depth p − 3.
It is easy to see that L is the image of L′ under the morphism that maps a 7→ ap−1 and b 7→ b. Since
dot-depth levels are closed under taking inverse morphisms, we obtain that L is not in dot-depth p − 3.

Why is L polylog-time reducible to A∗aA∗? Let n df= p − 1. In Ap, the number of a’s between sin

and s(i+1)n is ≡ −1 (mod p). All loops in Ap that do not go through s+ are of length ≡ 0 (mod p).
Therefore, whenever we reach sin, then the number of letters that has been read so far is ≡ −i (mod p).
Call a word well-formed if it does not lead from s0 to s+.

In every well-formed word, after (n − 1)n consecutive a’s there must follow a letter b. (∗)

16

Let w be well-formed. Consider any b in w. This b must be read in some state sin where i ≥ 1. It
follows that the number of letters left of this b is ≡ −i (mod p). This shows:

If w is well-formed and w = w1bw2, then w1 leads from s0 to sin where i df=(−|w1| mod p). (∗∗)

Hence in a well-formed word, the position (modulo p) of some letter b tells us the state in which this letter
is read. This shows that we can locally test whether a word is well-formed: Just guess all neighboring
b’s, make sure that their distance is small (∗), determine the states in which these b’s must be read (∗∗),
and test whether these states fit to the factor between the b’s. This local test shows that the set of words
that are not well-formed is polylog-time reducible to A∗aA∗. It remains to argue that the set of words
that are in L and that are not well-formed is polylog-time reducible to A∗aA∗. This is easy, since by
(∗∗), the position of the last letter b tells us the state in which this b is read. So we just have to verify
that the remaining part of the word (which is short) does not lead to s(n−1)n.

Theorem 5.1 For any prime p ≥ 3, L(Ap) ∈ SF ∩Rplt(B1/2) but L(Ap) 6∈ Bp−3.

Proof The theorem is proved by the following series of claims.

Claim 5.2 For any p ≥ 3, Ap is minimal.

Proof Otherwise Ap must have two different but equivalent states s and s′. None of them can be s+. So
s = si and s′ = sj . Let n = p−1 and let δA be the transition function of Ap. Note that δA(s, a(n−1)n−i)
is the rejecting state s(n−1)n. Therefore, δA(s′, a(n−1)n−i) must be rejecting as well, and therefore, must
be equal to s(n−1)n. It follows that s′ = si = s which is a contradiction. 2

Claim 5.3 For any p ≥ 3, L(Ap) is starfree.

Proof Let n = p − 1 and let δA be the transition function of Ap. If L(Ap) is not starfree, then there
exists a state s, a word w, and k ≥ 2 such that for all m, δA(s, wkm) = s but δA(s, w) 6= s. Note that
s 6= s+. So s = si for some i. Since δA(s, wkm) = s, in wkm the number of a’s is equal to n times the
number of b’s. The same holds for w. Since δA(s, w) 6= s+, this implies δA(s, w) = s. 2

Claim 5.4 For any p ≥ 3, L(Ap) ∈ Rplt(B1/2).

Proof Otherwise, by Theorem 3.2, Ap contains the pattern from Figure 1. To avoid confusion, we
rename the states s1 and s2 in Figure 1; now they are called s and s′. Since s and s′ can reach a rejecting
state, both states are different from s+. So s = si and s′ = sj for suitable i and j.

Let n = p − 1. Since |u| > 0, u must contain at least one letter b. So u ∈ akbA∗ for some k. It
follows that i + k ≡ 0 (mod n) and j + k ≡ 0 (mod n). Therefore,

i ≡ j (mod n). (8)

We already observed in Claim 5.3, that in every loop that does not pass s+, the number of a’s is equal to
n times the number of b’s. Therefore,

every loop that does not pass s+ has length ≡ 0 (mod n + 1). (9)

In particular,
|v| ≡ |u| ≡ 0 (mod n + 1). (10)

17

r0
- r1�

r+

b

- r2� -� - rn�

o

a a a a

b b b b

�j

a

a, b

Figure 8: Automaton Dn where n ≥ 1, r0 is initial state, and rn is the only rejecting state. All Dn are
minimal, and for n ≥ 1 it holds that L(Dn) ∈ Bn − Bn−1 [Tho84].

Now consider the path from si to sj induced by the word v. Along this way we cut out possible loops.
Recall that these are of length ≡ 0 (mod n+ 1). We obtain a direct path from si to sj . By (8), this path
must be of length kn where 1 ≤ k ≤ n − 1. Therefore, |v| ≡ kn (mod n + 1). From (10) it follows
that

kn ≡ 0 (mod n + 1). (11)

This is impossible, since k 6≡ 0 (mod n + 1), n 6≡ 0 (mod n + 1), and n + 1 = p is a prime. 2

Claim 5.5 For any prime p ≥ 3, L(Ap) /∈ Bp−3.

Proof Let n = p − 1. Consider the morphism ϕ : A∗ 7→ A∗ such that:

a 7→ an

b 7→ b

Denote Ap’s transition function by δA and Dn−1’s transition function by δD. For every w,

if δD(s0, w) = ri, then δA(s0, ϕ(w)) = sin,

if δD(s0, w) = r+, then δA(s0, ϕ(w)) = s+.

Moreover, rn−1 is the only rejecting state in Dn−1, and s(n−1)n is the only rejecting state in Ap. It
follows that L(Dn−1) = ϕ−1(L(Ap)).

It is known that all classes of the dot-depth hierarchy are closed under inverse morphisms. Therefore,
if L(Ap) belongs to Bp−3, then so does L(Dn−1). This is not possible, since Thomas [Tho84] showed
L(Dn−1) ∈ Bn−1 − Bn−2. It follows that L(Ap) /∈ Bp−3. 2

This finishes the proof of Theorem 5.1. 2

Corollary 5.6 For every n, there exists a starfree language L such that L is polylog-time reducible to a
language in B1/2, but L does not belong to Bn.

Niedermeier and Rossmanith introduced unambiguous alternating polynomial-time-bounded Turing
machines.

18

Definition 5.7 ([NR98]) An alternating Turing machine is called unambiguous, if for all inputs its com-
putation tree neither contains existential nodes with more than one accepting successor nor contains
universal nodes with more than one rejecting successor.

The levels of the unambiguous alternation hierarchy are defined as follows: Level AUΣP
k , k ≥ 1, is

the set of languages accepted by unambiguous alternating polynomial-time-bounded Turing machines
that have at most k − 1 alternations between existential and universal configurations, starting with an
existential one. Analogously define AUΠP

k ; here the machines start with universal configurations.

In their paper, Niedermeier and Rossmanith [NR98] cite Hemaspaandra [unpublished] for a char-
acterization of AUΣP

k and AUΠP
k in terms of unambiguous alternating quantifiers. For any complexity

class C, define ∃!·C as the class of languages L such that there exist a polynomial p and L ′ ∈ C such that
for all x,

x ∈ L ⇒ there exists exactly one y ∈ A=p(|x|) such that (x, y) ∈ L′

x /∈ L ⇒ there exists no y ∈ A=p(|x|) such that (x, y) ∈ L′

Analogously define ∀!·C.

Theorem 5.8 (Hemaspaandra [unpublished]) For every k ≥ 1,

AUΣP
k+1 = ∃!·AUΠP

k and

AUΠP
k+1 = ∀!·AUΣP

k .

Theorem 5.9 For every k ≥ 1 and every p ≥ 4k + 2, AUΣP
k ⊆ Leafp

u(L(Ap)).

Proof Define the following subclasses of SPP.5 For k ≥ 2, let SPPk be the class of languages L such
that there exists a nondeterministic, polynomial-time-bounded Turing machine M such that for all x,

1. M(x) is a complete binary tree whose leafs are labeled with 0 (reject) or 1 (accept),

2. for every prefix v of the leaf word of M(x), |#0(v) − #1(v)| ≤ k, and

3. x ∈ L ⇒ accM (x) − rejM (x) = 2,
x /∈ L ⇒ accM (x) − rejM (x) = 0.

Claim 5.10 For every k ≥ 2, SPPk = coSPPk.

Proof Let L ∈ SPPk via machine M . Define a machine M ′ as follows: On input x the machine splits
the computation into two branches. On the left branch M ′ simulates M(x) where 0’s are replaced by
1’s, and 1’s are replaced by 0’s. On the right branch M ′ generates a binary tree of same size as M(x)
such that the leaf word is 110101 · · · 01. Observe that L ∈ SPPk via machine M ′. 2

Claim 5.11 For k ≥ 2, ∃!·SPPk ⊆ SPPk+2.

Proof Let L ∈ ∃!·SPPk via polynomial p and L′ ∈ SPPk. Let M ′ be a nondeterministic machine that
witnesses L′ ∈ SPPk. Define M to be the following nondeterministic machine: On input x, M guesses
y ∈ A=|x| and then simulates M ′(x, y).

5SPP was introduced in 1991 independently by Fenner et al. [FFK94], Gupta [Gup91] (under the name ZUP), and Ogiwara
and Hemachandra [OH93] (under the name XP). L ∈ SPP if and only if there exists f ∈ GapP such that for all x: If x ∈ L,
then f(x) = 1. If x /∈ L, then f(x) = 0.

19

Clearly, M is a nondeterministic, polynomial-time-bounded Turing machine such that on input x the
computation tree is a complete binary tree labeled with 0’s and 1’s.

x ∈ L ⇒ there exists exactly one y ∈ A=p(|x|) such that (x, y) ∈ L′

⇒ accM (x) − rejM (x) = 2

x /∈ L ⇒ for all y ∈ A=p(|x|), (x, y) /∈ L′

⇒ accM (x) − rejM (x) = 0

For every x, there exists at most one y ∈ A=p(|x|) such that accM ′(x, y) − rejM ′(x, y) differs from 0,
and for this y it holds that accM ′(x, y) − rejM ′(x, y) = 2. Moreover, for every y ∈ A=p(|x|) and every
prefix v of the leaf word of M ′(x, y), |#0(v)−#1(v)| ≤ k. It follows that for every prefix v of the leaf
word of M(x), |#0(v) − #1(v)| ≤ k + 2. This shows L ∈ SPPk+2. 2

Claim 5.12 For k ≥ 1, AUΣP
k ⊆ SPP2k.

Proof The proof is by induction. For k = 1, AUΣP
k = UP. We can modify any UP-machine such that

accepting paths output 11 and rejecting paths output 01. This shows AUΣP
1 ⊆ SPP2.

By Theorem 5.8, for k ≥ 2, AUΣP
k = ∃!·AUΠP

k−1. By induction hypothesis, AUΣP
k−1 ⊆ SPP2k−2.

Hence, by Claim 5.10, AUΠP
k−1 ⊆ SPP2k−2. From Claim 5.11 it follows AUΣP

k ⊆ SPP2k. 2

It remains to show:

Claim 5.13 For every k ≥ 2 and every p ≥ 2k + 2, SPPk ⊆ Leafp
u(L(Ap)).

Proof Let n = p − 1. Observe that the following 2k + 1 states appear in Ap: s0, sn, s2n, . . . , s2kn.
Denote these states as z−k, z−k+1, . . . , zk, i.e., zi

df
= s(i+k)n where −k ≤ i ≤ k. Moreover, z−

df
= s(n−1)n

is a rejecting state, and z+
df= s+ is an accepting state. Let δ be Ap’s transition function. Define y df= ank

and z df= a(n−1)n−nk. Observe that δ(s0, y) = z0, δ(z0, z) = z−, and δ(z2, z) = z+.
Define h : A∗ 7→ A∗ to be the morphism mapping 0 with b, and 1 to an. Let L ∈ SPPk via machine

M . For every x, let wx denote the leaf word of M(x). Let M ′ be an unbalanced nondeterministic Turing
machine that generates the following leaf word on input x:

w′
x

df
= yh(wx)z.

Clearly, after reading prefix y of w′
x, the automaton Ap is in state z0. Now the following holds:

1. Whenever Ap is in state zj and there is a 0 in wx, then Ap reads b and goes to state zj−1.

2. Whenever Ap is in state zj and there is a 1 in wx, then Ap reads an and goes to state zj+1.

So Ap counts #1(wx) − #0(wx). Since M is an SPPk machine, for every prefix v of wx, |#0(v) −
#1(v)| ≤ k. Therefore,

x ∈ L ⇒ #1(wx) − #0(wx) = 2

⇒ δ(s0, yh(wx)) = z2

⇒ δ(s0, w
′
x) = z+, and

x /∈ L ⇒ #1(wx) − #0(wx) = 0

⇒ δ(s0, yh(wx)) = z0

⇒ δ(s0, w
′
x) = z−.

So x ∈ L if and only if w′
x ∈ L(Ap). It follows that L ∈ Leafp

u(L(Ap)). 2

The theorem follows from the Claims 5.12 and 5.13. 2

Corollary 5.14 For all k ≥ 1 there exists L ∈ SF such that AUΣP
k ⊆ Leafp

u(L) but Leafp
b(L) ⊆ NP.

20

Acknowledgments

The author thanks Bernhard Schwarz, Victor Selivanov, and Klaus W. Wagner for exciting discussions
about leaf languages and reducibility notions for starfree languages. In particular, Example 3.7 was
discussed in depth in this group.

References

[Arf91] M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical Computer
Science, 91:71–84, 1991.

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.
Theoretical Computer Science, 104:263–283, 1992.

[BK78] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite.
Journal of Computer and System Sciences, 16:37–55, 1978.

[BKS98] B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable languages and
their relation to NP. In Proc. 25rd International Colloquium on Automata, Languages and
Programming, volume 1443 of Lecture Notes in Computer Science, pages 17–28. Springer
Verlag, 1998.

[Bor95] B. Borchert. On the acceptance power of regular languages. Theoretical Computer Science,
148:207–225, 1995.

[Brz76] J. A. Brzozowski. Hierarchies of aperiodic languages. RAIRO Inform. Theor., 10:33–49,
1976.

[BV98] H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language definability. In-
ternational Journal of Foundations of Computer Science, 9:277–294, 1998.

[CB71] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and
System Sciences, 5:1–16, 1971.

[Eil76] S. Eilenberg. Automata, languages and machines, volume B. Academic Press, New York,
1976.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Computer
and System Sciences, 48:116–148, 1994.

[GS00] C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. In Proceedings 17th Symposium
on Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes in Computer
Science, pages 555–566. Springer Verlag, 2000.

[Gup91] S. Gupta. The power of witness reduction. In Proceedings 6th Structure in Complexity
Theory, pages 43–59. IEEE Computer Society Press, 1991.

[GW03] C. Glaßer and G. Wechsung. Relativizing function classes. Journal of Universal Computer
Science, 9(1):34–50, 2003.

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power
of polynomial time bit-reductions. In Proceedings 8th Structure in Complexity Theory, pages
200–207, 1993.

21

[Kna83] R. Knast. A semigroup characterization of dot-depth one languages. RAIRO Inform. Théor.,
17:321–330, 1983.

[MP71] R. McNaughton and S. Papert. Counterfree Automata. MIT Press, Cambridge, 1971.

[NR98] R. Niedermeier and P. Rossmanith. Unambiguous computations and locally definable ac-
ceptance types. Theoretical Computer Science, 194(1-2):137–161, 1998.

[OH93] M. Ogiwara and L. Hemachandra. A complexity theory of feasible closure properties. Jour-
nal of Computer and System Sciences, 46:295–325, 1993.

[PP86] D. Perrin and J. E. Pin. First-order logic and star-free sets. Journal of Computer and System
Sciences, 32:393–406, 1986.

[PW97] J. E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of computing
systems, 30:383–422, 1997.

[Sch65] M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and
Control, 8:190–194, 1965.

[Tho84] W. Thomas. An application of the Ehrenfeucht–Fraı̈ssé game in formal language theory.
Société Mathématique de France, mémoire 16, 2:11–21, 1984.

[Ver93] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory
of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.

[Wag01] K. W. Wagner. A reducibility and complete sets for the dot-depth hierarchy. Manuscript,
2001.

22

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

