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Abstract

We consider the resolution proof complexity of propositional formulas which encode random in-
stances of graph k-colorability. We obtain a tradeoff between the graph density and the resolution proof
complexity. For random graphs with linearly many edges we obtain linear-exponential lower bounds on
the length of resolution refutations. For any ε > 0, we obtain sub-exponential lower bounds of the form
2n

δ

for some δ > 0 for non-k-colorability proofs of graphs with n vertices and O(n
3

2
−

1

k
−ε) edges. We

obtain sharper lower bounds for Davis-Putnam-DPLL proofs and for proofs in a system considered by
McDiarmid.

We also show that very simple algorithms achieve qualitatively similar running times.

1 Introduction

The problem of coloring graphs has a long history. The decision problem, k-colorability, being an important
NP-complete problem, has generated significant interest for random graphs as well. Since the transcript of
any complete algorithm for k-coloring on input G also provides a proof of non-k-colorability in the case that
G is not k-colorable, the study of the proof complexity of k-colorability also yields bounds on the running
time of such algorithms. We consider here the question of the proof complexity of non-k-colorability for
random graphs.
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With sufficiently many edges, a random graph is not k-colorable almost certainly. McDiarmid [McD84]
studied the complexity of deciding non-k-colorability in random graphs using a particular natural class of
proof procedures that emulates a variety of coloring algorithms. Here we consider natural encodings of the
k-colorability of random graphs as CNF formulas and examine the resolution complexity of these formulas.

It is easy to see how many natural algorithms for k-coloring can be simulated as resolution proof pro-
cedures. Indeed, many natural algorithms, including the most efficient current procedures can naturally be
phrased in terms of resolution procedures in which the graph of resolution inferences is a tree. This is a sub-
class of resolution proofs known collectively as the Davis-Putnam or DPLL procedure. (Resolution itself
comes with no underlying search procedure for proofs whereas DPLL procedures include a search strategy
as well.) In our analysis we build on the ideas that have been used to analyze the resolution proof complexity
of random k-CNF formulas together with results about the colorability properties of random graphs.

For any graph G, we denote by χ(G, k) the formula for the “natural” encoding of the statement “G is
k-colorable”, as a propositional formula. For any CNF formula φ, we denote by Res(φ) the length of the
shortest resolution refutation of φ. By convention, we let Res(φ) = ∞ if φ is satisfiable.

The general scheme of our lower bounds proof is similar to that of the proofs of resolution lower bounds
for random k-SAT [CS88, BP96, BKPS02, BSW01]. We make particular use of the recent relationship
between clause width and proof length for resolution proofs shown by Ben-Sasson and Wigderson [BSW01].
The argument is as follows.

1. Almost surely, every small sub-graph of G has low degree, and thus is k-colorable. From this, it can
be shown that in any refutation of χ(G, k) there is a “complex clause” that cannot be derived from
χ(H, k), for any H which is a very small subgraph of G.

2. Almost surely, every small sub-graph of G has many vertices of degree less than k. From this it can be
shown that any “complex clause” contains many literals. The theorem of Ben-Sasson and Wigderson
relating minimum refutation width to minimum refutation length then implies that any refutation of
χ(G, k) must be long.

The class of procedures considered by McDiarmid produces tree-like proofs but these are not DPLL
procedures. Nonetheless it is possible to show using arguments similar to those of [CEI96, BSW01] that
if these procedures produce short proofs then they have efficient simulations by resolution proofs of small
width. Thus, all our lower bounds apply to these procedures as well.

2 Preliminaries

For a set of boolean variables V = {v1, . . . , vn}, a literal is any variable x ∈ V , or its the negation
¬x, a clause is a set of literals, and a formula is a set of clauses. The interpretation of a formula is as a
Conjunctive Normal Form (CNF) formula of propositional calculus, that is, a conjunction of disjunctions.
A truth assignment for V is a function τ : V 7→ {T, F}. Assignment τ satisfies a clause C iff τ(l) = T for
at least one literal l ∈ C , and τ satisfies a set of clauses φ, written τ |= φ, iff it satisfies every clause in φ. A
formula is satisfiable iff there is an assignment to its variables which satisfies it. For any clause or formula
A, vars(A) denotes the set of variables which appear (negated or otherwise) in A. The width of a clause
C , denoted w(C) is the number of variables occurring in C . We will consider only clauses which are not
tautologies, thus w(C) ≡ |vars(C)|.
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2.1 k-Colorability Formulas

For any graph G = 〈V,E〉, we let n
def
= |V |. A k-coloring of G is a function col which maps each vertex onto

an integer in [k] = {1, . . . , k}. A proper coloring is a coloring for which (u, v) ∈ E ⇒ col(u) 6= col(v),
and we say that G is k-colorable iff there is a proper k-coloring of G. We define φ = χ(G, k) to be the
formula on kn variables with n positive clauses of width k, and k|E| negative clauses of width 2 as follows.

1. For each v ∈ V , vars(φ) has k propositional variables, {xv,1, . . . , xv,k}, and φ has one positive
clause of width k,





∨

j∈[k]

xv,j



 ∈ φ.

2. For each v ∈ V , φ has
(

k
2

)

negative clauses of width 2, ∀i < j ∈ [k] (¬xv,i ∨ ¬xv,j) ∈ φ.

3. For each edge (u, v) ∈ E, φ has k negative clauses of width 2,

∀l ∈ [k] (¬xu,l ∨ ¬xv,l) ∈ φ.

Clearly, χ(G, k) is satisfiable iff G is k-colorable. Corresponding to each coloring of G is a unique
truth assignment for χ(G, k). (The reverse is not the case, since some assignments give a vertex no color
or multiple colors.) We sometimes fail to distinguish between colorings and assignments. For example, we
may say that a coloring makes a clause true, with the obvious meaning.

2.2 Random Graphs

In the study of random graphs there are three natural models one could consider. The most commonly
considered models are G(n, p), where each of the

(n
2

)

edges is chosen independently with probability p, and
Gn,m, where a set of precisely m distinct edges is chosen uniformly at random. We find it most convenient
to express our proofs in terms of a third distribution, Ĝn,m, where m edges are chosen independently with
replacement (and duplicates are ignored). As shown, for example, in [AV79] if p = m/

(n
2

)

then, when
considering properties that are monotone (or anti-monotone), the almost certain properties under all three
distributions are the same up to a change from m to m ± o(m). Our results will therefore apply to G(n, p)
and Gn,m as well.

We will consider the dependence of our results on a graph density parameter ∆ = ∆(n) = m/n, the
ratio of edges to vertices.

2.3 Resolution Complexity

Resolution is a rule of inference for clauses, which allows one to derive the clause C ∪ D from two clauses
C ∪ l and D∪¬l. A Resolution derivation from a set of clauses φ is a sequence of clauses, π = C0, . . . Cm,
where each clause Ci is either an element of φ or is derived by the resolution rule from two clauses Cj , Ek

occurring in π, for j, k < i. The derivation is of length m. A resolution derivation of the empty clause
(denoted Λ) from φ is called a refutation of φ. The fundamental property of resolution is that there is a
refutation of a set φ of clauses if and only if φ is unsatisfiable. The resolution complexity of φ, here denoted
Res(φ), is the length of the shortest refutation of φ.
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A related method for CNF formula satisfiability is the Davis-Putnam-DPLL procedure [DLL62]. Such
a procedure can be described recursively as follows: First check whether F is trivially satisfiable (has no
clauses) or is trivially unsatisfiable (contains an empty clause) and if so stop. Otherwise, select a literal l
and search for a satisfying assignment for the formula F dl=1 obtained by setting l to true in F (eliminating
all clauses containing l and removing ¬l from those clauses that contain it). Otherwise, repeat the search
with the formula F d¬l=1. If neither of these searches finds a satisfying assignment then F is not satisfiable.
DPLL algorithms will typically select a literal appearing in a clause of length one, called a unit clause, if
one exists since that literal must be set to true to satisfy the formula. In the case that there are no unit clauses
there are many heuristics, called splitting rules, for the selection of the next literal l that have been used in
the literature. It is not hard to show that any DPLL algorithm actually produces a resolution refutation and
moreover that the form of this refutation is tree-like in that the graph of inferences forms a binary tree. Let
DPLL(φ) denote the size of the shortest DPLL refutation of φ. The following key relationship between the
proof size and resolution width was shown by Ben-Sasson and Wigderson.

Proposition 1 ([BSW01]). Let w∗(F ) is the minimum over all resolution refutations Π of F of the largest
width of a clause in Π. Then DPLL(F ) ≥ 2w∗(F )−w(F ) and Res(F ) ≥ 2c(w∗(F )−w(F ))2/n for c =
1/(9 ln 2).

The class of algorithms considered by McDiarmid is similar in spirit to DPLL algorithms, except that
instead of trying assignments to a particular Boolean variable (akin to choosing the specific color for a
vertex), one chooses whether or not two non-adjacent vertices will be colored the same or differently. This
is represented by graph operations that either identify the non-adjacent vertices or add an edge between
them.

More formally, McDiarmid’s proof system for non-k-colorability has as its objects graphs H derived
from the input graph G. The axioms of the proof system are the k ′-cliques for any k′ > k. Given a graph
H with two non-adjacent vertices u, v ∈ H , then H follows from H ∪ {(u, v)} and Huv where Huv is the
graph obtained by identifying u and v and naming the resulting vertex v. H can also follow from any H ′

such that H ′ is a subgraph of H . McDiarmid only considered proofs whose inference graph forms a tree.

Lemma 1. Let k ≥ 2. If the non-k-colorability of a graph G can be proven by a size S tree-like proof
in McDiarmid’s proof system then there is a resolution refutation of χ(G, k) of width at most k(k + 1) +
2k log2 S.

Proof. The proof follows a general argument due to Russell Impagliazzo (personal communication) that
extends the width-size relationship for tree-like resolution in [BSW01] to decisions involving bounded num-
bers of variables. Write F `w F ′ if and only if there is a resolution derivation of F ′ from F , each of whose
clauses has width at most w.

The proof is by induction on S. We begin with the base case of S = 1. Clearly for k ′ > k, by
considering the clauses of χ(Kk′ , k) that only involve the variables for the first k + 1 vertices of Kk′ ,
χ(Kk′ , k) `k(k+1) Λ.

Now consider the last inference of the tree-like McDiarmid proof and suppose that the claim is true for
all strictly smaller McDiarmid proofs. If that last inference derived H from a subgraph H ′ then we note
that χ(H, k) `k χ(H ′, k) since χ(H ′, k) is a subformula of χ(H, k) and each of its clauses has size at most
k; therefore the size bounds follows by the inductive hypothesis for H ′. Alternatively, the last inference
derived H from H0 = H ∪ {(u, v)} and H1 = Huv where (u, v) /∈ H . One of the proofs that these graphs
are not k-colorable has size at most S/2 and the other has size at most S.
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Let T0 = Unequal(u, v) =
∧

l∈[k](¬xu,l ∨ ¬xv,l), T1 = Equal(u, v) =
∧

l∈[k]((¬xu,l ∨ xv,l) ∧ (¬xv,l ∨
xu,l)), and Colored(u) = (xu,1 ∨ . . . ∨ xu,k). Observe that (Colored(u) ∧ Colored(v)) → (T0 ∨ T1) is a
tautology involving 2k variables and that for u, v ∈ H , Colored(u) and Colored(v) are clauses of χ(H, k).

We show that for b = 0, 1, χ(H, k) ∧ Tb `k χ(Hb, k). For b = 0, note that χ(H0, k) = χ(H ∪
{(u, v)}, k) = χ(H, k) ∧ Unequal(u, v) = χ(H, k) ∧ T0 and it follows trivially. For b = 1, observe that
the only clauses of χ(Huv, k) that are not already in χ(H, k) are those of the form (¬xv,l ∨ ¬xw,l) where
(¬xu,l ∨ ¬xw,l) is in χ(H, k). Each such clause follows easily from χ(H, k) ∧ Equal(u, v) by resolving
(¬xu,l ∨ ¬xw,l) with (¬xv,l ∨ xu,l). Therefore χ(H, k) ∧ T1 = χ(H, k) ∧ Equal(u, v) `k χ(Huv, k) =
χ(H1, k).

By the inductive hypothesis there are resolution refutations of χ(H0, k), χ(H1, k) such that one has
width at most w = k(k + 1) + 2k log2 S and the other one has width at most w − 2k. Assume that the
refutation of H0 is narrower (wlog). Since χ(H, k) ∧ Tb `k χ(Hb, k) for b = 0, 1 and w ≥ k(k + 1) ≥ 3k,
we have χ(H, k) ∧ T0 `w−2k Λ and χ(H, k) ∧ T1 `w Λ.

We now come to the key point in the argument. We can convert the resolution refutation witness-
ing χ(H, k) ∧ T0 `w−2k Λ into a refutation witnessing χ(H, k) `w T1. For every assignment σ to
the 2k variables in T0 that satisfies T0 apply σ as a restriction to the proof. The result is a derivation
χ(H, k)dσ`w−2k Λ. By Lemma 3.1 of [BSW01] one can add back literals of σ̄ as needed and apply weak-
ening to derive χ(H, k) `w σ̄. Doing this for all such choices of σ we obtain χ(H, k) `w T̄0 where T̄0 is
the canonical CNF formula for the truth table of ¬T0. Now using the clauses Colored(u) and Colored(v)
from χ(H, k) together with T̄0 we derive T1 which is logically implied. This last derivation requires width
only 2k. Finally, we apply the proof witnessing χ(H, k) ∧ T1 `w Λ. The overall width is at most w as
required.

2.4 k-Colorability of Random Graphs

As proved by Achlioptas and Friedgut [AF99], for every integer k ≥ 2, there is a function ck(n) bounded
by a constant such that for ∆ > ck(n) for G ∼ G(n, 2∆/(n − 1)), the probability G is k-colorable goes to
0 and for ∆ < ck(n), this probability goes to 1. Let c+

k = lim supn→∞ ck(n) and c−k = lim infn→∞ ck(n).
By a result of Łuczak [Łuc91, JŁR00], both c+

k and c−k are k ln k + O(k ln lnk); Achlioptas and Naor [AN]
have recently shown even tighter results that at every density the chromatic number almost certainly takes on
one of at most two values. Further, for k = 3 by results of Achlioptas, Molloy, and Moore [AM99, AM97,
AM02], c+

3 < 2.522 and c−3 > 2.01.

3 Proof of Lower Bounds

3.1 Subgraph Boundary Size, Expansion, Width, and Length

We define the k-boundary of a graph G, denoted βk(G), to be the set of vertices in G of degree between 1
and k − 1.

For a subgraph H < G, let Ek(H) denote the conjunction of the edge (negative) clauses of χ(G, k)
corresponding to the edges of H . We say that H implies a clause C if and only if Ek(H) → C is true at α
for all truth assignments α corresponding to total (but not necessarily proper) colorings of G.

Lemma 2. Let C be clause in the variables of χ(G, k). If H < G is a minimal induced subgraph of G that
implies C then
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• H has no isolated vertices, and

• w(C) ≥ |βk(H)|.

Proof. First observe that if H has an isolated vertex u then Ek(H) = Ek(H − u) and thus H − u also
implies C contradicting the assumption that H was minimal.

Now consider a vertex v in H of degree between 1 and k − 1. We derive the lower bound on the size of
C by showing that there is some variable xv,i that appears in C . By the minimality of H there is some truth
assignment α corresponding to a total coloring of G such that Ek(H − v) → C is false at α; i.e. α satisfies
Ek(H − v) but not C . Since α satisfies Ek(H − v), it is proper with respect to all the edges of H − v. Since
the degree of v is at most k − 1, we can extend this proper coloring on H − v to one that is proper on all of
H by changing the color of vertex v to get a new assignment α′. Now Ek(H) is satisfied by α′ and since H
implies C , C is satisfied by α′.

Therefore C(α) 6= C(α′) and since α and α′ differ only on the assignments to two variables, xv,i and
xv,i′ where i 6= i′ are the old and new colors of v, C must contain one of them.

Definition: Given a clause C over the variables from χ(G, k), denote µG,k(C) to be the minimal number of
vertices in an induced subgraph H < G that implies C .

Clearly µG,k has two key properties:

Lemma 3. Let G be a graph and k ≥ 2 be an integer.

(a) µG,k(Λ) is the number of vertices in the smallest k-uncolorable sub-graph of G.

(b) If D is a resolvent of B and C then µG,k(D) ≤ µG,k(B) + µG,k(C).

Definition: Let s + 1 be the minimum number of vertices in a sub-graph of G that is not k-colorable. The
sub-critical k-expansion, ek(G), of a graph G is defined to be the maximum over all t, 2 ≤ t ≤ s, of the
minimum k-boundary size of any induced subgraph H of G that has no isolated vertices and has between
t/2 and t vertices.

Lemma 4. For k ≥ 3, any resolution refutation of χ(G, k) must contain a clause of width at least ek(G).

Proof. Let s ≥ k ≥ 3 and t ≤ s be chosen as in the definition of ek(G). Let π be a resolution refutation of
χ(G, k). By Lemma 3(a), µG,k(Λ) = s + 1. Further, any clause C of χ(G, k) has µG,k(C) ≤ 2. Therefore
there is a clause D in π such that µG,k(D) > t ≥ 2 and no ancestor of D has µG,k greater than t. Since
µG,k(D) > 2 there must be two parent clauses B and C in π such that D is the resolvent of B and C . By
Lemma 3(b), at least one of these clauses, say B, must have µG,k between t/2 and t. If H < G witnesses the
value of µG,k(B) then by Lemma 2, H has no isolated vertices and w(B) ≥ |βk(H)|. Thus, by definition
of ek(G), w(B) ≥ ek(G) as required.

Corollary 1. If G is a graph and k ≥ 3 is an integer then for c = 1/(9 ln 2),

Res(χ(G, k)) ≥ 2c(ek(G)−k)2/n

and
DPLL(χ(G, k)) ≥ 2ek(G)−k.
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Proof. Clearly w(χ(G, k)) = k and Lemma 4 implies that w∗(χ(G, k)) ≥ ek(G). Applying Proposition 1
yields the claimed results.

We obtain a similar result for tree-like proofs in McDiarmid’s proof system using Lemma 1.

Corollary 2. If G is a graph and k ≥ 3 is an integer then any tree-like proof of non-k-colorability of G in
McDiarmid’s proof system requires size at least 2(ek(G)−k(k+1))/2k .

3.2 Lower bounding sub-critical k-expansion

We now prove lower bounds on ek(G) for most G ∼ Ĝn,m. We show these bounds by first showing that
such a G is almost certainly locally sparse.

We say that a graph G is (r, q)-dense if some subset of r vertices of G contains at least q edges of G.

Lemma 5. Let G ∼ Ĝn,m. For r, q ≥ 1,

Pr[G is (r, q)-dense] ≤
(ne

r

)r
(

emr2

qn2

)q

.

Proof. Let R be a set of vertices with |R| = r. Let p =
(r
2

)

/
(n
2

)

≤ (r/n)2 denote the probability that a

randomly chosen edge on n vertices is contained in R. For G ∼ Ĝn,m, the number of edges of G contained
in R has the binomial distribution, Bin(m, p). The probability that at least q edges of G are contained in R
is bounded above by:

Pr[Bin(m, p) ≥ q] ≤
(

m

q

)

pq ≤
(

emr2

qn2

)q

, (1)

Summing this over the
(

n
r

)

≤ (en/r)r r-subsets of the set of vertices of G we obtain

Pr[G is (r, q)-dense] ≤
(ne

r

)r
(

emr2

qn2

)q

.

Lemma 6. For each integer k ≥ 3 there is a constant Ck such that the following holds. Let m,n be integers
with m = ∆n. If s = Ckn/∆k/(k−2) then the probability that G ∼ Ĝn,m contains a subgraph of size at
most s that is not k-colorable is o(1) in s.

Proof. The probability that G contains a k-uncolorable subgraph of size at most s is the probability that
there is some minimally k-uncolorable graph H < G with r ≤ s vertices. Observe that such an H must
have r ≥ k + 1 and have minimum degree at least k since a vertex of degree at most k − 1 can always
be colored by one of the k colors so that none of its incident edges is mono-chromatic. In particular, this
implies that H must have average degree at least k and thus contain at least kr/2 edges.

Thus, the probability that G contains such a subgraph H is at most

s
∑

r=k+1

Pr[G is (r, kr/2)-dense].
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By Lemma 5 we have Pr[G is (r, kr/2)-dense] ≤ D(r) where

D(r) =
(ne

r

)r
(

2emr2

krn2

)kr/2

=
(

ne(2em/kn2)k/2r(k−2)/2
)r

= (Q(k,m, n)r(k−2)/2)r

for Q(k,m, n) = ne(2em/kn2)k/2. Now

D(r + 1)

D(r)
=

(Q(k,m, n)(r + 1)(k−2)/2)r+1

(Q(k,m, n)r(k−2)/2)r

= Q(k,m, n)(r + 1)(k−2)/2

(

r + 1

r

)r(k−2)/2

≤ Q(k,m, n)(e(r + 1))(k−2)/2

= ne(2em/kn2)k/2(e(r + 1))(k−2)/2

= (2e2m/kn)k/2((r + 1)/n)(k−2)/2

= (2e2∆/k)k/2((r + 1)/n)(k−2)/2

≤ 1/2

for 1 ≤ r ≤ Ckn/∆k/(k−2), where Ck > 0 depends only on k. Let s = Ckn/∆k/(k−2). Therefore the
probability that G contains such an k-uncolorable subgraph is a geometric series in r and is at most twice
its largest term which is less than

D(1) = ne(2em/kn2)k/2 = e(2e∆/k)k/2/n(k−2)/2 = ck(1/s)
(k−2)/2

for some constant ck. Thus it is o(1) in s as required.

Lemma 7. For each integer k ≥ 3 and ε with 1 − 1/(k − 1) > ε > 0, there is a constant cε,k > 0 such

that the following holds. Let m,n be integers with m = ∆n. If t ≤ cε,kn/∆
k−(k−1)ε

k−(k−1)ε−2 then the probability
that G ∼ Ĝn,m contains a subgraph on r vertices, t/2 < r ≤ t, that has no isolated vertices and at most εr
vertices of degree < k is o(1) in t.

Proof. Fix k ≥ 3, ε > 0 and m,n with m = ∆n and G ∼ Ĝn,m. If there is a subgraph H < G on
r vertices that has no isolated vertices and at most εr vertices of degree < k, then H has at least r − εr
vertices of degree at least k and the remaining vertices of degree at least 1. Therefore H contains at least
[k(r− εr)+ εr]/2 = r(k− (k− 1)ε)/2 edges. Thus by Lemma 5 the probability that such an H exists with
t/2 ≤ r ≤ t is at most

t
∑

r=t/2

Pr[G is (r, r(k − (k − 1)ε)/2)-dense]

≤
t
∑

r=t/2

(ne

r

)r
(

2emr2

r(k − (k − 1)ε)n2

)r(k−(k−1)ε)/2

<

t
∑

r=t/2

(

(

2e2m

(k − (k − 1)ε)n

)(k−(k−1)ε)/2
( r

n

)(k−(k−1)ε−2)/2
)r
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=

t
∑

r=t/2

(

(

2e2∆

(k − (k − 1)ε)

)(k−(k−1)ε)/2
( r

n

)(k−(k−1)ε−2)/2
)r

For t/2 ≤ r ≤ t, and for some constant cε,k > 0, if t ≤ cε,kn/∆
k−(k−1)ε

k−(k−1)ε−2 , each term in the sum is at
most 2−r and thus the sum is less than 21−t/2 which is o(1) in t.

Corollary 3. For each integer k ≥ 3 and ε with 1 − 1/(k − 1) > ε > 0, there is a constant c ′ε,k > 0 such

that the following holds. Let m,n be integers with m = ∆n. Let W = n/∆
k−(k−1)ε

k−(k−1)ε−2 . The probability that
G ∼ Ĝn,m has ek(G) < c′ε,kW is o(1) in W .

Proof. Let cε,k > 0 be the constant from Lemma 7 and Ck be the constant from Lemma 6. Let t =

min(Ck, cε,k)W . By Lemma 6, if G ∼ Ĝn,m and s = Ckn/∆k/(k−2) ≥ t then the probability that a sub-
graph H < G of size at most s is not k-colorable is o(1) in s and thus o(1) in W . Also, by Lemma 7
the probability that G ∼ Ĝn,m contains a subgraph on r vertices, t/2 < r ≤ t, that has no isolated
vertices and at most εr vertices of degree < k is o(1) in t, and thus o(1) in W . Thus every induced sub-
graph H on r vertices with no isolated vertices and t/2 < r ≤ t ≤ s has k-boundary of size at least
εr ≥ εt/2 = εmin(Ck, cε,k)W/2. Letting c′ε,k = εmin(Ck, cε,k)/2 yields the lower bound on ek(G).

3.3 Lower bound theorems

Theorem 1. For each integer k ≥ 3 and ε > 0 there are constants Cε,k, C
′
ε,k > 0 such that if m,n are inte-

gers with m = ∆n and G ∼ Ĝn,m, then with probability 1−o(1) in n, Res(χ(G, k)) ≥ exp(Cε,kn/∆2+ 4
k−2

+ε)

and DPLL(χ(G, k)) ≥ exp(C ′
ε,kn/∆1+ 2

k−2
+ε).

Proof. Let ε′ = ε(k − 2)2/[(k − 1)(4 + ε(k − 2))]. Clearly 0 < ε′ < (k − 2)/(k − 1) = 1 − 1/(k − 1).
By Corollary 1 the resolution complexity of χ(G, k) is at least 2(ek(G)−k)2/n. By Corollary 3, there is a c′ε′,k
such that with probability 1 − o(1) in W = n/∆(k−(k−1)ε′)/(k−(k−1)ε′−2), ek(G) ≥ c′ε′,kW . Therefore

e2
k(G)/n ≥ (c′ε′,k)

2W 2/n

= (c′ε′,k)
2n/∆2(1+2/(k−(k−1)ε′−2))

= (c′ε′,k)
2n/∆2+ 4

k−2
+ε

by our choice of ε′. Now, if this quantity is at least 1, then clearly W is ω(1) in n since W is larger
than it by a factor of c′ε′,k∆

1+2/(k−(k−1)ε′−2). Therefore with probability 1 − o(1) in n, ek(G)2/n ≥
(c′ε′,k)

2n/∆2+ 4
k−2

+ε. Clearly, we can choose Cε,k and can absorb the −k in the constant Cε,k to obtain the
desired result for resolution. For DPLL procedures, the result follows even more directly.

It is worth noting that we can obtain a lower bound on the size of a proof of non-k-colorability in the
system considered by McDiarmid [McD84] that is similar to the DPLL proof size lower bound proof size
since their bound on the proof width as a function of proof size only differs by a factor of 2k. Thus the
same bound as the DPLL bound above holds for McDiarmid’s system with a slightly different value of the
constant C ′

ε,k.

Corollary 4. For each integer k ≥ 3, ε > 0, and ∆ > 0 there is a constant C ′
ε,k > 0 such that

9



• if p = 2∆/(n−1) and G ∼ Gn,p, then with probability 1−o(1) in n, Res(χ(G, k)) ≥ exp(C ′
ε,kn/∆2+ 4

k−2
+ε).

• if m = ∆n and G ∼ Gn,m, then with probability 1−o(1) in n, Res(χ(G, k)) ≥ exp(C ′
ε,kn/∆2+ 4

k−2
+ε).

Corollary 5. For each integer k ≥ 3, ε > 0, there is a δ > 0 such that if m ≤ n
3k−2
2k

−ε and G ∼ Gn,m or

G ∼ Ĝn,m then, with probability 1 − o(1) in n, Res(χ(G, k)) ≥ 2nδ

.

Proof. For this range of m, ∆ ≤ n
k−2
2k

−ε. Applying the Theorem 1 with a suitably small value of ε′ in place
of ε yields the desired result.

Corollary 6. For each integer k ≥ 3, ε > 0, there is a δ > 0 such that if m ≤ n2− 2
k
−ε and G ∼ Gn,m or

G ∼ Ĝn,m then, with probability 1 − o(1) in n, DPLL(χ(G, k)) ≥ 2nδ

.

4 Upper Bounds

A very simple brute-force procedure achieves a 2O(n/∆) upper bound for proving non-k-colorability, based
on the following observation.

Lemma 8. Let p = 2∆/(n − 1) and G ∼ G(n, p). Let Gr be the subgraph of G induced on the first r
vertices of G. If r − 1 > c+

k (n − 1)/∆ then with probability 1 − o(1) in r, Gr is not k-colorable.

Proof. Clearly, if G ∼ G(m, p) then the induced graph Gr ∼ G(r, p). By our assumption on r, p(r−1)/2 >
c+
k . The conclusion follows by the definition of c+

k .

Therefore the simple algorithm that searches through all possible k-colorings of the first c+
k (n−1)/∆+1

vertices of a G ∼ G(n, p) will almost certainly find a witness to the non-k-colorability of G. Such an
algorithm can easily be phrased as a simple DPLL search procedure, called the ordered DPLL procedure
in [BKPS02], that always splits on the first unset variable. In fact, [Wil84, BW85] analyze essentially
the same simple backtracking procedure for k-coloring, although it is not described as being based on
DPLL. (In their algorithm, vertices are listed in a fixed order and all colors of a vertex compatible with
previously assigned vertices are tried recursively.) For this algorithm, with p = 2∆/(n − 1), ∆ ∈ o(n) and
G ∼ G(n, p), they show that the log of the expected number of nodes in the search tree is k(log k)2n/4∆
plus lower order terms for pn → ∞. For completeness, we state and prove the following simpler version of
such a theorem.

Theorem 2. Let k > 1, p = 2∆/(n − 1) and G ∼ G(n, p). With probability 1 − o(1) in n, the ordered
DPLL procedure where all k variables associated with each vertex are numbered consecutively witnesses
the fact that Res(χ(G, k)) ≤ 2O(k log2 k n/∆)nO(1).

Proof. By the bound of Łuczak, c+
k = k ln k +O(k ln ln k). Let r = max{log n, c+

k (n−1)/∆+1}. Apply
Lemma 8 to say that with probability 1 − o(1) in r and thus 1 − o(1) in n since n ≤ 2r, the induced graph
Gr on the first r vertices of G is not k-colorable.

The ordered DPLL procedure will have a branch for each of kr different k-colorings of the first r vertices
of G. Although there are k Boolean variables associated with each vertex, it is easy to see that the height
k tree corresponding to the branches on these k variables has only k non-trivial children. Therefore the
ordered DPLL tree has size at most proportional to kr , the number of k-colorings. Plugging in the value of
r yields the desired result.

10



More generally, given any upper bound r ′ on the number of vertices so that random graphs with density
∆ almost certainly have a minimal k-uncolorable subgraph of size at most r ′, one obtains a naive 2O(r′ log n)

algorithm that does a brute force search for such a subgraph. Such an algorithm can easily be phrased as a
resolution proof of non-k-colorability. Lemma 8 simply shows that r ′ = O(n/∆).

We can, however, do much better by using a more careful, if somewhat articifial, splitting rule and which
we show w.h.p. proves that G ∼ G(n,∆/n) is non-k-colorable in time exp(O(n/∆αk)) where

αk =
k − 1

k − 2
. (2)

Interestingly, this value of αk coincides with a heuristic bound suggested by calculations of Ein-Dor and
Monasson [EDM03] who estimated the running time of DPLL on G ∼ G(n,∆/n) by making the (clearly
false) assumption that the branches of the search tree are independent.

The splitting rule depends on the current level in the search tree, i.e., the number of vertices that are
currently colored. We go through a series of stages; to test G for k-colorability, the algorithm starts in stage
k, switches to stage k − 1 at a certain depth, and so on. The idea is that at stage j, the algorithm is currently
checking a subgraph of G for j-colorability, where the vertices in this subgraph are neighbors of vertices
colored at previous stages and have at most j allowed colors. This continues until we reach stage 2, at
which point we check a subgraph for 2-colorability in polynomial time using unit propagation around an
odd cycle. At each stage we use an arbitrary numbering, as in ordered DPLL, to choose among the vertices
in the current subgraph. We illustrate this in Figure 1.

We now define this splitting rule, which we call R. To introduce some notation, let T be the current
depth, and for 1 ≤ t ≤ T let vt be the vertex that was colored at level t of the tree and c(vt) be its assigned
color. For 3 ≤ i ≤ k let ti = ain/∆αi , where αi is given by (2) and a3, . . . , ak is a set of parameters we
will define below. Let Tj =

∑k
i=j ti with Tk+1 = 0, and let T2 = n; then we will say that we are currently

in stage j if j is the largest integer such that T < Tj .

Given that we are in stage j, define a set of vertices Vj as follows. For j < i ≤ k, let Si = {vt : Ti+1 ≤
t < Ti} be the set of vertices colored during stage i, let ci be the most common color among the vertices
in Si, and let Ui = {v ∈ Si : c(v) = ci}. Then let Vj be the set of uncolored vertices v such that v has a
neighbor ui ∈ Ui for all j < i ≤ k. By construction the ci are all distinct, so vertices in Vj have at most j
allowed colors. We take Vk = V .

Finally, if j > 2, R splits on the vertex in Vj of smallest number. If j = 2, R splits on the vertex in V2 of
smallest number, and performs unit propagation whenever a vertex in V2 exists with only one allowed color.
(Note that although it does not take advantage of unit propagation until j = 2, up to a polynomial factor, the

}
}
}

t3 = a3n/∆
2

t4 = a4n/∆
3/2

T3

T4

unit propagationstage 2

stage 3

stage 4

Figure 1: Our depth-dependent splitting rule R is equivalent to a series of stages; during stage j, the algo-
rithm is checking a subgraph Vj for j-colorability. Here k = 4.
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Algorithm Ak(G) {
If k = 2, check G for 2-colorability.
Else {

Let t = akn/∆αk .
If |G| < t, fail.
Else, for all kt assignments of colors to the t vertices of lowest number, do {

Let c be the most common color among these t vertices,
let U be the set of these vertices assigned color c, and
let G′ be the subgraph induced by U ’s uncolored neighbors.
Run Ak−1(G

′).
}

}
}

Table 1: A recursive algorithm equivalent to the splitting rule R.

algorithm’s running time can only improve if it performs additional unit propagations at an earlier stage.)

To do our analysis, it is convenient to recognize that DPLL with this splitting rule is equivalent to a
recursive algorithm Ak(G) which colors t = tk vertices and then calls itself on the subgraph G′ of uncolored
neighbors of the vertices assigned the most common color. We illustrate this algorithm in Table 1.

Theorem 3. Let G ∼ G(n, p = ∆/n). For all k ≥ 3, there exist constants a3, . . . ak and constants bk, ck >
0, and dk such that, for all ∆ > dk, DPLL with splitting rule R, or equivalently algorithm Ak, refutes χ(G, k)
in time exp(bkn/∆αk)nO(1) with probability at least 1 − exp(−ckn/∆αk), where αk = (k − 1)/(k − 2).
Therefore we have

DPLL(χ(G, k)) ≤ exp(bkn/∆αk)nO(1)

with probability 1 − o(1) in n.

Our proof of Theorem 3 is similar to that of Theorem 6.1 of [BKPS02], which establishes an upper
bound for DPLL on random k-SAT. The idea there is that setting a certain number of variables creates a
large enough density of 2-variable clauses so that an unsatisfiable 2-SAT subformula appears with high
probability, which ordered DPLL with unit propagation proves is unsatisfiable in linear time. Similarly,
we will show inductively that coloring the first tk vertices yields a subgraph which Ak−1 quickly proves is
non-(k − 1)-colorable, until k = 2 and we can check for 2-colorability quickly using our the smallest num-
bered vertex splitting rule and unit propagation. This induction works if the αk obey a certain recurrence,
yielding (2).

We first prove that if G has some simple properties, which hold with high probability whenever G
has sufficiently large degree, then checking for non-2-colorability is extremely fast. (Ordered DPLL is
particularly naive because it does not take advantange of the symmetry of the colors. If we used a more
sophisticated splitting rule then we could easily derive a linear upper bound for all non-2-colorable graphs.)

Lemma 9. There is a constant c0 such that if a graph G has a non-2-colorable connected subgraph on at
least 7/8 of its vertices, then under a random numbering of the vertices of G, the expected time for ordered
DPLL to refute χ(G, 2) is at most c0n.

Proof. Observe that once ordered DPLL colors one vertex of a connected component of G, all other vertices
of G receive the implied colors by unit propagation. Thus as soon as ordered DPLL chooses some vertex

12



from the large non-2-colorable connected component it reaches a contradiction and backtracks, tries the
other color value, reaches a second contradiction and backtracks again, failing on that component. If such
a vertex has the smallest number then a contradiction is reached immediately. However, if a vertex of
some 2-colorable component is encountered previously then on backtracking past this component, ordered
DPLL will recolor the first vertex of this 2-colorable component and then return to the non-2-colorable large
subgraph and again determine failure before finally deriving a contradiction. Thus if the smallest-numbered
vertex of the large non-2-colorable component is numbered b + 1 then the number of times we color first
vertices in some component is at most r = 2b+1 and the cost of unit propagation on each component is
Cn for some constant C . Since the large component has size at least 7n/8 the probability that this happens
is at most 8−b = (2/r)3. The expected time is then at most C

∑∞
r=1(2/r)

3rn = (8C
∑∞

r=1 1/r2)n =
(4Cπ2/3)n.

We now prove that a random graph of sufficiently high, but constant, average degree is overwhelmingly
likely to have the large non-2-colorable component called for by Lemma 9, so that our very simple DPLL
procedure will determine that it is not 2-colorable in linear expected time. Note that, here and elsewhere,
we have made no attempt to optimize the constants (other than αk) that appear in the exponents.

Lemma 10. There exist constants c2, d2 > 0 such that, for all ∆ ≥ d2, n sufficiently large and G ∼
G(n, p = ∆/n),

Pr[G contains a non-2-colorable connected component of size ≥ 7n/8] ≥ 1 − e−c2∆n .

Proof. First consider the probability that the largest connected component of G is of size less than 7n/8. If
this is the case then there must be some subset S of vertices with n/16 ≤ |S| < 15n/16 that is disconnected
from S̄. (To see this, consider the components C1, . . . , Cl of G in an arbitrary order, let j be the smallest
integer such that |C1 ∪ · · · ∪ Cj| ≥ n/16 and set S = C1 ∪ · · · ∪ Cj . Since |Cj | ≤ 7n/8, n/16 ≤ |S| <
15n/16.) For a fixed set S of this size the probability that there are no edges from S to S̄ is at most

(1 − p)|S|·|S̄| ≤ e−p(15n2/256) ≤ e−15∆n/256

Since there fewer than 2n such sets S,

Pr[G does not contain a connected component of size ≥ 7n/8] ≤ e−(15∆/256−ln 2)n .

We now show that with overwhelming probability, no subset of m ≥ n/2 vertices of G can be bipartite.
Fix one such subset B. Let X be the number of 2-colorings of B. There are 2m 2-color assignments to the
vertices of B. For any such assignment, the number of potential edges between vertices of the same color is
at least 2

(

bm/2c
2

)

, which is greater than m2/8 for n ≥ 8. Therefore,

E[X] ≤ 2m(1 − p)m2/8 ≤ 2me−pm2/8 = 2n/2e−pn2/32 ≤ e−(∆/32−(1/2) ln 2)n

Since there are fewer than 2n such sets, the probability that some such set is bipartite is at most e−(∆/32−(3/2) ln 2)n.

Therefore the overall probability that a non-2-colorable component of size at least (7/8)n fails to exist
is at most

e−(15∆/256−ln 2)n + e−(∆/32−(3/2) ln 2)n

which is at most e−c2∆n for ∆ ≥ d2 for some constants c2, d2 > 0.
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Below we will use the following Chernoff bounds on the binomial distribution [ASE92, Appendix A]:

Pr[Bin(m, q) < mq/4] ≤ 2−mq/2 (3)

Pr[Bin(m, q) > Cmq] ≤ (C/e)−Cmq (4)

Now, to illustrate the idea and start our induction, we prove Theorem 3 in the case k = 3.

Theorem 4. Let G ∼ G(n, p = ∆/n). There exist constants a3, b3, c3 > 0, and d3 such that if ∆ ≥ d3,
then A3 refutes χ(G, 3) in time at most exp(b3n/∆2)O(n) with probability at least 1 − exp(−c3n/∆2).

Proof. As in our definitions of R and A3 above, let G′ be the subgraph induced by the uncolored neighbors
of the t colored vertices which have been assigned their most common color. We will show that w.h.p. G ′

satisfies the conditions of Lemma 9 for all 3t assignments of the first t vertices, then A3’s expected running
time will be at most 3tc0n = exp((a3 ln 3)n/∆2)c0n. Then, setting b3 = 2a3 ln 3, by Markov’s inequality
the probability that the running time exceeds exp(b3n/∆2)c0n is at most exp(−(a3 ln 3)n/∆2).

The number n′ of vertices in G′ is binomially distributed as Bin(n − t, q) where

q ≥ 1 − (1 − p)t/3 ≥ 1 − e−pt/3 ≥ pt

6
=

a3

6∆

since e−x ≤ 1 − x/2 for 0 ≤ x ≤ 1. Using the lower Chernoff bound (3) and choosing d3 large enough so
that t = a3n/∆2 < n/2 for ∆ ≥ d3, we have

Pr[n′ < a3n/(48∆)] ≤ 2−a3n/(24∆) .

Let a3 = 48d2 where d2 is the constant defined by Lemma 10. Then we have

Pr[n′ < d2n/∆] ≤ 2−2d2n/∆ . (5)

Clearly G′ is distributed as G(n′, p) if we condition on the value of n′. Let ∆′ = pn′ be the mean degree of
G′; then if n′ ≥ d2n/∆ we have ∆′ ≥ d2. Combining Lemma 10 with (5) then gives

Pr[G′ does not contain a non-2-colorable component of size ≥ 7n′/8] ≤ 2−2d2n/∆ + e−c2d2
2n/∆

< exp(−2Cn/∆)

for some C < min(d2 ln 2, c2d
2
2/2). We wish to bound the probability that G′ violates the condition of

Lemma 9 for some assignment of the first t vertices. Choose d3 large enough so that (a3 ln 3)/d3 < C; then
for all ∆ ≥ d3, the union bound gives a total probability of

3t exp(−2Cn/∆) < exp

((

a3 ln 3

∆
− 2C

)

n

∆

)

< exp(−Cn/∆) .

Combining this with Markov’s inequality as described above, the overall probability that the running time
of A3 exceeds exp(b3n/∆2)c0n is at most

exp(−(a3 ln 3)n/∆2) + exp(−Cn/∆) < exp(−c3n/∆2)

for all ∆ ≥ d3 and some c3 > a3 ln 3.
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We can now prove Theorem 3 for all k.

Proof of Theorem 3. The proof works by induction on k, where each step of the induction parallels that of
Theorem 4 and we use k = 3 as the base case. Our goal is to set ak and dk so that the average degree ∆′ of
G′ is at least dk−1.

First, the number n′ of vertices in G′ is distributed as Bin(n − t, q) where

q ≥ 1 − (1 − p)t/k ≥ 1 − e−pt/k ≥ pt

2k
=

ak

2k∆αk−1

Choosing dk large enough so that t < n/2 for ∆ ≥ dk and setting ak = 16kdk−1, the Chernoff bounds (3), (4)
(with C = 4) give

Pr[n′ < dk−1n/∆αk−1] ≤ 2−2dk−1n/∆αk−1
(6)

Pr[n′ > 16dk−1n/∆αk−1] ≤ (4/e)−16dk−1n/∆αk−1
(7)

Then if n′ ≥ dk−1n/∆αk−1, we have ∆′ = pn′ ≥ dk−1∆
2−αk ≥ dk−1, since αk ≤ 2 and we assume

w.l.o.g. ∆ > 1. Therefore, assuming the events of (6) and (7) hold, the running time of Ak (up to nO(1)) is

kt exp(bk−1n
′/(∆′)αk−1) ≤ exp

((

ak ln k +
16bk−1d

1−αk−1

k−1

∆αk−1(2−αk)−1

)

n

∆αk

)

(8)

Set bk = ak ln k + 16bk−1d
1−αk−1

k−1 . Then if αk−1(2 − αk) − 1 = 0, or alternately

αk = 2 − 1

αk−1
, (9)

then the running time (8) becomes exp(bkn/∆αk) as stated. Indeed, the solution to the recurrence (9) with
the initial condition α3 = 2 is

αk =
k − 1

k − 2
.

We now bound the probability that, for some assignment of the first t vertices, Ak−1 fails because |G′| <
tk−1 or its running time exceeds exp(bkn/∆αk). First, note that since αk − 1 < αk−1, for sufficiently
large ∆ we have dk−1n/∆αk−1 > tk−1, so the probability that |G′| < tk−1 is bounded by (6). Then,
combining (6) and (7) with our inductive assumption gives

Pr[Ak−1 fails or takes too long on G′] ≤ 2 · 2−2dk−1n/∆αk−1

+ exp

(

− ck−1n
′

∆′αk−1

)

≤ 21−2dk−1n/∆αk−1
+ exp

(

− ck−1dk−1n

(16dk−1)αk−1∆αk

)

(10)

< exp(−2ckn/∆αk)

for some ck > ck−1dk/(16dk−1)
αk−1 , where we have set dk > ck−1/((2 ln 2)(16dk−1)

αk−1) so that the
second term in (11) dominates for all ∆ ≥ dk. Furthermore, set ck large enough so that ck > ak ln k; then
the union bound over the kt assignments of the first t vertices gives

Pr[Ak fails] = kt exp(−2ckn/∆αk)

= exp((ak ln k − 2ck)n/∆αk)

< exp(−ckn/∆αk)

which completes the proof.
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Another approach, more closely analogous to [BKPS02], is to note that if Θ(t) of the initial vertices
are assigned each color, then the number of their 2-color neighbors with a particular pair of allowed colors
is w.h.p. n′ = Θ(n(pt)k−2) = Θ(n/∆(αk−1)(k−2)). These 2-color vertices induce a graph G′ of average
degree ∆′ = pn′ = Θ(∆1−(αk−1)(k−2)), and Lemma 10 shows that G′ is w.h.p. non-2-colorable when
∆′ ≥ d2. This happens (with appropriate constants) when ∆′ = Θ(1), giving 1 − (αk − 1)(k − 2) = 0 and
so αk = (k − 1)/(k − 2).

However, since the colors assigned to the first t vertices are (negatively) correlated, proving that Θ(t) of
them receive each of the k colors then becomes a separate problem. One possible method for this would be
to use multitype branching processes as in [AM02].

5 Discussion of algorithms

5.1 Backtracking algorithms

In section 4, we described the behavior of the backtracking algorithm analyzed in [Wil84, BW85] on non-
k-colorable graphs as a resolution refutation of the formula χ(G, k). This is very typical. Many more
sophisticated backtracking-based coloring algorithms can be emulated by resolution (or by a tree-like Mc-
Diarmid proofs to which our resolution-width bounds also apply). Our DPLL upper bound from Theorem 3
corresponds to one such natural algorithm which has better behavior. For example, most of the coloring
algorithms in [JT96] were of this form.

Beigel and Eppstein also used recursive algorithms, based on extensive case analyses of local configu-
rations, to give upper bounds for 3-coloring of O(1.3446n) [BE95], later improved to O(1.3289n) [BE00].
The case analysis is in terms of general constraint satisfaction problems (CSPs) with domain size 3 or 4
and binary constraints, of which 3-coloring is a special case where the domain size is 3 and all constraints
are not-equal constraints. We are not able, so far, to give strict resolution simulations for these algorithms.
However, in [Mit02] a variant of the the algorithm in [BE95] is given which establishes the same bound of
O(1.3446n) for Res(χ(G, 3)). In the case of the algorithm given in [BE00], we can do the same for all but
one case (among some two dozen).

The execution of the Beigel–Eppstein algorithms on input G may easily be described in terms of the
formula χ(G, k). Consider the following “quasi-DPLL” algorithm scheme. For formula φ, select a set
S ⊂ vars(φ) of variables based on some local property of φ, and consider a set A of (possibly partial)
assignments to S. For each α in A, either α makes a clause C of φ false, or we make a recursive call to solve
the restriction of φ by α. If the set A of assignments covers all assignments to S (that is, each assignment
to S is an extension of some partial assignment in A), then φ is unsatisfiable if and only if each restricted
formula is unsatisfiable. Any “quasi-DPLL” algorithm of this sort can be efficiently simulated by resolution
as follows. For each α in A we may derive a clause which α makes false, and from these derived clauses
plus clauses of φ that mention variables in S, we may construct a refutation of φ. The derived clauses are
obtained as follows. If α makes a clause C ∈ φ false, we use the clause C , otherwise the recursive call to
refute the restriction of φ by α returns a clause that α makes false. In the case where φ is already a restriction
of the input formula by partial assignment τ , we can extract from the refutation of φ a clause which τ makes
false, and return this clause to the parent invocation. (The refutations produced may not be strictly tree-like,
but are nearly tree-like in that non-tree parts are local.)

Most of the cases in the Beigel–Eppstein algorithms are captured fairly easily by this scheme. The
bounds are obtained by careful choices for sets S and A, and the corresponding number and sizes of recursive
calls. However, in a small number of cases the set A of assignments does not cover all assignments to S.
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In these cases, the completeness arguments do not have direct analogs in resolution, and to obtain the
bounds in [Mit02] alternate handling or sub-case breakdown was used. In the algorithm of [BE00] one case
makes use of polytime bipartite matching, which is a more serious impediment to simulation by resolution.
Nonetheless, it is plausible that our lower bounds can be shown to apply to both of the Beigel–Eppstein
algorithms.

The connection between k-coloring algorithms and resolution-based algorithms for χ(G, k) is also borne
out in practice. For example, the program used for coloring in [CG01] also uses graph reductions based on
removing vertices, or merging vertices. These, too, can be emulated by resolutions, mostly on 2 clauses, but
occasionally involving 3-clauses. It also does significant forward pruning by propagating statements of the
type “the color of v is i or the color of w is j”. These can be expressed as 2-clauses (xv,i ∨ xw,j) which
can be generated by resolution. In extensive head-to-head tests [CG01] of this program on graphs and the
back-jumping version of the DPLL-based Tableau program ntab-back [CA96] on the associated χ(G, k)
behave statistically alike on random 3-color instances. The coloring program is better for larger values of k,
but this is likely due to the fact that Tableau was tuned to 3-SAT instances and the fact that some features
(e.g. clustering) are easier to identify knowing the graph structure.

5.2 Other complete algorithms

There are many other algorithms suitable for k-coloring or k-colorability that are not primarily based on
backtracking search and therefore are not covered by our resolution bounds. Often they are tuned for use
on the random graphs we consider. However most non-backtracking coloring algorithms, such as those
in [BMWZ, AK97, FF96, CS02] are incomplete in that they may miss some possible k-colorings and there-
fore do not produce certificates of non-k-colorability. We will only be concerned with complete algorithms.

One class is particularly interesting. At sufficiently large density, any graph is almost certainly not
k-colorable, however this fact does not in itself provide a proof of such a graph’s non-k-colorability. How-
ever, recently, Krivelevich and Vu [KV02] showed that tight concentration bounds on the polynomially-
computable Lovasz ϑ function of random graphs can be used to approximate the chromatic number in
polynomial expected time for sufficiently large graph density ∆. Coja-Oghlan [CO03] has used the same
general technique and sharper concentration bounds for the polynomial-time computable vector chromatic
number ϑ̄1/2(G) to derive a polynomial expected time k-colorability algorithm for k = o(

√
n) and ∆ > ck2

for some constant c > 0. More precisely, since ϑ̄1/2(G) ≤ ϑ(Ḡ) ≤ χ(G) for all graphs G, the algorithm
first tests if ϑ̄1/2(G) > k (using semi-definite programming); if so, then this provides a proof of the non-
k-colorability of G. Otherwise, the algorithm then calls a standard worst-case exponential-time k-coloring
algorithm such as that of Lawler [Law76]. The concentration results for ϑ̄(G) are such that it is exponen-
tially unlikely that the algorithm will need to resort to the second stage and thus the algorithm has polynomial
expected running time.

Clearly, based on our results, these algorithms are provably superior to resolution and backtracking for
proving non-k-colorability of random graphs when the graph density is sufficiently large compared to k.
These algorithms use the typical properties of a random input to try to quickly produce a certificate that the
input is not k-colorable. Although such a certificate may not be guaranteed to exist, it works sufficiently
frequently that it is useful. Similar ideas using spectral methods have also been employed by Goerdt et
al. [GK01, FG01] for random k-SAT. It is interesting to note that in the case of k-SAT, although the best
current algorithms almost certainly yield efficient certificates in a wider range of densities than does DPLL,
in contrast to the situation for k-colorability it is still open whether or not they do the same when compared
with general resolution,
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Finally, we note that since χ(G, k) is a k-CNF formula, any complete deterministic algorithm for k-
SAT is potentially relevant for k-coloring. Most such algorithms that have been analyzed are themselves
resolution-based although there are exceptions such as the (2 − 2/(k + 1))n worst-case time algorithm of
Dantsin et al. [DGH+02] which is not competitive and does improve with improved graph density.

6 Open Problems

There is a gap between the exponents of ∆ in our upper and lower bounds that would be nice to close,
particularly for DPLL. Our DPLL upper bound is of the form exp(O(n/∆(k−1)/(k−2))) whereas our lower
bound is of the form exp(Ω(n/∆k/(k−2)+ε)).

Classic results [ER60] show that for ∆ = ω(n(k−2)/k) a random G ∼ G(n,∆/n) contains a (k + 1)-
clique with probability 1−o(1). The presence of such a clique obviously yields a O(k2) size DPLL proof of
non-k-colorability so we should consider densities below this bound. It is interesting that this is essentially
the same range where our current lower bound yields nontrivial results. This suggests that our DPLL lower
bound (except maybe for the ε) is the more likely to be the correct bound.

One obstacle for improving the DPLL upper bound to match the lower bound may be that the lower
bound allows an optimal literal selection rule that may not necessarily be obtainable via an efficient DPLL
algorithm. It would be interesting to see if one could obtain improved lower bounds for simple literal
selection rules or show that simpler selection rules can achieve the same or better upper bounds.

Our bounds apply only above the threshold for k-colorability, but the use of χ(G, k) in k-coloring
algorithms also is suitable in the k-colorable region since satisfying assignments correspond to k-colorings
(unlike the ϑ-based algorithms from section 5 which yield no information about a k-coloring when the
graph is k-colorable). Jia and Moore [JM] have recently shown exponential behavior of a natural greedy
DPLL algorithm on easily k-colorable random graphs below the threshold: this greedy algorithm repeatedly
misses constant-size contradictory subproblems. However, such behavior can easily be eliminated with a
more sophisticated literal selection rule. Are there other more sophisticated algorithms where such bounds
can be shown for satisfiable instances?
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