
Languages to diagonalize against advice classes

Chris Pollett
214 MacQuarrie Hall,

Department of Computer Science,
San Jose State University,

One Washington Square, San Jose CA 95192.
Email: pollett@cs.sjsu.edu

Abstract

Variants of Kannan’s Theorem are given where the cir-
cuits of the original theorem are replaced by arbitrary re-
cursively presentable classes of languages that use advice
strings and satisfy certain mild conditions. These vari-
ants imply that DTIME(nk′

)NE/nk does not contain PNE,

DTIME(2nk
′

)/nk does not contain EXP, SPACE(nk′

)/nk

does not contain PSPACE, uniform TC0/nk does not con-
tain CH, and uniform ACC/nk does not contain ModPH.
Consequences for selective sets are also obtained. In par-

ticular, it is shown that R
DTIME(nk)
T (NP-sel) does not con-

tain PNE, R
DTIME(nk)
T (P-sel) does not contain EXP, and

that R
DTIME(nk)
T (L-sel) does not contain PSPACE. Fi-

nally, a circuit size hierarchy theorem is established.

Categories and Subject Descriptors: F.1.3 [Theory of
Computation]: Relations among complexity classes
General Terms: Theory
Additional Key Words and Phrases: advice classes, EXP,
NEXP, NE, CH, ModPH, p-selective

1 Introduction

One way to characterize nonuniform complexity classes
is in terms of advice functions. A set A is in C/F if there
is a f : N → Σ∗ ∈ F and a B ∈ C such that x ∈ A if and
only if 〈x, f(|x|)〉 ∈ B. Languages with p-size circuits can
be characterized as P/poly and those with p-size branch-
ing programs as L/poly. Despite many years of study it is
open whether NEXP ⊆ P/poly or even NEXP ⊆ L/poly.
In this paper the advice string characterization of nonuni-
form classes rather than their combinatorial characterization
is examined in more detail in an attempt to both simplify
existing proofs as well as shed some insight on these hard
problems.

The starting point of the present work is Kannan [11]
which exhibits sets in NEXPNP requiring super-polynomial
sized circuits. Kannan also gives sets in Σp

2 requiring cir-
cuits of size greater than nk for any fixed k. The idea in
these results is to guess a minimal circuit of a somewhat
larger size and verify that no smaller circuit can compute it.
That a circuit of this larger size works follows by a count-
ing argument. This counting argument is done for a specific
computational model so if one wants to transfer this result
to other models, one has to come up with a new counting
argument.

Another approach to lower bounds for nonuniform
classes is via Komolgorov complexity. Using this ap-
proach, Homer and Mocas [10] show that EXP 6⊆
DTIME(2O(nc1))/nc2 . Fu [6], also by this approach, shows
that EXP is not contained in the sets reducible in determin-
istic time nk to a p-selective set. Here k is fixed and this

paper uses the notation R
DTIME(nk)
T (P-sel) for this class

of sets. The Komolgorov complexity notions used in these
results are based on time, so to generalize them to space,
counting, or probabilistic classes requires a reworking of
the argument.

If a nonuniform class has an advice characterization,
however, then the advice strings themselves can be used as
both combinatorial objects to diagonalize against and as a
source of random larger strings to serve as counterexam-
ples. In this paper three languages useful to diagonalize
against an advice class C/F are presented. Using these
languages, two advice versions of Kannan’s Theorem are
proven. In terms of alternations, the slightly stronger vari-
ant is that C/F 6⊇ Σ2-TIME(tO(1))C

′

where F ⊆ o(t) and
C and C′ are recursively presentable and the latter contains a
“universal predicate” for the former. The proof idea comes
from a constructive version of Kannan’s result in Cai and
Watanabe [4]. The current paper’s result can be used to
not only get the results of Homer and Mocas and Fu men-
tioned above, but also allows one to show new results like

Electronic Colloquium on Computational Complexity, Report No. 14 (2004)

ISSN 1433-8092

DTIME(nk′

)NE/nk 6⊇ PNE, SPACE(nk′

)/nk 6⊇ PSPACE,

and R
DTIME(nk)
T (L-sel) 6⊇ PSPACE.

A common technique for making nonuniform complex-
ity classes uniform is to require that some property of a
combinatorial object in the nonuniform class be of low com-
plexity. For instance, a circuit family {Cn} is DLOGTIME

uniform if one can in DLOGTIME in the size of Cn deter-
mine if two gates in Cn are connected and if so by what gate
type. It is unknown if the languages computed by nonuni-
form constant depth threshold circuits, TC0, contain all of
the counting hierarchy CH (the union of P, PPP, PPPPP

,
. . .); however, it is known from Caussinus, et al. [5] that
DLOGTIME uniform TC0, uTC0, does not contain CH. Al-
lender [1] gives a threshold machine diagonalization proof
of this fact based on the padded diagonalization techniques
used in the proof of the nondeterministic time hierarchy
theorem [21, 16]. In this paper, we show our variant of
Kannan’s theorem implies uTC0/nk 6⊇ CH. That is, one
can still separate these classes after some nonuniformity has
been added back. One also gets that uniform, constant depth
unbounded fan-in, AND, OR, modm for any m gate cir-
cuits, ACC, where nk advice is “added back” does not con-
tain ModPH. Here ModPH is the generalization of polyno-
mial hierarchy which allows modular counting quantifiers.

Another application of an advice based approach to
separating nonuniform classes, is the possibility to use
one of the languages mentioned above to separate advice
classes from other advice classes whose advice strings are
shorter. Using this idea, size hierarchies for many combi-
natorial classes can be shown. In this paper, it is shown
that for bounded fan-in, AND, OR, NOT circuits that
SIZE(s log2+ε s)) SIZE(s) for any ε > 0.

This paper is organized as follows: Section 2 summa-
rizes the notations used in this paper. Section 3 presents
three classes of languages useful to diagonalize against ad-
vice classes. It also presents advice based variants of Kan-
nan [11]. Section 4 studies the power of languages com-
puted by reductions to advice based classes. Corollaries of
these two sections are then given. Section 6 considers impli-
cations of earlier results to selective sets. Section 7 concerns
separating advice classes from other advice classes.

2 Preliminaries

Balcázar, Dı́az, and Gabarró [2, 3], Papadimitriou [13],
Hemaspaandra and Ogihara [8], and Vollmer [19] have
more on advice classes and circuit complexity. This section
contains only what is needed in the following.

For convenience sake, the alphabet of machines consid-
ered in this paper is {0, 1}. {0, 1}≤n denotes the strings
over {0, 1} of length ≤ n. Both vw and v a w denote
concatenation of strings. 〈x1, . . . xn〉 is defined to be the
string obtain by replacing 0’s and 1’s in xi’s by 00 and 10

respectively and by inserting a 01 in between numbers. The
string x + y is calculated by viewing x and y as numbers
with the left digit being the high-order bit, adding these two
numbers, and padding high order 0’s to ensure the length of
the result is at least max(|x|, |y|).

In this paper, sub-linear time machines operate in a
slightly non-standard manner: the input tape is treated as
an oracle for both reading and writing. For reading, a
machine computes i on a work tape, enters a query state,
and in one time step enters one of a fixed finite set of states
according to the symbol on the ith tape square of the in-
put. For writing, a machine computes a pair 〈i, b〉 where
b ∈ Σ, enters a special state, then b in one step becomes
the ith symbol of the input tape. This operation is useful,
if the machine also has access to another oracle set A: The
machine can make changes to the input and then query the
changed version of the input to A. Querying any A other
than the input is also slightly non-standard: 〈t1, . . . tk〉 is
written and a query state is entered. The oracle A receives
〈x1, . . . , xn〉 where xi is the contents of tape ti. Based
on whether this is in A, the machine enters the appropri-
ate state. These changes to the machine model give at most
a linear speed-up over the usual model. Given a predicate
A(x), A(x1, . . . , xn) denotes A(〈x1, . . . , xn〉). Frequently,
the distinction between a set A and it characteristic func-
tion, which will be written A(x) glossed over.

A recursive presentation of C is an effective enumeration
M1, M2,· · · of DTM’s which halt on all their inputs, and
such that C = {L(Mi) | i > 0}. P, NP, PP, PSPACE,
etc. all have such a presentation. Balcázar, Dı́az, and
Gabarró [2] has more details on such presentations. It will
be assumed that each language gets enumerated infinitely
often in the presentation. For the remainder of this paper
assume: (1) C, C′ are recursively presentable, (2) F is a
class of nondecreasing functions on N, and (3) t is a non-
decreasing, time constructible function on N.

Definition 1 C/F denotes the languages L/{f} :=
{x|〈x, f(|x|)〉) ∈ L} for some L ∈ C and f ∈ F .

C/nk is used for C/ ∪c {c · n
k}. When nk where c = 1

is of interest, C/{nk} is used. log, lin, and poly are used for
the classes ∪cc · log n, ∪cc ·n, and ∪k,c(c ·n

k), respectively.
C/F is called an advice class. The most interesting ad-

vice classes are P/poly and L/poly. Here P denotes poly-
nomial time and L denotes log-space. P/poly are the lan-
guages recognized by p-sized circuits and L/poly are the
languages recognized by p-sized branching programs.

PRTIME(t) denotes those languages decidable by a
NTM in time O(t) where the acceptance condition is that
more than half of the paths accept when it is in the language.
PP is ∪kPRTIME(nk). This paper uses the following stan-
dard names for complexity classes:

E := DTIME(2lin)
NE := NTIME(2lin)

EXP := DTIME(2poly)
NEXP := NTIME(2poly)

C0PRTIME(t) := DTIME(t)

Ci+1PRTIME(t) := PRTIME(t)CiPRTIME(t)

CH(t) := ∪iC
iPRTIME(t)

CiP := CiPRTIME(poly)
CH := CH(poly)

Let Σk (Πk) -TIME(t) denote those languages recog-
nized by any alternating TM with at most k alternations
the outermost being existential (universal) running in time
O(t). Write ∆k-TIME(t) for DTIME(t)Σk−TIME(t). When
the time bound is polynomial, Σp

k, Πp
k, and ∆p

k are used.
In this case, if an oracle set A is also in use then Σp

k(A),
Πp

k(A), and ∆p
k(A) are written to avoid subscripts and su-

perscripts. Finally, co-C denotes the class {L̄ |L ∈ C}.
The next two definitions are needed for the main results.

Definition 2 C′ is universal (co-universal) for
C if for some fixed enumeration of C, U :=
{〈e, x〉 | machine e in C accepts x} ∈ C ′ (U ∈ co-C).
C′ is versal if it either universal or co-universal.

The reader can check that NEXP is co-universal for co-
NE, PSPACE is universal and co-universal for L. One com-
mon place where the distinction between a set and its pred-
icate will be ignored is for this set universal U ; the nota-
tion U(e, x) will frequently be used for the predicate corre-
sponding to this set. The next remark shows how to go from
a U which shows versality to a recursive presentation of C.

Remark 1 Notice if C′ is recursively presentable and ver-
sal for C by predicate U(e, x) then C is recursively pre-
sentable. This is because a machine MU for U must appear
at some point in C′’s enumeration. This machine MU stops
on all of it inputs. So in the case where C ′ is universal, C
can be presented by listing out the machines Me based on
MU where the value of e has been hard coded. If C ′ is co-
universal then a presentation is obtained from these Me’s
by interchanging the accept and reject states.

Definition 3 Let clear(x, z) := 0|x| + z if |z| ≤ |x|
and clear(x, z) := 0|x| otherwise. C is t-clearable if
whenever P (x1, . . . , xn) is a predicate in C then so is
P (x1, . . . , clear(xi, z), . . . , xn) for z ≤ t.

The reader should verify that P is p-clearable for any poly-
nomial p.

3 Main Result

Three ways to diagonalize against advice classes are
now explored. The first technique is based on Schöning’s

proof [15] based on Kannan [11] that EXPSPACE 6⊆
P/poly. The basic idea of this proof is to enumerate p-time
machines. Stage i diagonalizes against the machine Mi and
advice strings of length less than ii log i. This is done in
substeps the first of which is to run Mi on the input 0i for
each advice string of less than this length. The string 0i is
put into the language iff the majority of the time Mi rejects.
The process is then repeated on the input 0i + 1 and the
advice strings that answered correctly in the first substep.
Taking the majority again further at least halves the num-
ber of correctly answering advice strings. After ilog i + 2
substeps no advice strings that answer correctly are left and
the diagonalization against Mi is complete. The idea of this
argument is now abstracted so that a general result can be
obtained.

Definition 4 Let accM (x,A) (rejM (x,A)) denote the set
of strings y ∈ A such that M on input 〈x, y〉 accepts (resp.
rejects).

Define L(C, t) as ∪iL(C, t)i where in turn L(C, t)i :=
∪jL(C, t)i,j and the L(C, t)i,j’s are defined iteratively in
conjunction with the languages Aux(C, t)i,j as follows:
Aux(C, t)i,−1 := {0, 1}t, and for i ≥ 0, Aux(C, t)i,j

is accMi
(0i, Aux(C, t)i,j−1) if accMi

(0i, Aux(C, t)i,j−1)
has fewer elements than rejMi

(0i, Aux(C, t)i,j−1) and is
rejMi

(0i, Aux(C, t)i,j−1) otherwise. Here Mi is the ma-
chine for the ith language in C according to some fixed
enumeration. From these sets define L(C, t)i,−1 := ∅
and for j ≥ 0, L(C, t)i,j := L(C, t)i,j−1 ∪ {0i +
j} if Aux(C, t)i,j = accMi

(0i, Aux(C, t)i,j−1) and
L(C, t)i,j := L(C, t)i,j−1 otherwise.

Lemma 1 Assume F ⊆ o(t). Then C/F does not contain
L(C, t).

Proof. Suppose L(C, t) were in C/F . Then L(C, t) =
L(Mi)/{f} for some machine Mi in the enumeration of C
and for some f in F . As from the preliminaries it is as-
sumed that in a presentation a machine accepting the same
language as Mi is enumerated infinitely often, so Mi can
be chosen so that t(i) > f(i) since F ⊆ o(t). There are at
most 1 + 2 + · · · + 2t = 2t+1 + 1 advice strings of length
≤ t(i). One of these strings, say w, of length f(i) must be
the string used to show L(C, t) = L(Mi)/{f}. Now con-
sider which of strings 0i, 0i +1, 0i +2, . . ., 0i + t(i)+1 are
in L(C, t). Making use of w, Mi must answers correctly for
each of these strings whether or not it is in L(C, t). How-
ever, given the definition of L(C, t)i,0 at least 1/2 of all ad-
vices strings of length ≤ t(i) answer incorrectly on 0i, so
w cannot be among these. Of those that answer correct at
least half answer incorrectly on 0i + 1, and so on. After
t(i) + 2 iterations there are no advice strings left that can

successfully decide each of the strings 0i, 0i +1, 0i +2, . . .,
0i + t(i) + 1. Therefore, L(C, t) 6= L(Mi)/{f}. �

Lemma 1 shows that for each e there is a w of length t+2
so that Me on the inputs 0i, 0i +1, 0i +2, . . ., 0i + t(i)+ 1
together with any fixed on any fixed advice w′ of length
≤ t differs in at least one position from w. Such a w is
called a counterexample advice. It is not hard to show the
above language could be recognized by a deterministic time
t reduction to a PP-like class in C ′. However, as PP-like
operations are powerful as evidenced by the fact [18] that
PH ⊆ PPP, a stronger result will be sought after. The next
goal, instead, is an advice version of Kannan [11].

Define fM (n,w, s) on input n to output x0 · · ·xs where
xi is either 1 (resp. 0) depending on whether M on the ith
string lexicographically of length n using advice w accepts
(resp. rejects). Define µM (n, t) to be the lexicographically
least string w of length t(n) + 2 such that such that w is
not equal to fM (n,w′, t + 1) for any string w′ of length
≤ t. The set of strings of length t(n) + 2 that are being
minimized over is non-empty by the argument in the proof
of Lemma 1.

Definition 5 Let Lµ(C, t) := ∪iLµ(C, t)i, where Lµ(C, t)i

is defined as:
{

v

∣

∣

∣

∣

|v| = i, v = v′w, where |v′| = dlog(t(i) + 2)e,
and bit v′ of µMi

(i, t) is on

}

.

The idea is that strings x which match 0|x|, 0|x| + 1,. . .
0|x| + t(|x|) + 1 on their the low-order dlog(t(|x|) + 2)e
bits will belong to the set if and only if their corresponding
0|x| + y string is. The latter string belongs to the set if and
only if the corresponding bit of the least counterexample
advice is on. The next lemma should be clear.

Lemma 2 Assume F ⊆ o(t). Then C/F does not contain
Lµ(C, t).

An upper bound on the complexity of Lµ(C, t) is next
calculated. Notice our definition of Lµ(C, t) depends im-
plicitly on what enumeration is being used for C. For the
remainder, it is assumed that this enumeration is given by
some U which establishes versality via Remark 1.

Lemma 3 Let t ∈ Ω(log n) and t(n) + 1 < 2n. Assume
C′ is versal for C and t-clearable. Then Lµ(C, t) is in ∆3-
TIME(t)C

′

.

Proof. Let U(e, x) show C ′ is versal for C. For the remain-
der, assume e = |x|. This can be found from x in log |x|
time by binary search. Consider the co-NTIME(t)C

′

predi-
cate SOMEDIFF (x,w):

∀y ∈ {0, 1}≤t[∃z ≤ t(|x|) + 1

(¬(U(e, clear(x, z), y) ⇔ BIT (z, w) = 1))].

Here BIT (z, w) returns the zth bit of w.
SOMEDIFF (x,w) asserts that for any advice y of
length ≤ t, the zth bit of w disagrees with Me on
0|x| + z, y for at least one z ≤ t(|x|) + 1. It is needed that
|0|x| + z| ≤ n. Also, as e = |x|, e is not treated as a free
variable. This predicate is in co-NTIME(t)C

′

as guessing
y is in co-NTIME(t) and as searching over the z ≤ t + 1
is in DTIME(t)C

′

. To compute Lµ(C, t), it suffices to
find a least w such that SOMEDIFF (x,w) holds. Let
EXISTSDIFF (x, v) be the Σ2-TIME(t)C

′

predicates:

(∃w ∈ {0, 1}≤t+2)[w = vy ∧

|w| = t + 2 ∧ SOMEDIFF (e, x, w).

Now let M compute Lµ(C, t) by checking if
EXISTSDIFF (x, 0) holds and if so continuing to
compute additional bits. If not, M changes the 0 to 1 and
computes additional bits. M continues until it gets all t + 2
bits of w. Finally, M accepts if and only if BIT (z, w) = 1
holds. �

Taking Lemma 2 and Lemma 3 together gives:

Theorem 1 Let t ∈ Ω(log n) and t(n) + 1 < 2n. Assume
C′ is versal for C and t-clearable. Assume F ⊆ o(t). Then
C/F 6⊇ ∆3-TIME(t)C

′

.

To go from ∆3-TIME(t)C
′

to the Σ2-TIME(tO(1))C
′

re-
sult, the idea of the proof in Cai and Watanabe [4] that
there is a Σp

2 set that requires circuits of size nk will be
used. To begin, consider the following Σ3-TIME(t)C

′

vari-
ant, SIG3MU(x), of the previous algorithm:

∃w ∈ {0, 1}≤(t+2)2∀i ≤ t + 2[∀j < i

(BIT (j, (w)i = BIT (j, (w)i+1))

∧ SOMEDIFF (x, (w)i) ∧ (BIT (j + 1, (w)i+1) = 1 ⊃

∀v ∈ {0, 1}t+2(BIT (j + 1, v) = 0 ∧

PREEQUAL(j, (w)i+1, v) ⊃ ¬SOMEDIFF (x, v))].

In the current setting, e is a different function of x then in
Lemma 3 and is fixed at the end of the proof. Here (w)i

returns the i block of t + 2 bits from w (the start posi-
tion of a block can be calculated as i · t in t2 time) and
here PREEQUAL(j, v, x) holds if the first j bits of v
and x agree. To make SIG3MU into a Σ2-TIME(tO(1))C

′

predicate (SIG2MU(x)) the implicit existential quantifier
in ¬SOMEDIFF (x, v) needs to be eliminated. So after
guessing w, in SIG2MU an advice string y is also guessed
of length t(2(n+2t+ |t|+1)) (the reason for this size is de-
scribed below) and it is assumed that t(2(n + 2t + |t|+ 1))
is less than tk for some fixed k. It is hoped that using y,
U(e, x, j, u, v, y) holds if and only if

PREFIXNOT (j, u, x, v) := ∃u′ ≤ {0, 1}≤t+1

|u′| = j ∧ PREEQUAL(|u|, u, u′)

∧ ∀z ≤ t + 2U(e, clear(x, z), u′) ⇔ BIT (z, v)

holds. So PREFIXNOT holds if u extends to a length
j string witnessing ¬SOMEDIFF (x, v). If such a
y exists then ¬SOMEDIFF (x, v) is replaceable by
the DTIME(t)C

′

-predicate ∃j ≤ tU(e, x, j, ε, v, y). For
correctness, checks must be added in SIG2MU(x)
to ensure U(e, x, j, u, v, y) indeed calculates
PREFIXNOT (j, u, x, v). One check is that:

∀u ∈ {0, 1}≤t+1∀v ∈ {0, 1}≤t+2∀j ≤ t

PREFIXNOT (j, u, x, v) ⊃ U(e, x, j, u, v, y).

This is in co-NTIME(t)C
′

and guarantees that
PREFIXNOT (j, u, x, v) implies U(j, e, x, u, v, y).
For the other direction, that U(e, x, j, u, v, y) implies
PREFIXNOT (j, u, x, v), it is checked that (1)

∀u ∈ {0, 1}≤t+1∀v ∈ {0, 1}≤t+2∀j ≤ t

|u| = j ∧ U(e, x, j, u, v, y) ⊃

∀z ≤ t + 2U(e, clear(x, z), u) ⇔ BIT (z, v)

and (2)

∀u ∈ {0, 1}≤t+1∀v ∈ {0, 1}≤t+2∀j ≤ t|u| < j ∧

U(e, x, j, u, v, y) ⊃ U(e, x, j, u0, v, y) ∨ U(e, x, j, u1, v, y)

both hold. As these are co-NTIME(t)C
′

checks,
SIG2MU(x) is a Σ2-TIME(tO(1))C

′

predicate that is hard
for e on advice of length ≤ t provided y exists. How-
ever, if y does not exist, PREFIXNOT (j, u, x, v) is
hard for e and advice of length ≤ t(2(n + 2t + |t| +
1)). If PREFIXNOT (w) is considered where w codes
j,u,x,v then PREFIXNOT (w) is hard for e for advice
of length ≤ t(|w|). If t ∈ Ω(log n) and t(n) + 1 <
2n, then log∗ t(2(n + 2t + |t| + 1)) and log∗ n differ by
a fixed constant. So if e is set to log∗ n, then in the
PREFIXNOT (w) case a fixed adjusting factor can be
used in calculating e. Let L := {y1 | SIG2MU(y)} ∪
{y2 | PREFIXNOT (y)}. Note from the above L is
in Σ2-TIME(tO(1))C

′

and not in C/F . It will be in Σ2-
TIME(tO(1))C

′

for sub-linear time t’s because of the ability
described in the preliminaries for the machines in this pa-
per to write back to the input tape (and so after reading it
to clear the last symbol of the input). This discussion estab-
lishes the next result:

Theorem 2 Let t ∈ Ω(log n) and t(n) + 1 < 2n. Assume
that t(2(n+2t+ |t|+3)) is in O(tO(1)) and that C′ is versal
for C and t-clearable. Assume F ⊆ o(t). Then C/F 6⊇ Σ2-
TIME(tO(1))C

′

.

Theorem 2 needs more conditions and more time than
Theorem 1. Thus, both results are of interest and not strictly
comparable.

4 Reductions to advice classes

Let RFC
T (C′) denote those languages Turing reducible to

a language in C′ where the reduction was computed by a
function in FC. The next result applies the theorems of the
last section to get results about reductions.

Theorem 3 Let t ∈ Ω(log n) and t(n) + 1 < 2n.
Let s(n), s′(n) ∈ Ω(n) and s(n) log s(n) ∈ o(s′(n)).
Assume C′ is versal for C and t-clearable. Assume
F ⊆ o(t). Then (1) DTIME(s(n))C/F 6⊇ ∆3-TIME(t ·

s′)C
′

. (2) R
DTIME(s(n))
T (C/F) 6⊇ ∆3-TIME(t · s′)C

′

.
(3) DTIME(s(n))C/F 6⊇ Σ2-TIME((t · s′)O(1))C

′

. (4)

R
DTIME(s(n))
T (C/F) 6⊇ Σ2-TIME((t · s′)O(1))C

′

.

Proof. (3) and (4) follow by the proofs of (1) and (2)
but using Theorem 2. (1) implies (2) since in (1) the
DTIME(s(n)) can both use the advice string as well as
send it along to the oracle from C when it makes a query.
For (1) note that the condition s(n) log s(n) ∈ o(s′(n))
guarantees DTIME(s′(n))C

′

is versal for DTIME(s(n))C .
Applying Theorem 1 then gives DTIME(s(n))C/F 6⊇ ∆3-

TIME(t)DTIME(s′)C
′

from which (1) follows. �

5 Time, Space, and Counting Implications

Corollaries of the results of the last two sections are now
given.

Corollary 1 There is a Σp
2-set that requires circuits larger

than size nk.

Proof. It is known (see Vollmer [19]) that SIZE(s)
is contained in the class DTIME(s2)/s log s and that for
t ≥ n, DTIME(t) ⊆ SIZE(t log t). So SIZE(nk) ⊆
DTIME(n2k)/nk log n. From the proof of the time
hierarchy theorem, DTIME(n2k+1) will be versal for
DTIME(n2k). As O(nk log n) ⊆ o(nk+1) and as (2(n +
2nk+1 + (k + 1)|n| + 1))k is in O(tO(1)), from Theo-
rem 2, Σp

2(DTIME(n2k+1)) contains a language L not in
SIZE(nk). But a DTIME(n2k+1) oracle adds no power to a
Σp

2 machine, so L is also in Σp
2. �

Corollary 2 (1) Neither R
DTIME(nk

′

)
T (NE/nk) nor

DTIME(nk′

)NE/nk, contains PNE. (2) Neither

R
DTIME(nk

′

)
T (E/nk) nor DTIME(2nk

′

)/nk contains
EXP. (3) SPACE(nk′

)/nk ⊇ L/nk does not contain
PSPACE. (4) CiPRTIME(nk′

)/nk does not contain CH.

Proof. As argued in the previous section, if C is either

NE or E then R
DTIME(nk

′

)
T (C/nk) ⊆ DTIME((nk′

)C)/nk,
so only the latter class result needs to be considered. For
(1), note then that nk′

log n ∈ o(nk′+1), so by Theorem 3,
DTIME(nk′

)NE)/nk does not contain Σp
2(NEXP). By the

collapse of the strong exponential hierarchy [9], this lat-
ter class is PNE. The remaining part of (2) and (3) and
(4) each essentially follow from Theorem 2 as it gives that
the given advice class does not contain Σp

2(C
′) where C′ is

EXP, PSPACE, or CH. For each of these classes, though,
Σp

2(C
′) = C′. �

Item (2) of Corollary 2 above was previously shown by
Homer and Mocas [10]. Many interesting variations on
item (4) can be given. We present here some variants con-
nected to circuit complexity. Recall from the introduction,
a u in front of a circuit class means the class restricted to
DLOGTIME uniform circuits. The circuit class ACC con-
sists of those languages decided by polynomial-sized cir-
cuits of constant-depth with unbounded fan-in gates of type
AND, OR, NOT, or MODm for m > 0. As mentioned in the
introduction, TC0 is used to denote those languages decided
by constant depth threshold circuits. The class ModPH is
the smallest class of languages containing P such that if A
is in ModPH so are PA and ModmPA for some m. A lan-
guage B is in ModmPA if there is some nondeterministic
oracle machine M with oracle A such that for all x, x is
in B iff the number of paths on which M is accepts x is a
multiple of m.

Parberry and Schnitger [14] define the notion of a thresh-
old Turing machine (TTM). The class uTC0 is known is to
be equal to the languages decided in logarithmic time on a
TTM with constantly many application of the threshold op-
eration; whereas, CH is precisely the languages decided by
TTM’s in polynomial time with c onstantly many applica-
tions of the threshold operation. Similarly, Allender [1] de-
fines a notion of a σ-machine and shows uACC corresponds
to log-time on such machines and ModPH to polynomial
time on such machines. In both cases, Allender argues these
machines enjoy the tape reduction property and in his diag-
onalization proof argues there is a universal machine U in
both these models that simulates one step of the machine
Mi (in one of these models) in about i3 steps. By affixing a
linear number of steps count-down clock to such a universal
machine, one gets that CH is versal for a class that contains
uTC0 and similarly that ModPH is versal for a class that
contains uACC. Noting that ∆3-TIME(nk)CH = CH and
∆3-TIME(nk)ModPH = ModPH as well as recalling Theo-
rem 1, one has a proof of the next corollary:

Corollary 3 For k > 0, (1) uTC0/nk does not contain CH

and (2) uACC/nk does not contain ModPH.

6 Selective Set Implications

Consequences of Theorem 2 for selective sets are
now explored. Selman [17] defines the P-selective sets
based on the semi-recursive sets from computability theory.
These latter sets had previously been used to study semi-
membership algorithms. P-selective sets model an aspect of
semi-feasible computation, and have also been extensively
studied. The book by Hemaspaandra and Ogihara [8] pro-
vides a good introduction to these sets and their literature.

Definition 6 A language L is in C-sel if and only if there is
a R(x, y) ∈ C such that if x is in L but y is not then R(x, y)
holds and if x is not in L but y is then R(x, y) does not
hold. The value of R(x, y) when both x and y are both in
the language or both not is arbitrary.

P-sel is usually defined using polynomial f(x, y)’s that
output x or y so that if only one of the two strings is in the
language then that one is output. For C = P, Definition 6 is
equivalent and more convenient to use.

Ko [12] shows that P-sel is contained in P/n2. One
proof of this is as follow: First, redefine R(x, y) as
R(min(x, y),max(x, y)) to make it symmetrical. Then ob-
serve that on inputs of length n, a P-sel set induces a tour-
nament, TR(n), (a digraph without self loops such that be-
tween any two vertices x, y there is exactly one edge among
(x, y) and (y, x)) on the strings of length n by directing an
edge from x to y if R(x, y) and from y to x, otherwise.
From the theory of tournaments, in this tournament of size
2n there is a set of at most n + 1 vertices, z0, . . . , zn such
that for all z in TR(n), there is some zi such that (zi, z)
(i.e., R(z, zi) holds) is an edge in TR(n). Given this set of
n + 1 strings, each n-bits long, then x is in the language if
for some zi, R(x, zi) holds. So given quadratic advice one
can decide sets in P-sel. This argument also establishes:

Lemma 4 C-sel is contained in DTIME(n2)C/n2.

As DTIME(n3)C
′

is versal for DTIME(n2)C and by The-
orem 3, one has:

Theorem 4 Let k ≥ 0. Then R
DTIME(nk)
T (C-sel) 6⊇ ∆3-

TIME(nk+4)C
′

and R
DTIME(nk)
T (C-sel) 6⊇ Σp

2(C
′), provided

C′ is versal for C and n2-clearable.

Corollary 4 (1) R
DTIME(nk)
T (NP-sel) 6⊇ PNE. (2)

R
DTIME(nk)
T (P-sel) 6⊇ EXP. (3) R

DTIME(nk)
T (L-sel) 6⊇

PSPACE. (4) R
DTIME(nk)
T (uTC0-sel) 6⊇ CH. (5)

R
DTIME(nk)
T (uACC-sel) 6⊇ ModPH.

Proof. (1) Theorem 4 gives that R
DTIME(nk)
T (NP-

sel) 6⊇ Σp
2(NEXP). By the strong exponential hierar-

chy collapse [9], this latter is PNE. (2) Theorem 4 gives

R
DTIME(nk)
T (P-sel) 6⊇ Σp

2(EXP) = EXP. (3), (4), and (5)
follow similarly. �

Fu [6], using Komolgorov complexity, had previously
shown result (2).

7 On Avoiding Advice and Size Hierarchies

Given any of the complexity classes C considered in this
paper, it is straightforward to construct a nonrecursive set
in C/1: Set the advice on inputs of length n to be 1 if n
is in the halting set and 0 otherwise. Let x ∈ L if and
only if the advice for length |x| is 1. Then L is in C/1
and clearly not recursive. One could hope that a result like
L/poly is contained in L/lin is possible and from this get
that L/poly 6⊇ PSPACE using the languages of this pa-
per. Unfortunately, Lµ(C, t) itself provides a counterexam-
ple showing this is impossible.

Theorem 5 Let t ≥ n be such that t(n) + 3 < 2n and let
F ⊆ o(t). Then Lµ(C, t) ∈ DTIME(log t)/{t + 2} and so
C/F 6⊇ DTIME(log t)/{t + 2}.

Proof. Let µMn
(n, t) be the advice on inputs of

length n. The DTIME(log t) machine copies the low-order
dlog(t(|x|) + 2)e bits of the input to the the advice query
tape and queries that bit of the advice string. It then accepts
if that bit of the advice string is on and rejects otherwise. �

Let PREC denote the primitive recursive languages.
PREC is recursively presentable so the next corollaries fol-
low from the above theorem.

Corollary 5 DLOGTIME/nk+1 6⊆ PREC/nk. So,
DLOGTIME/nk+1 contains a language not in any of the
classes NEXP/nk, P/nk, and L/nk.

Corollary 6 Neither L/poly nor P/poly contains
DTIME(log2 n)/2log2 n.

Let SIZE(t) denote those languages computed by fan-in
2 AND, OR, NOT circuits of size O(t). Let AC0-SIZE(t)
denote those languages computed by constant-depth, un-
bounded fan-in AND, OR, NOT circuits of size O(t). The-
orem 5 also entails SIZE(s) (SIZE(s log2+ε s). Kan-
nan [11] gave a DNF formula of size 3n2k not computed
by circuits of size nk, but the author knows of no tighter
bound prior to this paper.

Corollary 7 Let s ≥ n and let ε > 0. For k > 0,
SIZE(s log2+ε s)) SIZE(s) and AC0-SIZE(s log2+ε s) 6⊆
SIZE(s).

Proof. As mentioned earlier, it is known (see Vollmer [19])
that for s > n, SIZE(s) ⊆ DTIME(s2)/s log s. By The-
orem 5 there is a language in DLOGTIME/s log1+ε s ⊆
DLINTIME/s log1+ε s that is not in SIZE(s). The lin-
ear time is in the sum of the input and advice length.
As DTIME(t) ⊆ SIZE(t log t), by hard-coding the bits
of the advice as inputs in these circuits, one gets a lan-
guage in at most SIZE((s log1+ε s) · log(s log1+ε s)) =
SIZE(O(s log2+ε s)) = SIZE(s log2+ε s) that is not in
SIZE(s). The AC0-SIZE(s log2+ε s) result follows simi-
larly as DLOGTIME is contained in AC0. � The above

proof only needs: (1) a polynomial time deterministic pro-
cedure to evaluate a circuit of size s given the s log s sized
encoding of it and an input, and (2) that the DLOGTIME

algorithm from Theorem 5 can be evaluated in the circuit
class with at most another s log s blow up. These conditions
hold for a variety of classes such as: (a) constant depth un-
bounded fan-in AND, OR, NOT , MODk (for all k > 0)
circuits of size s (ACC(s)), (b) constant depth threshold
circuits of size s (TC0(s)), (c) logk s depth, fan-in ≤ 2
AND, OR, NOT circuits of size s (NCk(s)), (d) logk s
depth, unbounded fan-in AND, OR, NOT circuits of size
s (ACk(s)), and (e) size s branching programs (BP(s)).
Thus, one gets:

Corollary 8 Let C(s) denote one of AC0(s), ACC(s),
TC0(s), NCk(s), ACk(s), BP(s). Let s ≥ n and let ε > 0.
For k > 0, C(s log2+ε s)) C(s).

8 Acknowledgements

The author thanks Steve Homer, Nicholas Tran, Bin Fu,
and Lance Fortnow for encouraging discussions/e-mail ex-
changes.

References

[1] Eric Allender. The Permanent Requires Large Uni-
form Threshold Circuits. Chicago Journal of Theoret-
ical Computer Science. Volume 1999. Article 7.

[2] J. Balcázar, J. Diaz, and J. Gabarró. Structural Com-
plexity I. Springer-Verlag. Second Edition. 1995.

[3] J. Balcázar, J. Diaz, and J. Gabarró. Structural Com-
plexity II. Springer-Verlag. 1990.

[4] Jin-Yi Cai, Osamu Watanabe. On Proving Circuit
Lower Bounds Against PH and Some Related Lower
Bounds for Constant Depth Circuits. Tokyo Institute of
Technology, Department of Math and Computing Sci-
ences Technical Report. C-167. February 2003.

[5] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and
Heribert Vollmer. Nondeterministic NC1 computation.
Journal of Computer and System Sciences. Vol. 57 pp.
200–212. 1998.

[6] B. Fu. On P-selective Sets and EXP Hard Sets.
Manuscript. 1997.

[7] J. Håstad. Almost optimal lower bounds for small depth
circuits. In Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, pp. 6–20, 1987.

[8] L. Hemaspaandra and M. Ogihara. The Complexity
Theory Companion. Springer-Verlag. 2002.

[9] Lane A. Hemachandra The Strong Exponential Hier-
archy Collapses. Journal of Computer and System Sci-
ences Vol. 39 Issue 3. pp. 299–322. 1989.

[10] S. Homer and S. Mocas. Nonuniform Lower Bounds
for Exponential Time Classes. In Proceedings from
the 20th International Symposium on Mathematical
Foundations of Computer Science August, 1995. LNCS
#969, Springer-Verlag.

[11] R. Kannan. Circuit-Size Lower Bounds and Non-
reducibility to Sparse Sets. Information and Control.
Vol. 55. pp. 40–56. 1982.

[12] K. Ko. On self-reducibility and weak-P-selectivity.
Journal of Computer and System Sciences. Vol. 26. Iss.
2 pp. 209–221. 1983.

[13] C. Papdimitriou. Computational Complexity.
Addison-Wesley. 1994.

[14] I. Parberry, G. Schnitger. Parallel Computations with
Threshold Functions. Journal of Computer and System
Sciences. Volume 36. Issue 3. 1988. pp. 278–302.

[15] U. Schöning. Complexity and Structure. LNCS #211.
Springer-Verlag. 1986.

[16] J. Seiferas, Michael J. Fischer, Albert R. Meyer.
Separating Nondeterministic Time Complexity Classes.
Journal of the ACM. Volume 25 , Issue 1. January 1978.
pp. 146–167.

[17] A. Selman. P-selective sets, tally languages, and
the behavior of polynomial time reducibilities on NP.
Mathematical Systems Theory Vol. 13 Iss. 1. pp.55–65.
1979.

[18] S. Toda. PP is as hard as the polynomial-time hierar-
chy. SIAM Jounral of Computing. Vol. 20, pp. 865–877.
1991.

[19] H. Vollmer. Introduction to Circuit Complexity.
Springer-Verlag. 1999.

[20] Ingo Wegener. The Complexity of Boolean Functions.
Wiley. 1987.

[21] S. Žák. A Turing machine hierarchy. Theoretical
Computer Science Vol. 26. 1983. pp. 327–333.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

