Electronic Colloquium on Computational Complexity, Report No. 16 (2004)

Linear Upper Bounds for Random Walk on Small Density Random
3-CNF's

Mikhail Alekhnovich*
School of Mathematics
Institute for Advanced Study
Princeton, NJ, 08540
misha@ias.edu

Eli Ben-Sasson'
Radcliffe Institute for Advanced Study at Harvard University
10 Garden st, Cambridge, MA, 02138
eli@eecs.harvard.edu.

March 3, 2004

Abstract

We analyze the efficiency of the random walk algorithm on random 3-CNF instances, and
prove linear upper bounds on the running time of this algorithm for small clause density, less
than 1.63. Our upper bound matches the observed running time to within a multiplicative
factor. This is the first sub-exponential upper bound on the running time of a local improvement
algorithm on random instances.

Our proof introduces a simple, yet powerful tool for analyzing such algorithms, which may
be of further use. This object, called a terminator, is a weighted satisfying assignment. We
show that any CNF having a good (small weight) terminator, is assured to be solved quickly by
the random walk algorithm. This raises the natural question of the terminator threshold which
is the maximal clause density for which such assignments exist (with high probability).

We use the analysis of the pure literal heuristic presented by Broder, Frieze and Upfal [8, 27)
and show that for small clause densities good terminators exist. Thus we show that the Pure
Literal threshold (= 1.63) is a lower bound on the terminator threshold. (We conjecture the
terminator threshold to be in fact higher).

One nice property of terminators is that they can be found efficiently, via linear programming.
This makes tractable the future investigation of the terminator threshold, and also provides an
efficiently computable certificate for short running time of the simple random-walk heuristic

*This work was done while the author was a graduate student at MIT. Supported in part by NSF Awards CCR
0205390 and MIT NTT Award 2001-04.

tThis work was done while the author was a Posdoctoral Fellow at MIT and Harvard University. Supported by
NSF grants CCR-0133096, CCR-9877049, CCR 0205390, and NTT Award MIT 2001-04.

ISSN 1433-8092

1 Introduction

The phenomena we explain in this paper is best described by the following figure 1.

2500

Clause Density = 1.6

2000

2500

2000

1500

1000

Running Time (number of assignments)

ARG 4
& & TED

500

; .
0 1000 2000 2000 4000 5000 8000
MNumber of Variables

Figure 1: Running time of RWalkSAT on random 3-CNF formulas with clause density 1.6

RWalkSAT , originally introduced by Papadimitriou [29], tries to find a satisfying assignment for a
CNF C by the following method. We start with a random assignment and as long as the assignment
at hand does not satisfy the CNF, an unsatisfied clause C € C is picked and the assignment to
a random literal in this clause is flipped. The new assignment satisfies C', but may “ruin” the
satisfiability of other clauses. We repeat this process (of flipping a bit in the current assignment
according to some unsatisfied clause) until either a satisfying assignment is found (success), or we
get tired and give up (failure).

In figure 1 we selected 1,020 random 3-CNF formulas and gave them as inputs to RWalkSAT .
All instances have clause density 1.6 (i.e. the clause/variable ratio is 1.6). The number of variables
n ranges between 1,000 and 6,000, with twenty instances for each value of n, and jumps of 100
between successive values of n. For each formula, we display the number of assignments checked
until a satisfying assignment was found (the algorithm succeeded on all inputs).

Looking at this figure raises the conjecture that the running time is linear. Actually, it is
even less than the number of variables (and clauses) and seems to have a slope of &~ 1/2. In this
paper we offer an explanation for the seemingly linear running time of Figure 1. We prove that
random 3-CNF's with clause density less than 1.63 require (with high probability) a linear number

of RWalkSAT steps. We leave the determination of the exact constant as well as explaining the
seemingly linear running time at higher clause densities as intriguing open problems.

1.1 Techniques - Terminators

Our technique can be viewed as a generalization of the analysis of RWalkSAT on satisfiable 2-CNF
formulas [29], so we briefly review this result. Papadimitriou showed that the Hamming distance
of the assignment at time ¢ from some fixed satisfying assignment «, is a random variable that
decreases at each step with probability at least 1/2. Thus, in at most O(n?) steps this random
variable will reach 0, implying we have found «. (The algorithm may succeed even earlier, by
finding some other satisfying assignment).

We look at weighted satisfying assignments, i.e. we give non-negative weights to the bits of
«. Instead of Hamming distance, we measure the weighted distance between o and the current
assignment of. We show that in some cases, one can find a satisfying assignment o and a set of
weights w such that for any unsatisfied clause at time ¢, the expectation of the weighted distance
(between o and o) decreases by at least 1. Moreover, the maximal weight given to any variable
is constant. In this case the running time of RWalkSAT will be linear with high probability (even
better than the quadratic upper bound of [29] for 2-CNFs). We call such weighted assignments
terminators, as their existence assures us that RWalkSAT will terminate successfully in linear time.

Two parameters of a terminator bound the running time of RWalkSAT. The total weight (sum of
weights of all variables) bounds the distance needed to be traversed by the random walk, because
the weighted distance of o’ from « can be as large as this sum. The second parameter is the
maximal weight of a variable, that bounds the variance of our random walk. Thus we define the
termination weight of C (denoted Term(C)) to be the minimal product of these two parameters,
taken over all terminators for C. As stated above, the running time of RWalkSAT is linear (at most)
in the termination weight of C. Not all satisfiable CNFs have these magical terminators, and if C
has no terminator we define its termination weight to be oco.

1.2 Results

With the terminator concept in hand, we examine the running time of RWalkSAT on random 3-
CNF formulas. If C is a random 3-CNF then Term(C) is a random variable. Understanding this
variable and bounding it from above bounds the running time of RWalkSAT . Our main result
(Theorem 4.1) is that for clause density < 1.63, a random 3-CNF has linear termination weight
(hence RWalkSAT succeeds in linear time). This matches the behavior depicted in Figure 1 up to a
multiplicative constant. We also present a deterministic version of RWalkSAT and show it finds a
satisfying assignment in linear time for the same clause density (Section 3.1).

Our result relies on previous analysis done for bounding a different SAT heuristic, called the
pure literal heuristic [8] (see also [27] for a different and shorter analysis). This heuristic is known to
succeed up to a clause density threshold of 1.63 and fail above this density. We believe terminators
should exist even beyond the pure literal threshold, as the experimental data seems to indicate
(see Appendix B). However, at clause density > 2 only a negligible fraction of random CNFs have
terminators (see Section 5), meaning we need to develop new techniques for explaining the observed
linear running time at (say) density 2.5 depicted in Figure 2.

One nice property of terminators is that they can be found efficiently. A terminator is a solution
to a linear system of inequalities, and thus linear programming can be used to find it. Thus, the
behavior of the random variable Term(C) for random C can be estimated and analyzed efficiently

25000

Clause Density = 2.5

20000 2
Erpn L P *
) .
5 . 2 s 0;
E 0. * ax 'S b4
& e
o . L
i " * *, o3 ¢ ‘.
0 os? @ *
m 15000 5 % ‘-'—'—'—’—.f
s . * 3e,0 33 $o !i
y . TIP3 1 b 1181
.E ¢y 3‘., 00: & '0 3 .‘;
& , o o * %53 efed2 } 'gt‘.‘
£ et 24 11 H R HYTH
L o000 M hd o eg o +392¢%8,0 ¢
E - .’ ‘ .
E 2 L9 4 ' 3!.00 t R
2 ST LA
£ segd 0‘! $5 ¢
£ ¢4 l! 11 1 2SS
= .. -
& §s3e”8

5000

.
o T T T T T T
0 1000 2000 3000 4000 5000 6000

Number of V¥ariables

Figure 2: Running time of RWalkSAT on random 3-CNF formulas with clause density 2.5. Based
on twenty random examples for values of n = 1000, 1100, . .., 6000.

(see Appendix B). These tests will allow us to better understand the behavior of RWalkSAT and its
connection to the termination weight parameter.

The success of the pure literal heuristic does not necessarily imply polynomial running time
for RWalkSAT . Indeed, in section 6 we provide a counter example that requires exponential time
from RWalkSAT , although a solution can be found using the pure literal heuristic in linear time.
Furthermore, for a random planted SAT instance with large enough clause density, RWalkSAT takes
exponential time (Section 7). This is in contrast to the efficient performance of spectral algorithms
for planted SAT presented by Flaxman [14].

1.3 History and Related Results

Local Improvement Algorithms: RWalkSAT was introduced by Papadimitriou, who showed
it has quadratic running time on satisfiable 2-CNF's [29]. An elegant upper bound was given by
Schéning [32], who showed that when restarted every 3n (unsuccessful) steps at a new random
assignment, the expected number of restarts of RWalkSAT on a satisfiable k-CNF with n variables
is at most (2 - £-1)" (compared with the exhaustive search upper bound of 2"). The (worst case)
upper bound of [32] was improved in a sequence of results, [12, 17, 6, 18, 31], and the best upper
bound for 3-SAT is (1.324)" given by the recent paper [18].

RWalkSAT is one of a broad family of local improvement algorithms, (re)introduced in the 1990’s
with the work of [35]. These algorithms (the most famous of which is WalkSAT) are close relatives
of the Simulated Annealing method, and were found to compete with DLL-type algorithms (also
known as Davis-Putnam algorithms). Empirical results on random CNFs with up to 100,000
variables seem to indicate that RWalkSAT requires linear time up to clause density < 2.6 [30, 34].
More advanced algorithms such as WalkSAT (a Metropolis algorithm that is related to RWalkSAT
), appear empirically to solve random instances with clause density < 4, in quadratic time, and
there is data indicating polynomial running time up to density < 4.2 (the empirical SAT threshold
is = 4.26) [33].

Random 3-CNFs: Random CNFs have received much interest in recent years, being a natural
distribution on NP-complete instances that seems (empirically as well as theoretically) computa-
tionally hard for a wide range of parameters. This distribution is investigated in such diverse fields
as physics [26], combinatorics [22], proof complexity [11], algorithm analysis [3] and hardness of
approximation [20], to mention just a few. One of the basic properties of random CNFs, is that for
small density (A < 3.52... see [16, 25]) almost all formulas are satisfiable, whereas for large density
(A > 4.506... see [13]) they are almost all unsatisfiable. Another interesting property is that the
threshold between satisfiability and unsatisfiability is sharp [22]. It is conjectured that a threshold
constant exists, and empirical experiments estimate it to be ~ 4.26 [19]. The analysis of SAT solv-
ing algorithms on random CNFs has been extensively researched empirically, and random CNF's
are commonly used as test cases for analysis and comparison of SAT solvers. From a theoretical
point of view, several upper bounds were given on the running time of DPLL type algorithms of
increasing sophistication [1, 2, 3, 8, 27, 9, 10, 15, 16, 25]. The best upper bound for random 3-CNF
is given by the recent [16, 25]. An exponential lower bound on a wide class of DPLL algorithms
for density =~ 3.8 and above, was given by [3].

Upper bounds for algorithms imply lower bounds on the satisfiability threshold, and in fact, all
lower bounds on the threshold (for £ = 3) so far, have come from analyzing specific SAT solving
algorithms. Most of the algorithms for which average case analysis has been applied so far are
DPLL algorithms (and typically, with the exception of the recent papers [16, 25|, when proving
upper bounds on these algorithms, myopic! versions are considered). Much less is known about
non-DPLL algorithms, and local improvement ones in particular. Our result is (to the best of our
knowledge) the first rigorous theoretical analysis of a non-DPLL algorithm on random CNFs.

Paper Outline: After giving the necessary formal definition in Section 2, we discuss terminators
in Section 3. Using terminators we prove our upper bound in Section 4. In Section 5 we give some
empirical and theoretical upper bounds on the terminator threshold. We then discuss the tightness
of the terminator method (Section 6). We conclude with exponential lower bounds on the running
time of RWalkSAT on random CNFs from the “planted-SAT” distribution (Section 7).

2 Preliminaries

Random 3-CNFs For z; a Boolean variable, a literal £; over z; is either z; or z; (the negation of
x;), where z; is called a positive literal and Z; is a negative one. A clause is a disjunction of literals,
and a CNF formula is a set of clauses. Throughout this paper we reserve calligraphic notation
for CNF formulas. For C a CNF, let Vars(C) denote the set of variable appearing in C (we will

!See [3] for definition and tightest analysis of myopic algorithms.

always assume Vars(C) = {z1,...,z,} for some n). An assignment to C is some Boolean vector
a € {0,1}". A literal ¢; is satisfied by « iff £;(c;) = 1. We study the following distribution.

Definition 2.1 Let X be the probability distribution obtained by selecting An clauses uniformly
at random from the set of all 8 - (g) clauses of size 3 over n variables. C ~ FX means that C is
selected at random from this distribution. We call such a C a random 3-CNF

The Algorithm RWalkSAT is described by the following pseudo-code. C is the input CNF and
T is the time bound, i.e. if no satisfying assignment is found in T steps we give up. We use the
notation UNSAT(C, «) for the set of clauses of C that are unsatisfied by «.

RWalkSAT(C,T)
Select « € {0,1}" (uniformly) at random
Initialize £t =0
While t < T {
If C(a) =1 Return (“INPUT SATISFIED BY 7 «)
Else {
Select C € UNSAT(C,) at random
Select literal /€ C at random
Flip assignment of a at ¢
t++ }

}

Return “FAILED TO FIND SATISFYING ASSIGNMENT IN 71" STEPS”

3 Terminators

In this section we develop the tools needed to bound the running time of RWalkSAT on various
interesting instances.

Intuition Suppose a k-CNF C over n variables has a satisfying assignment « such that each clause
of C is satisfied by at least k/2 literals under a. In this case RWalkSAT will terminate in quadratic
time (with high probability). The reason is that if a clause C is unsatisfied at time ¢ by of, then of
must disagree with o on at least half of the literals in C. So with probability > 1/2 we decrease the
Hamming distance between our current assignment and «. If we let sim’ be the similarity of o and
@, i.e. the number of bits that are identical in both assignments (notice 0 < sim’ < n), then sim’
is a sub-martingale, i.e. E(sim’|sim!,..., sim’"!) =1 (See e.g. [28] for more information
on martingales). Standard techniques from the theory of martingales show that sim reaches n (so
o' reaches «) within O(n?) steps. One elegant example of this situation is when C is a satisfiable
2-CNF. Papadimitriou [29] proved quadratic upper bounds on the running time of RWalkSAT in this
case, using the proof method outlined above.

For a general 3-CNF we don’t expect a satisfying assignment to have two satisfying literals per
clause. Yet all we need in order to prove good running time, is to set up a measure of similarity
between o and some fixed satisfying assignment « such that (i) if sim’ reaches its maximal possible
value, then of = a; and (%) the random variables sim!, sim?, ... are a sub-martingale. We achieve

both these properties by giving non-negative weights wy, ..., wy to the variables z1, ..., z,. Instead

of similarity, we measure the weighted similarity between o and of, defined by simy(a, at) def

Za?:ai w;. Now, suppose there exists a satisfying assignment o such that for any clause C, the

> sim

6

expected change in sim,,, conditional on C being unsatisfied, is non-negative. Suppose further
more that all w; are bounded by a constant. Then we may conclude as above that o! will reach its
maximal value W = 3, w; in time O(W?).

In some cases we can do even better. We set up a system of weights such that (for any clause
C) the expected change in sim,, (conditional on C being unsatisfied) is strictly positive. In this
case the running time is linear in W = > w; (instead of quadratic). As we shall later see, such a
setting of weights is possible (with high probability) for random 3-CNFs. But first we formalize
our intuition.

Notation In what follows Boolean variables range over {—1,1}. A CNF C with n variables and m
clauses is represented by an m x n matrix A® with {—1,0, 1}-entries. The ith clause is represented
by AS (the ith row of A®) and has a —l-entry in the jth position if z; is a literal of the ith clause
of C, a l-entry if x; is a literal of C;, and is zero otherwise. Thus, if C is a k-CNF then the support
size of each row AS is at most k. A Boolean assignment is o € {—1,1}" and we say « satisfies C iff
for all 7 € [m]

(A7, @) > — [47|, (1)
where (o, 3) is the standard inner-product over R” (defined by >°7 ; «;- ;) and ||-||; is the ¢; norm

(defined by ||8]]; = Y1, |Bil)- It is easy to see that this definition of satisfiability coincides with
the standard one.

Terminator - definition A terminator is a generalization of a satisfying assignment. On the
one hand, we allow a to be any vector in R”, but we require a stronger satisfying condition than

).

Definition 3.1 (Terminators) Let C be a k-CNF with n variables and m clauses represented by
the matriz A°. a € R" is a terminating satisfying assignment (or terminator) if for all i € [m) :

(A7, a) > 1 (2)
The termination weight of C is
Term(C) o min{||a||; - ||a||,, : a terminator for C}
In case C has no terminator we define Term(C) to be oc.

One may think of sign(«;) as the Boolean assignment to variable z; (where sign(cq;) is 1 if a; > 0
and is —1 otherwise) and |«a;| as the weight given to z;. Notice that if « is a terminator then the
{—1,1}-vector sign(a) satisfies C. This is because by property (2) in each clause there is at least
one literal that agrees in sign with a.

The decisive name given in the previous definition is justified by the following claim, which is
the main theorem of this section.

Theorem 3.2 (Terminator Theorem) If a k-CNF C has a terminator «, then RWalkSAT suc-
ceeds on C in time O(||a||; - ||a||,,) with probability > 1 —exp (= (||a|]; / ||a]]s))-

Notice that we do not claim that when RWalkSAT terminates, it finds the assignment sign(«),
but rather the existence of any terminator of small weight implies short running time. We can say
that RWalkSAT is “drawn to” «, but only when using the weighted distance measure given by |«|. If

|aj| = 1, this means RWalkSAT indeed approaches « (as is the case when each clause is satisfied by
two literals). But in general, being “close” according to the weighted measure |a| does not imply
small Hamming distance.

Proof (of Theorem 3.2): Let C be a k-CNF and a be a terminator of minimal weight for C,
ie. Term(C) = ||| - |||, < co. Let B* € {—1,1}" be the sequence of assignments traversed by
RWalkSAT(C) starting from the random assignment 8%, where t < T =c- k- ||a||; - |||, (c will be
fixed later). Let Y be the random variable (3¢, o). If RWalkSAT fails to find a satisfying assignment
in T steps, then

Yt <|la|l; forallt<T (3)

This is because (8!, @) = |||, implies B¢ = sign(«) and sign(«) satisfies C. Thus we only need
to bound the probability of (3). Suppose clause C; is picked at time ¢ (i.e. C; is unsatisfied by
B=1). We claim the expected change in Y (with respect to Y?~!) is precisely

L c
L (45,) (@

With probability 1/k we flip the assignment to each literal z; of C;, which amounts to multi-
plying ﬂ;_l by —1. Thus the expected change in Y is _Tl {(B71;, a), where B¢71|; is the restriction
of B! to support of AS. But C; being unsatisfied by 4'~! implies 8'71|; = —AS, so equation (4)
is proved. Thus by property (2) in Definition 3.1

1

EYYYh ... vy =yt 4 -

(AS o) > YL +1/k
Let p = E[Y?], and notice that by linearity of expectation, u! > t/k — |||, (because u® >

—|la||;). We conclude that the sequence of random variables {X; ey pt ot =1,2,...}

is a martingale and by assumption [X; — X; 1| < [|a||,. In order to bound (3), it suffices to
bound the probability of the event “Xr < 2||a||; — T/k” (if this event does not occur then YT >
—||el|; + X7 > ||||;). Recalling T =c-k-||a]; - ||e||oc We will pick ¢ > % so that

ck

2[lally =T/k =2|lelly = c-lell; - llefle < =%

5 el -l

o0

We now apply Azuma’s inequality and get

ck
® < Pr[xr<-Zial ol

(el)’

: p(2T<Ha||oo)2>
o (Rl (loll)?

= p(8ck-||a||1<||a||oo>3>

<

ok ||, el
_ — o)
e"p(8llall.) O oo

The theorem is proved. |

3.1 A Deterministic Variant of RWalkSAT

Consider the following deterministic variant of RWalkSAT, which we will call DWalkSAT. Fix an
ordering on clauses in C. Initialize ag to be (say) the all zeros assignment. At each step t, select
the smallest clause unsatisfied by a; and flip the assignment to all literals in it. Repeat this process
until all clauses are satisfied. Naturally, one can introduce a time bound 7" and declare failure if a
satisfying assignment is not found within 7" steps. We immediately get the following result.

Theorem 3.3 If a CNF C has a terminator o, then DWalkSAT succeeds on C within 2- ||a||, steps.

Proof: We closely follow the proof of the Terminator Theorem 3.2. Let 8% 8',... be the
(deterministic) sequence of assignments traversed by the algorithm. Let Y* = (3¢, o) (noticing Y
is not random anymore). Clearly, Y* > —||o||,; and if Y = ||a||, then B! (equals sign(c), hence)
satisfies C. So we only have to show for all ¢

vi>vil 41 (5)

This follows from the fact that the clause C; flipped at time ¢ was unsatisfied at time ¢ — 1, hence
Bt71|; = —al;. Flipping all variables in C; amounts to adding to Y*~! the amount (AZC, a) and this,
by definition of terminator, is at least one. We have proved Equation 5 and with it the theorem. []

4 Linear Upper Bounds on Random CNF's

In this section we show that for clause densities for which the pure literal heuristic succeeds, there
exist linear weight terminators. Qur current analysis uses insights into the structure of such pure
CNFs, but we see no reason to believe that the terminator threshold is linked to the pure literal
threshold. The main theorem of this section is the following.

Theorem 4.1 For any A < 1.63, there exists a constant ¢ such that with high probability C ~ F}
has a terminator o € R* with |||, < ¢, hence ||a||; < c-n.

Corollary 4.2 For any A < 1.63,¢ > 0, there exists a constant ¢ such that with high probability
for C ~ FX , RWalkSAT succeeds on C in time c-n with probability > 1 — e.

Corollary 4.3 For any A < 1.63,¢ > 0, there ezists a constant ¢ such that with high probability
for C ~ TFX , DWalkSAT succeeds on C in time c-n.

To prove our main theorem, we construct small weight terminators for pure and expanding
CNFs, and then merge the two into one small weight terminator.

4.1 Terminators for Pure CNFs

A literal £ in C is called pure if it appears only as a positive literal, or only as a negative literal, in C.
A clause in C is said to be pure if it contains a pure literal. When seeking a satisfying assignment,
a natural strategy is to start by assigning all pure literals their satisfying assignment, and thus
remove all pure clauses. The removal of pure clauses may result in the emergence on new pure
literals in the restricted CNF, and the process may be repeated. The pure literal heuristic is the
heuristic that applies this removal process until no pure clauses remain. If the remaining CNF is
empty, the pure literal heuristic has found a satisfying assignment, and otherwise it failed.

Let us introduce some notation. For C a CNF, define Cy = C, Ly to be the set of pure literals in
C, and P, to be the set of pure clauses in C. Recursively define C;;1 to be C; \ P;, and let L; 41, Pi11
be respectively the set of pure literals, and pure clauses, in C;;;. Finally, let r be the minimal ¢
such that L; = (). Notice that the pure literal succeeds on C iff C, = 0. If C, = () we say C is r-pure.

Theorem 4.4 Every r-pure k-CNF over n variables has a terminator o € R* with ||a|, < k"
and ||a||; <n- (k)" so Term(C) < n - k*". Moreover « is supported only on U_; L;.

Notice that invoking Theorem 3.2 we bound the running time of RWalkSAT on an r-pure k-CNF
by n - k%" (with high probability).

Proof: Let Lg,...,Lr,—1 be the pure literals in Cp,...,Cr—1. Notice that U;;(l) L; does not
necessarily cover all variables in C, but assigning each pure literal to 1 (i.e. if #; is pure, then set
sign(a;) = sign(¥¢;)) and assigning the other variables arbitrarily gives a satisfying assignment a.
We now deal with the weights (absolute values) of a.. Fix the weight of each variable in L; to k™ 7.
For any variable z; ¢ U;;(l) L; fix its weight to 0.

To see « is a terminator (of weight nk"), consider any clause C; € P;. By definition of P;
there are no literals from Lo, ..., L; 1 appearing in C. Thus all literals appearing in C have weight
< (k)"79. There is at least one literal £, € C' that has weight k"7 and agrees with a; in sign, and
any literal disagreeing with a must have weight < (k)"=/~!. Hence

(A,) > k™0 —(k—1) - k"1 >1

O

Broder, Frieze and Upfal showed that with high probability the pure literal heuristic finds a
satisfying assignment for a random 3-CNF with clause density < 1.63 [8] (for a simpler analysis of
the same heuristic see [27]). In particular, the following theorem follows from the work of [8]. A
proof of this theorem can be found in appendix A.

Theorem 4.5 [8] For every A < 1.63 there exists a constant ¢ such that with high probability
C ~ X is clogn-pure.

By applying Theorems 3.2,4.4 to Theorem 4.5 we conclude that the running time of RWalkSAT
on a random instance (with small enough clause density) is at most polynomial.

4.2 Terminators for Expanding CNF's

Our next step in proving Theorem 4.1 starts with the following Theorem, which is a combination
of a result of Broder, Frieze and Upfal [8] and (the now) standard analysis of random CNFs,
originating in the work of Chvétal and Szemerédi [11]. Being standard and somewhat technical,
we defer its proof to appendix A.

Definition 4.6 ForC a CNF, we sayC is an (r,c)-expander if for allC' CC |C'| <r, |Vars(C)| >
c-|C'|.

Theorem 4.7 For every A < 1.63 there exists an integer d such that for C ~ FX, with high

probability Cq is a (|Cq4|,7/4)-expander, where Cy4 is the CNF remaining of C after removing the d
outermost pure layers.

10

This Theorem assures us that after removing a constant number of the layers from a random
C (with small clause density), we have in hand a residual CNF (4, such that any subset of it,
including all of Cy, has a very large set of neighbors. This in turn implies the existence of small
weight terminators for Cg.

Theorem 4.8 If C is an (|C|,7/4)-expanding 3-CNF' over n variables, then C has a terminator
a € R with ||| <4 (hence ||af]; < 4n).

Proof: Form the following bipartite graph G. On the left hand, put one vertex for each clause
in C. On the right hand side, put 4 distinct vertices for each variable appearing in C. Connect the
vertex labeled by the clause C to all 12 vertices labeled by variables appearing in C. We do not
care if the appearance is as positive or negative literals.

Since C is an (|C|, T)-expander, G has expansion factor 7, i.e. for all subsets S on the left hand
side, |N(S)| > 7 -|S|, where N(S) is the set of neighbors of S. By Hall’s Matching Theorem we
conclude there is an 7-matching from the left hand side to the right, i.e. each node C on the left
hand can be associated with a set of 7 of its neighbors on the right hand side (denoted N'(C)),
such that for all clauses C # D, N'(C) N N'(D) = (). We now use N’ to define our terminator c.
For any variable z, if there exists a clause C such that N'(C) has at least 3 members labeled by z,
then we say z is associated with C, and the weight of z is |[N'(C)| (notice this weight is either 3 or
4). For any variable z; associated with a clause C, set sign(«;) to the value that satisfies C' and set
|| to the weight of z;. Set all other variables to zero. « is well defined because a variable can be
associated with at most one clause. We are left with verifying that it is a terminator. This follows
by a case analysis, using the fact that each clause has a dozen neighbors, and seven of them are in
N'(C;). There are three cases to consider.

C; has at least two associated variables: In this case, sign(«) agrees with C on at least two
variables, and each variable has weight at least 3. The remaining variable has weight at most
4,50 (A, 0) > 6 —4 > 2.

C; has one associated variable of weight three: The remaining four neighbors of N'(C;) must
be evenly split between the two remaining variables of C' (otherwise C; would have two associ-
ated variables). So the remaining pair of variables of C; have weight zero. Hence (A¢, a) = 3.

C; has one associated variable of weight four: The remaining three neighbors of N'(C;) are
split between the remaining two variables. One variable has two such neighbors (and hence
zero weight) and the other has one neighbor, so the weight of this literal is at most 3. Thus,
(A a) >4 -3=1.

Theorem 4.8 follows. L

4.3 Small Weight Terminators for Random CNFs

Proof (of Theorem 4.1): By Theorem 4.7, (with high probability) C can be partitioned into

the d outermost pure layers C' def U?:_(}Pi and the remaining residual inner core C"” = C;. This
inner core is a (|C"|,7/4)-expander. We know (by Theorems 4.4, 4.8 respectively) how to construct
terminators for each of these formulas, so all we need to do is merge them into a single terminator
for C.

Let o/, o be the respective terminators of C',C”. By Theorem 4.4 o' has all its support on pure
literals, which do not appear in C”. Thus the supports of o/ and o are disjoint. We merge the two

11

assignments by defining « as the assignment that agrees with 9- o’ on the support of o', and agrees
with o otherwise (the reason for multiplying o/ by the scalar 9 will soon become clear) . By our
previous remark (that o/ and o have disjoint supports) « is well defined and we now prove it is a
terminator.

Consider a clause C; € C. If C; € C" then (A%, a) = (AS, ") > 1, because all literals appearing
in C" are given zero weight by /. Otherwise, C; € C' might have some of its (non-pure) literals in
Vars(C"), but recall that the maximal weight of o is 4, so in the worst case C; has two literals
with weight 4 coming from o”. Thus (A%, a) > 9 —2-4 = 1. We have shown the existence of a
terminator of linear total weight, and the proof of Theorem 4.1 is complete. |

5 Investigating the Terminator Threshold

Acknowledgements The contents of this section are due to Jeong Han Kim [Personal Commu-
nication] and we are grateful to him for allowing us to include them in this paper.

When C is a random CNF, Term(C) is a random variable. Since Term(C) bounds the running
time of RWalkSAT , investigating this random variable is an interesting question. The property of
having a terminator o with ||a|| ., < w is monotone with respect to addition of new clauses. Thus
one can define the terminator threshold 6 as the density for which a terminator «, ||af|, < w
exists with probability 1/2.

Claim 5.1 A CNF C with m clauses and n variables has some terminator iff 0 ¢ convem—hull({AzC :
i=1,...,m}).

Proof: Think of a terminator « as the normal of a hyper-plane in R" passing through zero. This
hyperplane partitions R" into two parts. (A, «) > 0 iff the point A¢ lies in the positive half of R".
Thus (A, a) > 0,i = 1,...,m iff zero is not in the convex hull of the points.]

Fiiredi proved the following general theorem (he gave a tighter bound than presented here,
but the form we quote is sufficient for our purposes). A set of points P C R" is symmetric if
p€P=(-p)eP.

Theorem 5.2 [23] Let {P, C R"},en be an infinite family of finite symmetric sets of points.
Suppose (2 + €)n points are selected uniformly at random from P,. Then

lim Pr[0 € convez-hull of points] =0
n—oo

In our case P, is the symmetric set of {—1,0,1}-valued points with support size three. Thus,
by Fiiredi’s theorem when the clause density is greater than 2, whp there is no terminator. Notice
this upper-bound on the terminator threshold holds for any k-CNF, even for non-constant & (e.g.
k = n). Combining Theorem 4.1 with Fiiredi’s Theorem gives for £ = 3 the following bounds:

1.63 < 6° <2

We leave the resolution of the terminator threshold for £ = 3 as an interesting open problem.

For the case of 2-CNFs we can bound the terminator threshold from above by 1, because
this is the satisfiability threshold for random 2-CNFs (and a terminator implies satisfiability). It
seems reasonable to conjecture that for k = 2 the satisfiability and terminator threshold coincide.
This could be used to prove that for random 2-CNF's below the satisfiability threshold, RWalkSAT
terminates in linear time (as opposed to the quadratic upper bound guaranteed for any satisfiable
2-CNF by [29)).

12

6 Tightness of Terminator Based Bounds

In this section we show that the upper bound derived by the terminator method is tight, even for
pure CNFs. We present pure CNF's such that the running time of RWalkSAT on them is exponential
in the number of variables, and also lower bounded by the terminator weight.

Theorem 6.1 For arbitrarily large n, there exist pure 3-CNFs over n variables, with total termi-
nator weight > 2"/2, and the running time of RWalkSAT on them is 2€" for some € > 0.

Proof: Use the following formula, which is a slight variation of the X-DAG contradiction used in

[7].

Definition 6.2 Let G, be the following CNF over variables T1,...,Tn, Y1y, Yn,2:

{Zi} A} A /_\{37z VyiVTi}

n—1

A NAze Vi VGiga} Ao Ve v 2}
=1

G, has a unique satisfying assignment, 0. Moreover, G,, is n-pure, because Z appears only in
one clause, and once z is satisfied and removed, y,, z,, each appear in one clause in the remaining
formula. Thus, one can repeatedly remove x;_1,y;—1 until all the formula is satisfied. This implies
the existence of a terminator of weight 3", and it is not hard to see that any terminator must have
weight 2™ at least. We claim that RWalkSAT requires exponential time to succeed on G,.

Let X; be the number of ones assigned by a; to the variables zs,...Zn,y2,.-.yp. Whp Xy >
(1 — €)n, and if RWalkSAT(G,,T) succeeds, we know X7 = 0. But for every step ¢, the probability
of X; decreasing is at most 1/3. The theorem follows. L

7 Lower Bounds for Large Density Planted SAT

In this section, we show that RWalkSAT is not a good algorithm for random CNFs with large
clause density. By definition, RWalkSAT gives the correct answer on any unsatisfiable formula. For
large enough clause density (A > 4.6), almost all formulas in F} are unsatisfiable [13]. Thus,
one may argue that RWalkSAT operates very well for these densities. On second thought, on this
distribution, even the constant time algorithm that fails on every input, without reading it, operates
well. Thus, it makes sense to discuss the performance of RWalkSAT only on the uniform distribution
over satisfiable formulas with An clauses (denoted SATZ). The problem is that for small densities,
SATT? is not well characterized, we don’t know how to analyze it. Thus, we propose to look at the
following pair of planted SAT distributions over satisfiable 3-CNFs.

Definition 7.1 (Planted SAT) Let S\ be the distribution obtained by selecting at random 8 €
{0,1}™, and selecting at random An clauses out of all clauses of size 3 that are satisfied by f.
Denote a random formula from this distribution by C ~ S'}.

Let P} be the distribution obtained by selecting at random B € {0,1}", and for each clause C
satisfied by [, select C to be in C with independent probability pﬁ = m. Denote a random

formula from this distribution by C ~ P} .

13

This distribution is highly interesting in its own right. It is the analog of the planted cliqgue and
planted bisection distributions, studied e.g. in [5, 21, 24]. There are efficient spectral algorithms
for finding the satisfying assignment for the planted SAT distribution [14] and in this section we
argue that RWalkSAT performs poorly (takes exponential running time) on this distribution.

Theorem 7.2 (Main Lower Bound) There exists a constant Ay > 0, such that for all A > Ao,
(A may be a function of n), whp for C ~P%, or C ~ S}

P[RWalkSAT(C,2") succeeds] < 27"
where € > 0 is some a constant, depending on A.

For simplicity, our proof will be only for the distribution P}, and we point out that the same
analysis can be carried over to the distribution S'}.

The rest of this section is devoted to the proof of theorem 7.2. We warm up by discussing the
case of C being the maximal size CNF satisfying 8, and then apply our insights to the case of a
random CNF. For the rest of this section we assume without loss of generality that 3, the random
planted assignment, is the all zero vector, denoted 0.

The full ONF of size n has all clauses of size 3 that are satisfied by 0. In the next subsection we
analyze the behavior of RWalkSAT on this CNF, and show its inefficiency. We then generalize our
analysis to C ~ P}, claiming that C is a “random piece” of the full CNF, and hence the behavior
of RWalkSAT on C will be close to its behavior on this simple formula.

7.1 Analysis of RWalkSAT on the Full CNF

Definition 7.3 (Full CNF) F,, is the 3-CNF containing all clauses of size ezactly 3 (without
repetition of literals) satisfying 0.

Theorem 7.4 P[RWalkSAT(F,,2"1%0) succeeds] < 27"/100

For the proof of theorem, we need the following lemma. The line of length n is the graph
G =<V,E > where V={0,1,...,n} and E={(3,i + 1) : 0 < ¢ < n}.

Lemma 7.5 Let R be a random walk on the line of length n, starting at a position b’ > b. Assume
there is an interval 0 < a < b such that for all vertices i € {a,a+1,...,b} the probability of making
a mowve in the direction of 0 when standing on vertez i, is at most 1/2—ry, for some constant y > 0.
Then

P|[R reaches 0 in less than ¢7(0=9) steps | < e 76~

Proof: Let T = 2", for t < T, let r; be the position of R at time ¢, and let X; be the random
variable that is 1 if R does a good move (towards 0) at time ¢, and —1 otherwise, Formally,
X; =14 — r¢41- Assume R reaches 0 at time to. Since 1 > b, there must be a time interval [tq, to]
in which 0 < ry <b t € [t1,t2]. This means Z?:tl X; = c, where ¢ = b —a. Let to —t; = 25 + c.
Recalling that for all ¢ € [t1,t2], P[X; = —1] < 1/2 —~, we get

PYxi=d < (¥F)-a2-0 24y ()

14

(Zh) - aa—y a2 =y)

223—1—0
S (WA= (/2 ®)
< (L) (L2 (9)
1

\/ﬁ -exp(—(4y%s + 2vc)) (10)

< =ptmd) ()

Since there are at most 72 possible selections of t,t, setting T' = e?%/2, and taking a union
bound, completes the proof.]

Proof [Theorem 7.4]: For i =1...3, let F be the set of clauses having i literals satisfied under
the unique satisfying assignment 0. For a € {0,1}", |a| = dn, let mg,; be the number of clauses in
F! that are not satisfied by a. ms,; is well defined, because it depends only on §, and not on the
actual assignment «. ms; is the set of all clauses having exactly one negative literal, such that this
literal is assigned 1 by «, and the remaining positive literals are assigned 0 by «. Since |a| = dn,
there are én - ((1725)”) such clauses. analogous calculations performed for m;», ms 3 yield:

gy = bn.- ((1 ‘2‘””) (12)

meo = (‘;’”) (1-d)n (13)

mes = (?) (14)

Since F,, has only one satisfying assignment, one can characterize the moves of RWalkSAT(F,,)
as either good, or bad. A good move is one that reduces the weight of oy, bringing us closer to the
satisfying assignment, whereas a bad mowve increases this weight. We now calculate the probability
of making a good move on F,, assuming the current assignment has weight dn. Let us denote this
probability by Ps, and let ms = ms1 + ms2 + ms 3.

3 2 _ 52
p o~ M Me2 2 LU 1 3L 428 (1-6) + sU=0C 26) (15)
° mg ms 3 ms 3 3 (% + 52(1276) + 6(1;6)2)

24261 -6)+(1-6)2 1 (16)
024361 —6)+3(1—-0)2 62-35+3

Elementary analysis shows that Py is an increasing function of § in the range (0,1), with
lims_,o P; = 1/3, limg_,; P; = 1, and P; = 1/2 when (§ — 1)? = §, which happens for §* = % R
0.382.

From here we are almost done. Whp |ag| > (1/2—€)n, and for any assignment «;, the probability
of a good move depends only on |a;|. Thus the probability RWalkSAT succeeds in 7" steps is at most
the probability of a random walk on the line, starting at distance > (1/2— €)n, reaches 0 in T steps,

where the probability of moving in the direction of 0 when standing at position ¢ is F;/,. Using
(16), for i <n/10 we get P;/, < 1/2 —1/10. Lemma 7.5 completes our proof. L

15

7.2 Generalization to P}

In this section we complete the proof of theorem 7.2. As previously mentioned, the lower bound
follows from the observation that C is obtained by taking a “small piece” of F,. Thus, we expect
the behavior of RWalkSAT on C to be similar to its behavior on F,,. There are two points we need
to be careful about. The first is that C may have other satisfying assignments. We argue in lemma
7.7 that although this is true, for large A these assignments are all found within small Hamming
distance of 0. The second problem is that there might be small weight assignments for which the
probability of making a good step is large. We show in lemma 7.8 that for large A, whp this does
not happen. Thus RWalkSAT operates on IP{ almost as poorly as it operates on F,,. The proofs of
lemmas 7.7,7.8 follow the proof of the theorem. In our proofs we use the following Chernoff bounds
[28, Theorems 4.1,4.2].

Theorem 7.6 For X ~ Bln,p|, with 0 < p <1, y = E[X] = np, and for all ¢ > 0:

e¢ I
For0<e<1:
P[X < (1 —e)pu] <e ©H?2 (18)

Additionally, we make often use of the standard bound

n He(\)n
<
()\n) <e (19)

where H(q) = qln% +(1-¢)In l%q is the entropy measure.

Proof [Theorem 7.2]: Let A; be the event that C has a satisfying assignment of Hamming
distance greater than én from 8 (where § is the planted assignment).

Lemma 7.7 For any 6 > 0 there exists a constant A', such that for all A > A’, the probability
that C ~ P’} has property As is exponentially small.

Define a good move of RWalkSAT as one that decreases the weight of the current assignment.
Call a clause good iff it has at least two negative literals. A good clause, if selected, will make a
good move with probability at least 2/3, whereas a bad clause, having only one negative literal, will
make a good move only with probability 1/3. We claim that the numbers of bad and good clauses
are tightly concentrated around their expected values, and thus the probability of a good move in
C is roughly that of a good move on F,.

Fix o € {0,1}", |a| = dn, and recall the definition of m;; from equations (12). For i =1...3
let X;; be the number of clauses in C that have i negative literals, and are not satisfied by «. Since
« is fixed, whereas C is random, X5, is a random variable depending only on ¢ and independent of
the particular assignment . Xj; is a sum of m;; independent coin tosses, each with probability
pﬁ. Moreover, all X;;’s are completely independent of each other, because the Fi’s are disjoint.
Let B[n,p] denote the binomial distribution over n coin tosses, each with success probability p.

According to our definitions, X5; ~ B [mg’i,pﬁ], and ps,; def E[X;s;] = pa - ms,;. Plugging in the
values of ms; we get

36(1 — 0)2An
L el (20)

16

362(1 — 6)An

oz = —— (21)
53 An
M3 = 7 (22)

Let Bj(e) be the event that the number of bad clauses not satisfied by «, X1, is smaller than
(1 — €)ps,1- Similarly, let BZ(c) be the probability that the number of good clauses, X2 + X5 3 is
greater than (14 c¢) - (us2 + ps,3)- Notice that by definition, € < 1, whereas ¢ can be much larger.
Let Bad(d,c,€) be the event that there exists an assignment «, || = d'n, §/2 < 4§ <6, such that
B} (€) or B} (c) occurs, and hence the numbers of good or bad clauses are far from the expected.
The next lemma shows that for large enough A, this is not likely to happen.

Lemma 7.8 For any € > 0,c > 2e? and 0 < § < 1/2 there exists a constant A" > 0 such that for
all A > A", the probability that C ~ Py has property Bad(9,c,€) is exponentially small.

We do not attempt to optimize constants. Set € = 1/2,¢ = 20, and § = ¢~. By lemmas 7.7 and
7.8, there exists some A for which both P[A;/;] and P[Bad(d,c,¢)] are exponentially small. Fix
this A. Whp for C ~ P}, all satisfying assignments have weight < dn/2. Notice that for § < 1/2,
s, increases with d. For any o with weight én/2 < |a| < dn, by lemma 7.8 the number of bad
clauses unsatisfied by « is at least

36An S c3An

28 10
Similarly, assuming ps2 > 14,3, which is true for § < 1/2, the number of good clauses unsatisfied
by « is at most

1/2 “Hs/21 >

21(ps2 + po3) < 42- %52(1 —§)An < 206%An = c 5 An

Thus,

(l i 75)

. +c An

37710 1 1

P[Good move] < 01703 - =3 + 10 << 1/2

Whp the initial assignment of RWalkSAT will have weight greater than dn. Any satisfying
assignment must have weight less than dn/2. For any assignment « having weight dn/2 < |a| < dn,
the probability of RWalkSAT making a good move is very close to 1/3. Lemma 7.5 completes the
proof of the theorem.]

Proof [Lemma 7.7]: Assuming wlog 8 = 0, let us bound the probability of the event A;. For
each fixed a € {0,1}" having weight dn, there are (}) — ((1_3‘5)") ~ (1 — (1 —6)%)n%/6 clauses that
are satisfied by 0 and not by .

(1= pp)(t-C=orm/o (23)

PlC(a) =1] =
< exp(—(1-(1-6)%)-A/T7) (24)

Using a union bound and the standard inequality (19), we get

P[4,

IA

n- (g;) exp(—(1 = (1-6)%) - A/7) (25)

< exp((Hu(3) - 2E=0=9)

)-n+1nn) (26)

17

Thus, when

TH(9)
A>1_(1_5)3 (27)
we get that P[A4s] < exp(—en), for some constant € > 0. 0

Proof [Lemma 7.8]: We bound the probabilities of B} (¢) and B2 (c) individually, for any §/2 <
§' < 8. We start with B} (€). Plugging the value of ys1, given in (20), into the Chernoff bound
(18) we get

—3€20'(1 — §')%2An
L-07an, (29)

Now we deal with BZ(c). First notice that for any § < 1/2, ms3 < ms2, so
P[Bj (c)] = P[Xy 2+ Xy 3> (1+¢) - (ny 2 + par 3)] < 2P[Xg 2 > (1 +)y 2]
Assuming ¢ > 2e?, and plugging the value of ps2 given in (21) into the Chernoff bound (17) we get

P[Bj (e)] < exp(—€*uy1/2) < exp(

PIBR(I] < 2P[Xpa> (14 Ay (29)
< Q(ﬁ)’”’:2 < (S)CW,Q < exp(—cpy 2) (30)

—3¢82(1 — §"YAn
e (17 #)an, (31)

Notice that for § < 1/2, the value of (28) and (31) is maximal when ¢’ is minimal (i.e &' = §/2).
Using a union bound over all assignments of weight between dn/2 and én, we get
P[Bad(d,c,e)] < n- (!)-(P[B,(e)]+P[B2,(c)]
1 Gy = 5n 9/2 6/2

< 9 exp (n (He(a) A min = (5/21511 —5/2) ’—30(5/2)7(1 —5/2) }))

Notice that once 9, €, ¢ are fixed, we can select A such that

_3¢2 _ 2 _3. 201 _
HL(8) — A - min{ =3 (5/21511 5/2. 3(5/2)7(1 5/2)

Lemma, 7.8 follows. L

} <0

8 Open Problems

1. What is the largest A for which one can prove RWalkSAT to have polynomial running time
on C ~ FX 7 As a first step, can one go beyond the pure literal threshold (1.63)7 See Figure
2 for empirical evidence that the running time of RWalkSAT is linear even for higher clause
densities than 1.63.

2. What are the statistics of the random variable Term(C) as a function of the clause density?
Does Term(C) < oo have a sharp threshold? Is there a terminator threshold independent of
n? How does Term(C) correspond to n (number of variables) above density 1.63 (below 1.63
it is linear).

3. Can one use “non-rigorous” methods coming from theoretical physics (e.g. replica symmetry
analysis) to better understand the random variable Term(C) on random CNFs?

18

9 Acknowledgments

We thank Madhu Sudan for many useful discussions. We thank Bart Selman and Andrew Parkes
for valuable information on the empirical results regarding RWalkSAT and Balint Virag for his help
with the analysis of martingales. We thank Jon Feldman for providing the code for running the
LP simulations (Appendix B), and Jeong Han Kim for allowing us to include the upper bound on
the terminator threshold (Section 5) in the paper. The second author thanks Rocco Servedio, Salil
Vadhan and Dimitris Achlioptas for helpful discussions.

19

References

[1] D. Achlioptas. Setting two variables at a time yields a new lower bound for random 3-SAT. In
Proc. 32nd STOC, pp 28-37 (2000).

[2] D. Achlioptas. Lower Bounds for random 3-SAT via Differential Equations. In Theoretical
Computer Science 285(1-2) (2001) 159-185.

[3] D. Achlioptas and G. B. Sorkin. Optimal myopic algorithms for random 3-SAT In IEFEE
Symposium on Foundations of Computer Science pp 590-600 (2000).

[4] D. Achlioptas, P. Beame, M. Molloy. A Sharp Threshold in Proof Complexity. In Proc. STOC
2001, pp 337-346.

[5] N. Alon, M.Krivelevich, B. Sudakov. Finding a large hidden clique in a random graph, In
Random Structures and Algorithms 13 (1998), 457-466.

[6] S. Baumer, R. Schuler. Improving a probabilistic 3-SAT algorithm by Dynamic Search and
Independent Clause Pairs. ECCC report No. 10, 2003. Also presented at SAT 2003.

[7] E. Ben-Sasson. Size Space Tradeoffs for Resolution. In STOC 2002.

[8] A. Broder, A. Frieze, E. Upfal. On the satisfiability and maximum satisfiability of random
3-CNF formulas. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 322-330.

[9] M.T. Chao, J. Franco. Probabilistic Analysis of two heuristics for the 3-Satisfiability problem.
In Infor. Seci. 51 (1990). 289-314.

[10] V. Chvatal, B. Reed. Mick Gets Some (the odds are on his side). In FOCS ’92 pp 620-627.

[11] V. Chvétal, E. Szemerédi. Many Hard Examples for Resolution. In Journal of the Association
for Computing Machinery. vol. 35 (1988), pp. 759-768.

[12] E. Danstin, A. Goerdt, E. A. Hirsch, J. Kleinberg, C. Papadimitriou, P. Raghavan, U.
Schoning. A Deterministic 2 — k%_l algorithm for k-SAT based on local search. In Theoretical
Computer Science, 223 (1-2):1-72, 1999.

[13] O. Dubois, Y. Boufkhad, J. Mandler. Typical random 3-SAT formulae and the
satisfiability threshold. In Proc. 11th SODA , pp. 126-127 (2000). Available at
ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2003/TR03-007/index .html

[14] A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. In SODA 2003.

[15] A. Frieze, S. Suen. Analysis of two simple heuristics for random instances of k-SAT. In J.
Algorithms 20 (1996) 312-355.

[16] M. T. Hajiaghayi, G. B. Sorkin. The Satisfiability Threshold of Random 3-SAT Is at Least
3.52, Submitted.

[17] T. Hofmeister, U. Schoning, R. Schuler O. Watanabe. Probabilistic 3-SAT Algorithm Further
Improved. In Proc. 19th STACS, LNCS 2285:193-202, 2002.

[18] K. Iwama, S. Tamaki. Improved Bounds for 3-SAT. In ECCC report No. 53, 2003.

20

[19] Crawford, J. M., and Auton, L. D. Experimental Results on the Crossover Point in Random
3-SAT. In Artificial Intelligence, 81:31-57.

[20] U. Feige. Relations Between Average Case Complexity and Approximation Complexity. In
Proc. of STOC 2002, Montreal.

[21] U. Feige, R. Krauthgamer Finding and certifying a large hidden clique in a semi-random graph
In Random Structures and Algorithms 16(2): 195-208, 2000.

[22] E. Friedgut. Sharp Thresholds of Graph Properties, and the k-sat Problem. In J. Amer. Math.
Soc. 12 (1999), no. 4, 1017-1054.

[23] Z. Fiiredi. Random Polytopes in the d-Dimensional Cube. In Discrete Computational Geometry
(1) pp. 315-319 (1986)

[24] M. Jerrum, G. B. Sorkin. Simulated annealing for graph bisection. In Proceedings of the 34th
Annual IEEE Symposium on Foundations of Computer Science, 94-103, November 1993.

[25] A. Kaporis, L. M. Kirousis, and E. G. Lalas. The probabilistic analysis of a greedy satisfiability
algorithm. In 10th Annual European Symposium on Algorithms (Rome, Italy, 2002).

[26] Kirpatrick S., C.D. Gelatt, M.P. Vecchi Optimization by simulated annealing. In Science 220,
671-680 (1983).

[27] Luby M. , M. Mitzenmacher, and A. Shokrollahi. Analysis of Random Processes via And-Or
Tree Evaluation. In Proceeding of ACM-SIAM Symposium on Discrete Algorithms, 1998.

[28] Motwani R., P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[29] Papadimitriou, C. H. On selecting a satisfying truth assignment. In Proceedings of the 32nd
Annual IEEE FOCS’91, pages 163-169,

[30] Parkes, A. J. Personal Communication.

[31] D. Rolf 3-SAT in RTIM E(0O(1.32793")) - Improving Randomized Local Search by Initializing
Strings of 3-Clauses. In ECCC report No. 54, 2003.

[32] Schoning, U. A probabilistic algorithm for k-SAT Based on Limited Local Search and Restarts.
Algorithmica 32(4): 615-623 (2002). Priliminary version in Proc. FOCS’99, pp.410-414, 1999.

[33] Selman, B. Personal Communication.

[34] Selman, B., H. Kautz Local Search Strategies for Satisfiability Testing In DIMACS Series in
Discrete Mathematics. (to appear)

[35] Selman B., Levesque H., Mitchell D. A New Method For Solving Hard Satisfiability Problems.
In Proc. of the Tenth Natl. Conference on Artificial Intelligence (AAAI-92), San Jose, CA,
1992, 440-446.

21

A Proofs

In this section we prove theorems 4.5 and 4.7. Our starting point is the following theorem and
lemma proved implicitly in [8]. The lemma is a slight generalization of lemma 4.4 in [8], so we
provide its proof. (The original lemma 4.4 of [8] only needed expansion factor of 3/2, whereas we
need a constant fraction more than 3/2. The proof is essentially the same).

Theorem A.1 [8] For every A < 1.63 there ezists an integer d such that with high probability for

C~ TR, [Cal < goox7-

Lemma A.2 [8] Let Ay = 1.63. For any constant A < Ay whp C ~F} is a (

expander.

-3
gz 3/2 +107%)-

Proof (of Lemma A.2): Set e = 1073. Let Ay be the event that there exists a set of k clauses
having less than 3/2 + € variables. Let us bound the probability of these bad events, using a union
bound. Let r = and ¢ = 3/2 + e. We make use of the following well-known inequality

(m) < ()"

_n__
600A2

P(Bad < éP[Ak]skiﬂ(i”),(;).(%)%

IN
-
)
=
+
o
O
o
4
>
=
N
= .
/\ N———
S|
N——
N
&
| I |

IN

]
w
J

/N

S|

N——

|

|

o

| I
I
2
=

k=1L
Where the last inequality holds for r < w’;T. |
0
Notice that if C4 is a (|Cql, % + €)-expander then every subset of C; (including Cy itself) has at
least € unique neighbors (i.e. literals appearing in exactly one clause), and these unique neighbors
are pure. Thus, Cy is O(log n)-pure. Hence C is O(logn)-pure (remember d is a constant) and this
proves theorem 4.5. In order to prove theorem 4.7 we need the following lemma from [11].

Lemma A.3 [11] For all constants A > 0,c < 2 there exists some constant § > 0 such that whp
C ~FX is a (6An,c)-expander.

Let ¢ be the constant promised by lemma A.3, for A = 1.63 and ¢ = 7/4. By theorem 4.5,
|C4] < n/(600A3), for some constant d. By lemma A.2, C4 is a (|C4|,€)-boundary expander, for
some € > 0. Remove an additional d' layers from C (each containing at least an €/3 fraction of
the remaining clauses) so that |C4iq| < dn, and by lemma A.3 this remaining CNF is (with high
probability) a (|Cgta,7/4)-expander. This proves theorem 4.7.

22

B Terminator Threshold - Empirical Results via Linear Program-
ming

Acknowledgements The code used in this section was written by Jon Feldman. We thank him
for assisting us with the empirical tests and allowing us to include these results in our paper.

A nice property of a terminator is that if it exists, it can be found by linear programming in
polynomial time, and if it doesn’t exist, we can efficiently find a proof of this fact. Since by definition
a terminator contains a satisfying assignment, this provides us with an efficient approach for SAT-
solving using linear programming. As far as we know, this is the first use of linear programming in
this context.

Empirical Threshold Lower Bound As discussed earlier (Section 5), we know that the ter-
minator threshold must lie between 1.63 and 2 (for 3-CNFs). Empirically it seems the terminator
threshold is at least 1.8. This is based on the fact that only 5% of the inputs we tested failed to have
a terminator, out of a sample of 120 random CNFs with 4,000-4,100 variables each. On instances
with a smaller number of variables (450-1,000) the failure rate is significantly higher (around 25%).
We believe this is an effect of small instance size and asymptotically at density 1.8 a terminator
exists.

Terminator weight vs. Running Time There seems to be a large gap between the empirical
terminator weight (that bounds from above the running time of RWalkSAT) and the actual running
time of RWalkSAT. Whereas the existence of a terminator is decidable in polynomial time, finding the
minimal weight terminator seems to be a much harder problem. Thus, it is not clear if the empirical
gap displayed below (between terminator weight and RWalkSAT running time) really exists, or is
merely an artifact of our limited computational power.

Recall the data of figure 2 showing an empirical running time of < m on instances with n
variables (and clause density < 2.5). The following figure 3 shows an empirical upper bound on
the average termination weight for instances with 450-1,000 variables, at clause densities 1.65,1.7
and 1.75. For each instance size between 450 and 1,000 (jumps of 50 variables), we tested thirty
random instances and their average termination weight is plotted in figure 3.

Experimental Methods For each instance C we searched for a small weight terminator as
follows. First we searched for a solution for the linear program AC - o > 0 with a random objective
function. Having found a terminator a (that is minimal with respect to the random objective
function), we minimized its ¢;-norm by solving the linear program with the new objective function
sign(a). For each instance C we repeated this two-phase process three times, each time starting
with a fresh random objective function. Finally we took the minimum value (£;-norm) as an upper
bound on the terminator weight for C.

23

10

T |
—©- Density 1.75
—5- Density 1.7

—— Density 1.65

10°F E

Average upper bound on Terminator Weight

i /w g

10 L L L L L L
400 500 600 700 800 900 1000

vars

Figure 3: Empirical upper bounds on the average termination weight. Average taken over thirty
random instance per variable size.

ECCC ISSN 1433-8092
24 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

