Electronic Colloquium on Computational Complexity, Report No. 17 (2004)

Derandomization of Schuler’s Algorithm for SAT

Evgeny Dantsin Alexander Wolpert

School of Computer Science, Roosevelt University
430 S. Michigan Av., Chicago, IL 60605, USA

{edantsin,awolpert}@roosevelt.edu

Abstract

Recently Schuler [Sch03] presented a randomized algorithm that solves SAT in expected time at most
gn(1=1/1082(2m)) y, to a polynomial factor, where n and m are, respectively, the number of variables
and the number of clauses in the input formula. This bound is the best known upper bound for testing
satisfiability of formulas in CNF with no restriction on clause length (for the case when m is not too
large comparing to n). We derandomize this algorithm using deterministic k&-SAT algorithms based on
search in Hamming balls, and we prove that our deterministic algorithm has the same upper bound on
the running time as Schuler’s randomized algorithm.

1 Introduction

Known upper bounds.

There has been recent progress in developing algorithms for SAT and k-SAT that have “record” worst-case
upper bounds on the running time. Typically, such bounds have the form a™ up to a polynomial factor,
where n is the number of variables in the input formula, and « < 2 is either a constant or depends on some
parameters of the input. The currently best known upper bounds are listed as follows (we give only the
exponential parts of the bounds, omitting polynomial factors):

Randomized algorithms for k-SAT. The bounds for 3-SAT and 4-SAT are 1.324™ and 1.474™ re-
spectively [IT03]. These and other recent bounds for 3-SAT, e.g., [BS03, HSSWO02, Rol03], are obtained
using algorithms based on the multistart local search [Sch99, Sch02] or on the randomized DPLL approach
[PPZ97, PPSZ98]. The bounds for k > 4 are also obtained with these approaches:

(2-2/k)" [Sch99, Sch02];
gn{1=e)+o(n) where € = pi/(k — 1) and limy_, o pup = 72/6 [PPSZ98].

Deterministic algorithms for k-SAT. The algorithms [DGHS00, DGH'02] cover the Boolean cube
{0,1}™ by Hamming balls and search for a satisfying assignment inside these balls. The have the bound

2—-2/(k+1))".

For k = 3, the bound can be improved to 1.481™.

Randomized algorithms for SAT (no limit on clause length). The algorithm [Sch03] uses the
randomized DPLL approach and has the bound

2n(1-1/10g2(2m))  where m is the number of clauses in the input formula.

ISSN 1433-8092



Also, there is another bound: 2"~¢V" where ¢ is a constant. This bound is obtained using two different
algorithms: [Pud98] based on the randomized DPLL approach and [DHWO03] based on search in Hamming
balls. Schuler’s bound [Sch03] is more interesting because it is better than 2"~¢V™ for the case when m is
not too large comparing to n, namely when m = o(2V"?).

Deterministic algorithms for SAT (no limit on clause length). The algorithm [DHWO03] based in
search in Hamming balls has the bound
2n—2\/n/ logo m_

There are also other types of bounds that are “more” dependent on the number of clauses or other input
parameters, e.g., 1.239™ [Hir00]. In this paper we give a deterministic algorithm that has the same bound

gn(1-1/logy (2m))

as in the case of randomized algorithms for SAT.

Our result.

We prove that SAT can be solved by a deterministic algorithm with the same upper bound on the running
time as Schuler’s randomized algorithm, i.e., with the bound 27(1=1/1082(2m)) yp to a polynomial factor.

Like Schuler’s algorithm, our deterministic algorithm can be described in terms of two algorithms M
(stands for Main) and S (stands for Subroutine). The algorithm S is used to test satisfiability of formulas
with “short” clauses (of length at most log(2m)). The algorithm M is the main algorithm that transforms
an input formula F into to F' by “shortening” the clauses in F.. Then M invokes S to check whether F' is
satisfiable. If so, we are done. Otherwise, the algorithm M simplifies F' and recursively invokes itself on the
results of simplification.

Theorem 1 in Sect. 3 gives an upper bound on the running time of the algorithm M under an assumption
on the running time of the subroutine S. More exactly, the assumption is that S runs in time at most 27(1=1/k)
up to a polynomial factor, where k is the maximum length of clauses in F'. Then M runs in time at most
2n(1-1/10g2(2m)) yp to a polynomial factor. Does there exist any deterministic subroutine S that meets this
assumption? The answer is positive (Theorem 2): the algorithms [DGH*02] have the required upper bound
on the running time. Thus, taking any of them as the subroutine S, we obtain a deterministic algorithm
that solves SAT with the bound 27(1~1/10g2(2m)),

Notation

By a formula we mean Boolean formulas in conjunctive normal form (CNF) defined as follows. A literal is a
Boolean variable z or its negation —x. A clause is a finite set C of literals such that C' contains no opposite
literals. The length of C' (denoted by |C|) is the number of literals in C. A formula is a set of clauses. An
assignment to variables zy,...,z, is a mapping from {z1,...,z,} to the truth values {TRUE, FALSE}. This
mapping is extended to literals: each literal —z; is mapped to the truth value opposite to the value assigned
to ;. We say that a clause C is satisfied by an assignment A if A assigns TRUE to at least one literal in C'.
The formula F' is satisfied by A if every clause in F is satisfied by A. In this case, A is called a satisfying
assignment for F.

By SAT we mean the following computational problem: Given a formula F' in CNF, decide whether F’
is satisfiable or not. The k-SAT problem is the restricted version of SAT that allows only clauses of length
at most k.

Here is a summary of the notation used in the paper.

e F denotes a formula;
e 1 denotes the number of variables in F’;

e m denotes the number of clauses in F;



¢ k denotes the maximum length of clauses in F;
e |C| denotes the length of clause C}

e logz denotes log, x.

2 Algorithms Based on Clause Shortening

Schuler’s algorithm.

We first sketch Schuler’s algorithm [Sch03]. The algorithm is based on a randomized satisfiability-testing
procedure R that runs in polynomial time and finds a satisfying assignment (if any) with probability at least
2~ n(1-1/10g(2m)) " Thig probability can be increased to a constant by repetitions in the usual way.

Let F be an input formula consisting of clauses C1, . . ., Cp,- Assuming that F is satisfied by an (unknown)
assignment A, we show how R finds A. The first step of R is to shorten the clauses in F' as follows:

1. For each clause C; such that |C;| > log(2m), choose any log(2m) literals in C; and delete the other
literals.

2. Leave the shorter clauses as is.

Let F' = {D1,...,Dy} be the result of the shortening. The next step of R is to apply the randomized
polynomial-time k-SAT algorithm [PPZ97] to F’ with k = log(2m). There are two possible cases:

Case 1. Asatisfies F”. In this case, the procedure [PPZ97] finds A with probability at least 2~™(1=1/1log(2m)),

Case 2. A does not satisfy F’. Then there is a clause D; such that all of its literals are false under A.
Therefore, if we “guess” this clause correctly, we may simplify F' by assigning the corresponding values
to the variables occurring in D;. We choose a clause D; in F' uniformly at random. The probability
that we have “guessed’ the clause correctly (i.e., j = i) is at least 1/m. Then we simplify F': for each
literal [ in D;, we remove all clauses that contain —/ and delete ! from the remaining clauses. Finally,
we recursively apply R to the result of the simplification.

The analysis of R in [Sch03] shows that R finds A with the required probability. Note that the same bound
holds if the subroutine [PPZ97] is replaced by another subroutine that finds a satisfying assignment with
the same or higher probability, for example by Schoning’s algorithm [Sch99, Sch02].

Algorithms M (Main) and S (Subroutine).

Schuler’s algorithm invokes the algorithm [PPZ97] for testing satisfiability of formulas with “short” clauses.
Our derandomized version will also use a subroutine to check formulas with “short” clauses. However, we
first describe our algorithm without specifying the invoked subroutine. That is, assuming that S is an
arbitrary satisfiability-testing algorithm, we define our main algorithm M as a procedure that invokes S as
a subroutine.

Algorithm §

Input: Formula F' (with no restriction on clause length).
Output: Satisfying assignment or “no”.
Any method of testing satisiability.



Algorithm M

Input: Formula F' with clauses C1,...,C,, over n variables.
Output: Satisfying assignment or “no”.

1. Change each clause C; to a clause D; as follows: If |C;| > log(2m) then choose any log(2m) literals
in C; and delete the other literals; otherwise leave C; as is, i.e., D; = C;. Let F' denote the resulting
formula.

2. Test satisfiability of F' using the algorithm S.

3. If F' is satisfiable, return the satisfying assignment found in the previous step. Otherwise, for each
clause D; in F', do the following:

(a) Convert F to F; by assigning FALSE to all literals in D;. Namely, for each literal [ in D;, remove
all clauses containing —/ and delete [ from the remaining clauses.

(b) Recursively invoke M on F;.

4. Return “no”.

3 Bound for SAT

The choice of the subroutine S determines the main algorithm M. In this section, we specify S so that the
algorithm M solves SAT in time at most 27(1=1/(108(2m))) yp to a polynomial factor. First, we prove an
upper bound for M assuming a specific upper bound on the running time of §. Then we choose a subroutine
that meets this assumption. As a result, we obtain the claimed upper bound for the main algorithm M.

Theorem 1. Suppose that for any formula F', the algorithm S runs on F in time at most 2"('=1/¥) up to a
polynomial factor, where k is the maximum length of clauses in F'. Then the running time of the algorithm
M is at most 27(1=1/108(2m)) yp to a polynomial factor.

Proof. Let ts(F) and ta(F) be, respectively, the running times of the algorithms S and M on a formula
F'. Tt is not difficult to see that t,((F) can be estimated (up to a polynomial factor) as follows:

tm(F) < ts(F') + m -t (Fi) 1)

where F' and F; are as described in the algorithm M. Let Th(n,m) denote the maximum of the running
time of M on formulas with m clauses over n variables. For the subroutine S, we define Ts(n,m) as the
maximum running time on a different set of formulas, namely let T's(n, m) be the maximum of the running
time of S on the set of formulas F' such that each F' has m clauses over n variables and the maximum length
of clauses is not greater than log(2m). Let L denote log(2m). Then for any n and m, the inequality (1)
implies the following recurrence relation:

TM(nam) < TS(nam) +m:- TM(n - Lvm)

Iterating this recurrence and using the bound on ts(F') with & < L, we get (again up to a polynomial factor)

n/L
TM(nam) < ZmZTS(n_ZLam)
=0
n/L n/L .
< Zmz .9(n—il)(1-1/L) _ on(1-1/L) Z (m i 21—L)'l
=0 =0

Since L = log(2m), we have m 2!~% = 1. Therefore,

tm(F) < Taq(n,m) < 2n1-1/L)

up to a polynomial factor. O



Theorem 2 (based on [DGH™'02]). There exists a deterministic algorithm that tests satisfiability of an
input formula F' in time at most 2*(1=1/%) yp to a polynomial factor, where n is the number of variables in
F, and k is the maximum length of clauses in F.

Proof. Paper [DGH*02] defines two algorithms that can be applied to any formula. Their running times
are estimated in terms of the maximum length of clauses in the input formula (thus, they can be viewed as
algorithms for k-SAT). Both algorithms cover the Boolean cube {0,1}" by Hamming balls and search for a
satisfying assignment inside these balls. The first algorithm runs in time at most 27(1~108(+1/k) yp to a
polynomial factor (Theorem 1 in [DGH'02]). Since

log(1+1/k) = (loge)/k + o(1/k),
this algorithm meets the claim. The second algorithm has a parameter J; its running time is at most

2n(lflog(1+1/k)+6)

up to a polynomial factor (Theorem 2 in [DGH*02]). Taking § < %, we have

on(1-log(1+4)+6) 2n(1—1°’%+#)

< 2n(1—1/k)_
Hence, the second algorithm also meets the claim.

The algorithms differ in the construction of the covering of {0,1}™ by Hamming balls. The first algorithm
uses a greedy method to constuct the covering that is minimal up to a polynomial factor. The construction
requires an exponential space (approximately on/ 6). The second algorithm constructs a “nearly minimal”
covering, i.e., a covering that is minimal up to a factor of 29", where § can be chosen arbitrary small.

To estimate the space used by the second algorithm, we have to consider details of how it constructs the
covering of {0,1}". Each ball center is the concatenation of n/b blocks of length b (Lemma 7 in [DGHT02]).
The algorithm constructs a covering code C of length b for blocks. Then, keeping this code in memory, the
algorithm generates code words of length n (centers of balls) one by one. An upper bound on the space
can be estimated as the cardinality of the covering code C for blocks. Using Lemma 4 in [DGH"02], we can
estimate the cadrinality |C| as follows:

] < bvb 2/(-H () 2

where H(z) = —zlogz — (1 — z)log(1 — z) is the binary entropy function. To obtain the desired upper
bound on the running time, we should choose b so that

|C|n/b < 2n(1—H(ﬁ+1)+6)‘ (3)

Using the bound (2) and the inequality (3), we get the following constraint on b:
b
(bB 20" < grla-a(e)+) W

which is equivalent to (bv/b)'/? < 29. Now we substitute § = %5@ and take b = 4klog k. Then (4) holds
for all sufficiently large k. Therefore, we can use blocks of length 4klogk. In fact, the algorithm will be
applied to formulas with k = log(2m), which gives the upper bound (2m)*1°81°8(2™) on the space. O

Theorem 3. Suppose that the algorithm M uses the algorithm from Theorem 2 as the subroutine S. Then
M tests satisfiability of an input formula F' with m clauses over n variables in time at most 27(1~1/(log(2m)))
up to a polynomial factor.

Proof. Immediately follows from Theorems 1 and 2. O



References

[BS03] S. Baumer and R. Schuler. Improving a probabilistic 3-SAT algorithm by dynamic search and
independent clause pairs. Electronic Colloquium on Computational Complexity, Report No. 10,
February 2003.

[DGH'02] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Ragha-
n
van, and U. Schéning. A deterministic (2 - %) algorithm for k-SAT based on local search.
Theoretical Computer Science, 289(1):69-83, October 2002.

[DGHS00] E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schéning. Deterministic algorithms for k-SAT based
on covering codes and local search. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors,
Proceedings of the 27th International Colloguium on Automata, Languages and Programming,
ICALP’2000, volume 1853 of Lecture Notes in Computer Science, pages 236-247. Springer, July
2000.

[DHWO03] E. Dantsin, E. A. Hirsch, and A. Wolpert. Algorithms for SAT based on search in Hamming
balls. FElectronic Colloguium on Computational Complezity, Report TR03-072, October 2003.

[Hir00] E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated Reasoning, 24(4):397—
420, 2000.

[HSSWO02] T. Hofmeister, U. Schéning, R. Schuler, and O. Watanabe. A probabilistic 3-SAT algorithm fur-
ther improved. In H. Alt and A. Ferreira, editors, Proceedings of the 19th Annual Symposium on
Theoretical Aspects of Computer Scienceg, STACS’02, volume 2285 of Lecture Notes in Computer
Science, pages 192-202. Springer, March 2002.

[IT03] K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. Electronic Colloquium on Com-
putational Complexity, Report No. 53, July 2003.

[PPSZ98] R. Paturi, P. Pudldk, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-
SAT. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science,
FOCS’98, pages 628637, 1998.

[PPZ97] R. Paturi, P. Pudldk, and F. Zane. Satisfiability coding lemma. In Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science, FOCS’97, pages 566-574, 1997.

[Pud98]  P. Pudldk. Satisfiability — algorithms and logic. In L. Brim, J. Gruska, and J. Zlatuska, editors,
Proceedings of the 23rd International Symposium on Mathematical Foundations of Computer
Science (MFCS’98), volume 1450 of Lecture Notes in Computer Science, pages 129-141. Springer-
Verlag, 1998.

[Rol03] D. Rolf. 3-SAT in RTIM E(0O(1.32793")) — improving randomized local search by initializing
strings of 3-clauses. Electronic Colloquium on Computational Complexity, Report No. 54, July
2003.

[Sch99] U. Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In
Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS’99,
pages 410-414, 1999.

[Sch02] U. Schoning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615-623, 2002.

[Sch03] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal form.
To appear in Journal of Algorithms., 2003.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




