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Abstract

We study the diagonalization in the context of implicit proofs of
[10]. We prove that at least one of the following three conjectures is
true:

e There is a function f: {0,1}* — {0,1} computable in £ that has

circuit complexity 2%(m).

o NP # coNP.
e There is no p-optimal propositional proof system.

We note that a variant of the statement (either NP # coN'P or
NE N coNE contains a function 2™ hard on average) seems to have
a bearing on the existence of good proof complexity generators. In
particular, we prove that if a minor variant of a recent conjecture of
Razborov [17, Conjecture 2] is true (stating conditional lower bounds
for the Extended Frege proof system EF') then actually unconditional
lower bounds would follow for EF'.

The only method for demonstrating unprovability of a IT)-sentence in a
theory (containing some amount of arithmetic) is the diagonalization. One
would like to adapt this to a non-uniform setting in which theories are
replaced by propositional proof systems and II9-sentences by tautologies.
This fails, at least in the straightforward adaptation. In particular, many
strong proof systems do prove their own consistency by polynomial size
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proofs (cf.[5, Chpt.14]). However, there is a non-uniform setting in first-
order theories where the diagonalization gives non-trivial lower bounds.

To explain this we need to fix some notation first. By a theory we shall
mean a set of axioms, not the set of its consequences. We shall assume
(w.lo.g.) that the language of all theories in question is the language of
bounded arithmetic theory Si. For a natural number N the symbol N is
the dyadic numeral inductively defined by: 0 := 0, 1 :=1, 2 := (1 + 1),
2k :=(2-k),and 2k + 1 := (2k + 1).

Given a theory T, let Prfr(y,r) be a formula in the language of S3
expressing that y is a T-proof of formula z. Assuming that 7' D S3, as
we shall do, there is a canonical formalization of syntax of logic (terms,
formulas, proofs, etc.) and of the notion of provability (see [13] or [5] for
details), and its usual properties are provable in S3.

Define a diagonal formula A(z) satisfying:

Az) = Yy, ly| < s(x) — —~Prfr(y, [A(2)]).

where s(z) is any term and [A] is a (canonical) number encoding A such
that its length is proportional to the size of A, and £ is the formalization of
dyadic numerals. Then, by the standard argument, we have the following
theorem. (The condition that T' € NP is technical and implies, in particular,
that 7" is definable and that the binary relation Prfr(y,z) is in NP and
definable by a formula, and that all it’s true instance have polynomial size
proofs in SJ.)

Theorem 0.1 Let T O Si be a consistent theory such that T € N'P. Then
for any N > 1 the sentence A(N) is true and provable in T but any T-proof
of the sentence must have the size at least s(N).

Note that the length of the formula A(N) is O(log N) and hence the
lower bound is non-trivial, as long as s(N) >> log(N). A foremost exam-
ple of this reasoning is the Finitistic Godel’s theorem of Friedman [3] and
Pudldk [13, 14] (the theorem says that any T-proof of a formula Cong(N) :=
Vy,lyl < N — =Prf(y,[0 = 1]) expressing the consistency of T' w.r.t.
proofs of length at most N, must have the size at least NQ(I)). Other,
quantitatively more subtle applications, can be found in bounded arithmetic,
cf.[5, Chpt.10].

One would like to adapt this to propositional proof complexity. The
problem with this is not that we deal with first-order theories (as we know
how to pass between them and propositional proof systems) but with the fact



that A(z) is not a bounded formula and the instances A(N) translate into
propositional formulas of length at least s(NN), which is super-polynomial
in order to get non-trivial lower bound. An idea suggests itself at this
point: Try to use the concept of implicit proofs from [10]. This is what we
investigate in this paper. A variant of the idea of implicit proofs is recalled
in Section 1. In Section 2 we derive the theorem mentioned in the abstract.
Its variant is derived in Section 3 and linked to proof complexity generators
in Section 4.

The paper is self-contained, assuming that the reader has a general back-
ground in bounded arithmetic and proof complexity (only basic things are
assumed), see [5]. Let us just recall the terminology and some more no-
tation. Time(t(n)) is the class of languages computable in deterministic
time O(t(n)), L;Time(t(n)) is the ¥;-level of the time O(#(n)) hierarchy,
NTime(t(n)) = SiTime(t(n)), and £ = Time(2°™). For a function
[ {0,1}* = {0,1}, Cf(n) is the circuit complexity of computing f on
{0,1}", while Hy(n) is it’s hardness on average in the sense of [12]. A
“proof system” tacitly means a “propositional proof system”: It is a non-
deterministic acceptor of the set of propositional tautologies in the DeMor-
gan language. A proof of a tautology in a proof system is any particular
computation of the proof system accepting the formula. A proof system is
p-bounded iff the proof system accepts all tautologies in a fixed polynomial
time, and it is p-optimal iff it polynomially simulates of other proof systems,
cf.[2]. The length of a string w is denoted |w|, and a number is identified
with the string of its bits (i.e. |m| ~ log(m)).

Finally let us recall a well-known translation of formulas into proposi-
tional formulas, just for the case of A(z). Given N > 1, there is a proposi-
tional 3DNF formula denoted ||A(z)||n of size s(N)°() that expresses (by
the fact of being a tautology) that A(N) is true. It is constructed as in the
proof of the N'P-completeness of the satisfiability. The formula has s(N)
atoms for bits of a potential y and auxiliary atoms (s(N)?() of them) used
for values of subcircuits used in the canonical computation of the truth value
of Prfr(y, [A(N)]), and says that if all local conditions in the computation
are satisfied then Prfr(y,[A(N)]) fails. See [5, Chpt.9] for details of the
translation.



1 Implicit proofs of implicit formulas

Let w be a 0-1 string of length 2%. Identify i < 2% with vectors
i = (i1,...,i) € {0,1}* ordered lexicographically. We say that a circuit
C(z1,...,xx) represents w iff C(i1,...,5,) = w; (the ith bit of w), for all
i < 2k, Similarly, if W is a 0-1 2* x 2¥ matrix then we say that a circuit
D(z1,...,Tk,Y1,---,Yx) represents W iff D(i,j) = W, ;, for all i,j < 2.

Let M be a non-deterministic polynomial time machine. For any input w
of length 2¢ and represented by a circuit C(z1, ..., 2), for suitable k = O(¥)
(given by the time of M) and any 2* x 2% matrix W represented by a circuit
D(z1,...,%k,Y1,---,Yx) We can write down a propositional formula Jg{D
expressing that W is an accepting computation of M (given by W listing
in its rows all instantaneous descriptions of the computation) on input w.
The formula has atoms z1,...,Zk,Y1,...,Yk, 21, - --,2¢ and auxiliary atoms
for values of subcircuits of C and D, and formalizes that all local conditions
posed on W by M are met and that the input as given in W is indeed w.
The meaning of the verb “expressing” is that aé‘/{ p is a tautology iff W is
indeed an accepting computation of M on w.

We will need one additional formula, this time first-order. Assume that
a circuit C(z1,...,z)) represents a 3DNF formula ¢¢ (of size at most 2¥).
Let [C] be its number code. Then there is a formula BigTaut(z) such that
BigTaut([C1]) formalizes that ¢¢ is a tautology.

2 A theorem
Theorem 2.1 At least of one the following three statements is true:

(i) There is a function f : {0,1}* — {0,1} computable in & that has
circuit complezity 2™,

(ii)) NP # coN'P.
(iii) There is no p-optimal propositional proof system.

Proof :

We shall assume that all three statement are false and derive a contra-
diction via Theorem 0.1.
(1) Let P be a proof system witnessing that both (ii) and (iii) fail: P is
p-bounded and also p-optimal. Assume w.l.o.g. that P contains EF. Let
Prfp(u,v) be a B8-formula formalizing that “u is a P-proof of formula v”.



(2) Define theory T to be Si augmented by an extra axiom, a form of
reflection principle:

Vz,y,u, Prfp(u, [aiﬂ) — BigTaut(y) .

(3) Let A(z) be the diagonal formula from the introduction, with the term
s(z) being simply z. Consider the propositional formula ||A(z)||x. The
formula is a tautology as A(N) is true. The size of the formula is NO()
but there is clearly a circuit Cy of size n°), n := log(V), representing the
formula (in the sense of Section 1).

(4) The set of all formulas ||A(z)||x, N > 1, is polynomial time decidable
and hence we can use it as axioms in some proof system. By the hypothesis
that P is p-optimal there is a (deterministic) polynomial time algorithm M
computing from the string ||A(z)||n a P-proof of ||A(z)||n-

(5) The output of M is a particular accepting computation of P, i.e. an
20(n) % 20(n) matrix WV encoding the computation. As M runs in deter-
ministic polynomial time, WZ{\; as a function of i, j € {0,1}9(™ isin &.

(6) Assuming that also statement (i) fails, there exists a circuit D(i,j) in
2-times O(n) variables and of size 2" that represents W, for arbitrary
small § > 0. We shall choose a particular J in the step (12).

(7) Take an instance of the reflection principle by substituting for z and y
the codes of D and C)y respectively:

Yu, Prfp(u, fUFCN]’[Dﬂ) — BigTaut([Cn]) .

(8) By Section 1 the size of ngv, p 1s polynomial in the sizes of Cy and
D, ie. it is 220 Now we use the hypothesis that P is also p-bounded.
Hence there is a P-proof e of U(I;N; p of size 2000n) " Note that the constants
implicit in the O-notation are fixed and independent of §. Substituting [e]
for u in the formula in (7) we get:

Prfp([el, [ofc,, o)) — BigTaut([Cy1) -

(9) The antecedent of the formula in (8) is a true X¢-sentence of size 20(0'?)
and has a proof in S3 (and hence in T) of polynomial size, i.e. of size 2000,

(10) Applying modus ponens to the formulas in (8) and (9) we get a proof
of size 20(5™) the sentence:

BigTaut([Cn]) -



(11) We claim that the implication:
BigTaut([Cn]) — A(N)

has an Si-proof of size n®). This is because it is an instance of a univer-
sal, Si-provable, statement saying that the translation of IT{-sentences into
propositional formulas is sound. Cf. [5, Chpt.9] for an analogous statement.

(12) Putting (10) and (11) together we get a size 200" proof in T' of
A(N). Taking & > 0 small enough so that 209" < N (this we can do as
the O-constant is independent of §) we get a contradiction with Theorem
0.1.

q.e.d.

Let us remark that instead of using € and circuit size 2™ in (i) we could
have used Time(t(n)) and circuit size t(n)?(1), as long as t(n) > n®(1). This
follows by a padding argument or by a simple change to the proof above:
Use the diagonal formula for term s(z) := t(|z|) instead of s(z) := z in the
step (3).

3 A variant of the theorem

It is not difficult to see that the property of a string to be the truth table
of a function on {0,1}" with 2°" circuit complexity, or even 2°" hard on
average, is definable in the polynomial time hierarchy P7#. Taking the
lexicographically first such strings (at least one exists of each length 2",
n >> 0, by a simple counting) we see that there is such an f computable in
EPH,

If NP = coN'P then such an f is in ENPNONP — NE N coNE. If, in
addition, £ = NE then such an f is in &.

This simple (apparently folklore) argument yields the following theorem.
We shall use only Part 2 in Section 4 but we state also Part 1 as it is a weaker
version (if hardness on average is replaced by circuit size) of Theorem 2.1
actually: It is known, by [11], that the non-existence of a p-optimal proof

1

!This argument has been pointed out to me by E. Jefabek, and has been also noted
by V. Kabanets, and replaces my original proof: A simple modification of the proof of
Theorem 2.1 shows that NP = coNP implies that N'E N coN'E contain a function with
exponential circuit complexity which was then turned into a function with exponential
hardness on average by the construction from [4].



system implies that Time(t(n)) # NTime(t(n)) (as long as t(n) < 2"0(1))

and hence also £ # NE (the opposite implication is unknown but Verbitsky
[18] constructed a relativized world where it does not hold).

Theorem 3.1 The following two proposition hold.
1. At least of one the following three statements is true:

(a) There is a function f :{0,1}* — {0,1} computable in £ that has
2Un) hardness on average.

(b) NP # coNP.
(c) €+ NE.

2. At least of one the following two statements is true:

(a) There is a function f : {0,1}* — {0,1} computable in NENcoNE
that has 2% hardness on average.

(b) NP # coNP.

4 Proof complexity generators

By a proof complexity generator we mean a map ¢ : {0,1}" — {0,1}™,
m = m(n) and m > n, whose bits can be computed in NTime(m(n)°M)) N
coNTime(m(n)°M)). This assumption about the computability of the bits
is the weakest one allowing to write down, for any b € {0,1}™, a size mOPM
propositional formula 7,(g) that is a tautology iff b ¢ Rng(g), see below.
(The notation 7(g) is somewhat misleading as the formula depends on a
particular definition of ¢ and not only on g, but we will ignore this here:
The lower bounds conjectured later should hold for all NTime(m(n)°M) N
coNTime(m(n)°1))-definitions.)

A generator is good if for a strong proof system P and with high proba-
bility in choosing a random b € {0,1}™, the formula 7;(g) requires very long
(in particular, super-polynomial) P-proofs. The quality of the generator is
measured by the strength of P and by the probability that b yields a hard
T-formula. At present it is not ruled out that some generator g works for all
P and all b. Following [17] we shall say that generator g is hard for P if all
T5(g), for all b’s, require super-polynomial size P-proofs (cf.[17]).

The 7-formulas have been defined in [6] and independently in [1], and
their theory has made first steps in [7, 16, 8, 17]. I shall not describe the



development of the ideas and known lower bound results; this can be found in
the introductions to [8] or [17]. Instead I shall briefly describe one motivation
and why we speak about ”generators”.

Proving lower bounds for strong propositional proof system appears
hard. In fact, we do not know any such lower bounds. A factor contributing
to this is that it is actually not easy to come up with sensible tautologies that
would be good candidates for requiring long proofs even in strong systems
(cf. [8] for a detailed discussion). The 7-formulas seem to be candidates
worth studying in this context.

The word generator is used because some of the usual pseudo-random
number generators seem to be good candidates. In particular, a good proof
complexity generator must behave as a hitting set generator w.r.t. NP /poly-
test (cf.[8]).

Similarly as the existence of good pseudo-random generators can be
proved under some computational hardness assumptions (cf.[12, 4]) we may
try to reduce the existence of good proof complexity generators to a suit-
able computational hardness assumption too. This is discussed in [9] with
a broader perspective and in the introduction to [17].

The most studied map in this context is the classic Nisan-Wigderson
generator, cf. [12]. This has been proposed as possibly a good proof com-
plexity generator in [1] and taken up in [8], although the motivations (and,
more importantly, the choice of parameters in the construction and the for-
malization of the notion of hardness of the generators?) are different. Let us
first recall the definition of the NW-generators (and fix the notation in the
process).

Let A be an m x n 0-1 matrix with £ ones per row. J;(4) := {j <
n | Aij = 1}. Let f : {0,1}¥ — {0,1} be a boolean function. NW; :
{0,1}" — {0,1}™ is the NW-generator based on A and f: The i-th bit of
output is computed by f from the bits of the input that belong to J;(A).

Assume that f € NTime(t(n)) N coNTime(t(n)). Given particular
NTime(t(n))-definitions a: Fv, ac(u,v) (ju| =4, |v| < t(n) and a, p-time)
of f(u) =¢, for e = 0,1, the 7-formulas are defined by:

Ty = V oy, (z ) Ji(A),v")
i<m

where b = (by,...,b,) € {0,1}™, z is an n-tuple of variables and v’ are
disjoint #(n)-tuples of variables. Clearly 7, € TAUT iff b ¢ Rng(NWy ).

*1 shall describe neither the set-up from [8] nor the conjectured hardness in terms of
pseudo-surjectivity here as it is not relevant to the topic of this paper.



Note that the size of 7 is t(n)°?() - m(n), and hence we get a size mO)

formula as long as t(n) < m(n)°W.

An idea, formulated in [1] in general terms and then quite specifically
in [17], is that NW, ¢ forms a good proof complexity generator, as long
as A has suitable combinatorial properties (being an (¢,d) combinatorial
design in the sense of [12]: J;(A)’s have size £ and the intersection of any
two different rows has size < d) and as long as f is computationally hard.
Specifically, Razborov [17] has made the following conjecture.

Conjecture 4.1 (A. A. Razborov[17, Conjecture 2])

Any NW-generator based on a matriz A which is a combinatorial design
with the same parameters as in [12] and on any function f in NP N coNP
that is hard on average for P/poly, is hard for EF.

Let us interpret the specifications. The parameters in the main construc-
tion of combinatorial designs in [12, L.2.5] satisfy: d = log(m), log(m) <
¢ <m and n = O(£?).3 Writing this dually:

(1) m=2"" and £=¢-n'/?

where € > 0 is a constant (determined by the O-constant in the expression
n = O(¢?)). We are taking the maximal value allowed for m by [12, L.2.5]
as that is the chief case in [12], and it also links with [16, 17] studying
“function” generators.

The phrase “hard on average for P/poly” presumably means that the
hardness of f in the sense of [12] is exponential, similarly as it is needed in
[12]:

(2) Hp(0) > 290
The conjecture requires that f € NP NcoNP. We shall relax this condition
to:
(3) f € NTime(2°9) N coNTime(2°0) .
By (1) we have 209 = mO91) 50 (3) means that f is in NTime(m®M)) N
coNTime(mP)). By the discussion earlier this means that the size of the 7-
formula will be still m@(1). Thus this modification of the original formulation

3There is also a construction specific for the application to BPP with parameters
satisfying: £ = ¢ - log(m) and n = O(c? - log(m)), where ¢ is a constant, cf. [12, L.2.6].
That is not good in proof complexity as a trivial proof of the 7-formulas going through
all possible seeds would have a polynomial size.



of the conjecture seems quite harmless and, moreover, very much in the spirit
of [12] allowing to compute the output bits of the generator in time m©1)
rather than just n@M).

Nevertheless, (3) is a modification of the original specifications and so
we do not want to talk about Conjecture 4.1 in the next theorem. For this
reason let us formulate the following Statement R:

R Let g be an NW-generator based on an m X n matrix A that is an
(£,log(m)) combinatorial design and on any function f such that the
constrains in (1), (2) and (3) are satisfied. Then g is hard for EF.

Theorem 4.2 Assume that Statement R is true. Then EF is not p-bounded.

Proof :

Assume that E'F' is p-bounded. We shall arrive at a contradiction with
Statement R. If EF is p-bounded then, in particular, NP = coNP.

By Theorem 3.1 (Part 2) there is a function f in N€ N coNE that has
exponential hardness on average. Having such f we may apply Statement
R (suitable matrices A are constructed in [12]) to conclude that EF is not
p-bounded. That is a contradiction.

q.e.d.

Note that if we postulate smaller /n then although the size of the formula
might not be polynomial in m anymore it will still be superpolynomially
smaller than 20" ie. than a lower bound to the size of the trivial proof
going through all seeds.

An optimist may conclude that it only takes to prove a conditional state-
ment in order to prove that FF is not p-bounded. A pessimist may con-
clude that if the conclusion of R holds even without it’s hypothesis then
the hypothesis is irrelevant. I think an interesting modification of R may
be obtained by stating it for one particular function f, e.g. the hard bit of
the discrete logarithm, and maybe claiming the lower bound for 7,(g) for a
random b with high probability, rather than for all b’s.

Acknowledgements: I thank E. Jefdbek and P. Pudldk for discussions
and suggestions. In particular, P. Pudldk suggested that some variant of
Theorem 2.1 should be relevant to proof complexity generators.

10



References

[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

M. ALEKHNOVICH, E. BEN-SASsON, A. A. RAZBOROV, and
A. WIGDERSON, Pseudorandom generators in propositional proof com-
plexity, FElectronic Colloquium on Computational Complexity, Rep.
No.23, (2000). Ext. abstract in: Proc. of the 415t Annual Symp. on
Foundation of Computer Science, (2000), pp.43-53.

S. A. Cook and A. R. RECKHOW, The relative efficiency of proposi-
tional proof systems, J. Symbolic Logic,44(1), (1979), pp.36-50.

H. FRIEDMAN, On the consistency, completeness, and correctness prob-
lems, (unpublished preprint, 1979).

R. IMPAGLIAZZO and A. WIGDERSON, P = BPP unless E has sub-
exponential circuits: derandomizing the XOR lemma, in: Proc. of the
29" Annual ACM Symposium on Theory of Computing, (1997), pp.
220-229.

J. KRAJICEK, Bounded arithmetic, propositional logic, and complexity
theory, Encyclopedia of Mathematics and Its Applications, Vol. 60,
Cambridge University Press, (1995).

J. KRAJICEK, On the weak pigeonhole principle, Fundamenta Mathe-
maticae, Vol.170(1-3), (2001), pp.123-140.

J. KRAJICEK, Tautologies from pseudo-random generators, Bulletin of
Symbolic Logic, 7(2), (2001), pp.197-212.

J. KRAJICEK, Dual weak pigeonhole principle, pseudo-surjective func-
tions, and provability of circuit lower bounds, Journal of Symbolic Logic,
to app. (preprint Nov.’02).

J. KRAJICEK, Hardness assumptions in the foundations of theoretical
computer science, (preprint in I'TI series:
http://iti.mff.cuni.cz/series/index.html, Jan.’03).

J. KRAJICEK, Implicit proofs, J. of Symbolic Logic, to app., (preprint
July 2003).

J. KrRAJICEK, and P. PUDLAK, Propositional proof systems, the con-
sistency of first order theories and the complexity of computations, J.
Symbolic Logic, 54(3), (1989), pp.1063-1079

11



[12]

[13]

[14]

[15]

[16]

[17]

[18]

N. NisAN, and A. WIGDERSON, Hardness vs. randomness, J. Comput.
System Sci., Vol.49, (1994), pp.149-167.

P. PUDLAK, On the length of finitistic consistency statements in first
order theories, in: Logic Colloguim 84, (1986), pp.165-196, North-
Holland.

P. PUDLAK, Improved bounds to the length of proofs of finitistic consis-
tency statements, Contemporary Mathematics, 65, (1987), pp. 309-331.

A. A. RAzZBOROV, Unprovability of lower bounds on the circuit size in
certain fragments of bounded arithmetic, Izv. Ross. Akad. Nauk Ser.
Mat., 59(1), (1995), pp. 201-224.

A. A. RAZBOROV, Resolution lower bounds for perfect matching prin-
ciples, in: Proc. of the 17th IEEE Conf. on Computational Complexity,
(2002), pp.29-38.

A. A. RAZBOROV, Pseudorandom generators hard for k-DNF resolu-
tion and polynomial calculus resolution, preprint, (May’03).

O. V. VERBITSKY, Optimal algorithms for co-NP sets and the problem
EXP =’ NEXP. (Russian) Mat. Zametki, Vol.50(2), (1991), pp.37-46.

Mailing address:

Mathematical Institute
Academy of Sciences

Zitn4 25, Prague 1, CZ - 115 67
The Czech Republic
krajicek@math.cas.cz

12

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




