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Abstract

We study several properties of sets that are complete for NP. We prove that if L is an
NP-complete set and S 2 L is a p-selective sparse set, then L — S is <}, -hard for NP. We
demonstrate existence of a sparse set S € DTIME(2%") such that for every L € NP — P,
L — S is not < -hard for NP. Moreover, we prove for every L € NP — P, that there exists a
sparse S € EXP such that L — S is not <},-hard for NP. Hence, removing sparse information
in P from a complete set leaves the set complete, while removing sparse information in EXP
from a complete set may destroy its completeness. Previously, these properties were known
only for exponential time complexity classes.

We use hypotheses about pseudorandom generators and secure one-way permutations to
resolve longstanding open questions about whether NP-complete sets are immune. For exam-
ple, assuming that pseudorandom generators and secure one-way permutations exist, it follows
easily that NP-complete sets are not p-immune. Assuming only that secure one-way permu-
tations exist, we prove that no NP-complete set is DTIME(2"")-immune. Also, using these
hypotheses we show that no NP-complete set is quasipolynomial-close to P.

We introduce a strong but reasonable hypothesis and infer from it that disjoint Turing-
complete sets for NP are not closed under union. Our hypothesis asserts existence of a UP-
machine M that accepts 0* such that for some 0 < € < 1, no 2" time-bounded machine can
correctly compute infinitely many accepting computations of M. We show that if UP N coUP
contains DTIME (2™ )-bi-immune sets, then this hypothesis is true.

1 Introduction

This paper continues the long tradition of investigating the structure of complete sets under various
kinds of reductions. Concerning the most interesting complexity class, NP, almost every question
has remained open. While researchers have always been interested primarily in the structure of
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complete sets for NP, for the most part, success, where there has been success, has come from
studying the exponential time classes. In this paper we focus entirely on the complexity class NP.

The first topic we study concerns the question of how robust are complete sets. Schoning
[Sch86] raised the following question: If a small amount of information is removed from a com-
plete set, does the set remain hard? Tang et al. [TFL93] proved existence of a sparse set S such
that for every <? -complete set L for EXP, L — S is not hard. Their proof depends on the fact
that for any exponential time computable set B and any exponential time complete set A, there
exists a length-increasing, one-one reduction from B to A [BH77]. We don’t know that about NP.
Buhrman ez al. [BHT98] proved that L — S still remains hard for EXP, if S is any p-selective sparse
set.

Here, we prove these results unconditionally for sets that are NP-complete. We prove that if L
is an NP-complete set and S 2 L is a p-selective sparse set, then L — S is <? -hard for NP. We
use the left-set technique of Ogihara and Watanabe [OW91] to prove this result, and we use this
technique elsewhere in the paper also. We demonstrate existence of a sparse set S € DTIME(22")
such that for every L € NP — P, L — S is not <? -hard for NP. Moreover, we prove for every
L € NP — P, that there exists a sparse S € EXP such that L — S is not <? -hard for NP. Hence,
removing sparse information in P from a complete set leaves the set complete, while removing
sparse information in EXP from a complete set may destroy its completeness.

In the fourth section of this paper we build on results of Agrawal [Agr02], who demonstrated
that pseudorandom generators can be used to prove structural theorems on complete degrees.
We use hypotheses about pseudorandom generators to answer the longstanding open question of
whether NP-complete sets can be immune. Assuming the existence of pseudorandom generators
and secure one-way permutations, we prove easily that no NP-complete set is p-immune. (This
too is a well-known property of the EXP-complete sets.) Assuming only that secure one-way per-
mutations exist, we prove that no NP-complete set is DTIME(2"")-immune. Also, we use this
hypothesis to show that no NP-complete set is quasipolynomial-close to P. It is already known
[Ogi91, Fu93] that no NP-complete set is p-close to a set in P unless P = NP.

The fifth section studies the question of whether the union of disjoint Turing-complete sets
for NP is Turing-complete. Here is the background. If A and B are two disjoint computably
enumerable (c.e.) sets,then A <y AU B, B <y AU B, and it follows that if either A or B is
Turing-complete for the c.e. sets, then so is A U B [Sho76]. The proofs are straightforward: To
demonstrate that A < AU B, on input x, ask whether x € AU B. If not, then x ¢ A. Otherwise,
simultaneously enumerate A and B until = is output. The proof suggests that these properties
may not hold for <”.-complete sets for NP. In particular Selman [Sel88] raised the question of
whether the union of two disjoint <%.-complete sets for NP is <”.-complete. It is unlikely that
A<%. A U B, for every two disjoint sets A and B in NP, for if this holds then NP N coNP = P:
Take A € NP N coNP; then A € NP N coNP as well, and A<}, (AU A) = A € P.

First, we will prove that if UEE # EE, then there exist two disjoint languages A and B in
NP such that A £7.A U B. Second, we introduce the following reasonable but strong hypothesis:
There is a UP-machine M that accepts 0* such that for some 0 < € < 1, no 2™ time-bounded
machine can correctly compute infinitely many accepting computations of M. This hypothesis is
similar to hypotheses used in several earlier papers [FFNR96, HRW97, FPS01, PSO1]. We prove,
assuming this hypothesis, that there exist disjoint Turing-complete sets for NP whose union is not
Turing-complete. Also, we show that if UP N coUP contains DTIME (2™ )-bi-immune sets, then



this hypothesis is true. Finally, we make several observations about the question of whether the
union of two disjoint NP-complete sets is NP-complete. It would be difficult to obtain results
about these questions without introducing hypotheses about complexity classes, because there are
oracles relative to which the answers to these questions are both positive and negative. Proofs that
would settle these questions would not relativize to all oracles.

2 Preliminaries

We use standard notation and assume familiarity with standard resource-bounded reducibilities.
Given a complexity class C and a reducibility <,., a set A is <,-hard for C if for every set L. € C,
L <, A. The set Ais <,-complete if, in addition, A € C. We use the phrase “NP-complete” to
mean <? -complete for NP.

A set S is sparse if there exists a polynomial p such that for all positive integers n, ||[S N X"|| <
p(n). We use polynomial-time invertible pairing functions (-, ) : ¥* x ¥* — ¥*.

A set S is p-selective [Sel79] if there is a polynomial-time-computable function f : ¥* x ¥* —
¥* such that for all words = and y, (i) f(z,y) = z or f(x,y) = y and (ii)) x € A or y € A implies
flz,y) € A

A set L is immune to a complexity class C, or C-immune, if L is infinite and no infinite subset
of L belongs to C'. A set L is bi-immune to a complexity class C, or C-bi-immune, if both L and L
are C-immune.

3 Robustness

In this section we consider the following question: If L is NP-complete and S is a sparse set
then does L — S remain complete? This question was studied for exponential time complexity
classes by Tang et al. [TFL93] and by Buhrman ef al. [BHT98]. The basic result [TFL93] is
that there exists a subexponential-time computable sparse set S such that for every <? -complete
set L for EXP, L — S is not EXP-complete. On the other hand, for any p-selective sparse set S,
L — S still remains hard [BHT98]. Researchers have always been interested primarily in learning
such structural properties about the complexity class NP. However, it is sometimes possible to
use properties of exponential time classes to succeed there where results about nondeterministic
polynomial time has been elusive. For example, the theorems of Tang et al. depend on the fact that
for any exponential time computable set B and any exponential time complete set A, there exists
a length-increasing, one-one reduction from B to A. We don’t know that about NP. Nevertheless,
here we prove the analogues of these results for NP. Observe that our first result, Theorem 3.1,
holds unconditionally.

Theorem 3.1 Let L be an NP-complete set and let S be a p-selective sparse set such that L.  S.
Then L — S is <P -hard for NP.

Proof Note that L — S # (). If L — S is finite, then L is sparse as well. Since L is <? -complete
for NP, NP = P [Mah82]. Therefore, L — S is also NP-complete. So we assume that . — S is
infinite in the rest of the proof.



We use the left set technique of Ogiwara and Watanabe [OW91]. Assume that M is a nonde-
terministic machine that accepts L. Let 7}, be the computation tree of M on any string x. Without
loss of generality, assume that 7, is a complete binary tree, and let d be the depth of 7}.. Given two
nodes v and v in T}, we say that u < v if the path from the root to w lies to the left of the path from
the root to v, and v < v if either v < v or u lies on the path from the root to v. Let

Left(L) = {({z,u) | Jv,u < v,u,v € T,, an accepting computation of M on x passes through v }.

Since L is NP-complete and Left(L) is in NP, Left(L)<? L via some f € PF. When it is
understood that v € T, then we will write v as a abbreviation for (x, v) and f(v) as an abbreviation
for f((z,v)). Given z of length n, the length of every node of T, is bounded by a polynomial in 7.
Since f is polynomial-time computable, the length of f(v), where v € T, is bounded by p(n), for
some polynomial p(-). We call f(v) the label of v. Since S is sparse, there is a polynomial bound
¢(n) on the number of strings in S of length at most p(n). Let ¢(-, -) be the selector function for S.
Consider the following total preorder [Tod91] on some ) C L=P("),

IESg?J < ElZlaZQa"' y Zm eQa
g(fli,Zl) = xug(ZhZQ) =1,
g(zm—la Zm) = Zm—bg(zm?y) = Zm-
Observe thatif z <, yandy € S, then x € S also. Given the selector g, the strings in () can be
ordered by <, in time polynomial in the sum of the lengths of the strings in (). Therefore, if || Q||

is polynomial in 7, then the strings in () can be ordered by <, in time polynomial in n as well.
We first make a few simple observations.

Observation 1 If u < v, and w is a descendant of u, then w < v.
Observation 2 Let v be the left most node of T, at some level. Then
r €L & wveLeft(L) < f(v) € L.

Observation 3 Let X = {x1,zy,--- } C =P be a set of more than q(n) distinct strings. Then
there exists a procedure that runs in time polynomial in n and outputs x; ¢ S,i < q(n) + 1.

Proof Order the first ¢(n) + 1 strings in X by </, and output a highest string as z;. Since there
can be at most ¢(n) strings of length < p(n) in S, z; cannot be in S. O

We now define a reduction from L to L — S. On input z, |x| = n, the reduction traverses
T, in stages. During Stage k, the reduction maintains a list 1isty of nodes in 7, at level k. The
reduction procedure has a variable called “special” which holds some node of 7,.. At Stage 1,
list; contains the root of 7}, and the value of special is undefined. Now we define Stage k > 1.

Step 1 Let listy, 1 = (v1,v2, -+ ,vy).

Step 2 Let v} < uh < --- < u), be the children of nodes in 1istj_;. This ordering is possible
since all nodes in 1isty_; are at depth k£ — 1 of the tree 7, and therefore u, - - - , u; are at
level k. Put all these nodes in 1isty.



Step 3: Pruning If there exist two nodes u} and v, i < [,in listy such that f(u}) = f(u;), then
remove u},--- ,u; ; from listy. Now let u; < --- < u,, be the nodes in 1listy, where
every u; has distinct labels. If m < ¢(n), go to the next stage.

Step 4 It must be the case that m > ¢(n). Therefore, by Observation 3, there must be some
J < q(n)+ 1suchthat f(u;) ¢ S. Set special = u;.

Step S If special is the leftmost node of 7}, at level £ , then output special and halt.

Step 6 Otherwise, place u;,--- ,u;_; in 1isty and go to the next stage.

The following algorithm A defines the reduction from L to L — S:

fork=1tod
run Stage k
if any stage halts and outputs v, then
output f(v)
else /* 1ist, contains some leaf nodes of T, */
if any of the leaf nodes is an accepting computation of M on z, then
output a predetermined fixed string w € L — S
else
output f(special)
endif
endif

We prove that the above reduction is correct by the following series of claims:
Claim 3.2 For any k < d, if Stage k outputs a string v, then
rels flvye L—-S.

Proof If Stage k outputs v, then v is the leftmost node of T, at level k and f(v) ¢ S. By
Observation 2, the claim follows. O

From now assume that for no %, Stage k halts in Step 5. First we make some observations.

Observation 4 During Stage k > 1,

listy|| < g(n).

Proof For any Stage k, assume that 1ist;_; has ¢ < g(n) nodes. The number of nodes in 1isty
before pruning is at most 2¢. After the pruning step, every v € list; has a different label. If
there are < ¢(n) nodes in listy, then the procedure goes to the next stage. Otherwise, the node
u; where j < g(n) + 1 has a label outside S. Since we assume that Stage & does not halt in Step
5, the procedure goes to Stage k with ||listy|| =7 — 1 < q(n). O

Observation 5 Suppose special = v at the end of Stage k. Then for l > k,Vu € 1list;, u < v.



Proof At the end of Stage k, let v = special = u;. After Step 6, 1list; is a subset of
{uy,--- ,uj_1}. Thus Vu € listy, u < v. Note that in any subsequent Stage [ > k, the nodes that
belong to 1ist; are the descendants of nodes in 1ist;. By Observation 1, we obtain the proof. O

Observation 6 No node that is pruned in Step 6 can be on the path containing the rightmost
accepting computation.

Proof If z ¢ L, no node in T, is on the path containing any accepting computation. Therefore,
let us assume that = € L. If two nodes u and u; at the same depth have the identical label w, then
f(u;) € Left(L) < f(u;) € Left(L). Therefore, if any . at the same depth is on the path of the
rightmost accepting computation, then either & < i or k& > [. Since only the nodes w}, - - - ,uj ; are
pruned, u), cannot be pruned. O

Claim 3.3 Assume that x € L and Stage k > 1 does not halt in Step 5. If v € 1isty that is on
the path containing the rightmost accepting computation, then either Ju € 1isty . that is on the
path containing the rightmost accepting computation, or special € Left(L).

Proof Since there is a node v in listy that is on the path containing the rightmost accepting
computation, let u!. be the node that is generated at Step 2 of Stage k + 1 that is on the path
containing the rightmost accepting computation. By Observation 6, u,. cannot get pruned in Step
3, and therefore, it is in 1ist, at Step 4. Let us denote this node by u,.. If a node u; is assigned
special in Step 4, then either j < r, in which case special € Left(L). Otherwise, r < j, and
therefore, u, is in 1isty; after Step 6. O

Claim 3.4 [f for every k, Stage k does not halt in Step 5, then x € L if and only if 1ist, contains
a leaf node that is an accepting computation or special € Left(L).

Proof Note that if = is not in L, then no leaf node can be accepting, and no node of 7, can be in
Left(L). Therefore, the if direction is trivial. We show the only if direction. We prove the following
by induction on the number of stages: If x € L, then after Stage k, either the rightmost accepting
computation passes through a node in 1isty or special € Left(L).

After Stage 1, 1ist; contains the root of the tree. Thus the claim is true after Stage 1. Assume
that the claim is true after Stage k — 1. Thus either the rightmost accepting computation passes
through a node in 1ist,_; or special € Left(L). We consider two cases.

Case 1: The rightmost accepting computation passes through a node in list;_;. By Claim 3.3,
either there is a node in 1isty, that is on the path of the rightmost accepting computation, or
the node that is assigned special during Stage k is in Left(L).

Case 2: special € Left(L). Let s be the node that is currently assigned to special. It suffices
to show that if a node u is assigned to special at Stage k, then u will also be in Left(L). By
Observation 5, for every node v € listy_ 1, v < s. Since u is a descendant of some node v
inlistg_j,u < s as well. Therefore, s € Left(L) = u € Left(L).



Therefore, after Stage k, & > 1, the rightmost accepting computation of M either passes
through a node in 1isty, or special € Left(L). When k = d, this implies that either the rightmost
accepting computation is a node in 1istgy, or special € Left(L). This completes the proof. O

The correctness of the reduction now follows.
Claim 3.5 The reduction h(-) is correct, and it runs in polynomial time.

Proof If the the reduction halts at Step 5 during any stage, then by Claim 32 x € L < h(x) €
L — S. Assume that no stage halts in Step 5. Assume x € L. By Claim 34, either list,
contains an accepting leaf or special € Left(L). If 1ist, contains an accepting computation,
then h(z) = w € L — S. Otherwise, if special € Left(L), then f(special) € L. However,
by the definition of special, f(special) ¢ S. Therefore, f(special) € L — S. On the other
hand, if x ¢ L, then no node of T, can be in Left(L), and so, in particular, special ¢ Left(L).
Therefore, h(z) = f(special) ¢ L.

By Observation 4, the number of nodes in 1ist, for any k£ > 1 is bounded by ¢(n). Therefore,
the number of nodes visited by the reduction is at most d x 2¢g(n). Since d is bounded above by
the running time of M on z, the total time required by the reduction is at most polynomial in n. O

Therefore, L<? L — S. So L — S is <? -hard for NP. d

Corollary 3.6 Let L be a <P -complete set for NP, and S € P be sparse. Then L — S is <P -
complete for NP.

In contrast to the theorem we just proved, in Theorem 3.8, we construct a sparse set S €
DTIME(22") such that for any set L € NP — P, L — S is not <” -hard for NP. Again, we cannot
assert that L — S € NP. In Corollary 3.9, we obtain that for every L € NP — P, there is a sparse
S € EXP such that L — S is not <? -hard for NP.

The following lemma shows a collapse to P for a restricted form of truth-table reduction from
SAT to a sublogarithmically-dense set. In other words, we show that if SAT disjunctively reduces
to some sublogarithmically-dense set where the reduction machine makes logarithmically many
nonadaptive queries, then NP = P. We exploit this strong consequence in Theorem 3.8 below.

Lemma 3.7 If there exist f € FP, S C X* and a real number o < 1 such that

1. foralln >0, ||S="]| < O(log® n), and

2. forall x, f(x) is a set of words such that || f(z)|| < O(log |z|) and

r€SAT & f(z)NS =0,

then P = NP.



Proof Assume f, S, and « exist. Let
LeftSAT £{(z, z) | formula z has a satisfying assignment y > z}.

Note that for a formula x with n variables, (z,0") € LeftSAT < = € SAT. Also, LeftSAT is in
NP. Let us assume that LeftSAT<? SAT via reduction g € PF. Let h(w) < f(g(w)) and let p(-)

be the computation time of /. Therefore, by assumption, for all w, h(w) is a set of words such that
[h(w)]| < O(log |w]) and

w € LeftSAT < g(w) € SAT &< h(w) NS = 0.
Therefore, for every S’ C S, and for all x, y,
(x,y) € LeftSAT = h({x,y)) NS = .

Choose constants ¢ and d such that ||S="|| < clog®n and [|h(w)| < dlog|w|. Below we
describe a nondeterministic polynomial-time-bounded algorithm that accepts SAT. We will see
that this algorithm can be simulated in deterministic polynomial time. The input is a formula z.

1 g:=10
2 n:=number of variables in x

3 if 1® satisfies x then accept =z
/* Otherwise, (x,1") ¢ LeftSAT, and so h((x,1%))NS# (. */
4 choose some s € h((x,1")) nondeterministically
5 §:=5U{s}
6 for i=1 to clog” p(|x|+n)
7 if h((x,0")) NS # 0 then reject
/* At this point, h((x,0*))NS =0, and h((x,1")) NS #0. */
8 Use binary search to determine a word y € X* — {1"}
such that h((x,y))Ns =0 and h((x,y+ 1)) NS #0.
9 if y satisfies x then accept
10 choose some s € h((x,y)) nondeterministically

11 S =8 U{s}
12 increment i
13 reject

We argue that the algorithm runs in nondeterministic polynomial time: The loop in
steps 6 — 12 runs at most clog® p(|z| + n) times, and the binary search takes at most O(n)
steps for a formula of n variables. Therefore, the runtime is bounded by a polynomial in (n + |z|).

We argue that the algorithm accepts SAT: The algorithm accepts only if we find a satisfying
assignment (step 3 or step 9). So all unsatisfiable formulas are rejected. We now show that all
satisfiable formulas are accepted by at least one computation path.

Let = be a satisfiable formula; we describe an accepting computation path. On this path, S’ will
always be a subset of S. If x is accepted in step 3, then we are done. Otherwise, (x, 1") ¢ LeftSAT
and therefore, h({x,1™)) NS # (). So in step 4 at least one computation path chooses some s € S.



Since # € SAT, (z,0") € LeftSAT. Hence h((z,0")) NS = . Since S" C S, it follows
that h((z,0")) NS’ = (. Therefore, if x € SAT, the nondeterministic path that makes the correct
choice for s in step 4 cannot reject x in step 7. Now we have

h((z,0") NS =0, and h((z,1")) N S # 0.

Therefore, there must be some y as required by the algorithm, which can be obtained by binary
search as follows. Initially, the algorithm considers the interval [0™, 1] and choose the middle
element 10"~ 1. If h({x, 10" 1))NS’ # (), then we proceed with the interval [0™, 10"~!]. Otherwise,
we proceed with the interval [10"~1 1"]. By continuing this procedure, we obtain intervals [a, ]
of decreasing size such that a < b and

h((z,a)) NS =0, and h((z,b)) NS’ # 0.

If we accept in step 9, then we are done. Otherwise we can argue as follows: By step 8, we have
h({z,y + 1)) N S" # 0 and therefore, h((x,y + 1)) N S # 0. Hence (z,y + 1) ¢ LeftSAT.
Together with the fact that y does not satisfy x in step 9, we obtain (z,y) ¢ LeftSAT. Therefore,
h({x,y)) NS # 0. On the other hand, h({x,y)) N S" = (). Therefore, the correct nondeterministic
path can choose an s € S — S’ and continues with the next iteration of the loop. Along this path,
S’ is always a subset of S N X=P(#I+7) By assumption,

|5=PU=Hm)|| < ¢ log® p(|z] + n).

We enter the loop with ||S’|| = 1, and in each iteration we add a new element to S’. Hence at the
beginning of the (c-log® p(|z|+n))-th iteration it holds that S" = SNY=P(=1+") Now consider this
iteration at step 8. Elements of h((z,y)) and elements of h({x,y + 1)) are of length < p(|z| + n).
So in this iteration we obtain a word y such that

h({z,y)) NS =0,
and
h({z,y + 1)) NS # 0.

It follows that (x,y) € LeftSAT and (x,y + 1) ¢ LeftSAT. So y is the lexicographically largest
satisfying assignment of x. Therefore, we accept in step 9. It follows that our algorithm accepts

SAT.

We argue that the algorithm can be simulated in deterministic polynomial time: Clearly,
each path of the nondeterministic computation is polynomially bounded. We estimate the total
number of paths as follows. Each path has at most

c-log”p(|lz] +n) +1

nondeterministic choices, where a < 1. Each such nondeterministic choice guesses an s &€
h({x,y)) for some y € ¥". By assumption, ||h((z,y))|| < d - log(|x| + n). Hence the total
number of paths is

(d . log(]x\ + n))olog"‘ p(|z|+n)+1 20(log1og(|x|+n))-0(logo‘(\x|+n))
90(log' = (Jz|+n))-O(log® (|z|+n))
9O (log(|z|+n))

(|x| + n)O(l).
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Hence there is only a polynomial number of nondeterministic paths. Therefore, the algorithm can
be simulated in deterministic polynomial time. ]

Theorem 3.8 There exists a sparse S € DTIME(22") such that for every L € NP — P, L — S is
not <P -hard for NP.

Proof Let {V;};>o be an enumeration of all nondeterministic polynomial-time-bounded Turing
machines such that for all 7, the running time of IV; is bounded by the polynomial p;(n) = n’ + i.
Similarly, let { f; } ;>0 be an enumeration of all polynomial-time computable functions such that for
all j, the running time of f; is bounded by the polynomial p;(n) = n/ + j. We use a polynomial-
time computable and polynomial-time invertible pairing function (-, -) such that » = (i, j) implies
1<randj <r.

A requirement is a natural number r. If » = (i, j), then we interpret this as the requirement
that L(.V;) does not many-one reduce to L(/V;) — S via reduction function f;.

Let t(m) £ 22" . We describe a decision algorithm for S. Let = be the input and let n < |z|. The
algorithm works in stages 1,... ,m where m is the greatest natural number such that t(m) < n.
In stage k, we construct a set Sy such that

Sy = {we S|t(k) < |w| < t(k+1)}.

Hence S can be written as S; U S5 U - - - . We ensure that each S, has at most one string. Input x
is accepted if and only if it belongs to S,,,. Whenever we refer to (the value of) a program variable
without mentioning the time when we consider this variable, then we mean the value of the variable
when the algorithm stops. Variables L represent sets of requirements. If requirement 7 is satisfied
in stage k, then 7 is added to the set L. The algorithm ensures that || L|| < 1 for every k.

1 if |w| <4 then reject

2 n:=|w|, m:= greatest number such that t(m) <n

3 for k=1 tom

4 Sk:=0, Lg:=0

5 for r=1 to k

6 if r¢L,;UL,U---ULg; then

7 determine i and j such that r = (i,j)

8 for all z e X<**+2) in increasing lexicographic order
9 y = £5(z)

10 if t(k) <l|y| <t(k+1) and N;(z) accepts then

11 Sk = {y}

12 Ly = {r}

13 exit the loops for z and r, and consider next k
14 endif

15 increment z

16 endif

17 increment r

18 increment k
19 accept if and only if S, = {w}
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We observe that S is sparse: For all inputs of length > ¢(k) the algorithm constructs the
same sets S1, S5, ... ,9, and Ly, Lo, ... | L,,. Therefore, it is unambiguous to refer to Sy, and L.
Moreover, it is immediately clear that any Sj contains at most one word, and this word, if it exists,
has a length that belongs to the interval [t(k), t(k + 1)). By definition of ¢(k), for every n > 4,

t(|loglogn]) < n < t(|loglogn| + 1).

Hence on input of some word of length n > 4, we have

m = |loglogn| (1)
in step 2. So the algorithm computes singletons S, Ss, . .. , S,, such that S<" C S;US,U- - -US,,,.
It follows that

1S="]] < [loglogn]. 2)

In particular, S'is sparse.

We observe that S € DTIME(22"): Note that in step 10, |z| < t(m + 2) = t(m)* < n*
andi < r < m = |loglogn]. So a single path of the nondeterministic computation N;(z) has
length

< pli 45 < 9O0Uog®n)

Hence the simulation of the complete computation takes

220(10g2 n) . 20(10g2 ’I’L) _ 220(10g2 n)

(log? n)

steps. Similarly, step 9 takes 2° steps. So the loop at steps 8—15 takes at most

2”4 . 220(1032;2 n) _ 220(log2 n)
steps. The loops 5-17 and 3—18 multiply this number of steps at most by factor
m? < |loglogn|?.
Therefore, the overall running-time is 9290 ™ This shows

S € DTIME(22°"* ™) C DTIME(2?").

We observe that no L — S is many-one hard: Let L € NP — P and choose a machine NV,
such that L = L(N;). Assume that L — S is <? -hard for NP. Therefore, there exists j such that
L<? L — S via reduction function f;. We consider two cases and show that both cases lead to
contradiction. This will complete the proof.

Case 1: Assume there exists an e > 1 such that for all z € L=°, |f;(z)| < /|x|. Using
Lemma 3.7, we show that this implies L € P, thereby obtaining a contradiction.
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Consider an arbitrary formula z. Let so £ x and let s, 1 £ f;(s;) for [ > 0. By assumption, for
all y € L=¢ it holds that

ye Lo fily) ¢ SAfiy) €L 3)
Hence
rels s ¢SNs €L %)
If |s1]| > e, we use equivalence (3) for y = s;. We obtain
s1€L < s9¢SNsy€ L. (5)
By equivalences (5) and (4), we have
re€ELSs1ESNsyE SAsy €L (6)

Now we use equivalence (3) again, this time for y = s5. We proceed in this way until we reach an
sy, such that either |s;| < e or |sg| > +/|sx—1|. The following equivalence holds:

k
reLe N\si¢SAs el (7)

=1

Note that if |si| < e, then it is easy to verify whether s, belongs to L. So in polynomial time we
can determine a string s which is defined as follows. If s, € L=, then let s be a fixed element
from S. Otherwise, let s be a fixed element from S. We show

reLl & {s1,...,5,5 NS =0 (8)

“=” Assume = € L. Therefore, s1,---,s, € L. If || < e, thenk = 0, s € S, aEd we
are done. Otherwise, || > e and & > 1. If |sg| < e, then, by equivalence (7), s € S. So
from equivalence (7) it follows that {s1,... , sk, s} NS = ), and we are done. We show that the

remaining case, i.e., |s;| > e is impossible. Since the algorithm terminated, it must be the case that
|sk| > +/|sk—1|. However, since x € L, s, € L by equivalence (7). By our assumption, it cannot
happen that s, € L> e and |sx| > \/|sk_1|. Therefore, |si| < e.

“<" Assume {s,...,8,5} NS = (). Hence s € S and therefore, s, € L<¢. From equiva-
lence (7) we obtain « € L. This shows equivalence (8).

For 1 <[ < k — 1itholds that |s;| < 4/|s;_1|. Therefore, k < |z| and so the strings s and s;
can be constructed in polynomial time in |x|. Let g € FP be the function that on input = computes
the set {s1, ... , sk, s}. So for all z,

rel & gx)ynsS=0. )
Observe that for all =,

lg(x)|| < [loglog |z|] + 1.

12



By assumption, L — .S is many-one hard for NP. So there exists a reduction function h € FP
such that SAT<? L — S via h. By equation (9), for all z,

r€SAT & h(z)eLAW(x)¢ S
& (g9(h(z)) U{h(x)}) NS =0.
With 1/ (x) £ g(h(x)) U {h(z)} it holds that for all x,
x €SAT & hW(x)NS =. (10)
Clearly, h’ belongs to F'P and for all x,
17 (z)|| < |loglog |h(z)|] + 2 < [loglog|x|] + ¢ (1D)

for a suitable constant c. By equations (2), (10), and (11), we satisfy the assumptions of Lemma 3.7
(take A/, S, and oo = 1/2). It follows that L. € P. This contradicts our assumption.

Case 2: Assume there exist infinitely many = € L such that | f;(z)| > +/]z|. We show that in
this case L does not many-one reduce to L. — .S via f;. This will give us the necessary contradiction.

Recall that L = L(N;). Let 7 £(i, j). Since every non-empty L, contains a unique requirement,
we can choose a number m’ > 7 such that for all £ > m/,

LN {0, 7 =1} =0. (12)

Note that for infinitely many strings « € L, |f;(x)| > +/|z|. Therefore, we can choose some string
Z € L such that

VIE] > t(m) (13)

and

1£;(2)] > V7. (14)

Let w f;(z) and n 2 |w|. Let m be such that t(m) < n < t(m + 1). By the choice of z,
|Z] < t(m + 2). We will show that if 7 isnotin Ly U -+ U Ly, _1, then Ly, = {7}.

Consider the algorithm on input w. By the choice of m, t(m) < |w| = n < t(m + 1).
Therefore, by the choice of m in step 2 of the algorithm, m = m. Consider step 6 when £ = m
and r = 7. We note that as a consequence of ( 12), for any & > m > m/, LN {0,--- , 7 —1} = 0.
Therefore, the loop (step 5 — step 17) cannot exit with some < 7. On the other hand, for r, the
condition in step 6 must be true, since we assumed that 7 ¢ L; U - - - U Ly, ;. Therefore, we reach
step 7. By the choice of m, |Z| < ¢(m + 2). Therefore, either we reach step 9 such that z = z, or 7
is put in L;;, with some other z and S;, = {f;(2)}. If z = Z, then after step 9, y = f;(Z) = w and
therefore, |y| = n. Therefore, it must hold in step 10 that t(m) < |y| < t(m+ 1). Moreover, N;(z)
accepts since z € L. Therefore, we reach the steps 11 and 12 where we obtain that L;, = {7}. As
a consequence,

’F¢L1U"'ULm_1:>f€Lm.

It follows that 7 € Ly U Lo U -+ - U Ly,. Let k, 1 < k < m be such that L, = {7}. Let Sy, = {y}.
By steps 9 and 10, there exists a z € L such that y = f;(z). From y € S'it follows thaty ¢ L — S.
Therefore, L does not many-one reduce to L — S via reduction function f;. This contradicts our
assumption. O
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Corollary 3.9 For every L € NP — P there exists a sparse S € EXP such that L — S is not
<P -hard for NP.

Proof Choose i such that L = L(N;). We recycle the proof of theorem 3.8. Here we only have
to do the diagonalization against the machine /N;. So we interpret r as the requirement that L. does
not many-one reduce to I, — S via reduction function f,. We modify the algorithm in the proof of
Theorem 3.8 by replacing step 7 with “j :=r”.

Analogously to the proof of Theorem 3.8 we observe that S is sparse. Because we modified
the algorithm, now S belongs to EXP. This is seen as follows: Again in step 10,

|z| < t(m +2) =t(m)* < n.

But now i is a constant. So a single path of the nondeterministic computation N;(z) now has length
< n* +i. Hence the simulation of the complete computation takes the following number of steps:

2n4i+i . (n4i + Z) S 2n0(1)
Note that
j=r<m< |loglogn].

So step 9 takes
n4j +] S 20(10g2 TL) S 20(71)

steps. Therefore, the loop at steps 8—15 takes at most

Oo(1) o(1)

gn' . gn?t _ on

steps. The loops 5-17 and 3—18 multiply this number of steps at most by factor
m? < |loglogn|?.

Therefore, the overall running-time remains 27°“ This shows S e EXP.
Analogously to the proof of Theorem 3.8 we argue that L — S is not <? -hard for NP. Here we
have to define 7 £ j in Case 2. O

Given a sparse set S such that SAT — S is not <? -hard for NP, for every <? -complete set
L € NP, it is easy to describe a sparse set S’ such that L — S’ is not <P -hard for NP: Let f € PF
be the one-one function that reduces L to SAT. Then " = {xz | f(z) € S} is sparse and L — 5’
reduces to SAT — S via f. Therefore, L — S’ cannot be <? -hard for NP.

4 Immunity and Closeness

Agrawal [Agr02] demonstrated that pseudorandom generators can be used to prove structural the-
orems on complete degrees of NP. Here we build on his results to answer the longstanding open
question of whether NP-complete sets can be immune. Also, we show that no NP-complete set is
quasipolynomial-close to P.

14



It is well-known that no EXP-complete set is p-immune. To see this, consider L € EXP that is
<P -complete. Then 0*<? L via some length-increasing reduction f. Since f is length-increasing,
{f(0™) | n > 0} is an infinite subset of L. However, while for any EXP-complete set L and any
A € EXP, there is a length-increasing reduction from A to L, this is not known to hold for NP.

We begin with the following definitions. In particular it is important to distinguish pseudoran-
dom generators, as defined by Nisan and Wigderson [NW94], for derandomization purposes, from
cryptographic pseudorandom generators [ Yao82, BM84].

Definition 4.1 A function G = {G,}n, G, : ™" + =™ js an s(n)-secure cryptographic
pseudo-random generator (crypto-prg in short) if G is computable in polynomial time in the input
length, m(n) > n, for every §(-) such that 6(n) < 1, for every t(-) such that t(n) < 6(n) - s(n),
and for every circuit C of size t(n), for all sufficiently large n,
| Pr [C(z)=1] = Pr [C(Gn(y)) = 1] |<d(n).
xeg—m(n) yez n

Definition 4.2 A function G = {G,},, G, : ¥=' — ¥™" is a pseudorandom generator (prg in
short) if | = O(logn), G is computable in time polynomial in n, and for any polynomial-size
(polynomial in n) circuit C,

| Pr [C(x)=1] = Pr [C(Gu(y)) =1]|<

zeT=n yer—L

S|

Definition 4.3 A function f = {f,}n, fu : =" = 37" s s(n)-secure if for every &(-) such
that 6(n) < 1, for every t(-) such that t(n) < §(n) - s(n), and for every non-uniform circuit family
{Cy}n of size t(n), for all sufficiently large n,

Pr [Col(a) = ful2)] < —— + 6(n).

TeEX="N Qm(n)

Hypothesis A. Pseudorandom generators exist.

Hypothesis B. There is a secure one-way permutation. Technically, there is a permutation 7 € PF
and 0 < € < 1 such that 7~ ! is 2" -secure.

Hypothesis B implies the existence of cryptographic pseudorandom generators [Yao82].
Agrawal [AgrO2] showed that if Hypothesis B holds, then every <? -complete set for NP is hard
also for one-one, length-increasing, non-uniform reductions. The following theorem is implicit in
the proof of his result:

Theorem 4.4 If Hypotheses A and B hold, then every set A that is <P -hard for NP is hard for NP
under length-increasing reductions.

By Theorem 4.4, Hypotheses A and B imply that for every NP-complete set A, there is a
length-increasing reduction f from 0* to A. This immediately implies that the set

{f(0")|n >0}

is an infinite subset of A that belongs to P, i.e., A cannot be p-immune.
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Theorem 4.5 If Hypotheses A and B hold, then no <P -complete set for NP can be p-immune.

We consider immunity with respect to classes that are larger than P. Similar questions have
been studied for EXP. For example, Homer and Wang [HW94] showed that EXP-complete sets
have dense UP subsets.

Theorem 4.6 Let C C NP be a complexity class closed under <P -reductions such that for some
€ > 0, there is a tally set T € C that is not in DTIME(2™). Then no <P,-complete set for NP is
C-immune.

Corollary 4.7 If there is a tally set in UP that is not in DTIME(2"), then no <P -complete set
for NP is UP-immune.

Proof [of Theorem 4.6] Let T be a tally set in C that does not belong to DTIME(2™). We will
show that no NP-complete set is C-immune.

Let L be an NP-complete set and let & > 0 such that L € DTIME(2""). Let f be a <? -
reduction from 7" to L. We claim that the set

X = {f(0") 0" € T and |£(0")| > n/"}

is infinite. Assume otherwise: Then, for all but finitely many n, 0" € T = |f(0")] < n/*.
Consider the following algorithm that accepts a finite variation of 7': On input 07, if | f(0")| < n</*,
then accept 0" if and only if f(0™) € L. Otherwise, reject 0". This algorithm takes time at most
O < 9" — 9n This contradicts the assumption that 7' ¢ DTIME(2"). Therefore, X
is infinite. Also, X C f(7T') C L. Now we will show that X <? T'. Since T" belongs to C and C is
closed under <P -reductions, that will demonstrate that L is not C-immune.

To see that X <P T', we apply the following reduction: On input y, |y| = m, determine whether
f(0%) = y for some i < m"/<. If there is such an 4, then output the first such 0°. Otherwise,y ¢ X.
In this case, output some fixed string not in 7". We need to show that y € X if and only if the
output of this reduction belongs to 7'. If y € X, then there exists ¢ such that 7 < mk/e 0f € T, and
f(0") = y. Let 0 be the output of the reduction. In this case,y = f(0°) = f(0"). Now recall that
f is a reduction from T to L. For this reason, 0’ € T if and only if 0% € T'. The converse case,
that y ¢ X, is straightforward. O

Agrawal [Agr02] defined a function g € PF to be v-sparsely many-one on S C {0, 1}" if
Ve e S, [lg (g(x) N{0,1}"]| < —.

Here g7 '(2) = {x ‘ g(x) = z}. The function g is sparsely many-one on S C {0, 1}™ if it is
~v-sparsely many-one on S C {0, 1}" for some vy > 0.

Given a 2" -secure one-way permutation, Goldreich and Levin [GL89] construct a 2""-secure
crypto-prg, 0 < a < e. This crypto-prg G is defined only on strings of even length, ie., G is
a partial function. However, Agrawal [Agr02] notes that G can be extended to be total, and the
security remains the same. This crypto-prg has a nice property, namely it is a one-one function.

Let S be any set in NP and L be any NP-complete language. Let S’ = G(SS). Since 5’ is in

. ) d ) ) )
NP, there is a many-one reduction f from S’ to L. Let h Ll ro G. Since (G is one-one, h is a

many-one reduction from S to L.
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Lemma 4.8 ([Agr02]) For everyn, h = f oG isaa/2-sparsely many-one on S N X=", where «
is the security parameter of G.

Lemma 4.9 Let f be a y-sparsely many-one function on S = 0* x ¥* N {0, 1}" for every n, and
let | = n*/7. Then, for sufficiently large n,

_ 3
{w € 0" x SZ [ f(w)] > n}] = 72"

Proof Let S, = 0" x X='. Every string in S,, has length m = n + [. For every w € S,,, there are
at most = strings of length m that can map to f(w). Therefore, || f(S,)| > 2'/(Z~). Taking

2
[ = n~, we obtain that at least % of the strings in S,, have image of length > n. O

Theorem 4.10 If Hypothesis B holds, then for every e > 0, no <P -complete set for NP can be
DTIME(2™)-immune.

Proof The hypothesis implies the existence of a 2" -secure one-way permutation. Let G be the
2""_secure crypto-prg, 0 < a < ¢, constructed from this secure one-way function. Let S = 0* x X%,
and S’ = G(S). Since L is NP-complete S'<? L via f. Thus S<? Lviah = foG. By Lemma4.8,
h is a/2-sparsely many-one on SNX=" for every n. For any n, take [ = n*/*. Then, by Lemma 4.9,
we know that for large enough n, at least % of the strings in 0" x ¥=! map via h to a string of length
> n.

Let k = %. Assume G maps strings of length n to strings of length n", » > 0. It is well
known that from GG we can construct a crypto-prg G’ that expands 7 bits to n* bits [GolO1, page
115]. Thus for any string w of length n¢, G’(w) is of length | = n*/®. Consider the following
circuit that on input (0", y),|y| = [ accepts if and only if |(0",y)| > n. This circuit accepts
at least 2 of the inputs (0", y), |y| = (, if the input is chosen according to uniform distribution.
Therefore, there must be some w, |w| = n¢, such that this circuit accepts G'(w). Therefore, for
this w, [h(0", G'(w))| > n. Now, the following DTIME(2"™)-algorithm outputs infinitely many
strings of L:

Input 0"
Let m = n®
for weX™
If |h(0™, G'(w))| > n, then output h(G'(w))

4.1 Closeness

In general, Yesha [Yes83] considered two sets A and B to be close if the census of their symmetric
difference, AAB, is a slowly increasing function. For example, A and B are p-close if there is a
polynomial p such that for every n, || AAB)="|| < p(n). Ogiwara [Ogi91] and Fu [Fu93] observed
that if A is NP-complete, then A is not p-close to any set B € P, unless P = NP. Define A and B to
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be quasipolynomial-close if there exists a constant k such that for every n, ||(AAB)="|| < 2'&"n,
We show that if Hypothesis B holds, then no NP-complete set is quasipolynomial-close to a set in P.
Also, we show that if Hypothesis A holds, then no paddable NP-complete sets is quasipolynomial-
close to a set in P.

We recall the following definitions, and recall that all known NP-complete sets are paddable
[BH77]:

Definition 4.11 A ser A is paddable if there exists p(-,-), a polynomial-time computable,
polynomial-time invertible (i.e., there is a g € PF such that for all x and y, g(p(x,y)) = (z,y))
function, such that for all a and x,

a€ A& pla,x) € A

Recall that a set A is p-isomorphic to B if there exists f, a polynomial-time computable,
polynomial-time invertible permutation on ¥*, such that A<? B via f. Mahaney and Young
[MYS85] proved that two paddable sets are many-one equivalent if and only if they are p-
isomorphic.

Theorem 4.12 If Hypothesis A holds, then no paddable set L ¢ P can be quasipolynomial-close
to any set in P.

Proof Let us assume that L is a paddable set and there is a set B € P such that L is
quasipolynomial-close to B. We will obtain a polynomial-time algorithm for L, thereby obtaining
a contradiction. Let p(-,-) be a padding function for L. Given a string x, || = n, consider the
following set.

Py = {p(z,y) ||z = |y[}.

We can assume that all strings in P, have the same length m. Let k be a constant such that
[(LAB)=™|| < 2'°&"_(This is possible since m is a polynomial in n.) Note that || P,|| = 2.

If x € L, then P, C L. Therefore, at least 2™ — 9log" n strings from P, belong to B. On the
other hand, if x ¢ L, then P, N L = ¢, and so at least 2" — olog™ n strings from P, are not in B.
Therefore,

2log;’lC n

L P B >1-
T e :> yGEI"L[p<x’ y) 6 ] —_— 2n

210gk n

271

)

v¢L = Prlpay)eBl<
yexn

Hypothesis A asserts that there is a pseudorandom generator G = {G,, } such that GG,, expands
log n bits to n bits. Consider the following circuit C,: on input y, |y| = n, C, outputs 1 if and only
if p(z,y) € B. Therefore, we have

2logkn
L Pr[Cu(y) =11 >1— ,
rel = PriCiy) =1z1-—
2logkn
L Pr [C.(y) =1] <
r¢ L = yezrn[C ) =1 =<—;
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Since G, is a pseudorandom generator, we have

L = Pr [C.(G = — 2o - —1
€ 2(Gn Ij>1 )
v yezllc:gn[ ( (y)) ] 2m n

o 2logkn 1

L = P (G, =1 < + —.

v ¢ yezllc:gn[ (Gnly)) ] 2" n

This gives the following polynomial-time algorithm for L. Given x of length n, try all possible
strings of length log n as the input to G,,. Let the outputs be y1, vz, - -+ , yn, and let z; = p(x,y;),

1 <4 < n. Ifless than 25" + L fraction of 2;-s belong to B, then reject , otherwise accept .
Since both the padding function p and the generator (,, can be computed in polynomial time in n,

this is a polynomial-time algorithm for L. O

Corollary 4.13 If Hypothesis A holds, then no set p-isomorphic to SAT can be quasipolynomial-
close to any set in P, unless P = NP.

Next we are interested primarily in the following Theorems 4.14 and 4.16, and their immediate
consequence, Corollary 4.17. Theorem 4.14 follows directly from the statement of Hypothesis B.

Theorem 4.14 Hypothesis B implies that NP Z | J, ., DTIME(2'°s" ).

Proof Hypothesis B asserts the existence of a 2" -secure one-way permutation 7, for some 0 <
€ < 1. No 2" -size circuit can compute the inverse of 7. So the set

B = {{y,i)| ithbitof 7' (y) = 0}

belongs to NP and cannot have a quasipolynomial-size family of circuits. However, if B €
DTIME(2°¢" "), for some k > 0, then B has a family of circuits of size (218" )2 < 2log™n
which is a contradiction. O

We require the following proposition, which follows from Homer and Longpré’s study of
Ogihara—Watanabe pruning [HL94].

Proposition 4.15 [f there exists a set S that has a quasipolynomially-bounded census function and
that is <},,-hard for NP, then NP C |, DTIME(Qlng "),

Theorem 4.16 IfNP < | J,.., DTIME(QIng "), then no NP-complete set is quasipolynomial-close
toasetinP.

Proof Assume there exists an NP-complete A that is quasipolynomial-close to some B € P. Let
S< AAB. So S has a quasipolynomially-bounded census function. A<% .S and therefore, S is

<! _y-hard for NP. By Proposition 4.15, NP C J, ., DTIME(2'" 7). O

As an immediate consequence, we have the following corollary, which has a stronger conse-
quence than Corollary 4.13.
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Corollary 4.17 If Hypothesis B holds, then no NP-complete set is quasipolynomial-close to any
setin P.

It is interesting to note that Corollary 4.17 has a short proof that does not depend on Theorems

4.14 and 4.16. We present that now:
Proof We begin as the proof of Theorem 4.14 begins: Hypothesis B asserts the existence of a
2"°_secure one-way permutation 7. No 2™ -size circuit can compute the inverse of . So the set
B = {{y,1) ’ ith bit of 7~!(y) = 0} belongs to NP and cannot have quasipolynomial-size family
of circuits.

Let us assume that L is an NP-complete set such that there is some set S € P and some k£ > 0
such that for every n, ||LAS|| < 2'°5°" This implies that L € P/(2'¢""), where the advice for
any length n is the set of strings in LAS. On an input z, accept z if and only if x € S and x is not
in the advice set, or x ¢ S and x belongs to the advice set.

Therefore, L has a family of quasipolynomial-size circuits. Since L is NP-complete, it follows
that every set in NP has quasipolynomial-size family of circuits. By the above discussion, this
contradicts Hypothesis B. O

5 Disjoint Pairs

Recall that if NP N coNP # P, then there exist disjoint sets A and B in NP such that A €. AU B.
Our first result derives the same consequence under the assumption that UEE # EE.

Theorem 5.1 IfUEE +# EE, then there exist two disjoint sets A and B in UP such that A £, AUB.

Proof Beigel, Bellare, Feigenbaum, and Goldwasser [BBFG91] showed that if NEE # EE, then
there exists a languages in NP — P for which search does not reduce to decision. Their proof also
shows that if UEE # EE, then there exists a language S in UP — P for which search does not
reduce to decision. Let M be an unambiguous Turing machine that accepts S, and for every word
x € S, let a, be the unique accepting computation of M on x. Let p be a polynomial such that for
allz € S, |a,| = p(|z|). Define

A={(z,y) |z €S |yl =p(lz]), and y < a,}
and

B={(z,y) |z €Syl =p(lz|), and y > a,}.
Both A and B belong to UP and are disjoint. Let

AUB =5 ={{x,y) }x € Sand |y| = p(|z])}.

Note that S’ is many-one reducible to S. Now assume A<%.S’. Since S’ is many-one reducible to
S, it follows that A<’.S. However, we can compute the witness a, for x € S by using a binary
search algorithm with oracle A. Therefore, replacing A with S, we see that search reduces to
decision for S, contradicting our choice of S. o
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Let Hypothesis C be the following assertion:

Hypothesis C. There is a UP-machine M that accepts 0* such that for some 0 < ¢ < 1, no 2™
time-bounded machine can correctly compute infinitely many accepting computations of M.

The following theorem indicates that Hypothesis C is reasonable:

Theorem 5.2 If there is a DTIME (2™ )-bi-immune language in UP N coUP, then Hypothesis C is
true.

Proof Let L € UP N coUP be the DTIME (2™ )-bi-immune set, and let N and N’ be the UP
machines for L and L. Consider the following machine M that accepts 0*: On input 0", M
guesses an accepting computation of N and of N’ on 0™, and accept 0" if either guess is right.
Note that for every 0", exactly one of the guesses will be correct, and therefore, L(M) = 0*.
If there is a 2"° time-bounded machine 7" that can correctly compute infinitely many accepting
computation of M, then either X = {(° ‘ T(0%) outputs an accepting computation of N} or X’ =
{0¢ ‘ T(0%) outputs an accepting computation of N’} is an infinite subset of L or L, contradicting
the bi-immunity of L. O

Theorem 5.3 If Hypothesis C is true, then there exist two disjoint Turing complete sets for NP
whose union is not Turing complete.

Proof Let a,, be the accepting computation of M on 0™. Let p(n) be the polynomial that bounds
|a,,|. Note that a deterministic machine can verify in polynomial time whether a string of length
p(n) is an accepting path of M. Consider the following sets:

A={{z,an+1)]||z]| =nz € SAT,m = (2n)V} @ { (0" i) | i < p(n), bitiof a, =1},
and
B={{z,am — 1) ||z]| =n,z € SAT,m = (2n)"} @ {(O" i) | i < p(n), biti of a, = 0}.

It is easy to see that both A and B are Turing-complete for NP. They can be made disjoint by
choosing an appropriate pairing function. Note that

AUB:{(x,a)Ha:] =n,x € SAT,a = a,, — 1 or ay, + 1,m = (2n)Y} @ {(0" }z<p n)}.

Assume that A U B is Turing complete for NP. Since the set {(0" | i < p(n)}isin P, the
following set is Turing complete:

C={{z,a)||z] =n,2€ SAT,a = ay, —Lora, +1,m= (2n)'/<}
Consider the set
S = {(0",4) | bitiof a, = 1}.

Since S € NP, S<?.C via some oracle Turing machine U.
We describe the following procedure A4:
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1. input 0".
2. Simulate U on strings (0", 4), where 1 < i < p(n).

3. Let ¢ = (x,y) be a query that is generated. If y # a;, + 1 or y # a; — 1 for some ¢, then
continue the simulation with answer “No”.

4. Else,q = (x,y), |z| =t/2andy =a; + lory = a; — 1.
5. If t > n°, then output “Unsuccessful”, print a; and Halt.

2
6. Otherwise, check whether € SAT; this takes at most 2/*/ < 27 /2 time. Answer the query
appropriately, and continue the simulation of U'.

Now we consider two cases.

Claim 5.4 If A(0") does not output unsuccessful for infinitely many n, then there is a 2™ -time
bounded machine that correctly outputs infinitely many accepting computations of M .

Proof Assume .A(0") does not output unsuccessful. This implies that A is able to decide mem-
bership of (0",i), 1 < ¢ < p(n), in S. Therefore, A can compute a,,. The most expensive step
of the above procedure is Step 6, where A decides the membership of x in SAT. However, this
occurs only if |z| < ne /2, and hence takes at most 27/2 time. Thus the total time is bounded
by O(p(n) x q(n) x 2”62/2), where ¢(n) is the running time of U on (0",4). Since € < 1, this is
bounded by 2"°. 0

Claim 5.5 If A(0") outputs “Unsuccessful” for all but finitely many n, then there is a 2™ -time
bounded machine that outputs infinitely many accepting computations of M .

Proof If A(0") is unsuccessful, then it outputs a string a; such that ¢ > n°. Hence, if A(0") is
unsuccessful for all but finitely many strings, then for infinitely many ¢ there exist an n, where
n < t¥/¢, and A(0™) outputs a,. Thus the following procedure computes infinitely many accepting
computations of M:

input 0
for i = 1tot'/cdo
if A(07) outputs a;
output a, and halt.
endif
end for

Note that A(0%) runs in time O(p(i) x q(i) x 9i"/ 2). Thus the total running time of the above
procedure is O(2%). 0

Claims 5.4 and 5.5 show that if C is Turing complete for NP, then there is a 2 -time bounded
Turing machine that computes infinitely many accepting computations of M. This contradicts
Hypothesis C, and therefore, A U B cannot be Turing complete for NP. O
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5.1 Many-One Complete Languages

Here we consider the analogous questions for many-one reductions. We first show under two
different hypotheses that there exist disjoint sets A and B in NP such that A £? A U B. Also
we study the question for NP-complete sets. One of our results will show a relation between
our question and propositional proof systems. We refer the reader to GlaBer et al. [GSS03] for
definitions about proof systems and reductions between disjoint NP-pairs.

Theorem 5.6 If P ## NP N coNP, then there exist disjoint A, B € NP such that
1. A and B are many-one equivalent, and
2. AZLP AU B.
Proof Letb € {0,1},and let L € NP N coNP — P. Define
A= {bw ‘ b= xr(w)},

and
B = {bwb# xu(w)}h
Both A and B belong to NP N coNP — P. Note that A U B = {0, 1} o X*. However, note that

A<P B via f(bw) = bw, and the same reduction reduces B to A. Also note that w — 1w reduces
L to A, and hence A cannot be in P. Therefore, A €2 AU B. O

Theorem 5.7 If UE # E, then there exist disjoint sets A and B in NP such that A 2. AU B.

Proof Hemaspaandra ef al. [HNOS96] showed that if NE # E, then there exists a language .S in
NP for which search does not reduce to decision nonadaptively. Essentially the same proof shows
that if UE # E, then there exists a language S in UP for which search does not reduce to decision
nonadaptively. Since S € UP, for each = € S, there is a unique witness v,, where |v,| = p(|z|),
for some polynomial p. Define

A= {(x,1q) | xz € S,i < p(|x|), and the ith bit of the witness v, of x is 0},
and
B = {{z,i) |z € S,i < p(|z|), and the ith bit of the witness v, of z is 1}.
It is clear that both A and B are in NP and are disjoint. Then,
AUB =5 = {{z,i) |z € S,i < p(|z|)}.

Observe that S'<P S. Assume A<? S’; then A<P S. Therefore, we can compute the ith bit of the
witness of = by making one query to S. This implies that search nonadaptively reduces to decision
for S, which is a contradiction. O

Two disjoint sets A and B are P-separable if there is a set S € P such that A C S C B.
Otherwise, they are P-inseparable. Let us say that (A, B) is a disjoint NP-pair if A and B are
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disjoint sets that belong to NP. If (A, B) is a disjoint NP-pair such that A and B are P-separable,
then A<? A U B follows easily: On input x, the reduction outputs z, if x € S, and outputs some
fixed string w ¢ AU B, if x ¢ S. This observation might lead one to conjecture that A U B is
not <P -complete, if A and B are disjoint, P-inseparable, <? -complete NP sets. The following
theorem shows that this would be false, assuming P # UP.

Theorem 5.8 If P # UP, then there exist disjoint NP-complete sets A and B such that
1. (A, B) is P-inseparable and
2. AU B is many-one complete for NP.

Proof Under the assumption that P # UP, Grollmann and Selman [GS88] constructed a P-
inseparable disjoint NP-pair (A’, B") such that A" and B’ are NP complete. Let

AZL0A U1SAT

and

BX0B'.
Therefore, AN B = (). Also, SAT<? AU B via f(¢) = 1¢. Therefore, AU B is NP complete. If
(A, B) is P-separable, then so is (A’, B'). O

Also assuming that P # UP, there exist disjoint NP-complete sets C' and D such that C'U D is
many-one complete for NP and C' and D are P-separable, for which reason, (C, D) is not a <P?-
complete pair. To see this let C' = {x € SAT | |z|iseven } and let D = {x € SAT | |x| is odd }.
Similar arguments show that if NP N coNP # P, then there exist sets A and B with the same
properties as in Theorem 5.8, and sets C' and D with the same properties as in this comment.

We learn from the next theorem that if there exist disjoint NP-complete sets whose union is not
NP-complete, then this happens already for paddable NP-complete sets.

Theorem 5.9 The following are equivalent:

1. There exists an NP-complete set A and a set B € NP such that AN B = () and AU B is not
NP-complete.

2. There exist disjoint, NP-complete sets A and B such that A U B is not NP-complete.

3. There exist paddable, disjoint, NP-complete sets A and B such that A U B is not NP-
complete.

4. For every paddable NP-complete set A, there is a paddable NP-complete set B such that
ANB = () and AU B is not NP-complete. Furthermore, there is a polynomial-time-
computable permutation 7 on X* such that

(a) forall x, n(n(x)) = x, and
(b) A<P B and B<P A, both via .
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5. For every NP-complete set A, there is a set B € NP such that AN B = () and AU B is not
NP-complete.

By Theorem 5.9, if there exist disjoint, NP-complete sets whose union is not complete, then
there is a set B in NP that is disjoint from SAT such that SAT U B is not NP-complete. Moreover,
in that case, there exists such a set B so that B is p-isomorphic to SAT. It is even the case that SAT
and B are <? -reducible to one another via the same polynomial-time computable permutation.
Proof 1 = 2: Let A/ £0AU 1B and B'£1A U 0B. Since A is NP-complete, both sets A’ and
B’ are NP-complete. However, A’ U B’ = {0,1} - (AU B), and hence is not NP-complete.

2 = 3: Choose A and B according to item 2. Let A’ £ A x ¥* and B'£ B x ¥*. A’ and B’
are disjoint, paddable, and NP-complete. A’ U B’ = (AU B) x ¥*. Hence A’ U B'<? AU B and
therefore, A’ U B’ is not NP-complete.

3 = 4: Choose A and B according to item 3. We may assume that there exists a polynomial-
time computable permutation 7 on X* such that

e forall z, m(m(x)) = x,and
o A<P Band B<? A, both via .

Otherwise, we use 0A U 1B and 1A U 0B instead of A and B; and 7 is the permutation on ¥* that
flips the first bit.

Let A’ be any paddable NP-complete set. So A’ and A are paddable and many-one equiva-
lent. Therefore, A’ and A are p-isomorphic, i.e., there exists f, a polynomial-time computable,
polynomial-time invertible permutation on >*, such that A’<? A via f.

Let B'Z f~1(B). B'<P B via f and therefore, B’ and B are p-isomorphic. It follows that B’
is paddable and NP-complete. A’ N B’ = (), since AN B = (). Moreover, A’ U B'<? AU B via
f and hence, A’ U B’ is not NP-complete. Let 7/(x) £ f~!(7(f(x))). So 7’ is a polynomial-time
computable permutation on X>.*. For all z,

Moreover, for all x,
reA e flr)e A n(f(x)) e Ben'(x) e B

Therefore, A’<P B’ via 7', and analogously, B'<? A’ via «’.

4 = 1: Follows immediately, since SAT is paddable and NP-complete.

1 = 5: Choose A and B according to item 1, and let A’ be an arbitrary NP-complete set. Let
f € PF such that A’<? Avia f. B'£{z | f(z) € B}. Clearly, B' € NP and A’ N B’ = (), since
AN B = 0. Forall x,

re AUB & f(r)e AV f(z) e B& f(x) e AUB.

So A’U B’<P AU B via f and therefore, A" U B’ is not NP-complete.
5 = 1: Trivial.
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Next we state relations between our question and propositional proof systems [CR79]. The
recent paper of GlaBer, Selman, Sengupta, and Zhang [GSSZ03] contains definitions of the relevant
concepts: propositional proof systems (pps), optimal pps, for a pps f, the canonical disjoint NP-
pair (SAT", REFy) of f, and reductions between disjoint NP-pairs. If a propositional proof system
f is optimal, then Razborov [Raz94] has shown that the canonical disjoint NP-pair of f is <PP-
complete. Therefore, it is natural to ask, for any proof system f, whether the union SAT* U REF;
of the canonical pair is complete for NP. However, this always holds. It holds for trivial reasons,
because SAT reduces to SAT* U REF; by mapping every z to (z,€). Since x does not have a
proof of size 0, we never map to REF;. However, v € SAT < (z,¢) € SAT". Nevertheless,
it is interesting to inquire, as we do in the following theorem, whether some perturbation of the
canonical proof system might yield disjoint sets in NP whose union is not complete.

Theorem 5.10 Assume P # NP and there exist disjoint sets A and B in NP such that A is NP-
complete but A U B is not NP-complete. Then there exists a pps [ and a set X € P such that

1. SAT* N X is NP-complete and

2. (SAT* N X) U (REF; N X) is not NP-complete.

Proof If NP = coNP, then SAT has a polynomially bounded pps f. Let p be the bound and let
X L{(z,y) |y = 0°(|z|)}. Clearly, SAT* N X is NP-complete. Observe that

(SAT*NX)U (REF;NX) = X.

Since the latter set is in P and P # NP, it cannot be NP-complete. So in this case we are done.
From now on, let us assume that NP # coNP. By Theorem 5.9, there exists B’ € NP such
that B’ C SAT and SAT U B’ is not NP-complete. Let C' € P and p be a polynomial such that for
all z,
z e B e 3y e vz y) e

Choose a polynomial-time-computable, polynomial-time-invertible pairing function (-, -) such that
for all z and y, |(z,y)| = 2|zy|. Define the following pps:

x if 2 = (z,y), [yl = p(|z|), and (z,y) € C
)L & if > = (,02") and € SAT

false otherwise
Observe that f is a pps. Define
X E{(2,0™) |m = 2(Jz| + p(|z])}-

X € P. Let SAT' £ SAT* N X and REF' £ REF; N X. SAT' € NP and REF’ € NP. Moreover,
SAT' is NP-complete.
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It remains to show that SAT'UREF" is not NP-complete. Let o be a fixed element in SAT U B'.
(Such an element exists, because otherwise NP = coNP.) We show SAT' U REF'<? SAT U B’
via the following reduction function:

x if (x,y) e X
h(z,y) < )

«Q otherwise

Assume (z,y) € SAT'UREF'. Hence (7,%) € X and therefore, y = 02I=1+P(z)) and h(x, y) = .
If (x,) € SAT, then h(z,y) = x € SAT. If (z,y) € REF’, then there exists z € L=zl +»(lz))
such that f(z) = z. By the definition of f, there exists z € L2(=+7(2D) guch that z = (z,y),
ly| = p(|z|), and (z,y) € C. Hence h(z,y) =z € B'.

Now assume (z,y) ¢ SAT' UREF'. If (z,y) ¢ X, then h(z,y) = a ¢ SAT U B’ and we
are done. Otherwise, (x,y) € X. First, h(z,y) = = ¢ SAT, since (z,y) ¢ SAT'. Second, if
x € B’, then there exists y € y:2(z) such that (x,y) € C. Therefore, if x € B’, then there exists
z € RsUzl+pl2D) guch that f(z) = x. The latter is not possible, since (z,y) ¢ REF’. It follows
that h(z,y) =z ¢ B'.

This shows SAT' U REF'<? SAT U B’ via h. Hence, SAT’ U REF’ is not NP-complete. O

In Theorem 5.11 we show that if there are sets A and B belonging to NP such that AN B = ()
and A U B is not NP-complete, then (A, B) cannot be a <P? -complete disjoint NP-pair.

Theorem 5.11 If (A, B) is a <P -complete disjoint NP-pair, then A, B, and A U B are NP-
complete.

Proof Since the disjoint NP-pair (SAT, {z A z}) <P -reduces to (A, B), SAT<? A, ie., A is
NP-complete. Similarly, B is NP-complete as well. Assume that (SAT, {z A z}) <?? -reduces to
(A, B) via some reduction function f. Let

x ifex#2N%2

iy | 16 #
flynzAZz) ifr=2ANz

We obtain f'(SAT) C AU B and f'(SAT) C AU B. Hence AU B is NP-complete. O

According to the comments after Theorem 5.8, the converse of Theorem 5.11 does not hold
if either P # UP or P # NP N coNP. Since we know that there exists a <P -complete disjoint

NP-pair if and only if there is a <PP-complete disjoint NP-pair [GSS03], we obtain the following
corollary.

Corollary 5.12 [If <PP-complete disjoint NP-pairs exist, then there is a <'?-complete disjoint NP-
pair such that both components and their union are NP-complete.
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5.2 Relativizations
We have been considering the following questions:

1. Do there exist disjoint sets A and B in NP such that both A and B are <”.-complete, but
AU B is not <%.-complete?

2. Do there exist disjoint sets A and B in NP such that both A and B are NP-complete, but
AU B is not NP-complete?

We observe here that there exist oracles relative to which both of these questions have both
“yes” and “no” answers. This implies that resolving these questions would require nonrelativizable
techniques.

Proposition 5.13 [f the union of every two disjoint <%.-complete sets for NP is <'.-complete for
NP, then P # NP = NP # coNP.

Proof Let us assume that NP = coNP. Then SAT U SAT = ¥*, which is <”.-complete if and
only if P = NP. ]

Therefore, relative to an oracle for which P # NP = coNP holds [BGS75], the answer to
question (1) is “yes”. Also, it is obvious that relative to an oracle for which P = NP, the answer
to this question is “no” [BGS75].

Now we consider question (2).

Proposition 5.14 [f the union of every two disjoint NP-complete sets is NP-complete, then NP #
coNP.

Therefore, an oracle relative to which NP = coNP holds will answer “yes” to question (2).
We learned already that if A and B are disjoint, NP-complete, P-separable sets, then A U B is NP-
complete. Homer and Selman [HS92] construct an oracle relative to which all disjoint NP-pairs
are P-separable, yet P # NP. Therefore, relative to this oracle, the answer to question (2) is “no.”
Indeed, relative to this oracle, the answer to question (1) is “no” also.
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