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Abstract
We study several properties of sets that are complete for NP. We prove that if L is anNP-complete set and S 6⊇ L is a p-selective sparse set, then L − S is ≤p

m -hard for NP. Wedemonstrate existence of a sparse set S ∈ DTIME(22n) such that for every L ∈ NP − P,
L − S is not ≤p

m -hard for NP. Moreover, we prove for every L ∈ NP − P, that there exists asparse S ∈ EXP such that L− S is not ≤p
m -hard for NP. Hence, removing sparse informationin P from a complete set leaves the set complete, while removing sparse information in EXPfrom a complete set may destroy its completeness. Previously, these properties were knownonly for exponential time complexity classes.We use hypotheses about pseudorandom generators and secure one-way permutations toresolve longstanding open questions about whether NP-complete sets are immune. For exam-ple, assuming that pseudorandom generators and secure one-way permutations exist, it followseasily that NP-complete sets are not p-immune. Assuming only that secure one-way permu-tations exist, we prove that no NP-complete set is DTIME(2n

ε
)-immune. Also, using thesehypotheses we show that no NP-complete set is quasipolynomial-close to P.We introduce a strong but reasonable hypothesis and infer from it that disjoint Turing-complete sets for NP are not closed under union. Our hypothesis asserts existence of a UP-machine M that accepts 0∗ such that for some 0 < ε < 1, no 2n
ε time-bounded machine cancorrectly compute infinitely many accepting computations of M . We show that if UP∩ coUPcontains DTIME(2n

ε
)-bi-immune sets, then this hypothesis is true.

1 Introduction
This paper continues the long tradition of investigating the structure of complete sets under variouskinds of reductions. Concerning the most interesting complexity class, NP, almost every questionhas remained open. While researchers have always been interested primarily in the structure of
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complete sets for NP, for the most part, success, where there has been success, has come fromstudying the exponential time classes. In this paper we focus entirely on the complexity class NP.The first topic we study concerns the question of how robust are complete sets. Schöning[Sch86] raised the following question: If a small amount of information is removed from a com-plete set, does the set remain hard? Tang et al. [TFL93] proved existence of a sparse set S suchthat for every ≤p
m-complete set L for EXP, L − S is not hard. Their proof depends on the factthat for any exponential time computable set B and any exponential time complete set A, thereexists a length-increasing, one-one reduction from B to A [BH77]. We don’t know that about NP.Buhrman et al. [BHT98] proved that L−S still remains hard for EXP, if S is any p-selective sparseset.Here, we prove these results unconditionally for sets that are NP-complete. We prove that if Lis an NP-complete set and S 6⊇ L is a p-selective sparse set, then L − S is ≤p

m-hard for NP. Weuse the left-set technique of Ogihara and Watanabe [OW91] to prove this result, and we use thistechnique elsewhere in the paper also. We demonstrate existence of a sparse set S ∈ DTIME(22n)such that for every L ∈ NP − P, L − S is not ≤p
m-hard for NP. Moreover, we prove for every

L ∈ NP − P, that there exists a sparse S ∈ EXP such that L − S is not ≤p
m-hard for NP. Hence,removing sparse information in P from a complete set leaves the set complete, while removingsparse information in EXP from a complete set may destroy its completeness.In the fourth section of this paper we build on results of Agrawal [Agr02], who demonstratedthat pseudorandom generators can be used to prove structural theorems on complete degrees.We use hypotheses about pseudorandom generators to answer the longstanding open question ofwhether NP-complete sets can be immune. Assuming the existence of pseudorandom generatorsand secure one-way permutations, we prove easily that no NP-complete set is p-immune. (Thistoo is a well-known property of the EXP-complete sets.) Assuming only that secure one-way per-mutations exist, we prove that no NP-complete set is DTIME(2n

ε
)-immune. Also, we use thishypothesis to show that no NP-complete set is quasipolynomial-close to P. It is already known[Ogi91, Fu93] that no NP-complete set is p-close to a set in P unless P = NP.The fifth section studies the question of whether the union of disjoint Turing-complete setsfor NP is Turing-complete. Here is the background. If A and B are two disjoint computablyenumerable (c.e.) sets, then A ≤T A ∪ B, B ≤T A ∪ B, and it follows that if either A or B isTuring-complete for the c.e. sets, then so is A ∪ B [Sho76]. The proofs are straightforward: Todemonstrate that A ≤T A∪B, on input x, ask whether x ∈ A∪B. If not, then x 6∈ A. Otherwise,simultaneously enumerate A and B until x is output. The proof suggests that these propertiesmay not hold for ≤p

T -complete sets for NP. In particular Selman [Sel88] raised the question ofwhether the union of two disjoint ≤p
T -complete sets for NP is ≤p

T -complete. It is unlikely that
A≤p

TA ∪ B, for every two disjoint sets A and B in NP, for if this holds then NP ∩ coNP = P:Take A ∈ NP ∩ coNP; then A ∈ NP ∩ coNP as well, and A≤p
T (A ∪ A)⇒ A ∈ P.First, we will prove that if UEE 6= EE, then there exist two disjoint languages A and B in

NP such that A 6≤p
TA ∪ B. Second, we introduce the following reasonable but strong hypothesis:There is a UP-machine M that accepts 0∗ such that for some 0 < ε < 1, no 2n

ε time-boundedmachine can correctly compute infinitely many accepting computations of M . This hypothesis issimilar to hypotheses used in several earlier papers [FFNR96, HRW97, FPS01, PS01]. We prove,assuming this hypothesis, that there exist disjoint Turing-complete sets for NP whose union is notTuring-complete. Also, we show that if UP ∩ coUP contains DTIME(2n
ε
)-bi-immune sets, then
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this hypothesis is true. Finally, we make several observations about the question of whether theunion of two disjoint NP-complete sets is NP-complete. It would be difficult to obtain resultsabout these questions without introducing hypotheses about complexity classes, because there areoracles relative to which the answers to these questions are both positive and negative. Proofs thatwould settle these questions would not relativize to all oracles.
2 Preliminaries
We use standard notation and assume familiarity with standard resource-bounded reducibilities.Given a complexity class C and a reducibility ≤r, a set A is ≤r-hard for C if for every set L ∈ C,
L ≤r A. The set A is ≤r-complete if, in addition, A ∈ C. We use the phrase “NP-complete” tomean ≤p

m-complete for NP.A set S is sparse if there exists a polynomial p such that for all positive integers n, ‖S∩Σn‖ ≤
p(n). We use polynomial-time invertible pairing functions 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗.A set S is p-selective [Sel79] if there is a polynomial-time-computable function f : Σ∗×Σ∗ →
Σ∗ such that for all words x and y, (i) f(x, y) = x or f(x, y) = y and (ii) x ∈ A or y ∈ A implies
f(x, y) ∈ A.A set L is immune to a complexity class C, or C-immune, if L is infinite and no infinite subsetof L belongs to C. A set L is bi-immune to a complexity class C, or C-bi-immune, if both L and Lare C-immune.
3 Robustness
In this section we consider the following question: If L is NP-complete and S is a sparse setthen does L − S remain complete? This question was studied for exponential time complexityclasses by Tang et al. [TFL93] and by Buhrman et al. [BHT98]. The basic result [TFL93] isthat there exists a subexponential-time computable sparse set S such that for every ≤p

m-completeset L for EXP, L − S is not EXP-complete. On the other hand, for any p-selective sparse set S,
L− S still remains hard [BHT98]. Researchers have always been interested primarily in learningsuch structural properties about the complexity class NP. However, it is sometimes possible touse properties of exponential time classes to succeed there where results about nondeterministicpolynomial time has been elusive. For example, the theorems of Tang et al. depend on the fact thatfor any exponential time computable set B and any exponential time complete set A, there existsa length-increasing, one-one reduction from B to A. We don’t know that about NP. Nevertheless,here we prove the analogues of these results for NP. Observe that our first result, Theorem 3.1,holds unconditionally.
Theorem 3.1 Let L be an NP-complete set and let S be a p-selective sparse set such that L 6⊆ S.Then L− S is ≤p

m-hard for NP.
Proof Note that L − S 6= ∅. If L − S is finite, then L is sparse as well. Since L is ≤p

m-completefor NP, NP = P [Mah82]. Therefore, L − S is also NP-complete. So we assume that L − S isinfinite in the rest of the proof.
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We use the left set technique of Ogiwara and Watanabe [OW91]. Assume that M is a nonde-terministic machine that accepts L. Let Tx be the computation tree of M on any string x. Withoutloss of generality, assume that Tx is a complete binary tree, and let d be the depth of Tx. Given twonodes u and v in Tx, we say that u < v if the path from the root to u lies to the left of the path fromthe root to v, and u ≤ v if either u < v or u lies on the path from the root to v. Let
Left(L) = {〈x, u〉

∣∣ ∃v, u ≤ v, u, v ∈ Tx, an accepting computation of M on x passes through v }.
Since L is NP-complete and Left(L) is in NP, Left(L)≤p

mL via some f ∈ PF. When it isunderstood that v ∈ Tx, then we will write v as a abbreviation for 〈x, v〉 and f(v) as an abbreviationfor f(〈x, v〉). Given x of length n, the length of every node of Tx is bounded by a polynomial in n.Since f is polynomial-time computable, the length of f(v), where v ∈ Tx, is bounded by p(n), forsome polynomial p(·). We call f(v) the label of v. Since S is sparse, there is a polynomial bound
q(n) on the number of strings in S of length at most p(n). Let g(·, ·) be the selector function for S.Consider the following total preorder [Tod91] on some Q ⊆ Σ≤p(n).

x ≤g y ⇔ ∃z1, z2, · · · , zm ∈ Q,
g(x, z1) = x, g(z1, z2) = z1, · · · ,
g(zm−1, zm) = zm−1, g(zm, y) = zm.

Observe that if x ≤g y and y ∈ S, then x ∈ S also. Given the selector g, the strings inQ can beordered by ≤g in time polynomial in the sum of the lengths of the strings in Q. Therefore, if ‖Q‖is polynomial in n, then the strings in Q can be ordered by ≤g in time polynomial in n as well.We first make a few simple observations.
Observation 1 If u < v, and w is a descendant of u, then w < v.
Observation 2 Let v be the left most node of Tx at some level. Then

x ∈ L⇔ v ∈ Left(L)⇔ f(v) ∈ L.

Observation 3 Let X = {x1, x2, · · · } ⊆ Σ≤p(n) be a set of more than q(n) distinct strings. Thenthere exists a procedure that runs in time polynomial in n and outputs xi /∈ S, i ≤ q(n) + 1.
Proof Order the first q(n) + 1 strings in X by ≤g, and output a highest string as xi. Since therecan be at most q(n) strings of length ≤ p(n) in S, xi cannot be in S. 2

We now define a reduction from L to L − S. On input x, |x| = n, the reduction traverses
Tx in stages. During Stage k, the reduction maintains a list listk of nodes in Tx at level k. Thereduction procedure has a variable called “special” which holds some node of Tx. At Stage 1,
list1 contains the root of Tx and the value of special is undefined. Now we define Stage k > 1.
Step 1 Let listk−1 = 〈v1, v2, · · · , vt〉.
Step 2 Let u′1 < u′2 < · · · < u′2t be the children of nodes in listk−1. This ordering is possiblesince all nodes in listk−1 are at depth k − 1 of the tree Tx, and therefore u′1, · · · , u′t are atlevel k. Put all these nodes in listk.
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Step 3: Pruning If there exist two nodes u′i and u′l, i < l, in listk such that f(u′i) = f(u′l), thenremove u′i, · · · , u′l−1 from listk. Now let u1 < · · · < um be the nodes in listk, whereevery ui has distinct labels. If m ≤ q(n), go to the next stage.
Step 4 It must be the case that m > q(n). Therefore, by Observation 3, there must be some

j ≤ q(n) + 1 such that f(uj) /∈ S. Set special = uj .
Step 5 If special is the leftmost node of Tx at level k , then output special and halt.
Step 6 Otherwise, place u1, · · · , uj−1 in listk and go to the next stage.

The following algorithm h defines the reduction from L to L− S:
for k = 1 to drun Stage kif any stage halts and outputs v, thenoutput f(v)else /* listd contains some leaf nodes of Tx */if any of the leaf nodes is an accepting computation of M on x, thenoutput a predetermined fixed string w ∈ L− Selse output f(special)endifendif
We prove that the above reduction is correct by the following series of claims:

Claim 3.2 For any k < d, if Stage k outputs a string v, then
x ∈ L⇔ f(v) ∈ L− S.

Proof If Stage k outputs v, then v is the leftmost node of Tx at level k and f(v) /∈ S. ByObservation 2, the claim follows. 2

From now assume that for no k, Stage k halts in Step 5. First we make some observations.
Observation 4 During Stage k ≥ 1, ‖listk‖ ≤ q(n).
Proof For any Stage k, assume that listk−1 has t ≤ q(n) nodes. The number of nodes in listkbefore pruning is at most 2t. After the pruning step, every v ∈ listk has a different label. Ifthere are ≤ q(n) nodes in listk, then the procedure goes to the next stage. Otherwise, the node
uj where j ≤ q(n) + 1 has a label outside S. Since we assume that Stage k does not halt in Step5, the procedure goes to Stage k with ‖listk‖ = j − 1 ≤ q(n). 2

Observation 5 Suppose special = v at the end of Stage k. Then for l ≥ k, ∀u ∈ listl, u < v.
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Proof At the end of Stage k, let v = special = uj . After Step 6, listk is a subset of
{u1, · · · , uj−1}. Thus ∀u ∈ listk, u < v. Note that in any subsequent Stage l > k, the nodes thatbelong to listl are the descendants of nodes in listk. By Observation 1, we obtain the proof. 2

Observation 6 No node that is pruned in Step 6 can be on the path containing the rightmostaccepting computation.
Proof If x /∈ L, no node in Tx is on the path containing any accepting computation. Therefore,let us assume that x ∈ L. If two nodes u′i and u′l at the same depth have the identical label w, then
f(u′i) ∈ Left(L) ⇔ f(u′l) ∈ Left(L). Therefore, if any u′k at the same depth is on the path of therightmost accepting computation, then either k < i or k ≥ l. Since only the nodes u′i, · · · , u′l−1 arepruned, u′k cannot be pruned. 2

Claim 3.3 Assume that x ∈ L and Stage k ≥ 1 does not halt in Step 5. If ∃v ∈ listk that is onthe path containing the rightmost accepting computation, then either ∃u ∈ listk+1 that is on thepath containing the rightmost accepting computation, or special ∈ Left(L).
Proof Since there is a node v in listk that is on the path containing the rightmost acceptingcomputation, let u′r be the node that is generated at Step 2 of Stage k + 1 that is on the pathcontaining the rightmost accepting computation. By Observation 6, u′r cannot get pruned in Step3, and therefore, it is in listk at Step 4. Let us denote this node by ur. If a node uj is assigned
special in Step 4, then either j ≤ r, in which case special ∈ Left(L). Otherwise, r < j, andtherefore, ur is in listk+1 after Step 6. 2

Claim 3.4 If for every k, Stage k does not halt in Step 5, then x ∈ L if and only if listd containsa leaf node that is an accepting computation or special ∈ Left(L).
Proof Note that if x is not in L, then no leaf node can be accepting, and no node of Tx can be in
Left(L). Therefore, the if direction is trivial. We show the only if direction. We prove the followingby induction on the number of stages: If x ∈ L, then after Stage k, either the rightmost acceptingcomputation passes through a node in listk or special ∈ Left(L).After Stage 1, list1 contains the root of the tree. Thus the claim is true after Stage 1. Assumethat the claim is true after Stage k − 1. Thus either the rightmost accepting computation passesthrough a node in listk−1 or special ∈ Left(L). We consider two cases.
Case 1: The rightmost accepting computation passes through a node in listk−1. By Claim 3.3,either there is a node in listk that is on the path of the rightmost accepting computation, orthe node that is assigned special during Stage k is in Left(L).
Case 2: special ∈ Left(L). Let s be the node that is currently assigned to special. It sufficesto show that if a node u is assigned to special at Stage k, then u will also be in Left(L). ByObservation 5, for every node v ∈ listk−1, v < s. Since u is a descendant of some node vin listk−1, u < s as well. Therefore, s ∈ Left(L)⇒ u ∈ Left(L).
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Therefore, after Stage k, k ≥ 1, the rightmost accepting computation of M either passesthrough a node in listk or special ∈ Left(L). When k = d, this implies that either the rightmostaccepting computation is a node in listd, or special ∈ Left(L). This completes the proof. 2

The correctness of the reduction now follows.
Claim 3.5 The reduction h(·) is correct, and it runs in polynomial time.
Proof If the the reduction halts at Step 5 during any stage, then by Claim 3.2 x ∈ L ⇔ h(x) ∈
L − S. Assume that no stage halts in Step 5. Assume x ∈ L. By Claim 3.4, either listdcontains an accepting leaf or special ∈ Left(L). If listd contains an accepting computation,then h(x) = w ∈ L − S. Otherwise, if special ∈ Left(L), then f(special) ∈ L. However,by the definition of special, f(special) /∈ S. Therefore, f(special) ∈ L − S. On the otherhand, if x /∈ L, then no node of Tx can be in Left(L), and so, in particular, special /∈ Left(L).Therefore, h(x) = f(special) /∈ L.By Observation 4, the number of nodes in listk for any k ≥ 1 is bounded by q(n). Therefore,the number of nodes visited by the reduction is at most d × 2q(n). Since d is bounded above bythe running time of M on x, the total time required by the reduction is at most polynomial in n. 2

Therefore, L≤p
mL− S. So L− S is ≤p

m-hard for NP. 2

Corollary 3.6 Let L be a ≤p
m-complete set for NP, and S ∈ P be sparse. Then L − S is ≤p

m-complete for NP.
In contrast to the theorem we just proved, in Theorem 3.8, we construct a sparse set S ∈

DTIME(22n) such that for any set L ∈ NP− P, L− S is not ≤p
m-hard for NP. Again, we cannotassert that L − S ∈ NP. In Corollary 3.9, we obtain that for every L ∈ NP − P, there is a sparse

S ∈ EXP such that L− S is not ≤p
m-hard for NP.The following lemma shows a collapse to P for a restricted form of truth-table reduction from

SAT to a sublogarithmically-dense set. In other words, we show that if SAT disjunctively reducesto some sublogarithmically-dense set where the reduction machine makes logarithmically manynonadaptive queries, then NP = P. We exploit this strong consequence in Theorem 3.8 below.
Lemma 3.7 If there exist f ∈ FP, S ⊆ Σ∗ and a real number α < 1 such that

1. for all n ≥ 0, ‖S≤n‖ ≤ O(logα n), and
2. for all x, f(x) is a set of words such that ‖f(x)‖ ≤ O(log |x|) and

x ∈ SAT ⇔ f(x) ∩ S = ∅,

then P = NP.
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Proof Assume f , S, and α exist. Let
LeftSAT df={〈x, z〉

∣∣ formula x has a satisfying assignment y ≥ z}.

Note that for a formula x with n variables, 〈x, 0n〉 ∈ LeftSAT ⇔ x ∈ SAT. Also, LeftSAT is in
NP. Let us assume that LeftSAT≤p

mSAT via reduction g ∈ PF. Let h(w) df= f(g(w)) and let p(·)be the computation time of h. Therefore, by assumption, for all w, h(w) is a set of words such that
‖h(w)‖ ≤ O(log |w|) and

w ∈ LeftSAT ⇔ g(w) ∈ SAT ⇔ h(w) ∩ S = ∅.

Therefore, for every S ′ ⊆ S, and for all x, y,
〈x, y〉 ∈ LeftSAT⇒ h(〈x, y〉) ∩ S ′ = ∅.

Choose constants c and d such that ‖S≤n‖ ≤ c logα n and ‖h(w)‖ ≤ d log |w|. Below wedescribe a nondeterministic polynomial-time-bounded algorithm that accepts SAT. We will seethat this algorithm can be simulated in deterministic polynomial time. The input is a formula x.
1 S′ := ∅2 n := number of variables in x3 if 1n satisfies x then accept x/* Otherwise, 〈x, 1n〉 /∈ LeftSAT, and so h(〈x, 1n〉) ∩ S 6= ∅. */4 choose some s ∈ h(〈x, 1n〉) nondeterministically5 S′ := S′ ∪ {s}6 for i = 1 to c logα p(|x|+ n)7 if h(〈x, 0n〉) ∩ S′ 6= ∅ then reject/* At this point, h(〈x, 0n〉) ∩ S′ = ∅, and h(〈x, 1n〉) ∩ S′ 6= ∅. */8 Use binary search to determine a word y ∈ Σn − {1n}such that h(〈x, y〉) ∩ S′ = ∅ and h(〈x, y + 1〉) ∩ S′ 6= ∅.9 if y satisfies x then accept10 choose some s ∈ h(〈x, y〉) nondeterministically11 S′ := S′ ∪ {s}12 increment i13 reject
We argue that the algorithm runs in nondeterministic polynomial time: The loop insteps 6 – 12 runs at most c logα p(|x| + n) times, and the binary search takes at most O(n)steps for a formula of n variables. Therefore, the runtime is bounded by a polynomial in (n+ |x|).We argue that the algorithm accepts SAT: The algorithm accepts only if we find a satisfyingassignment (step 3 or step 9). So all unsatisfiable formulas are rejected. We now show that allsatisfiable formulas are accepted by at least one computation path.Let x be a satisfiable formula; we describe an accepting computation path. On this path, S ′ willalways be a subset of S. If x is accepted in step 3, then we are done. Otherwise, 〈x, 1n〉 /∈ LeftSATand therefore, h(〈x, 1n〉)∩ S 6= ∅. So in step 4 at least one computation path chooses some s ∈ S.
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Since x ∈ SAT, 〈x, 0n〉 ∈ LeftSAT. Hence h(〈x, 0n〉) ∩ S = ∅. Since S ′ ⊆ S, it followsthat h(〈x, 0n〉) ∩ S ′ = ∅. Therefore, if x ∈ SAT, the nondeterministic path that makes the correctchoice for s in step 4 cannot reject x in step 7. Now we have
h(〈x, 0n〉) ∩ S ′ = ∅, and h(〈x, 1n〉) ∩ S ′ 6= ∅.

Therefore, there must be some y as required by the algorithm, which can be obtained by binarysearch as follows. Initially, the algorithm considers the interval [0n, 1n] and choose the middleelement 10n−1. If h(〈x, 10n−1〉)∩S ′ 6= ∅, then we proceed with the interval [0n, 10n−1]. Otherwise,we proceed with the interval [10n−1, 1n]. By continuing this procedure, we obtain intervals [a, b]of decreasing size such that a < b and
h(〈x, a〉) ∩ S ′ = ∅, and h(〈x, b〉) ∩ S ′ 6= ∅.

If we accept in step 9, then we are done. Otherwise we can argue as follows: By step 8, we have
h(〈x, y + 1〉) ∩ S ′ 6= ∅ and therefore, h(〈x, y + 1〉) ∩ S 6= ∅. Hence 〈x, y + 1〉 /∈ LeftSAT.Together with the fact that y does not satisfy x in step 9, we obtain 〈x, y〉 /∈ LeftSAT. Therefore,
h(〈x, y〉) ∩ S 6= ∅. On the other hand, h(〈x, y〉) ∩ S ′ = ∅. Therefore, the correct nondeterministicpath can choose an s ∈ S − S ′ and continues with the next iteration of the loop. Along this path,
S ′ is always a subset of S ∩ Σ≤p(|x|+n). By assumption,

‖S≤p(|x|+n)‖ ≤ c · logα p(|x|+ n).

We enter the loop with ‖S ′‖ = 1, and in each iteration we add a new element to S ′. Hence at thebeginning of the (c·logα p(|x|+n))-th iteration it holds that S ′ = S∩Σ≤p(|x|+n). Now consider thisiteration at step 8. Elements of h(〈x, y〉) and elements of h(〈x, y + 1〉) are of length ≤ p(|x|+ n).So in this iteration we obtain a word y such that
h(〈x, y〉) ∩ S = ∅,

and
h(〈x, y + 1〉) ∩ S 6= ∅.

It follows that 〈x, y〉 ∈ LeftSAT and 〈x, y + 1〉 /∈ LeftSAT. So y is the lexicographically largestsatisfying assignment of x. Therefore, we accept in step 9. It follows that our algorithm accepts
SAT.We argue that the algorithm can be simulated in deterministic polynomial time: Clearly,each path of the nondeterministic computation is polynomially bounded. We estimate the totalnumber of paths as follows. Each path has at most

c · logα p(|x|+ n) + 1

nondeterministic choices, where α < 1. Each such nondeterministic choice guesses an s ∈
h(〈x, y〉) for some y ∈ Σn. By assumption, ‖h(〈x, y〉)‖ ≤ d · log(|x| + n). Hence the totalnumber of paths is

(d · log(|x|+ n))c·logα p(|x|+n)+1 ≤ 2O(log log(|x|+n))·O(logα(|x|+n))

≤ 2O(log1−α(|x|+n))·O(logα(|x|+n))

≤ 2O(log(|x|+n))

≤ (|x|+ n)O(1).
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Hence there is only a polynomial number of nondeterministic paths. Therefore, the algorithm canbe simulated in deterministic polynomial time. 2

Theorem 3.8 There exists a sparse S ∈ DTIME(22n) such that for every L ∈ NP− P, L− S isnot ≤p
m-hard for NP.

Proof Let {Ni}i≥0 be an enumeration of all nondeterministic polynomial-time-bounded Turingmachines such that for all i, the running time of Ni is bounded by the polynomial pi(n) = ni + i.Similarly, let {fj}j≥0 be an enumeration of all polynomial-time computable functions such that forall j, the running time of fj is bounded by the polynomial pj(n) = nj + j. We use a polynomial-time computable and polynomial-time invertible pairing function 〈·, ·〉 such that r = 〈i, j〉 implies
i ≤ r and j ≤ r.A requirement is a natural number r. If r = 〈i, j〉, then we interpret this as the requirementthat L(Ni) does not many-one reduce to L(Ni)− S via reduction function fj .Let t(m) df= 22m . We describe a decision algorithm for S. Let x be the input and let n df= |x|. Thealgorithm works in stages 1, . . . ,m where m is the greatest natural number such that t(m) ≤ n.In stage k, we construct a set Sk such that

Sk = {w ∈ S
∣∣ t(k) ≤ |w| < t(k + 1)}.

Hence S can be written as S1 ∪ S2 ∪ · · · . We ensure that each Sk has at most one string. Input xis accepted if and only if it belongs to Sm. Whenever we refer to (the value of) a program variablewithout mentioning the time when we consider this variable, then we mean the value of the variablewhen the algorithm stops. Variables Lk represent sets of requirements. If requirement i is satisfiedin stage k, then i is added to the set Lk. The algorithm ensures that ‖Lk‖ < 1 for every k.
1 if |w| < 4 then reject2 n := |w|, m := greatest number such that t(m) ≤ n3 for k = 1 to m4 Sk := ∅, Lk := ∅5 for r = 1 to k6 if r /∈ L1 ∪ L2 ∪ · · · ∪ Lk−1 then7 determine i and j such that r = 〈i, j〉8 for all z ∈ Σ<t(k+2) in increasing lexicographic order9 y := fj(z)10 if t(k) ≤ |y| < t(k + 1) and Ni(z) accepts then11 Sk := {y}12 Lk := {r}13 exit the loops for z and r, and consider next k14 endif15 increment z16 endif17 increment r18 increment k19 accept if and only if Sm = {w}
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We observe that S is sparse: For all inputs of length ≥ t(k) the algorithm constructs thesame sets S1, S2, . . . , Sm and L1, L2, . . . , Lm. Therefore, it is unambiguous to refer to Sk and Lk.Moreover, it is immediately clear that any Sk contains at most one word, and this word, if it exists,has a length that belongs to the interval [t(k), t(k + 1)). By definition of t(k), for every n ≥ 4,
t(blog log nc) ≤ n < t(blog log nc+ 1).

Hence on input of some word of length n ≥ 4, we have
m = blog log nc (1)

in step 2. So the algorithm computes singletons S1, S2, . . . , Sm such that S≤n ⊆ S1∪S2∪· · ·∪Sm.It follows that
‖S≤n‖ ≤ blog log nc. (2)

In particular, S is sparse.
We observe that S ∈ DTIME(22n): Note that in step 10, |z| < t(m + 2) = t(m)4 ≤ n4

and i ≤ r ≤ m = blog log nc. So a single path of the nondeterministic computation Ni(z) haslength
≤ n4i + i ≤ 2O(log2 n).

Hence the simulation of the complete computation takes
22O(log2 n) · 2O(log2 n) = 22O(log2 n)

steps. Similarly, step 9 takes 2O(log2 n) steps. So the loop at steps 8–15 takes at most
2n

4 · 22O(log2 n)

= 22O(log2 n)

steps. The loops 5–17 and 3–18 multiply this number of steps at most by factor
m2 ≤ blog log nc2.

Therefore, the overall running-time is 22O(log2 n) . This shows
S ∈ DTIME(22O(log2 n)

) ⊆ DTIME(22n).

We observe that no L− S is many-one hard: Let L ∈ NP − P and choose a machine Nisuch that L = L(Ni). Assume that L − S is ≤p
m-hard for NP. Therefore, there exists j such that

L≤p
mL − S via reduction function fj . We consider two cases and show that both cases lead tocontradiction. This will complete the proof.
Case 1: Assume there exists an e ≥ 1 such that for all x ∈ L≥e, |fj(x)| <

√
|x|. UsingLemma 3.7, we show that this implies L ∈ P, thereby obtaining a contradiction.
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Consider an arbitrary formula x. Let s0
df= x and let sl+1

df= fj(sl) for l ≥ 0. By assumption, forall y ∈ L≥e it holds that
y ∈ L⇔ fj(y) /∈ S ∧ fj(y) ∈ L. (3)

Hence
x ∈ L⇔ s1 /∈ S ∧ s1 ∈ L. (4)

If |s1| ≥ e, we use equivalence (3) for y = s1. We obtain
s1 ∈ L⇔ s2 /∈ S ∧ s2 ∈ L. (5)

By equivalences (5) and (4), we have
x ∈ L⇔ s1 /∈ S ∧ s2 /∈ S ∧ s2 ∈ L (6)

Now we use equivalence (3) again, this time for y = s2. We proceed in this way until we reach an
sk such that either |sk| < e or |sk| ≥√|sk−1|. The following equivalence holds:

x ∈ L⇔
k∧

l=1

sl /∈ S ∧ sk ∈ L. (7)
Note that if |sk| < e, then it is easy to verify whether sk belongs to L. So in polynomial time wecan determine a string s which is defined as follows. If sk ∈ L<e, then let s be a fixed elementfrom S. Otherwise, let s be a fixed element from S. We show

x ∈ L⇔ {s1, . . . , sk, s} ∩ S = ∅. (8)
“⇒” Assume x ∈ L. Therefore, s1, · · · , sk ∈ L. If |x| < e, then k = 0, s ∈ S, and weare done. Otherwise, |x| ≥ e and k ≥ 1. If |sk| < e, then, by equivalence (7), s ∈ S. Sofrom equivalence (7) it follows that {s1, . . . , sk, s} ∩ S = ∅, and we are done. We show that theremaining case, i.e., |sk| ≥ e is impossible. Since the algorithm terminated, it must be the case that

|sk| ≥
√
|sk−1|. However, since x ∈ L, sk ∈ L by equivalence (7). By our assumption, it cannothappen that sk ∈ L≥ e and |sk| ≥√|sk−1|. Therefore, |sk| < e.“⇐” Assume {s1, . . . , sk, s} ∩ S = ∅. Hence s ∈ S and therefore, sk ∈ L<e. From equiva-lence (7) we obtain x ∈ L. This shows equivalence (8).

For 1 ≤ l ≤ k − 1 it holds that |sl| < √|sl−1|. Therefore, k ≤ |x| and so the strings s and sican be constructed in polynomial time in |x|. Let g ∈ FP be the function that on input x computesthe set {s1, . . . , sk, s}. So for all x,
x ∈ L ⇔ g(x) ∩ S = ∅. (9)

Observe that for all x,
‖g(x)‖ ≤ blog log |x|c+ 1.
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By assumption, L − S is many-one hard for NP. So there exists a reduction function h ∈ FPsuch that SAT≤p
mL− S via h. By equation (9), for all x,

x ∈ SAT ⇔ h(x) ∈ L ∧ h(x) /∈ S
⇔ (g(h(x)) ∪ {h(x)}) ∩ S = ∅.

With h′(x) df= g(h(x)) ∪ {h(x)} it holds that for all x,
x ∈ SAT ⇔ h′(x) ∩ S = ∅. (10)

Clearly, h′ belongs to FP and for all x,
‖h′(x)‖ ≤ blog log |h(x)|c+ 2 ≤ blog log |x|c+ c (11)

for a suitable constant c. By equations (2), (10), and (11), we satisfy the assumptions of Lemma 3.7(take h′, S, and α = 1/2). It follows that L ∈ P. This contradicts our assumption.
Case 2: Assume there exist infinitely many x ∈ L such that |fj(x)| ≥

√
|x|. We show that inthis case L does not many-one reduce to L−S via fj . This will give us the necessary contradiction.Recall thatL = L(Ni). Let r̄ df=〈i, j〉. Since every non-emptyLk contains a unique requirement,we can choose a number m′ ≥ r̄ such that for all k ≥ m′,

Lk ∩ {0, · · · , r̄ − 1} = ∅. (12)
Note that for infinitely many strings x ∈ L, |fj(x)| ≥

√
|x|. Therefore, we can choose some string

z̄ ∈ L such that
√
|z̄| ≥ t(m′) (13)

and
|fj(z̄)| ≥

√
|z̄|. (14)

Let w df= fj(z̄) and n df= |w|. Let m̄ be such that t(m̄) ≤ n < t(m̄ + 1). By the choice of z̄,
|z̄| < t(m̄+ 2). We will show that if r̄ is not in L1 ∪ · · · ∪ Lm̄−1, then Lm̄ = {r̄}.Consider the algorithm on input w. By the choice of m̄, t(m̄) ≤ |w| = n < t(m̄ + 1).Therefore, by the choice of m in step 2 of the algorithm, m = m̄. Consider step 6 when k = m̄and r = r̄. We note that as a consequence of ( 12), for any k ≥ m̄ ≥ m′, Lk ∩ {0, · · · , r̄− 1} = ∅.Therefore, the loop (step 5 – step 17) cannot exit with some r < r̄. On the other hand, for r̄, thecondition in step 6 must be true, since we assumed that r̄ /∈ L1 ∪ · · · ∪ Lm̄−1. Therefore, we reachstep 7. By the choice of m̄, |z̄| ≤ t(m̄+ 2). Therefore, either we reach step 9 such that z = z̄, or r̄is put in Lm̄ with some other z and Sm̄ = {fj(z)}. If z = z̄, then after step 9, y = fj(z̄) = w andtherefore, |y| = n. Therefore, it must hold in step 10 that t(m̄) ≤ |y| < t(m̄+1). Moreover, Ni(z̄)accepts since z̄ ∈ L. Therefore, we reach the steps 11 and 12 where we obtain that Lm̄ = {r̄}. Asa consequence,

r̄ /∈ L1 ∪ · · · ∪ Lm̄−1 ⇒ r̄ ∈ Lm̄.It follows that r̄ ∈ L1 ∪ L2 ∪ · · · ∪ Lm̄. Let k, 1 ≤ k ≤ m̄ be such that Lk = {r̄}. Let Sk = {y}.By steps 9 and 10, there exists a z ∈ L such that y = fj(z). From y ∈ S it follows that y /∈ L−S.Therefore, L does not many-one reduce to L − S via reduction function fj . This contradicts ourassumption. 2
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Corollary 3.9 For every L ∈ NP − P there exists a sparse S ∈ EXP such that L − S is not
≤p

m-hard for NP.
Proof Choose i such that L = L(Ni). We recycle the proof of theorem 3.8. Here we only haveto do the diagonalization against the machine Ni. So we interpret r as the requirement that L doesnot many-one reduce to L− S via reduction function fr. We modify the algorithm in the proof ofTheorem 3.8 by replacing step 7 with “j := r”.Analogously to the proof of Theorem 3.8 we observe that S is sparse. Because we modifiedthe algorithm, now S belongs to EXP. This is seen as follows: Again in step 10,

|z| < t(m+ 2) = t(m)4 ≤ n4.

But now i is a constant. So a single path of the nondeterministic computationNi(z) now has length
≤ n4i + i. Hence the simulation of the complete computation takes the following number of steps:

2n
4i+i · (n4i + i) ≤ 2n

O(1)

Note that
j = r ≤ m ≤ blog log nc.

So step 9 takes
n4j + j ≤ 2O(log2 n) ≤ 2O(n)

steps. Therefore, the loop at steps 8–15 takes at most
2n

4 · 2nO(1)

= 2n
O(1)

steps. The loops 5–17 and 3–18 multiply this number of steps at most by factor
m2 ≤ blog log nc2.

Therefore, the overall running-time remains 2n
O(1) . This shows S ∈ EXP.Analogously to the proof of Theorem 3.8 we argue that L−S is not≤p

m-hard for NP. Here wehave to define r̄ df= j in Case 2. 2

Given a sparse set S such that SAT − S is not ≤p
m-hard for NP, for every ≤p

m-complete set
L ∈ NP, it is easy to describe a sparse set S ′ such that L− S ′ is not ≤p

m-hard for NP: Let f ∈ PFbe the one-one function that reduces L to SAT. Then S ′ = {x
∣∣ f(x) ∈ S} is sparse and L − S ′reduces to SAT− S via f . Therefore, L− S ′ cannot be ≤p

m-hard for NP.
4 Immunity and Closeness
Agrawal [Agr02] demonstrated that pseudorandom generators can be used to prove structural the-orems on complete degrees of NP. Here we build on his results to answer the longstanding openquestion of whether NP-complete sets can be immune. Also, we show that no NP-complete set isquasipolynomial-close to P.
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It is well-known that no EXP-complete set is p-immune. To see this, consider L ∈ EXP that is
≤p

m-complete. Then 0∗≤p
mL via some length-increasing reduction f . Since f is length-increasing,

{f(0n)
∣∣n ≥ 0} is an infinite subset of L. However, while for any EXP-complete set L and any

A ∈ EXP, there is a length-increasing reduction from A to L, this is not known to hold for NP.We begin with the following definitions. In particular it is important to distinguish pseudoran-dom generators, as defined by Nisan and Wigderson [NW94], for derandomization purposes, fromcryptographic pseudorandom generators [Yao82, BM84].
Definition 4.1 A function G = {Gn}n, Gn : Σ=n 7→ Σ=m(n) is an s(n)-secure cryptographicpseudo-random generator (crypto-prg in short) if G is computable in polynomial time in the inputlength, m(n) > n, for every δ(·) such that δ(n) < 1, for every t(·) such that t(n) ≤ δ(n) · s(n),and for every circuit C of size t(n), for all sufficiently large n,

| Pr
x∈Σ=m(n)

[C(x) = 1]− Pr
y∈Σ=n

[C(Gn(y)) = 1] |≤ δ(n).

Definition 4.2 A function G = {Gn}n, Gn : Σ=l 7→ Σ=n is a pseudorandom generator (prg inshort) if l = O(log n), G is computable in time polynomial in n, and for any polynomial-size(polynomial in n) circuit C,
| Pr
x∈Σ=n

[C(x) = 1]− Pr
y∈Σ=l

[C(Gn(y)) = 1] |≤ 1

n
.

Definition 4.3 A function f = {fn}n, fn : Σ=n 7→ Σ=m(n), is s(n)-secure if for every δ(·) suchthat δ(n) < 1, for every t(·) such that t(n) ≤ δ(n) · s(n), and for every non-uniform circuit family
{Cn}n of size t(n), for all sufficiently large n,

Pr
x∈Σ=n

[Cn(x) = fn(x)] ≤ 1

2m(n)
+ δ(n).

Hypothesis A. Pseudorandom generators exist.
Hypothesis B. There is a secure one-way permutation. Technically, there is a permutation π ∈ PFand 0 < ε < 1 such that π−1 is 2n

ε-secure.
Hypothesis B implies the existence of cryptographic pseudorandom generators [Yao82].Agrawal [Agr02] showed that if Hypothesis B holds, then every ≤p

m-complete set for NP is hardalso for one-one, length-increasing, non-uniform reductions. The following theorem is implicit inthe proof of his result:
Theorem 4.4 If Hypotheses A and B hold, then every set A that is≤p

m-hard for NP is hard for NPunder length-increasing reductions.
By Theorem 4.4, Hypotheses A and B imply that for every NP-complete set A, there is alength-increasing reduction f from 0∗ to A. This immediately implies that the set

{f(0n)
∣∣n ≥ 0}

is an infinite subset of A that belongs to P, i.e., A cannot be p-immune.
15



              

Theorem 4.5 If Hypotheses A and B hold, then no ≤p
m-complete set for NP can be p-immune.

We consider immunity with respect to classes that are larger than P. Similar questions havebeen studied for EXP. For example, Homer and Wang [HW94] showed that EXP-complete setshave dense UP subsets.
Theorem 4.6 Let C ⊆ NP be a complexity class closed under ≤p

m-reductions such that for some
ε > 0, there is a tally set T ∈ C that is not in DTIME(2n

ε
). Then no ≤p

m-complete set for NP is
C-immune.
Corollary 4.7 If there is a tally set in UP that is not in DTIME(2n

ε
), then no ≤p

m-complete setfor NP is UP-immune.
Proof [of Theorem 4.6] Let T be a tally set in C that does not belong to DTIME(2n

ε
). We willshow that no NP-complete set is C-immune.Let L be an NP-complete set and let k > 0 such that L ∈ DTIME(2n

k
). Let f be a ≤p

m-reduction from T to L. We claim that the set
X = {f(0n)

∣∣ 0n ∈ T and |f(0n)| > nε/k}

is infinite. Assume otherwise: Then, for all but finitely many n, 0n ∈ T ⇒ |f(0n)| ≤ nε/k.Consider the following algorithm that accepts a finite variation of T : On input 0n, if |f(0n)| ≤ nε/k,then accept 0n if and only if f(0n) ∈ L. Otherwise, reject 0n. This algorithm takes time at most
2|f(0n)|k ≤ 2(nε/k)k = 2n

ε . This contradicts the assumption that T /∈ DTIME(2n
ε
). Therefore, Xis infinite. Also, X ⊆ f(T ) ⊆ L. Now we will show that X≤p

mT . Since T belongs to C and C isclosed under ≤p
m-reductions, that will demonstrate that L is not C-immune.To see that X≤p

mT , we apply the following reduction: On input y, |y| = m, determine whether
f(0i) = y for some i < mk/ε. If there is such an i, then output the first such 0i. Otherwise, y /∈ X .In this case, output some fixed string not in T . We need to show that y ∈ X if and only if theoutput of this reduction belongs to T . If y ∈ X , then there exists i such that i < mk/ε, 0i ∈ T , and
f(0i) = y. Let 0i0 be the output of the reduction. In this case, y = f(0i) = f(0i0). Now recall that
f is a reduction from T to L. For this reason, 0i ∈ T if and only if 0i0 ∈ T . The converse case,that y /∈ X , is straightforward. 2

Agrawal [Agr02] defined a function g ∈ PF to be γ-sparsely many-one on S ⊆ {0, 1}n if
∀x ∈ S, ‖g−1(g(x)) ∩ {0, 1}n‖ ≤ 2n

2nγ
.

Here g−1(z) = {x
∣∣ g(x) = z}. The function g is sparsely many-one on S ⊆ {0, 1}n if it is

γ-sparsely many-one on S ⊆ {0, 1}n for some γ > 0.Given a 2n
ε-secure one-way permutation, Goldreich and Levin [GL89] construct a 2n

α-securecrypto-prg, 0 < α < ε. This crypto-prg G is defined only on strings of even length, i.e., G isa partial function. However, Agrawal [Agr02] notes that G can be extended to be total, and thesecurity remains the same. This crypto-prg has a nice property, namely it is a one-one function.Let S be any set in NP and L be any NP-complete language. Let S ′ = G(S). Since S ′ is in
NP, there is a many-one reduction f from S ′ to L. Let h def

= f ◦ G. Since G is one-one, h is amany-one reduction from S to L.
16



               

Lemma 4.8 ([Agr02]) For every n, h def
= f ◦G is a α/2-sparsely many-one on S ∩Σ=n, where αis the security parameter of G.

Lemma 4.9 Let f be a γ-sparsely many-one function on S = 0∗ × Σ∗ ∩ {0, 1}n for every n, andlet l = n2/γ . Then, for sufficiently large n,
‖{w ∈ 0n × Σ=l

∣∣ |f(w)| > n}‖ ≥ 3

4
2l.

Proof Let Sn = 0n × Σ=l. Every string in Sn has length m = n + l. For every w ∈ Sn, there areat most 2m

2m
γ strings of length m that can map to f(w). Therefore, ‖f(Sn)‖ ≥ 2l/( 2m

2m
γ ). Taking

l = n
2
γ , we obtain that at least 3

4
of the strings in Sn have image of length > n. 2

Theorem 4.10 If Hypothesis B holds, then for every ε > 0, no ≤p
m-complete set for NP can be

DTIME(2n
ε
)-immune.

Proof The hypothesis implies the existence of a 2n
ε-secure one-way permutation. Let G be the

2n
α-secure crypto-prg, 0 < α < ε, constructed from this secure one-way function. Let S = 0∗×Σ∗,and S ′ = G(S). SinceL is NP-complete S ′≤p

mL via f . Thus S≤p
mL via h = f◦G. By Lemma 4.8,

h is α/2-sparsely many-one on S∩Σ=n for every n. For any n, take l = n4/α. Then, by Lemma 4.9,we know that for large enough n, at least 3
4

of the strings in 0n×Σ=l map via h to a string of length
> n.Let k = 4

εα
. Assume G maps strings of length n to strings of length nr, r > 0. It is wellknown that from G we can construct a crypto-prg G′ that expands n bits to nk bits [Gol01, page115]. Thus for any string w of length nε, G′(w) is of length l = n4/α. Consider the followingcircuit that on input (0n, y), |y| = l accepts if and only if |h(0n, y)| > n. This circuit acceptsat least 3

4
of the inputs (0n, y), |y| = l, if the input is chosen according to uniform distribution.Therefore, there must be some w, |w| = nε, such that this circuit accepts G′(w). Therefore, forthis w, |h(0n, G′(w))| > n. Now, the following DTIME(2n

ε
)-algorithm outputs infinitely manystrings of L:

Input 0nLet m = nεfor w ∈ Σ=m

If |h(0n, G′(w))| > n, then output h(G′(w))

2

4.1 Closeness
In general, Yesha [Yes83] considered two sets A and B to be close if the census of their symmetricdifference, A∆B, is a slowly increasing function. For example, A and B are p-close if there is apolynomial p such that for every n, ‖(A∆B)=n‖ ≤ p(n). Ogiwara [Ogi91] and Fu [Fu93] observedthat ifA is NP-complete, thenA is not p-close to any setB ∈ P, unless P = NP. DefineA andB to
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be quasipolynomial-close if there exists a constant k such that for every n, ‖(A∆B)=n‖ ≤ 2logk n.We show that if Hypothesis B holds, then no NP-complete set is quasipolynomial-close to a set in P.Also, we show that if Hypothesis A holds, then no paddable NP-complete sets is quasipolynomial-close to a set in P.We recall the following definitions, and recall that all known NP-complete sets are paddable[BH77]:
Definition 4.11 A set A is paddable if there exists p(·, ·), a polynomial-time computable,polynomial-time invertible (i.e., there is a g ∈ PF such that for all x and y, g(p(x, y)) = 〈x, y〉)function, such that for all a and x,

a ∈ A⇔ p(a, x) ∈ A.

Recall that a set A is p-isomorphic to B if there exists f , a polynomial-time computable,polynomial-time invertible permutation on Σ∗, such that A≤p
mB via f . Mahaney and Young[MY85] proved that two paddable sets are many-one equivalent if and only if they are p-isomorphic.

Theorem 4.12 If Hypothesis A holds, then no paddable set L /∈ P can be quasipolynomial-closeto any set in P.
Proof Let us assume that L is a paddable set and there is a set B ∈ P such that L isquasipolynomial-close to B. We will obtain a polynomial-time algorithm for L, thereby obtaininga contradiction. Let p(·, ·) be a padding function for L. Given a string x, |x| = n, consider thefollowing set.

Px = {p(x, y)
∣∣ |x| = |y|}.

We can assume that all strings in Px have the same length m. Let k be a constant such that
‖(L∆B)=m‖ ≤ 2logk n. (This is possible since m is a polynomial in n.) Note that ‖Px‖ = 2n.If x ∈ L, then Px ⊆ L. Therefore, at least 2n − 2logk n strings from Px belong to B. On theother hand, if x /∈ L, then Px ∩ L = φ, and so at least 2n − 2logk n strings from Px are not in B.Therefore,

x ∈ L ⇒ Pr
y∈Σn

[p(x, y) ∈ B] ≥ 1− 2logk n

2n
,

x /∈ L ⇒ Pr
y∈Σn

[p(x, y) ∈ B] ≤ 2logk n

2n
.

Hypothesis A asserts that there is a pseudorandom generator G = {Gn} such that Gn expands
log n bits to n bits. Consider the following circuit Cx: on input y, |y| = n, Cx outputs 1 if and onlyif p(x, y) ∈ B. Therefore, we have

x ∈ L ⇒ Pr
y∈Σn

[Cx(y) = 1] ≥ 1− 2logk n

2n
,

x /∈ L ⇒ Pr
y∈Σn

[Cx(y) = 1] ≤ 2logk n

2n
.
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Since Gn is a pseudorandom generator, we have
x ∈ L ⇒ Pr

y∈Σlogn
[Cx(Gn(y)) = 1] ≥ 1− 2logk n

2n
− 1

n
,

x /∈ L ⇒ Pr
y∈Σlogn

[Cx(Gn(y)) = 1] ≤ 2logk n

2n
+

1

n
.

This gives the following polynomial-time algorithm for L. Given x of length n, try all possiblestrings of length log n as the input to Gn. Let the outputs be y1, y2, · · · , yn, and let zi = p(x, yi),
1 ≤ i ≤ n. If less than 2logk n

2n
+ 1

n
fraction of zi-s belong to B, then reject x, otherwise accept x.Since both the padding function p and the generator Gn can be computed in polynomial time in n,this is a polynomial-time algorithm for L. 2

Corollary 4.13 If Hypothesis A holds, then no set p-isomorphic to SAT can be quasipolynomial-close to any set in P, unless P = NP.
Next we are interested primarily in the following Theorems 4.14 and 4.16, and their immediateconsequence, Corollary 4.17. Theorem 4.14 follows directly from the statement of Hypothesis B.

Theorem 4.14 Hypothesis B implies that NP 6⊆ ⋃k>0 DTIME(2logk n).
Proof Hypothesis B asserts the existence of a 2n

ε-secure one-way permutation π, for some 0 <
ε < 1. No 2n

ε-size circuit can compute the inverse of π. So the set
B = {〈y, i〉

∣∣ ith bit of π−1(y) = 0}

belongs to NP and cannot have a quasipolynomial-size family of circuits. However, if B ∈
DTIME(2logk n), for some k > 0, then B has a family of circuits of size (2logk n)2 < 2log2k n,which is a contradiction. 2

We require the following proposition, which follows from Homer and Longpré’s study ofOgihara–Watanabe pruning [HL94].
Proposition 4.15 If there exists a set S that has a quasipolynomially-bounded census function andthat is ≤pbtt-hard for NP, then NP ⊆ ⋃k>0 DTIME(2logk n).
Theorem 4.16 If NP 6⊆ ⋃k>0 DTIME(2logk n), then no NP-complete set is quasipolynomial-closeto a set in P.
Proof Assume there exists an NP-complete A that is quasipolynomial-close to some B ∈ P. Let
S df=A∆B. So S has a quasipolynomially-bounded census function. A≤p

1−ttS and therefore, S is
≤p

1−tt -hard for NP. By Proposition 4.15, NP ⊆ ⋃k>0 DTIME(2logk n). 2

As an immediate consequence, we have the following corollary, which has a stronger conse-quence than Corollary 4.13.
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Corollary 4.17 If Hypothesis B holds, then no NP-complete set is quasipolynomial-close to anyset in P.
It is interesting to note that Corollary 4.17 has a short proof that does not depend on Theorems4.14 and 4.16. We present that now:Proof We begin as the proof of Theorem 4.14 begins: Hypothesis B asserts the existence of a

2n
ε-secure one-way permutation π. No 2n

ε-size circuit can compute the inverse of π. So the set
B = {〈y, i〉

∣∣ ith bit of π−1(y) = 0} belongs to NP and cannot have quasipolynomial-size familyof circuits.Let us assume that L is an NP-complete set such that there is some set S ∈ P and some k > 0such that for every n, ‖L∆S‖ ≤ 2logk n. This implies that L ∈ P/(2logk n), where the advice forany length n is the set of strings in L∆S. On an input x, accept x if and only if x ∈ S and x is notin the advice set, or x /∈ S and x belongs to the advice set.Therefore, L has a family of quasipolynomial-size circuits. Since L is NP-complete, it followsthat every set in NP has quasipolynomial-size family of circuits. By the above discussion, thiscontradicts Hypothesis B. 2

5 Disjoint Pairs
Recall that if NP∩ coNP 6= P, then there exist disjoint sets A and B in NP such that A 6≤p

TA∪B.Our first result derives the same consequence under the assumption that UEE 6= EE.
Theorem 5.1 If UEE 6= EE, then there exist two disjoint setsA andB in UP such thatA 6≤p

TA∪B.
Proof Beigel, Bellare, Feigenbaum, and Goldwasser [BBFG91] showed that if NEE 6= EE, thenthere exists a languages in NP− P for which search does not reduce to decision. Their proof alsoshows that if UEE 6= EE, then there exists a language S in UP − P for which search does notreduce to decision. Let M be an unambiguous Turing machine that accepts S, and for every word
x ∈ S, let ax be the unique accepting computation of M on x. Let p be a polynomial such that forall x ∈ S, |ax| = p(|x|). Define

A = {〈x, y〉
∣∣ x ∈ S, |y| = p(|x|), and y ≤ ax}

and
B = {〈x, y〉

∣∣ x ∈ S, |y| = p(|x|), and y > ax}.

Both A and B belong to UP and are disjoint. Let
A ∪ B = S ′ = {〈x, y〉

∣∣ x ∈ S and |y| = p(|x|)}.

Note that S ′ is many-one reducible to S. Now assume A≤p
TS
′. Since S ′ is many-one reducible to

S, it follows that A≤p
TS. However, we can compute the witness ax for x ∈ S by using a binarysearch algorithm with oracle A. Therefore, replacing A with S, we see that search reduces todecision for S, contradicting our choice of S. 2
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Let Hypothesis C be the following assertion:
Hypothesis C. There is a UP-machine M that accepts 0∗ such that for some 0 < ε < 1, no 2n

ε

time-bounded machine can correctly compute infinitely many accepting computations of M .
The following theorem indicates that Hypothesis C is reasonable:

Theorem 5.2 If there is a DTIME(2n
ε
)-bi-immune language in UP∩ coUP, then Hypothesis C istrue.

Proof Let L ∈ UP ∩ coUP be the DTIME(2n
ε
)-bi-immune set, and let N and N ′ be the UPmachines for L and L. Consider the following machine M that accepts 0∗: On input 0n, Mguesses an accepting computation of N and of N ′ on 0n, and accept 0n if either guess is right.Note that for every 0n, exactly one of the guesses will be correct, and therefore, L(M) = 0∗.If there is a 2n

ε time-bounded machine T that can correctly compute infinitely many acceptingcomputation of M , then either X = {0i
∣∣T (0i) outputs an accepting computation of N} or X ′ =

{0i
∣∣T (0i) outputs an accepting computation of N ′} is an infinite subset of L or L, contradictingthe bi-immunity of L. 2

Theorem 5.3 If Hypothesis C is true, then there exist two disjoint Turing complete sets for NPwhose union is not Turing complete.
Proof Let an be the accepting computation of M on 0n. Let p(n) be the polynomial that bounds
|an|. Note that a deterministic machine can verify in polynomial time whether a string of length
p(n) is an accepting path of M . Consider the following sets:
A = {〈x, am + 1〉

∣∣ |x| = n, x ∈ SAT,m = (2n)1/ε} ⊕ {〈0n, i〉
∣∣ i ≤ p(n), bit i of an = 1},

and
B = {〈x, am − 1〉

∣∣ |x| = n, x ∈ SAT,m = (2n)1/ε} ⊕ {〈0n, i〉
∣∣ i ≤ p(n), bit i of an = 0}.

It is easy to see that both A and B are Turing-complete for NP. They can be made disjoint bychoosing an appropriate pairing function. Note that
A ∪ B = {〈x, a〉

∣∣ |x| = n, x ∈ SAT, a = am − 1 or am + 1,m = (2n)1/ε} ⊕ {〈0n, i〉
∣∣ i ≤ p(n)}.

Assume that A ∪ B is Turing complete for NP. Since the set {〈0n, i〉 ∣∣ i ≤ p(n)} is in P, thefollowing set is Turing complete:
C = {〈x, a〉

∣∣ |x| = n, x ∈ SAT, a = am − 1 or am + 1,m = (2n)1/ε}

Consider the set
S = {〈0n, i〉

∣∣ bit i of an = 1}.

Since S ∈ NP, S≤p
TC via some oracle Turing machine U .We describe the following procedure A:
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1. input 0n.
2. Simulate U on strings 〈0n, i〉, where 1 ≤ i ≤ p(n).
3. Let q = 〈x, y〉 be a query that is generated. If y 6= at + 1 or y 6= at − 1 for some t, thencontinue the simulation with answer “No”.
4. Else, q = 〈x, y〉, |x| = tε/2 and y = at + 1 or y = at − 1.
5. If t ≥ nε, then output “Unsuccessful”, print at and Halt.
6. Otherwise, check whether x ∈ SAT; this takes at most 2|x| ≤ 2n

ε2/2 time. Answer the queryappropriately, and continue the simulation of U .
Now we consider two cases.

Claim 5.4 If A(0n) does not output unsuccessful for infinitely many n, then there is a 2n
ε-timebounded machine that correctly outputs infinitely many accepting computations of M .

Proof Assume A(0n) does not output unsuccessful. This implies that A is able to decide mem-bership of 〈0n, i〉, 1 ≤ i ≤ p(n), in S. Therefore, A can compute an. The most expensive stepof the above procedure is Step 6, where A decides the membership of x in SAT. However, this
occurs only if |x| ≤ nε

2
/2, and hence takes at most 2n

ε2/2 time. Thus the total time is bounded
by O(p(n) × q(n) × 2n

ε2/2), where q(n) is the running time of U on 〈0n, i〉. Since ε < 1, this isbounded by 2n
ε . 2

Claim 5.5 If A(0n) outputs “Unsuccessful” for all but finitely many n, then there is a 2n
ε-timebounded machine that outputs infinitely many accepting computations of M .

Proof If A(0n) is unsuccessful, then it outputs a string at such that t ≥ nε. Hence, if A(0n) isunsuccessful for all but finitely many strings, then for infinitely many t there exist an n, where
n ≤ t1/ε, and A(0n) outputs at. Thus the following procedure computes infinitely many acceptingcomputations of M :

input 0tfor i = 1 to t1/ε doif A(0j) outputs atoutput at and halt.endifend for
Note that A(0i) runs in time O(p(i) × q(i) × 2i

ε2/2). Thus the total running time of the aboveprocedure is O(2t
ε
). 2

Claims 5.4 and 5.5 show that if C is Turing complete for NP, then there is a 2n
ε-time boundedTuring machine that computes infinitely many accepting computations of M . This contradictsHypothesis C, and therefore, A ∪B cannot be Turing complete for NP. 2
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5.1 Many-One Complete Languages
Here we consider the analogous questions for many-one reductions. We first show under twodifferent hypotheses that there exist disjoint sets A and B in NP such that A 6≤p

mA ∪ B. Alsowe study the question for NP-complete sets. One of our results will show a relation betweenour question and propositional proof systems. We refer the reader to Glaßer et al. [GSS03] fordefinitions about proof systems and reductions between disjoint NP-pairs.
Theorem 5.6 If P 6= NP ∩ coNP, then there exist disjoint A,B ∈ NP such that

1. A and B are many-one equivalent, and
2. A 6≤p

mA ∪ B.
Proof Let b ∈ {0, 1}, and let L ∈ NP ∩ coNP− P. Define

A = {bw
∣∣ b = χL(w)},

and
B = {bw

∣∣ b 6= χL(w)}.
Both A and B belong to NP ∩ coNP − P. Note that A ∪ B = {0, 1} ◦ Σ∗. However, note that
A≤p

mB via f(bw) = b̄w, and the same reduction reduces B to A. Also note that w → 1w reduces
L to A, and hence A cannot be in P. Therefore, A 6≤p

mA ∪ B. 2

Theorem 5.7 If UE 6= E, then there exist disjoint sets A and B in NP such that A 6≤p
mA ∪B.

Proof Hemaspaandra et al. [HNOS96] showed that if NE 6= E, then there exists a language S in
NP for which search does not reduce to decision nonadaptively. Essentially the same proof showsthat if UE 6= E, then there exists a language S in UP for which search does not reduce to decisionnonadaptively. Since S ∈ UP, for each x ∈ S, there is a unique witness vx, where |vx| = p(|x|),for some polynomial p. Define

A = {〈x, i〉
∣∣ x ∈ S, i ≤ p(|x|), and the ith bit of the witness vx of x is 0},

and
B = {〈x, i〉

∣∣ x ∈ S, i ≤ p(|x|), and the ith bit of the witness vx of x is 1}.
It is clear that both A and B are in NP and are disjoint. Then,

A ∪ B = S ′ = {〈x, i〉
∣∣ x ∈ S, i ≤ p(|x|)}.

Observe that S ′≤p
mS. Assume A≤p

mS
′; then A≤p

mS. Therefore, we can compute the ith bit of thewitness of x by making one query to S. This implies that search nonadaptively reduces to decisionfor S, which is a contradiction. 2

Two disjoint sets A and B are P-separable if there is a set S ∈ P such that A ⊆ S ⊆ B.Otherwise, they are P-inseparable. Let us say that (A,B) is a disjoint NP-pair if A and B are
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disjoint sets that belong to NP. If (A,B) is a disjoint NP-pair such that A and B are P-separable,then A≤p
mA ∪ B follows easily: On input x, the reduction outputs x, if x ∈ S, and outputs somefixed string w /∈ A ∪ B, if x /∈ S. This observation might lead one to conjecture that A ∪ B isnot ≤p

m-complete, if A and B are disjoint, P-inseparable, ≤p
m-complete NP sets. The followingtheorem shows that this would be false, assuming P 6= UP.

Theorem 5.8 If P 6= UP, then there exist disjoint NP-complete sets A and B such that
1. (A,B) is P-inseparable and
2. A ∪B is many-one complete for NP.

Proof Under the assumption that P 6= UP, Grollmann and Selman [GS88] constructed a P-inseparable disjoint NP-pair (A′, B′) such that A′ and B′ are NP complete. Let
A df= 0A′ ∪ 1SAT,

and
B df= 0B′.

Therefore, A ∩B = ∅. Also, SAT≤p
mA ∪B via f(φ) = 1φ. Therefore, A ∪B is NP complete. If

(A,B) is P-separable, then so is (A′, B′). 2

Also assuming that P 6= UP, there exist disjoint NP-complete sets C and D such that C ∪D ismany-one complete for NP and C and D are P-separable, for which reason, (C,D) is not a ≤pp
m -complete pair. To see this let C = {x ∈ SAT | |x| is even } and let D = {x ∈ SAT | |x| is odd }.Similar arguments show that if NP ∩ coNP 6= P, then there exist sets A and B with the sameproperties as in Theorem 5.8, and sets C and D with the same properties as in this comment.We learn from the next theorem that if there exist disjoint NP-complete sets whose union is notNP-complete, then this happens already for paddable NP-complete sets.

Theorem 5.9 The following are equivalent:
1. There exists an NP-complete set A and a set B ∈ NP such that A∩B = ∅ and A∪B is not

NP-complete.
2. There exist disjoint, NP-complete sets A and B such that A ∪B is not NP-complete.
3. There exist paddable, disjoint, NP-complete sets A and B such that A ∪ B is not NP-complete.
4. For every paddable NP-complete set A, there is a paddable NP-complete set B such that
A ∩ B = ∅ and A ∪ B is not NP-complete. Furthermore, there is a polynomial-time-computable permutation π on Σ∗ such that
(a) for all x, π(π(x)) = x, and
(b) A≤p

mB and B≤p
mA, both via π.
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5. For every NP-complete set A, there is a set B ∈ NP such that A ∩ B = ∅ and A ∪ B is not
NP-complete.

By Theorem 5.9, if there exist disjoint, NP-complete sets whose union is not complete, thenthere is a set B in NP that is disjoint from SAT such that SAT ∪B is not NP-complete. Moreover,in that case, there exists such a set B so that B is p-isomorphic to SAT. It is even the case that SATand B are ≤p
m-reducible to one another via the same polynomial-time computable permutation.Proof 1⇒ 2: Let A′ df= 0A ∪ 1B and B′ df= 1A ∪ 0B. Since A is NP-complete, both sets A′ and

B′ are NP-complete. However, A′ ∪B′ = {0, 1} · (A ∪B), and hence is not NP-complete.
2⇒ 3: Choose A and B according to item 2. Let A′ df=A × Σ∗ and B′ df=B × Σ∗. A′ and B′are disjoint, paddable, and NP-complete. A′ ∪B′ = (A ∪B)× Σ∗. Hence A′ ∪B′≤p

mA ∪B andtherefore, A′ ∪ B′ is not NP-complete.
3⇒ 4: Choose A and B according to item 3. We may assume that there exists a polynomial-time computable permutation π on Σ∗ such that
• for all x, π(π(x)) = x, and
• A≤p

mB and B≤p
mA, both via π.

Otherwise, we use 0A ∪ 1B and 1A ∪ 0B instead of A and B; and π is the permutation on Σ∗ thatflips the first bit.Let A′ be any paddable NP-complete set. So A′ and A are paddable and many-one equiva-lent. Therefore, A′ and A are p-isomorphic, i.e., there exists f , a polynomial-time computable,polynomial-time invertible permutation on Σ∗, such that A′≤p
mA via f .Let B′ df= f−1(B). B′≤p

mB via f and therefore, B′ and B are p-isomorphic. It follows that B′is paddable and NP-complete. A′ ∩ B′ = ∅, since A ∩ B = ∅. Moreover, A′ ∪ B′≤p
mA ∪ B via

f and hence, A′ ∪ B′ is not NP-complete. Let π′(x) df= f−1(π(f(x))). So π′ is a polynomial-timecomputable permutation on Σ∗. For all x,
π′(π′(x)) = f−1(π(f(f−1(π(f(x)))))) = x.

Moreover, for all x,
x ∈ A′ ⇔ f(x) ∈ A⇔ π(f(x)) ∈ B ⇔ π′(x) ∈ B′.

Therefore, A′≤p
mB

′ via π′, and analogously, B′≤p
mA
′ via π′.

4⇒ 1: Follows immediately, since SAT is paddable and NP-complete.
1⇒ 5: Choose A and B according to item 1, and let A′ be an arbitrary NP-complete set. Let

f ∈ PF such that A′≤p
mA via f . B′ df={x ∣∣ f(x) ∈ B}. Clearly, B′ ∈ NP and A′ ∩ B′ = ∅, since

A ∩ B = ∅. For all x,
x ∈ A′ ∪ B′ ⇔ f(x) ∈ A ∨ f(x) ∈ B ⇔ f(x) ∈ A ∪ B.

So A′ ∪ B′≤p
mA ∪ B via f and therefore, A′ ∪ B′ is not NP-complete.

5⇒ 1: Trivial.
2
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Next we state relations between our question and propositional proof systems [CR79]. Therecent paper of Glaßer, Selman, Sengupta, and Zhang [GSSZ03] contains definitions of the relevantconcepts: propositional proof systems (pps), optimal pps, for a pps f , the canonical disjoint NP-pair (SAT∗,REFf ) of f , and reductions between disjoint NP-pairs. If a propositional proof system
f is optimal, then Razborov [Raz94] has shown that the canonical disjoint NP-pair of f is ≤pp

m -complete. Therefore, it is natural to ask, for any proof system f , whether the union SAT∗ ∪REFfof the canonical pair is complete for NP. However, this always holds. It holds for trivial reasons,because SAT reduces to SAT∗ ∪ REFf by mapping every x to (x, ε). Since x does not have aproof of size 0, we never map to REFf . However, x ∈ SAT ⇔ (x, ε) ∈ SAT∗. Nevertheless,it is interesting to inquire, as we do in the following theorem, whether some perturbation of thecanonical proof system might yield disjoint sets in NP whose union is not complete.
Theorem 5.10 Assume P 6= NP and there exist disjoint sets A and B in NP such that A is NP-complete but A ∪ B is not NP-complete. Then there exists a pps f and a set X ∈ P such that

1. SAT∗ ∩X is NP-complete and
2. (SAT∗ ∩X) ∪ (REFf ∩X) is not NP-complete.

Proof If NP = coNP, then SAT has a polynomially bounded pps f . Let p be the bound and let
X df={(x, y)

∣∣ y = 0p(|x|)}. Clearly, SAT∗ ∩X is NP-complete. Observe that
(SAT∗ ∩X) ∪ (REFf ∩X) = X.

Since the latter set is in P and P 6= NP, it cannot be NP-complete. So in this case we are done.From now on, let us assume that NP 6= coNP. By Theorem 5.9, there exists B′ ∈ NP suchthat B′ ⊆ SAT and SAT ∪B′ is not NP-complete. Let C ∈ P and p be a polynomial such that forall x,
x ∈ B′ ⇔ ∃y ∈ Σp(|x|)[(x, y) ∈ C].

Choose a polynomial-time-computable, polynomial-time-invertible pairing function 〈·, ·〉 such thatfor all x and y, |〈x, y〉| = 2|xy|. Define the following pps:

f(z) df=





x if z = 〈x, y〉, |y| = p(|x|), and (x, y) ∈ C
x if z = 〈x, 022|x| 〉 and x ∈ SAT

false otherwise
Observe that f is a pps. Define

X df={(x, 0m)
∣∣m = 2(|x|+ p(|x|))}.

X ∈ P. Let SAT′ df= SAT∗ ∩X and REF′ df= REFf ∩X . SAT′ ∈ NP and REF′ ∈ NP. Moreover,
SAT′ is NP-complete.
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It remains to show that SAT′∪REF′ is not NP-complete. Let α be a fixed element in SAT ∪B′.(Such an element exists, because otherwise NP = coNP.) We show SAT′ ∪ REF′≤p
mSAT ∪ B′via the following reduction function:

h(x, y) df=





x if (x, y) ∈ X
α otherwise

Assume (x, y) ∈ SAT′∪REF′. Hence (x, y) ∈ X and therefore, y = 02(|x|+p(|x|)) and h(x, y) = x.If (x, y) ∈ SAT′, then h(x, y) = x ∈ SAT. If (x, y) ∈ REF′, then there exists z ∈ Σ≤2(|x|+p(|x|))

such that f(z) = x. By the definition of f , there exists z ∈ Σ2(|x|+p(|x|)) such that z = 〈x, y〉,
|y| = p(|x|), and (x, y) ∈ C. Hence h(x, y) = x ∈ B′.Now assume (x, y) /∈ SAT′ ∪ REF′. If (x, y) /∈ X , then h(x, y) = α /∈ SAT ∪ B′ and weare done. Otherwise, (x, y) ∈ X . First, h(x, y) = x /∈ SAT, since (x, y) /∈ SAT′. Second, if
x ∈ B′, then there exists y ∈ Σp(|x|) such that (x, y) ∈ C. Therefore, if x ∈ B′, then there exists
z ∈ Σ≤2(|x|+p(|x|)) such that f(z) = x. The latter is not possible, since (x, y) /∈ REF′. It followsthat h(x, y) = x /∈ B′.This shows SAT′ ∪ REF′≤p

mSAT ∪ B′ via h. Hence, SAT′ ∪ REF′ is not NP-complete. 2

In Theorem 5.11 we show that if there are sets A and B belonging to NP such that A ∩B = ∅and A ∪B is not NP-complete, then (A,B) cannot be a ≤pp
sm-complete disjoint NP-pair.

Theorem 5.11 If (A,B) is a ≤pp
sm-complete disjoint NP-pair, then A, B, and A ∪ B are NP-complete.

Proof Since the disjoint NP-pair (SAT, {z ∧ z̄}) ≤pp
sm-reduces to (A,B), SAT≤p

mA, i.e., A is
NP-complete. Similarly, B is NP-complete as well. Assume that (SAT, {z ∧ z̄}) ≤pp

sm-reduces to
(A,B) via some reduction function f . Let

f ′(x) df=





f(x) if x 6= z ∧ z̄
f(y ∧ z ∧ z̄) if x = z ∧ z̄

We obtain f ′(SAT) ⊆ A ∪ B and f ′(SAT) ⊆ A ∪B. Hence A ∪B is NP-complete. 2

According to the comments after Theorem 5.8, the converse of Theorem 5.11 does not holdif either P 6= UP or P 6= NP ∩ coNP. Since we know that there exists a ≤pp
sm-complete disjointNP-pair if and only if there is a ≤pp

m -complete disjoint NP-pair [GSS03], we obtain the followingcorollary.
Corollary 5.12 If ≤pp

m -complete disjoint NP-pairs exist, then there is a ≤pp
m -complete disjoint NP-pair such that both components and their union are NP-complete.
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5.2 Relativizations
We have been considering the following questions:

1. Do there exist disjoint sets A and B in NP such that both A and B are ≤p
T -complete, but

A ∪B is not ≤p
T -complete?

2. Do there exist disjoint sets A and B in NP such that both A and B are NP-complete, but
A ∪B is not NP-complete?

We observe here that there exist oracles relative to which both of these questions have both“yes” and “no” answers. This implies that resolving these questions would require nonrelativizabletechniques.
Proposition 5.13 If the union of every two disjoint ≤p

T -complete sets for NP is ≤p
T -complete for

NP, then P 6= NP⇒ NP 6= coNP.
Proof Let us assume that NP = coNP. Then SAT ∪ SAT = Σ∗, which is ≤p

T -complete if andonly if P = NP. 2

Therefore, relative to an oracle for which P 6= NP = coNP holds [BGS75], the answer toquestion (1) is “yes”. Also, it is obvious that relative to an oracle for which P = NP, the answerto this question is “no” [BGS75].Now we consider question (2).
Proposition 5.14 If the union of every two disjoint NP-complete sets is NP-complete, then NP 6=coNP.

Therefore, an oracle relative to which NP = coNP holds will answer “yes” to question (2).We learned already that if A and B are disjoint, NP-complete, P-separable sets, then A∪B is NP-complete. Homer and Selman [HS92] construct an oracle relative to which all disjoint NP-pairsare P-separable, yet P 6= NP. Therefore, relative to this oracle, the answer to question (2) is “no.”Indeed, relative to this oracle, the answer to question (1) is “no” also.
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[HL94] S. Homer and L. Longpré. On reductions of np sets to sparse sets. Journal of Computerand System Sciences, 48(2):324–336, 1994.

29



  

[HNOS96] E. Hemaspaandra, A. Naik, M. Ogiwara, and A. Selman. P-selective sets and reducingsearch to decision vs. self-reducibility. Journal of Computer and System Sciences,53:194–209, 1996. Special Issue of papers selected from the Eighth Annual IEEEConference on Structure in Complexity Theory.
[HRW97] L. Hemaspaandra, J. Rothe, and G. Wechsung. Easy sets and hard certificate schemes.Acta Informatica, 34:859–879, 97.
[HS92] S. Homer and A. Selman. Oracles for structural properties: The isomorphism problemand public-key cryptography. Journal of Computer and System Sciences, 44(2):287–301, 1992.
[HW94] S. Homer and J. Wang. Immunity of complete problems. Information and Computa-tion, 110(1):119–129, 1994.
[Mah82] S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman andHartmanis. Journal of Computer and Systems Sciences, 25(2):130–143, 1982.
[MY85] S. Mahaney and P. Young. Reductions among polynomial isomorphism types. Theo-retical Computer Science, 39:207–224, 1985.
[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer andSystem Sciences, 49:149–167, 1994.
[Ogi91] M. Ogiwara. On P-closeness of polynomial-time hard sets. manuscript, 1991.
[OW91] M. Ogiwara and O. Watanabe. On polynomial-time bounded truth-table reducibilityof NP sets to sparse sets. SIAM Journal on Computing, 20(3):471–483, 1991.
[PS01] A. Pavan and A. Selman. Separation of NP-completeness notions. In Proceedings 16thIEEE Conference on Computational Complexity. IEEE Computer Society, 2001.
[Raz94] A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006, ElectronicColloquium on Computational Complexity, 1994.
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