
The Complexity of Constructing Pseudorandom Generators from Hard
Functions∗

(Preliminary Version)

Emanuele Viola†

Division of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138
viola@eecs.harvard.edu

Abstract

We study the complexity of building pseudorandom generators (PRGs) from hard functions.
We show that, starting from a function f : {0, 1}l → {0, 1} that is mildly hard on average, i.e. every circuit

of size 2Ω(l) fails to compute f on at least a 1/poly(l) fraction of inputs, we can build a PRG : {0, 1}O(logn) →
{0, 1}n computable in ATIME (O(1), log n) = alternating time O(logn) with O(1) alternations. Such a PRG
implies BP ·AC0 = AC0 under DLOGTIME -uniformity.

On the negative side, we prove a tight time-alternations tradeoff for black-box PRG constructions that are
based on worst-case hard functions. We also prove a tight time-alternations tradeoff for black-box worst-case
hardness amplification, which is the problem of producing an average-case hard function starting from a worst-
case hard one. In particular, we obtain that there is no black-box worst-case hardness amplification within the
polynomial time hierarchy. These lower bounds are obtained by showing that constant depth circuits cannot
compute extractors and list-decodable codes.

1. Introduction

The fascinating connection between hardness and randomness was first noticed by Yao [43] and by Blum and
Micali [7]. A decade later, Nisan and Wigderson [28] showed how to build pseudorandom generators (PRGs) from
strong average-case hardness assumptions, namely the existence of functions that are hard on average for circuits.
Since then, much research [28, 4, 14, 18] was devoted to relaxing this assumption to a worst-case one, namely
the existence of functions of high circuit complexity. This research culminated in [18] where it is shown how to
amplify the worst-case hardness of a function to the average-case hardness required in [28]. More direct proofs
and improved results were obtained in [36, 17, 33, 40]. Finally, in [40] the ‘right’ trade-off between worst-case
hardness and randomness was achieved for the full range of parameters.

∗A preliminary version of this paper was published in Proceedings of the 18th Annual Conference on Compuational Complexity, IEEE,
Aarhus, 2003, pp. 53-69.

†Research supported in part by NSF grant CCR-0133096.

Electronic Colloquium on Computational Complexity, Report No. 20 (2004)

ISSN 1433-8092

The problem we study: In this paper we address the following problem: What is the complexity of building a
PRG from a hard function? There are at least two reasons for studying this problem. First, we want to understand
the computational relationship between two fundamental quantities in theoretical computer science: hardness and
randomness. Second, PRGs are a basic tool whose variety of applications justifies the quest for more and more
efficient constructions.

Derandomization: An important application that demands more and more efficient PRGs is the high-end de-
randomization of a complexity class C, that is proving BP · C = C. For such application we need PRGs with
logarithmic seed length, which can be built starting from a function having exponential circuit complexity. For
example, Impagliazzo and Wigderson [18] show that BP · P = P if E := TIME(2O(n)) requires circuits of
size 2Ω(n). This derandomization works as follows. We run the algorithm we want to derandomize using all the
possible outputs of the PRG in place of true random bits. Then we decide according to majority vote. Since the
seed length is logarithmic, this process is efficient, i.e. only gives a polynomial slow-down.

It is then clear that if we aim to derandomize a probabilistic complexity class BP ·C using a PRG, then the PRG
must be computable in C. Therefore, the lower the complexity class we want to derandomize, the more efficient
the PRG must be. For example, already to derandomize BP · L (where L := SPACE (log n)), one needs a more
efficient PRG construction than the one given in [28] and used in [18] to derandomize BP · P . This problem is
solved by Klivans and van Melkebeek [22] who obtain BP ·L = L under the assumption that deterministic linear
space requires exponential size circuits.

In this paper we study more efficient PRG constructions that could be used to derandomize probabilistic classes
below BP · L. In particular, we aim to prove BP · AC0 = AC0 , where AC0 denotes the class of constant depth
circuits.

Note that the high-end derandomization BP · AC0 = AC0 (or even BP · AC0 ⊆ P) is not known to hold
unconditionally. In fact, the most efficient derandomization of BP · AC0 is the one obtained by Nisan [27] that
runs in quasipolynomial time. Such derandomization is based on lower bounds for AC0 circuits of size 2n

Ω(1)
,

such as the ones shown by Håstad [13]. On the other hand, the high-end derandomization BP · AC0 = AC0 (or
even BP · AC0 ⊆ P) through a PRG requires lower bounds for AC0 circuits of size 2Ω(n). But it is consistent
with the current state of knowledge that every function in E has circuits of size 2o(n) and depth 3 (cf., [16]).

In this paper, derandomization always means high-end derandomization.

PRGs in AC0 : The main technical question addressed in this paper is: Starting from a hard function, can you
build a PRG in AC0 ? To make sense of this question, one has to specify what is the uniformity condition for the
circuits. This is because, under P -uniformity, the answer is clearly ‘yes’. Indeed, since it is known how to build
a PRG in P from a hard function, we can just hardwire all the outputs of the PRG in the AC0 circuit1, and then
have the AC0 circuit compute the PRG via a simple table look-up. But the circuit is not REALLY computing the
PRG! All the work is done by the Turing machine describing the circuit!

This phenomenon, of a uniformity condition that hides the real power of circuits, is well-known in circuit
complexity. There is a consensus that the ‘right’ uniformity condition for AC0 is DLOGTIME -uniformity.
Informally, a family of circuits is DLOGTIME -uniform if given indices to two gates one can decide their type
and whether they are connected in linear time in the length of the indices (which is logarithmic time in the size
of the circuit). The evidence that DLOGTIME -uniformity is the right uniformity condition for AC0 comes
from the fact that DLOGTIME -uniform AC0 has several different and elegant characterizations [6, 41]. In
particular, DLOGTIME -uniform AC0 is equivalent to ATIME (O(1), log n): Alternating time O(logn) with
O(1) alternations. This is the logarithmic time hierarchy introduced by Sipser [35], a class within L.

1For this discussion we assume that the PRG has logarithmic seed length, so that it has only polynomially many outputs.

Table 1. A comparison of our main results with previous ones.

Hardness Amplification PRG construction Derandomization
from strong hardness

for functions : {0, 1}l → {0, 1} for PRG : {0, 1}O(logn) → {0, 1}n

Previous Results

Worst-Case Hard Worst-Case
⇓ Complexity of PRG Hardness Assumption

Strongly Hard ⇓

TIME (2O(l)) [4, 14, 18] TIME (nO(1)) [28] BP · P = P [18]
SPACE (O(l)) [22] SPACE (O(log n)) [22] BP · L = L [22]

Our Results

Worst-Case Hard Mildly Hard Mild Average-Case
⇓ ⇓ Complexity of PRG Hardness Assumption

Mildly Hard Strongly Hard ⇓

Impossible in BP ·ATIME (O(1), log n)

ATIME (O(1), 2o(l)) ATIME (O(1), l) ATIME (O(1), logn) ‖
if black-box [Theorem 4.2] [Theorem 4.1] ATIME (O(1), log n)

[Corollary 7.5] [Theorems 4.3, 4.7]

Note that a PRG computable in ATIME (O(1), log n) allows us to derandomize BP ·AC0 under DLOGTIME -
uniformity. Previous to this paper the most uniform derandomization of BP · AC0 was under L-uniformity; that
is, circuit families described by Turing machines running in logarithmic space. Such derandomization may be
obtained using the techniques in [22, 21].

Our results: Our main results are summarized and compared to previous ones in Table 1.
On the positive side, we show that we can compute a PRG : {0, 1}O(log n) → {0, 1}n in ATIME (O(1), log n)

from a mild average-case hardness assumption, i.e. the existence of a function f : {0, 1}l → {0, 1} such that for
every circuit C of size 2Ω(l) we have Prx[C(x) 6= f(x)] ≥ 1/poly(l). The main new technical tool to achieve
this is a construction of combinatorial designs that is computable in ATIME (O(1), log n). We also show that it
is possible to amplify mild average-case hardness up to strong average-case hardness within ATIME (O(1), l),
where l is the input size of the mild average-case hard fuction.

On the negative side, we show a lower bound for PRG constructions from worst-case hard functions: We prove
that there is no black-box PRG construction from worst-case hard functions that is computable in alternating time
with O(1) alternations, even if we allow time no(1) where n is the output length of the PRG. Note that most known
PRG constructions are black-box [18, 22, 17, 36, 33, 40]. We also show that there is no black-box worst-case to
mild average-case hardness amplification computable in alternating time with O(1) alternations, even if we allow
time 2o(l) where l is the input size of the worst-case hard function. Again, note that most known approaches [4, 36]
are black-box. Our lower bound for hardness amplification implies that worst-case hardness amplification within
the polynomial time hierarchy cannot be black-box.

Since [18], PRG constructions from worst-case hard functions have been simplified and strengthened [17, 36,
33, 40]. In particular, the latest constructions do not fall in the twofold paradigm of ‘hardness amplification
+ Nisan-Wigderson PRG’, but directly transform worst-case hardness into randomness. However, our results

suggest that the process of transforming worst-case hardness into randomness is twofold: Black-box worst-case
hardness amplification is harder than black-box PRG constructions from mild average-case hardness.

We also study classes slightly larger than BP · AC0 , such as BP · TC0 , whose derandomization can be based
on a worst-case hardness assumption. In addition, using results by Agrawal [1], we show that our derandomization
results can be based on the weaker hardness assumption that there exists a function that is hard for constant depth
circuits (whereas the discussion above refers to hardness against general circuits).

Our techniques: We now sketch the ideas behind our lower bounds. We prove them for constant depth circuits,
the nonuniform analogue of alternating time with O(1) alternations. Our lower bound for black-box PRG con-
structions employs the following ideas. First we use the fact, discovered by Trevisan [38] (see also [39, 32]), that
black-box PRG constructions give rise to ‘good’ extractors [29]. Then we show that constant depth circuits cannot
compute ‘good’ extractors. For this last point we use the notion of noise sensitivity, which is a measure of how
likely the output of a function is to change when the input is perturbed with random noise. On the one hand we
show that extractors are very sensitive to noise, while on the other hand we know that constant depth circuits are
not (by results of Linial, Mansour and Nisan [23] and Boppana [8]). This dichotomy establishes our lower bound.

Our lower bound for black-box worst-case hardness amplifications proceeds along similar lines: First, following
[36, 39], we show that black-box worst-case hardness amplifications give rise to ‘good’ list-decodable codes. Then
we show that ‘good’ list-decodable codes are very sensitive to noise. Again, the lower bound follows from the
fact that constant depth circuits are not very sensitive to noise. It should be noted that a certain lower bound
for black-box worst-case hardness amplifications already follows from our previous results. Namely, if there is a
black-box worst-case hardness amplification then combining this with our black-box PRG construction from mild
average-case hardness one gets a black-box PRG construction from worst-case hardness, and our lower bound
applies. However, we get a more general lower bound through a direct proof.

We show that our time lower bounds are tight. On the other hand, if one insists on a black-box PRG construction
based on worst-case hard functions that is computable in ATIME (O(1), log n), where n is the output length of
the PRG, then one is forced to start with a hardness assumption so strong that worst-case and mild average-case
hardness are equivalent. In such a case, no worst-case hardness amplification is needed, and one can build a PRG
using our construction from mild average-case hard functions. The same tradeoff holds for hardness amplification:
If one insists on black-box worst-case hardness amplification within ATIME (O(1), l), where l is the input size
of the hard function, then one is forced to start with a hardness assumption so strong that worst-case and mild
average-case hardness are equivalent. In such a case, worst-case hardness amplification is vacuous.

Related work: There exist several other works addressing the complexity of PRGs. Some works study the
complexity of building PRGs assuming that some specific problem is hard: Impagliazzo and Naor [15] show how
to construct PRGs based on the assumed intractability of the subset sum problem. In particular, they show how to
construct a PRG : {0, 1}n−θ(logn) → {0, 1}n in AC0 . Naor and Reingold [25] give PRG constructions based on
number-theoretic hardness assumptions. Their PRGs are computable in TC0 .

Other works study which complexity classes can contain PRGs. Kharitonov, Goldberg and Yung [20] and Yu
and Yung [44] prove strong negative results about the ability of various automata and other space-restricted devices
to compute PRGs. Linial, Mansour and Nisan [23] prove that AC0 cannot compute pseudorandom functions (an
object related to PRGs). Cryan and Miltersen [9] consider the question of whether there are PRGs in NC0 .

However, none of the above works address the general question of what is the complexity of constructing a PRG
from any hard function. Moreover, they do not deal with PRGs having logarithmic seed length, corresponding to
high-end derandomization.

It should also be noted that space lower bounds for on-line computation of extractors and list-decodable codes
are proved in [5]. However, these lower bounds hold only in the on-line model of computation and therefore are

incomparable with ours.

Organization: In Section 2 we give some preliminaries. In Section 3 we survey previous results about PRGs
which are needed for the paper. In Section 4 we describe our results. In Section 5 we show how to construct
a PRG computable in ATIME (O(1), log n) from a mild average-case hardness assumption. In Section 6 we
prove our lower bound for black-box PRG constructions from worst-case hardness assumptions. We also discuss
in which sense our results are tight. In Section 7 we prove our lower bound for black-box worst-case hardness
amplification. In Section 8 we relax the hardness assumptions to the existence of functions hard for constant depth
circuits. Finally, Section 9 discusses some open problems.

2. Preliminaries

Complexity: In this paper circuits have unbounded fan-in. The size of a circuit is the number of edges in the
circuit. We denote by AC0 [d] the class of circuits of depth d. AC0 := ∪dAC0 [d]. We denote by TC0 [d] the class
of circuits of depth d with majority gates. TC0 := ∪dTC0 [d]. We denote by CKT the class of circuits with no
depth restriction.

Let C be a circuit class. We also think of C as a class of functions. We say that a function f is in C if f has
C-circuits of polynomial size. In all other cases we will explicitly specify the size of the circuits.

A family {Cn} of circuits is DLOGTIME -uniform if the direct connection language of the circuit family can
be decided in deterministic logarithmic time2. Where the direct connection language is the language of tuples
(t, a, b, y) such that |y| = n, a and b are numbers of gates in Cn, gate b is a child of gate a and gate a is of type t.
In this paper, uniform always means DLOGTIME -uniform.

We denote by ATIME (O(1), l) the class of functions computable in time O(l) with constant number of alter-
nations by a multitape Turing machine. We use the following characterization of uniform AC0 due to Barrington,
Immerman and Straubing:

Theorem 2.1 ([6]). A function f : {0, 1}n → {0, 1} is in uniform AC0 if and only if it is in ATIME (O(1), log n).

Let f : {0, 1}l → {0, 1}O(l), and let f(x)i be the i-th bit of f(x). We say that f is in ATIME (O(1), l) if
the language {(x, i) : f(x)i = 1} is in ATIME (O(1), l). Note that if g is in ATIME (O(1), l) then g ◦ f is in
ATIME (O(1), l): We can compute g(f(x)) by existentially guessing y ∈ {0, 1}O(l), universally verifying that
yi = f(x)i for every i, and then simulating the machine for g on input y.

In this paper we need to show that some functions are in ATIME (O(1), l). We sometimes make use of the
following result, usually attributed to Nepomnjaščiĭ [26]:

Theorem 2.2 ([26]). For any ε > 0, if f : {0, 1}l → {0, 1} is computable by an algorithm running in time poly(l)
and using space l1−ε then f is in ATIME (O(1), l).

We will occasionally consider the following complexity classes: We denote by CTIME (O(1), l) the extension
of ATIME (O(1), l) where we also allow for counting quantifiers. This class was introduced by Wagner [42]
and studied, among others, by Torán [37]. Along the same lines we denote by A⊕TIME (O(1), l) the extension
of ATIME (O(1), l) where we also allow for parity quantifiers. The same techniques in Theorem 2.1 give the
following theorem.

Theorem 2.3. Let f : {0, 1}n → {0, 1}. f is in uniform TC0 if and only if it is in CTIME (O(1), log n). f is in
uniform AC0 with parity gates if and only if it is in A⊕TIME (O(1), log n).

2Logarithmic time Turing machines have a special address tape. On a given time step the machine has access to the bit of the input
denoted by the contents of the address tape.

Let C be a complexity class. The class BP · C consists of the languages L for which there is V ∈ C and a
polynomial p such that x ∈ L ⇒ Pry:|y|=p(|x|)[V (x, y) = 1] ≥ 2/3 and x 6∈ L ⇒ Pry:|y|=p(|x|)[V (x, y) = 1] ≤
1/3.

For background on circuit complexity and uniformity the reader may consult the survey by Allender and Wagner
[3] and the textbook by Vollmer [41].

Hardness and pseudorandomness: We denote by Ul a random variable uniform on {0, 1}l.
Let C be a circuit class. A function f : {0, 1}l → {0, 1} is (g, δ)-hard for C if for every circuit C ∈ C of size at

most g we have:
Pr[C(Ul) = f(Ul)] < δ.

Worst-case hardness corresponds to δ = 1. Our threshold for average-case hardness is mild average-case
hardness, corresponding to δ at most (1− 1/lc) for some c.

A function G : {0, 1}u → {0, 1}n is a (n, ε)-pseudorandom generator (PRG) against C if for all C ∈ C of size
at most n we have:

∣

∣

∣
Pr[C(G(Uu)) = 1]− Pr[C(Un) = 1]

∣

∣

∣
≤ ε.

A n-PRG is a (n, 1/n)-PRG. We refer to u as the seed length of G.

3. Previous Results

In this section we give the background about PRGs needed for the paper. We start with PRGs against CKT .
Then we focus on PRGs against constant depth circuits.

3.1. PRGs against CKT

Nisan and Wigderson [28] show how to build PRGs from strong average-case hardness assumptions. We recall
the definition of their PRG and state their result.

Definition 3.1 ([28]). An (m, l) design of size n over a universe U is a collection (S1, ..., Sn) of subsets of U ,
each of size l, such that for any 1 ≤ i < j ≤ n, the intersection Si ∩ Sj has size at most m.

For a function f : {0, 1}l → {0, 1}, and a (log n, l) design of size n over a universe of size u, the Nisan-
Wigderson PRG NWf is defined as

NWf : {0, 1}u → {0, 1}n

NWf (x) = f(x|S1) ◦ · · · ◦ f(x|Sn
),

where x|S is the string obtained from x by selecting the bits indexed by S.

Theorem 3.2 ([28]). If there is a function f : {0, 1}l → {0, 1} in E that is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT

then there is a n-PRG against CKT with seed length O(logn) and computable in time poly(n), and in particular
BP · P = P .

Proof Idea: The PRG is NWf for a family of (log n, c logn) designs of size n over a universe of size d logn,
for some constants c, d. Specifically, one needs such a family for every given c and some d. Nisan and Wigderson
show that these families are computable in time poly(n), and that NWf is a n-PRG. The ‘in particular’ part is
proved as follows: We run the algorithm we want to derandomize using all the possible outputs of the PRG in
place of true random bits. Then we decide according to majority vote.

An important point to keep in mind is that, although we are assuming that f is in E, the PRG is computable in
time poly(n). This comes from the fact that f is evaluated on inputs of length O(logn).

A major line of research in the last ten years has focused on relaxing the average-case hardness assumption in
Theorem 3.2 to a worst-case one, that is, the existence of a function in E that is (2Ω(l), 1)-hard for CKT . This
was first achieved through the following hardness amplifications within E.

First, in [4], random self-reducibility of EXP-complete problems is used to convert a worst-case hard function
to one with mild average-case hardness.

Theorem 3.3 ([4]). If there is a function f : {0, 1}l → {0, 1} in E that is (2Ω(l), 1)-hard for CKT , then there is
a function f ′ ∈ E that is (2Ω(l), 1− 1/poly(l))-hard for CKT .

Proof Idea: f ′ is a small degree, multi-variate polynomial extension of f . For a suitable choice of parameters,
the random self-reducibility of low-degree polynomials implies that f ′ has the required hardness.

Then in [14] mild average-case hardness is amplified to constant hardness.

Theorem 3.4 ([14]). If there is a function f : {0, 1}l → {0, 1} in E that is (2Ω(l), 1− 1/poly(l))-hard for CKT ,
then there is a function f ′ ∈ E that is (2Ω(l), 2/3)-hard for CKT .

Proof Idea: Let f ′ : {0, 1}O(l) → {0, 1} be:

f ′(a, r) := 〈f(x1) ◦ · · · ◦ f(xl), r〉

where |a| = O(l), |r| = l and x1, ..., xl are pairwise independent samples in {0, 1}l obtained from seed a, and
〈., .〉 denotes inner product mod 2. In other words, f ′ is the inner product of the random string r with l evaluations
of f on pairwise independent inputs x1, ..., xl.

It is shown in [14] that, if we apply this transformation a constant number of times to f , then we obtain a
function with constant hardness.

Finally, in [18] it is shown how to amplify constant hardness to the kind of hardness required in Theorem 3.2.

Theorem 3.5 ([18]). If there is a function f : {0, 1}l → {0, 1} in E that is (2Ω(l), 2/3)-hard for CKT , then there
is a function f ′ ∈ E which is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT .

Proof Idea: Let f ′ : {0, 1}O(l) → {0, 1} be:

f ′(x, r, v1, p) := 〈f(x|S1 ⊕ v1) ◦ · · · ◦ f(x|Sl
⊕ vl), r〉,

where ⊕ denotes bit-wise XOR, (S1, . . . , Sl) is a (l, cl) design of size l over a universe of size dl, for some
c, d as in Theorem 3.2, and (v1, . . . , vl) is a walk in an expander graph over {0, 1}O(l) with constant degree and
bounded second largest eigenvalue. This walk is obtained starting at v1 and walking according to p.

Combining all these results, one gets:

Theorem 3.6 ([28, 4, 14, 18]). If there is a function f : {0, 1}l → {0, 1} in E that is (2Ω(l), 1)-hard for CKT

then there is a n-PRG against CKT with seed length O(logn) and computable in time poly(n), and in particular
BP · P = P .

After [18] PRGs constructions from worst-case hard functions have been simplified and strengthened [17, 36,
33, 40]. In particular, last constructions do not fall in the twofold paradigm ‘hardness amplification + NW PRG’,
but directly transform worst-case hardness into pseudorandomness. However, our results suggest that transforming
worst-case hardness into pseudorandomness is a substantially harder task than transforming mild average-case
hardness into pseudorandomness. Therefore we use the earlier constructions that allow us to investigate the fine
structure of hardness amplification.

Klivans and van Melkebeek [22] prove a space-bounded analogue of Theorem 3.6. They show how to amplify
hardness within linear space, then they give a more efficient implementation of the NW PRG. We summarize their
final result in the following theorem.

Theorem 3.7 ([22]). If there is a function f : {0, 1}l → {0, 1} in SPACE (l) that is (2Ω(l), 1)-hard for CKT , then
there is a n-PRG against CKT with seed length O(logn) and computable in SPACE (log n), and in particular
BP · L = L.

3.2. PRGs against Constant Depth Circuits

A natural question, addressed by Agrawal [1], is: What are the hardness assumptions needed for constructing
PRGs against more restricted classes of circuits? As pointed out in [1], in all the proofs of correctness of the above
constructions the depth only increases by a constant factor, provided that the circuits have majority gates. This
gives the following result:

Theorem 3.8 ([28, 4, 14, 18, 1]). There is a constant c such that if there is a function f : {0, 1}l → {0, 1} in
E that is (2Ω(l), 1)-hard for TC0 [d + c], then there is a n-PRG against TC0 [d] with seed length O(logn) and
computable in time poly(n). In particular, if for every d there is a function f : {0, 1}l → {0, 1} in E that is
(2Ω(l), 1)-hard for TC0 [d], then BP · TC0 = TC0 .

Now we focus on PRGs against AC0 . Note that Theorem 3.8 does not immediately translate to AC0 because it
is known that AC0 cannot compute majority [10].

Nisan [27] builds an unconditional PRG against AC0 , using the results by Håstad [13] on the average-case
hardness of the function parity(x1 . . . xl) := (

∑

i xi) mod 2.

Theorem 3.9 ([27]). For every d there is a n-PRG against AC0 [d] with seed length logO(1) n, and computable in
time poly(n).

Proof Idea: The PRG is NWparity for a family of (log n, logc n) designs of size n over a universe of size loge n,
for some constants c, e. Specifically, one needs such a family for every given c and some e. Nisan shows how to
construct such families in time poly(n).

Although Nisan’s PRG does not rely on any complexity assumption, it has polylogarithmic seed length, and
therefore it cannot be used directly to obtain BP ·AC0 = AC0 .

One can try to build, under the assumption that some function is hard for AC0 , a PRG with logarithmic seed
length against AC0 , following the construction in Section 3.1. The difficulty in this approach is that the proof of
correctness of the construction in Theorem 3.5 (and other approaches like [36]) does not carry through in AC0 [1].

This problem is discussed and then solved by Agrawal [1]:

Theorem 3.10 ([1]). There is a constant c such that if there is a function f : {0, 1}l → {0, 1} in E that is
(2Ω(l), 1)-hard for AC0 [c ·d], then there is a (n, 1/ logO(1) n)-PRG against AC0 [d] with seed length O(logn) and
computable in time poly(n).

Proof Idea: Agrawal’s PRG is obtained combining a conditional PRG G with Nisan’s unconditional PRG from
Theorem 3.9. Since Nisan’s PRG has polylogarithmic seed length, we can get a combined PRG with logarithmic
seed length if G has only polynomial stretch (i.e. G : {0, 1}l → {0, 1}l

O(1)
). Now, to build such a G we can use

exactly the same construction in Section 3.1: Agrawal shows that, since the stretch of G is only polynomial, all
the proofs of correctness carry through in AC0 .

Note that Theorem 3.10 gives a (n, 1/ logO(1) n)-PRG instead of a n-PRG. However, this is sufficient for
derandomization purposes.

As we already mentioned, a PRG with logarithmic seed length allows us to derandomize an algorithm provided
that we can compute majority. While it is known that majority cannot be computed in AC0 [13], Klivans [21]
notices that one can use Ajtai’s construction [2] to approximately compute majority in AC0 , which is enough for
the derandomization to go through.

This gives the following corollary.

Corollary 3.11 ([1, 21]). If for every d there is a function f : {0, 1}l → {0, 1} in E that is (2Ω(l), 1)-hard for
AC0 [d], then BP ·AC0 = AC0 .

Before ending our survey, a comment about the uniformity conditions is in order. Theorem 3.8 gives, condi-
tionally, BP · TC0 = TC0 , and Corollary 3.11 gives, conditionally, BP · AC0 = AC0 . Note we did not specify
the uniformity condition for these circuit classes. To our knowledge, previous to this paper the best result in this
direction was that these derandomizations hold for L-uniform circuit families. That is, circuit families described
by a Turing machine running in logarithmic space. This may be obtained using the techniques in [22, 21].

4. Our Results

In this section we describe our results. The main ones are summarized and compared to previous results in
Table 1.

Our goal is to cast the results in Section 3 to alternating time with O(1) alternations: We aim to construct a
PRG computable in ATIME (O(1), logn) which could then be used to derandomize BP · ATIME (O(1), log n),
i.e. proving BP · ATIME (O(1), log n) = ATIME (O(1), log n). Note that, because of Theorem 2.1, this deran-
domization corresponds to the derandomization of uniform AC0 , i.e. uniform BP ·AC0 = uniformAC0 . Similar
considerations apply to our other derandomizations because of Theorem 2.3.

Improving on the complexity of the design construction in the NW PRG, we obtain the following:

Theorem 4.1. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1/2+2−Ω(l))-hard for
CKT then there is a n-PRG against CKT with seed length O(logn) and computable in ATIME (O(1), log n),
and BP ·ATIME (O(1), log n) = ATIME (O(1), logn).

In analogy with the results discussed in Section 3.1, to relax the average-case hardness assumption in Theorem
4.1 we study hardness amplification in the linear exponential analogue of ATIME (O(1), log n), that is, linear
alternating time with O(1) alternations.

We notice that the constructions in Theorems 3.4 and 3.5 can be carried out within linear alternating time with
O(1) alternations.

Theorem 4.2. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1 − 1/poly(l))-hard
for CKT , then there is a function f ′ ∈ ATIME (O(1), l) which is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT .

Combining Theorems 4.1 and 4.2 we can build a PRG computable in ATIME (O(1), log n) from a function of
mild average-case hardness.

Theorem 4.3. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1−1/poly(l))-hard for
CKT then there is a n-PRG against CKT with seed length O(logn) and computable in ATIME (O(1), log n),
and BP ·ATIME (O(1), log n) = ATIME (O(1), logn).

Theorems 4.1, 4.2 and 4.3 are stated formally and proved in Section 5.

On the negative side, we show a lower bound for black-box PRG constructions starting from hard functions.

Theorem 4.4 (Informal). There is no black-box PRG construction G : {0, 1}O(log n) → {0, 1}n from worst-case
hard functions such that G is computable in alternating time with O(1) alternations, even if we allow time no(1).

Note that most constructions are black-box [18, 22, 17, 36, 33, 40].
It is interesting to note that the bottleneck is indeed worst-case hardness amplification:

Theorem 4.5 (Informal). There is no black-box worst-case to mild average-case hardness amplification com-
putable in alternating time with O(1) alternations, even if we allow subexponential time.

Note that Theorem 4.5 implies that there is no black-box worst-case hardness amplification in the polynomial
time hierarchy.

Again, note that most known approaches [4, 36] are black-box.

Theorems 4.4 and 4.5 are tight in the following sense: The only settings of parameters which are not ruled
out correspond either to computational resources that essentially allow for the worst-case hardness amplification
in Theorem 3.3, that combined with Theorem 4.3 gives a PRG construction from worst-case hard functions, or
else they correspond to hardness assumptions so strong that worst-case hardness and mild average-case hardness
collapse, in which case no worst-case hardness amplification is needed, and to get a PRG one can apply directly
Theorem 4.3.

It should be noted that the lower bounds in Theorems 4.4 and 4.5 hold for constant depth circuits, the nonuni-
form analogue of alternating time with O(1) alternations.

Theorems 4.4 and 4.5 are proved in Sections 6 and 7, respectively.

We note that worst-case to average-case hardness amplification becomes feasible if one allows one parity gate.
This allows us to build a PRG computable in A⊕TIME (O(1), log n) from a worst-case hardness assumption.

Theorem 4.6. If there is a function f : {0, 1}l → {0, 1} in A⊕TIME (O(1), l) that is (2Ω(l), 1)-hard for CKT

then there is a n-PRG against CKT with seed length O(logn) and computable in A⊕TIME (O(1), log n), and
BP ·A⊕TIME (O(1), log n) = A⊕TIME (O(1), log n).

Theorem 4.6 is proved in Section 6.1.

What is not completely satisfactory in the above derandomization results is that our hardness assumptions
are qualitatively stronger than the corresponding derandomizations. For example, consider Theorem 4.3. The
nonuniform analogue of ATIME (O(1), logn) is AC0 , not CKT . So one wants the same conclusions under the
weaker assumption of a hard function for AC0 . Using Agrawal’s construction presented in Theorem 3.10, we
obtain the following theorem.

Theorem 4.7. There is a constant c such that if there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l)
that is (2Ω(l), 1 − 1/lb)-hard for AC0 [c · max(b, d)], then there is a (n, 1/ logO(1) n)-PRG against AC0 [d] with
logarithmic seed length and computable in ATIME (O(1), logn).

In particular, if there is a constant b such that for every d there is a function in ATIME (O(1), l) that is
(2Ω(l), 1− 1/lb)-hard for AC0 [d], then BP ·ATIME (O(1), log n) = ATIME (O(1), logn).

Finally, we point out the following derandomization of BP · CTIME (O(1), log n) under worst-case hardness
assumptions for TC0 .

Theorem 4.8. There is a constant c such that if there is a function f : {0, 1}l → {0, 1} in CTIME (O(1), l) that is
(2Ω(l), 1)-hard for TC0 [c+ d], then there is a n-PRG against TC0 [d] with seed length O(logn) and computable
in CTIME (O(1), log n).

In particular, if for every d there is a function f : {0, 1}l → {0, 1} in CTIME (O(1), l) that is (2Ω(l), 1)-hard
for TC0 [d], then BP · CTIME (O(1), log n) = CTIME (O(1), log n).

Theorems 4.7 and 4.8 are proved in Section 8.

5. Average-Case Hardness vs. Randomness

In this section we show how to build a n-PRG G : {0, 1}O(logn) → {0, 1}n against CKT computable in
ATIME (O(1), logn) starting from a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1 −
1/poly(l))-hard for CKT . In particular, we prove Theorems 4.1, 4.2 and 4.3.

Here our main new technical contribution is the construction of the family of designs to be used in the NW
PRG, which we now discuss.

First we show how to compute pairwise independent samples over {0, 1}l in ATIME (O(1), l). A matrix T with
entries in {0, 1} is Toeplitz if it is constant on diagonals. It is well known (cf., [11]) that if we choose a random
l × l Toeplitz matrix T and a random vector U ∈ {0, 1}l, then the 2l random variables {Tx + U : x ∈ {0, 1}l}
are pairwise independent over {0, 1}l.

Clearly, a l × l Toeplitz matrix T is uniquely determined by the string t ∈ {0, 1}2l−1 of its values on the first
row and on the first column. The following lemma states that we can compute pairwise independent samples over
{0, 1}l in ATIME (O(1), l).

Lemma 5.1. There is a machine A(t, x, u) which computes Tx + u in ATIME (O(1), l) for |x| = |u| = l,
|t| = 2l − 1 and T the Toeplitz matrix determined by t.

Proof: Recall what we need to show is that, given t, x, u and i, we can compute the i-th bit of Tx + u in
ATIME (O(1), l). We actually show that it can be computed in deterministic time O(l). It is easy to see that the
i-th bit of Tx+ u is

〈ti . . . ti+l−1, x〉+ ui.

Note the inner product is over l bits, and therefore can be computed in time O(l).

We now show our design construction.

Lemma 5.2. For every constant c there is a constant d such that there is a family {Dn} of (log n, c logn) designs
of size n over a universe of size d logn with the following property: There is a machine in ATIME (O(1), log n)
such that, given n and k ≤ n, computes the characteristic vector of the k-th set in Dn.

Proof: Let l := log n. First we show the existence with a probabilistic argument. Then we show how to
derandomize the argument. Finally, we show how the derandomization is implementable in ATIME (O(1), l).

Existence: We view the universe as cl blocks of b elements each, i.e. let d := cb, for some b we specify later.
Let us choose S1, . . . , Sn at random from the sets which have exactly one element in each block. Notice the

size of these sets is cl, as required.
For every i 6= j, by a union bound:

Pr[|Si ∩ Sj | ≥ l] ≤

(

cl

l

)(

1

b

)l

≤

(

ecl

l

)l (1

b

)l

≤
(ec

b

)l
.

Taking b := 4ec the latter equals 1/n2.

So, by a union bound:

Pr[∃i < j : |Si ∩ Sj | ≥ l] ≤
∑

i<j

Pr[|Si ∩ Sj | ≥ l] ≤

(

n

2

)

1

n2
<

1

2
< 1.

Therefore such designs exist.

Derandomization: Note that the analysis goes through even if the sets are just pairwise independent. We use
this below to show that Dn ∈ ATIME (O(1), log n).

ATIME (O(1), l): Each string s ∈ {0, 1}(log b)·cl represents a set S with one element in each block in the
following natural way: View s as cl blocks of log b bits each, the i-th block of s is an index to an element in the
i-th block of b elements in our universe. We can easily build a machine T running in time O(l) computing this
transformation, i.e. T (s) ∈ {0, 1}b·cl is the characteristic vector of the set with one element in each block which
s ∈ {0, 1}(log b)·cl represents.

Let A ∈ ATIME (O(1), l) be the machine given by Lemma 5.1 that, given a and i, computes the i-th pairwise
independent sample over {0, 1}(log b)·cl according to a. Note we can check in ATIME (O(1), l) if the samples
corresponding to some a form a design:

∀i 6= j ∈ {0, 1}l
∣

∣

∣
T (A(a, i)) ∩ T (A(a, j))

∣

∣

∣
≤ l.

We already know that A and T are in ATIME (O(1), l). Note that computing the intersection size is feasible
since we are dealing with strings of length O(l).

To put our hands on some particular design, we can existentially guess a string a∗ and universally verify that it
is the lexicographically first string whose samples correspond to a design. The characteristic vector of the k-th set
in Dn is then T (A(a∗, k)).

Remark 5.3. Our construction of designs is a mix of the constructions in [31] and [22]: We choose the sets with
one element in each block, as in [31], and we derandomize the argument through pairwise independence, as in [22].
Neither the construction in [31] nor the one in [22] seems to be easily implementable in ATIME (O(1), log n):
[31] seems to require polynomial space in the size of the design because of the method of conditional probabilities.
[22] needs to associate to a number x ≤

(

c logn
d logn

)

the x-th subset of {1, . . . , c logn} of size d logn. This latter
operation can be easily computed in SPACE (log n), going through all the subsets, but we do not know if it can
be computed in ATIME (O(1), log n). Moreover, the analysis of our construction is simpler than the analysis in
[22].

Other constructions of designs, based on error correcting codes, are obtained by Salil Vadhan (credited in the
journal version of [12]) and by Luca Trevisan and Hoeteck Wee (personal communication, Sept. 2002). We do
not know if these constructions are computable in ATIME (O(1), log n).

Plugging this design construction into NW PRG we obtain the following:

Theorem 4.1 (restated). If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1/2 +
2−Ω(l))-hard for CKT then there is a n-PRG against CKT with seed length O(logn) and computable in
ATIME (O(1), logn), and BP ·ATIME (O(1), log n) = ATIME (O(1), log n).

Proof: The PRG is NWf , with the design construction from Lemma 5.2. The correctness of this construction
has already been proved in [28]. The fact that NWf ∈ ATIME (O(1), log n) follows from Lemma 5.2 and the
fact that f ∈ ATIME (O(1), log n). In analogy with Corollary 3.11, to obtain BP · ATIME (O(1), log n) =
ATIME (O(1), logn) we use Ajtai’s construction for approximate majority [2]. (In [2] the construction is given
in terms of first-order definability, but this coincides with ATIME (O(1), log n) [6, 41].)

Along the lines of the previous results discussed in Section 3.1, we now want to relax the average-case hardness
assumption. Therefore we now prove some results about hardness amplification within ATIME (O(1), l). These
hardness amplifications will allow us to start from a function with mild average-case hardness. See Sections 6 and
7 for a discussion of worst-case hardness assumptions.

Using the same construction in Theorem 3.4 we can amplify from mild hardness to constant hardness:

Theorem 5.4. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1 − 1/poly(l))-hard
for CKT , then there is a function f ′ ∈ ATIME (O(1), l) that is (2Ω(l), 2/3)-hard for CKT .

Proof: We use the construction in Theorem 3.4. The correctness of this construction has already been proved
in [14], so it is only left to see that f ′ ∈ ATIME (O(1), l). This follows from the construction of a pairwise
independent sample space given in Lemma 5.1.

Using the same construction in Theorem 3.5 we can amplify from constant hardness to exponential hardness.

Theorem 5.5. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 2/3)-hard for CKT ,
then there is a function f ′ ∈ ATIME (O(1), l) which is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT .

Proof: We use the construction in Theorem 3.5. The correctness of this construction has already been proved in
[18], so it is only left to see that f ′ ∈ ATIME (O(1), l). Lemma 5.2 shows how to compute the required designs
in ATIME (O(1), l).

It is only left to
show how to compute walks on expanders in ATIME (O(1), l). This problem, for the parameters of interest

here, has already been solved by Ajtai [2], using the expander construction by Lubotzky, Phillips and Sarnak [24].

Theorem 5.6 ([24, 2]). There is a constant α, 0 < α < 1, such that for every prime n congruent to 1 modulo 4
there is a 6-regular graph Gn on n vertices with second largest eigenvalue at most α. Moreover, there is a machine
in ATIME (O(1), log n) such that, given a prime n congruent to 1 modulo 4, x ∈ Gn and p, with |p| ≤ O(logn),
computes the node in Gn reached starting from x and following the path specified by p.

Combining the above two hardness amplifications we get the following theorem.

Theorem 4.2 (restated). If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1 −
1/poly(l))-hard for CKT , then there is a function f ′ ∈ ATIME (O(1), l) which is (2Ω(l), 1/2 + 2−Ω(l))-hard for
CKT .

This allows us to build a PRG computable in ATIME (O(1), log n) from a function of mild average-case hard-
ness.

Theorem 4.3 (restated). If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1 −
1/poly(l))-hard for CKT then there is a n-PRG against CKT with seed length O(logn) and computable in
ATIME (O(1), logn), and BP ·ATIME (O(1), log n) = ATIME (O(1), log n).

6. PRGs from Worst-Case Hardness

In this section we discuss PRG constructions from worst-case hardness assumptions, and in particular we prove
a formal version of Theorem 4.4, establishing a lower bound for black-box PRG constructions from worst-case
hardness assumptions. In Section 6.1 we discuss the tightness of our lower bound and we also prove Theorem 4.6.

To show our lower bound for black-box PRG constructions we proceed in two steps: First we use the fact,
discovered by Trevisan [38] (see also [39, 32]), that black-box PRG constructions give rise to ‘good’ extractors.
Then we show that ‘good’ extractors are not computable by constant depth circuits (the nonuniform analogue of
alternating time with O(1) alternations). To explain the intuition behind this last step we need the notion of noise
sensitivity. Roughly speaking, the noise sensitivity of a function is a measure of how likely the output of the
function is to change when one perturbs the input with random noise. We show that ‘good’ extractors are very
sensitive to noise. Since constant depth circuits are not [23, 8], we obtain our lower bound.

We now proceed to turn the above sketch into a formal proof.

Definition 6.1. An oracle algorithm Gf : {0, 1}u → {0, 1}n is a (l, s, ε) black-box PRG construction if for every
f : {0, 1}l → {0, 1} and for every A : {0, 1}n → {0, 1} such that

∣

∣

∣
Pr[A(Gf (Uu)) = 1]− Pr[A(Un) = 1]

∣

∣

∣
≥ ε

there is an oracle circuit C of size at most s such that CA(x) = f(x) for every x.

Note in the above definition we did not specify the type of the circuit C (e.g. CKT ,AC0 , . . .) because it does
not play a role in this section. Also note that if Gf : {0, 1}u → {0, 1}n is a (l, s, ε) black-box PRG construction
then for every function f : {0, 1}l → {0, 1} we have that if f is (ns, 1)-hard then Gf is a n-PRG.

We note that most of the known PRG constructions are black-box [18, 22, 17, 36, 33, 40]. For example, in this
notation the PRG construction in Theorem 3.6 is a (O(log n), nγ , 1/n)-black-box PRG construction, for some
0 < γ < 1 (see, e.g., [38]). This construction also gives u = O(logn), which is what one needs for high-end
derandomization. However, our lower bound applies regardless of this.

We now define extractors.
The min-entropy of a random variable X is defined as H∞(X) := minx log(1/Pr[X = x]).

Definition 6.2 ([29]). E : {0, 1}h × {0, 1}u → {0, 1}n is a (k, ε) extractor if for every random variable X of
min-entropy at least k, and for every T ⊆ {0, 1}n:

∣

∣

∣
Pr[E(X,Uu) ∈ T]− Pr[Un ∈ T]

∣

∣

∣
≤ ε.

We call T ⊆ {0, 1}n a test and y ∈ {0, 1}u a seed.

Trevisan [38] shows that black-box PRG constructions are extractors (see also [39, 32]). For completeness, we
now state and prove this result.

Theorem 6.3 ([38]). Let Gf : {0, 1}u → {0, 1}n be a (l, s, ε)-black-box PRG construction. Then E : {0, 1}2
l

×
{0, 1}u → {0, 1}n defined as E(x, y) := Gx(y) is a (O(s log s) + log(1/ε), 2ε) extractor.

Proof: Let X be a random variable and T ⊆ {0, 1}n such that
∣

∣

∣

∣

Pr
X,Uu

[E(X,Uu) ∈ T]− Pr
Un

[Un ∈ T]

∣

∣

∣

∣

> 2ε.

Then, using the triangle inequality:

Pr
X

[∣

∣

∣

∣

Pr
Uu

[E(X,Uu) ∈ T]− Pr
Un

[Un ∈ T]

∣

∣

∣

∣

≥ ε

]

> ε.

Since for every x such that |PrUu
[E(x, Uu) ∈ T]− PrUn

[Un ∈ T]| ≥ ε there must exist an oracle circuit of
size at most s such that CT = x, the number of such x is bounded by the number of oracle circuits of size at most
s. There are at most 2O(s log s) such circuits. Therefore X lands in a set of size at most 2O(s log s) with probability
bigger than ε, and so H∞(X) < O(s log s) + log(1/ε).

The following theorem states that constant depth circuits cannot compute good extractors for min-entropy k ≤
n1−Ω(1).

Theorem 6.4. Fix a constant ε < 1. Let E : {0, 1}h×{0, 1}u → {0, 1}n be a (k, ε) extractor, with u ≤ n/4, and
let E be computable by a circuit of size g and depth d. Then:

logd−1 g ≥ Ω

(

h

k

)

.

Before proving Theorem 6.4 note that, in combination with Theorem 6.3, it yields the following lower bound
for black-box PRG constructions.

Corollary 6.5 (Formal version of Theorem 4.4). Let ε := 1/4. Let G be a (l, s, ε) black-box PRG construction,
and let Gf be computable in ATIME (d, t)f . Then:

t ≥ Ω

(

2l

s log s

)1/(d+O(1))

.

In particular, for any γ < 1, there is no (O(logn), nγ , ε)-black-box PRG construction computable in
ATIME (O(1), no(1)).

Proof: By standard techniques [10], the ATIME (d, t)f computation can be carried out by a circuit of depth
d+O(1) and size 2O(t), where we view the oracle as part of the input. The result then follows from Theorems 6.3
and 6.4.

To prove Theorem 6.4 we make use of the following fact about low noise sensitivity of constant depth circuits,
which we deduce combining results in [19, 8, 30].

Lemma 6.6. Let C : {0, 1}n → {0, 1} be a circuit of size g and depth d. Let X ∈ {0, 1}n be a random input and
let X̃ be obtained from X by flipping each bit independently with probability δ < 1/2. Then:

Pr
X,X̃

[C(X) 6= C(X̃)] ≤ O(δ logd−1 g).

The proof of Lemma 6.6 requires a detour into Fourier analysis and therefore we defer it to the appendix.
The following easy lemma states that the amount of noise by which we perturb X corresponds to the min-

entropy of X̃ .

Lemma 6.7. For any x ∈ {0, 1}h, let X̃ be obtained from x by flipping each bit independently with probability
k/h ≤ 1/2. Then H∞(X̃) ≥ Ω(k).

Proof: Since k/h < 1/2 it is easy to see that H∞(X̃) ≥ log
(

1/Pr[X̃ = x]
)

= log
(

1/(1− k/n)n
)

. The result
then follows easily.

Proof of Theorem 6.4: For z, z′ ∈ {0, 1}n let ∆(z, z′) denote the relative Hamming distance, i.e. Pri[zi 6= z′i].
Let E(x, y)i denote the i-th bit of E(x, y). Let X be chosen at random in {0, 1}h, and X̃ obtained from X flipping
each bit independently with probability O(k/h) so that H∞(X̃) ≥ k by Lemma 6.7.

We seek a test that distinguishes E(X̃, Uu) from Un. The main ideas are the following: For every seed y, we
expect ∆(E(X, y), E(X̃, y)) to be ‘small’ by the low average sensitivity of constant depth circuits (Lemma 6.6).
We can fix X = x maintaining this property. Now we can tell whether a sample z comes from E(X̃, Uu), rather
than being truly random, checking whether there is a seed y such that ∆(E(x, y), z) is ‘small’.

Fix a seed y and a position i ∈ {1, . . . , n}. By Lemma 6.6:

Pr
X,X̃

[E(X, y)i 6= E(X̃, y)i] ≤
O(k logd−1 g)

h
.

By linearity of expectation:

E
X,X̃,y

[

∆(E(X, y), E(X̃, y))
]

≤
O(k logd−1 g)

h
.

By averaging there must exist a fixed x such that

E
X̃,y

[

∆(E(x, y), E(X̃, y))
]

≤
O(k logd−1 g)

h
,

where X̃ is generated by flipping the bits of x. Pick a small constant ξ > 0. By Markov inequality:

Pr
X̃,y

[

∆(E(x, y), E(X̃, y)) ≥ ξ
]

≤
O(k logd−1 g)

h · ξ
.

We are now ready to define the test that will distinguish the output of the extractor from Un:

T :=
{

z ∈ {0, 1}n : ∃y ∈ {0, 1}u ∆(E(x, y), z) ≤ ξ
}

.

By what we have said above:

Pr
X̃,y

[E(X̃, y) ∈ T] ≥ 1−
O(k logd−1 g)

h · ξ
.

We now show that a truly random sample will pass the test with very low probability. Fix a seed y.

Pr
Un

[

∆(E(x, y), Un) ≤ ξ
]

≤
Vn(ξ)

2n
≤

2H(ξ)n

2n
≤ 2−n/2.

Where Vn(ξ) is the size of a Hamming ball in {0, 1}n of radius ξn, H(x) = −x log x− (1− x) log(1− x) is
the binary entropy function, and H(ξ) < 1/2 for sufficiently small ξ. Since there are 2u seeds, using u ≤ n/4 and
a union bound:

Pr
Un

[Un ∈ T] ≤ 2u · 2−n/2 ≤ 2−n/4 = o(1).

Since H∞(X̃) ≥ k, and E is a (k, ε) extractor, we have:

1−
O(k logd−1 g)

h · ξ
≤ ε+ o(1).

6.1. Tightness

In this section we study in more detail the consequences of Corollary 6.5. Recall that it established the following
tradeoff for a (l, s, ε) black-box PRG construction G such that Gf is computable in ATIME (d, t)f :

t ≥ Ω

(

2l

s log s

)1/(d+O(1))

.

We investigate what happens in the following two cases:

• The PRG construction is computable in ATIME (O(1), l).

• The PRG construction is based on the existence of a function f : {0, 1}l → {0, 1} that is (2Ω(l), 1)-hard for
CKT .

Note that to obtain a result analogous to Theorem 3.6 for ATIME (O(1), logn) one needs both the above items.

PRG construction computable in ATIME (O(1), l): If one wants t = O(l) then s ≥ 2l/lO(1). In particular,
the function f : {0, 1}l → {0, 1} we start with must be hard for circuits of size at least 2l/lO(1). However, the next
easy proposition shows that for such big sizes mild average-case and worst-case hardness collapse! Consequently,
under such an assumption no worst-case to average-case hardness amplification is needed, and to get a PRG one
could apply directly Theorem 4.3 or Theorem 4.7.

We state the next proposition for both CKT and AC0 since in Section 8 we discuss derandomization under
hardness assumptions for AC0 .

Proposition 6.8. There is a constant k such that if f : {0, 1}l → {0, 1} is (k · 2l/lc−1, 1)-hard for CKT (respec-
tively, AC0 [d+ k]) then f is (2l/lc, 1− 1/lc)-hard for CKT (respectively, AC0 [d]).

Proof: Suppose not. Let C be a circuit of size at most 2l

lc (and depth d) such that

Pr[C(Ul) 6= f(Ul)] <
1

lc
.

Then there are at most 2l

lc inputs x such that C(x) 6= f(x). We can build a circuit C ′ of size at most 2l · 2
l

lc such
that, given x, decides whether C(x) 6= f(x) (recall our size measure is the number of edges). C ′ does a simple
lookup table: For every x such that C(x) 6= f(x) there is an AND gate with l connections to the corresponding
input bits (or their negations). After this layer of AND gates we put an OR gate with 2l

lc connections. It is easy to

see that such a circuit correctly decides whether C(x) 6= f(x) and has size at most 2 · 2l

lc−1 (and depth 2).

Combining C and C ′ with a XOR we obtain a circuit of size at most 4 · 2l

lc−1 (and depth d + 3) computing f
everywhere. Contradiction (for k = 4).

PRG construction based on f : {0, 1}l → {0, 1} that is (2Ω(l), 1)-hard: If one wants s = 2εl then t ≥ 2Ω(l/d).
We now prove that these resources are also sufficient. Our approach is showing that they allow for computing
worst-case to mild average-case hardness amplification. One can then obtain a PRG construction from worst-case
hard functions combining this hardness amplification with the construction in Theorem 4.3.

To show that these resources are sufficient for computing worst-case to mild average-case hardness amplification
we examine the construction in Theorem 3.3. First we show that one parity quantifier is sufficient for it, then we
note that this parity quantifier can be simulated in ATIME (d, 2O(l/d)).

Theorem 6.9. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1)-hard for CKT ,
then there is a function f ′ ∈ ⊕ ·ATIME (O(1), l) which is (2Ω(l), 1− 1/poly(l))-hard for CKT .

Proof: We use the same construction in Theorem 3.3. Let us recall it. Fix a field F of size 4l2. Let H be the first
(lexicographically)

√

|F | elements of F .
Let k := l/ log |H|, so that f can be seen as mapping Hk to {0, 1}. Let f̂ : F k → F be:

f̂(x1, . . . , xk) :=
∑

h1,...,hk∈H

f(h1, . . . , hk)δh1(x1) · · · · · δhk
(xk)

where for h ∈ H and x ∈ F ,

δh(x) :=
∏

h′∈H,h′ 6=h

x− h′

h− h′
.

As pointed out in [4] (see also [1]), f̂ has the required hardness, but f̂ is not yet our final function since it is
not boolean. Define f ′(x, i) := f̂(x)i, note |i| = O(log l). It is easy to see that this final transformation preserves
mild hardness.

Thus we only need to show that f ′ ∈ ⊕ ·ATIME (O(1), l).
First we show that given h ∈ H,x ∈ F we can compute δh(x) in ATIME (O(1), l). To compute δh(x)

we need to perform poly(l) field operations. Note that the field F can be found, and operated with, in time
poly log lO(1) = poly log l [34]. Moreover, we can use the same space for all the field operations, for a total of
poly log l space. By Theorem 2.2 we can compute δh(x) in ATIME (O(1), l).

Similarly, given h1, . . . , hk, x1, . . . , xk, we can compute f(h1, . . . , hk)·δh1(x1)·· · ··δhk
(xk) in ATIME (O(1), l).

In fact, f ∈ ATIME (O(1), l) by assumption and the total time to compute δh1(x1) · · · · · δhk
(xk) is still poly(l),

and moreover we can reuse the same space for the δ’s. So by Theorem 2.2 this product can be computed in
ATIME (O(1), l).

What is left to do is to sum over all 2l possible h1, . . . , hk. Now note we can assume that the character-
istic of F is 2, so addition equals XOR. In particular, the i-th output bit of f ′ is the parity of the i-th bit of
f(h1, . . . , hk)δh1(x1) · · · · · δhk

(xk) over all 2l possible h1, . . . , hk. Thus f ′ ∈ ⊕ ·ATIME (O(1), l).

Note that the parity quantifier in the above computation ranges over 2l bits. The following easy lemma states
that this parity can be computed in ATIME (d, 2O(l/d)).

Lemma 6.10. For every integer d ≥ 1, the parity of n bits is in ATIME (d, nO(1/d)).

Proof Sketch: The idea is trading alternations for time taking advantage of the associativity of parity. Namely,
we partition the input into nO(1/d) pieces, existentially guess the parity of each, and universally verify that each
guess is correct (recursively with the same algorithm).

Therefore ATIME (d+O(1), 2O(l/d)) is essentially necessary and sufficient for PRG constructions from worst-
case hard functions.

Combining Theorems 4.3 and 6.9 we obtain Theorem 4.6.

Theorem 4.6 (restated). If there is a function f : {0, 1}l → {0, 1} in A⊕TIME (O(1), l) that is (2Ω(l), 1)-hard
for CKT then there is a n-PRG against CKT with seed lengthO(log n) and computable in A⊕TIME (O(1), log n),
and BP ·A⊕TIME (O(1), log n) = A⊕TIME (O(1), log n).

7. Worst-Case Hardness Amplification

In this section we discuss worst-case hardness amplification. In particular, we prove a formal version of The-
orem 4.5, establishing a lower bound for black-box worst-case hardness amplifications. As mentioned in the
introduction, a certain lower bound for black-box worst-case hardness amplifications already follows from our
previous results. Namely, if there is a black-box worst-case hardness amplification then combining this with our
black-box PRG construction from mild average-case hardness (Theorem 4.3) one gets a black-box PRG construc-
tion from worst-case hardness, and the lower bound in Corollary 6.5 applies. In this section we give a direct proof
of a lower bound for black-box worst-case hardness amplification. This direct proof yields a more general lower
bound than what one can get using the above approach.

The general ideas in our lower bound are the same we employed in our lower bound for black-box PRG con-
structions in Section 6, with the exception that ‘extractors’ will be replaced with ‘list-decodable codes’: First we
show that every black-box hardness amplification gives rise to a ‘good’ list-decodable code. Then we show that
‘good’ list-decodable codes are very sensitive to noise. Since constant depth circuits are not, we get our lower
bound.

We now proceed to turn the above sketch into a formal proof.

Definition 7.1. An oracle algorithm Amp : {0, 1}l
′
→ {0, 1} is a (l, δ, s)-black-box worst-case hardness ampli-

fication if for every f : {0, 1}l → {0, 1} and for every A : {0, 1}l
′
→ {0, 1} such that

Pr[A(Ul′) = Ampf (Ul′)] ≥ δ,

there is an oracle circuit C of size at most s such that CA(x) = f(x).

Note in the above definition we did not specify the type of the circuit C (e.g. CKT ,AC0 , . . .) because it does
not play a role in this section. Also note that, if Amp is a (l, δ, s)-black-box worst-case hardness amplification,
then for every function f : {0, 1}l → {0, 1} we have that if f is (s′, 1)-hard then Ampf is (s′/s, δ)-hard.

We note that most of the known hardness amplification techniques are black-box. In particular, all those de-
scribed in Section 3.1 are. (While we have only defined black-box worst-case to average-case hardness amplifi-
cation, it is easy to extend the definition to the setting of average-case to average-case hardness amplification.)
For example, in this notation the hardness amplification in Theorem 3.3 is a (l, 1− 1/poly(l), poly(l))-black-box
hardness amplification. It should also be noted that in this hardness amplification the input length increases only
by a constant factor, i.e. Ampf : {0, 1}O(l) → {0, 1}. While this is what one needs for high-end derandomization
[18], our lower bound applies regardless of this.

We give the definition of list-decodable codes:

Definition 7.2. A code C : {0, 1}n → {0, 1}n̄ is (δ, ρ)-list-decodable if for every x̄ ∈ {0, 1}n̄:
∣

∣

∣

{

y ∈ {0, 1}n : ∆(x̄, C(y)) ≤ δ
}∣

∣

∣
≤ ρ

where ∆ is the relative Hamming distance: ∆(x̄, ȳ) := Pri[x̄i 6= ȳi]. We refer to x ∈ {0, 1}n as messages and to
C(x), x ∈ {0, 1}n, as codewords.

Let Amp be a black-box worst-case hardness amplification. The following lemma, implicit in [36, 39], states
that if we consider the truth table of a function f as a message and the truth table of Ampf as a codeword, then
Amp can be seen as an encoding algorithm.

Lemma 7.3. Let Amp be a (l, δ, s)-black-box worst-case hardness amplification. Then Enc : {0, 1}2
l

→ {0, 1}n̄

defined as Enc(f) := Ampf is (1− δ, 2O(s·log s))-list-decodable.

Proof: Consider A ∈ {0, 1}n̄. By definition of hardness amplification, for every f such that Prx∈{0,1}n̄ [A(x) =

Ampf (x)] ≥ δ, there is an oracle circuit C of size at most s such that CA(x) = f(x). Therefore the number of
such codewords is bounded by the number of oracle circuits. Noting that there are at most 2O(s·log s) oracle circuits
of size at most s, and that Prx∈{0,1}n̄ [A(x) = Ampf (x)] = 1−∆(A,Ampf), completes the proof.

The following theorem states that constant depth circuits cannot compute list-decodable codes even for very
weak parameters.

Theorem 7.4. There is a constant γ, 0 < γ < 1, such that the following holds. Let C : {0, 1}n → {0, 1}n̄ be a
(δ, 2m)-list-decodable code, with m ≤ γn. If C can be computed by a circuit of size g and depth d, then

logd−1 g ≥ Ω

(

nδ

m

)

.

Before proving Theorem 7.4 note that, in combination with Lemma 7.3, it yields the following lower bound for
black-box hardness amplification.

Corollary 7.5 (Formal version of Theorem 4.5). Suppose Amp is a (l, 1−δ, s) black-box hardness amplification,
and suppose that Ampf is in ATIME (d, t)f . Then:

t ≥ Ω

(

2lδ

s log s

)1/(d+O(1))

.

In particular, for any constants c > 0, ε < 1, there is no (l, 1 − 1/lc, 2lε)-black-box worst-case hardness
amplification computable in ATIME (O(1), 2o(l)).

Note that Corollary 7.5 implies that there is no black-box worst-case hardness amplification in the polynomial
time hierarchy.

Proof: By standard techniques [10], the ATIME (d, t)f computation can be carried out by a circuit of depth
d + O(1) and size 2O(t), where we view the oracle as part of the input. The result then follows from Lemma 7.3
and Theorem 7.4.

Remark 7.6. Corollary 7.5 is tight in the same way as Corollary 6.5: The only settings of parameters that are not
ruled out either allow for the construction in Theorem 6.9, or else correspond to hardness assumptions so strong
that worst-case hardness and average-case hardness collapse, and therefore worst-case hardness amplification is
vacuous (see Section 6.1).

We now prove Theorem 7.4. The proof is very similar to the proof of Theorem 6.4, and again makes use of
Lemma 6.6 and Lemma 6.7.

Proof of Theorem 7.4: Let Ci(x) denote the i-th bit of C(x). Let X be chosen at random in {0, 1}n, and X̃
obtained from X flipping each bit independently with probability O(m/n) so that H∞(X̃) ≥ m + 1 by Lemma
6.7.

The idea in the proof is to consider the quantity

Pr
i,X,X̃

[Ci(X) 6= Ci(X̃)]

and to bound it using (1) the assumption that C is (δ, 2m)-list-decodable and (2) the low average sensitivity of
AC0 circuits (Lemma 6.6).

For every x, the list-decodability assumption tells us that there are at most 2m messages whose codewords are
at distance at most δ from C(x). Fix any such message. Since H∞(X̃) ≥ m + 1, the probability that X̃ is equal
to this message is at most 2−(m+1). Therefore, by a union bound:

Pr
X,X̃

[∆(C(X), C(X̃)) ≤ δ] ≤ 2m · 2−(m+1) = 1/2.

Therefore:

Pr
i,X,X̃

[Ci(X) 6= Ci(X̃)] ≥ Pr
i,X,X̃

[Ci(X) 6= Ci(X̃)|∆(C(X), C(X̃)) > δ] · Pr
X,X̃

[∆(C(X), C(X̃)) > δ]

≥ δ ·
1

2
. (1)

On the other hand, by Lemma 6.6 we have

Pr
i,X,X̃

[Ci(X) 6= Ci(X̃)] ≤ m ·
O(logd−1 g)

n
. (2)

The theorem follows putting together Bounds (1) and (2).

8. Derandomization from Weaker Assumptions

In this section we work on relaxing the hardness assumptions needed in our derandomization results. In partic-
ular, we prove Theorems 4.7 and 4.8.

We start with the latter. As explained in Section 3.2, Agrawal [1] notices that all the proofs of correctness of the
constructions described in Section 3.1 carry through against TC0 circuits. Combining this with Theorem 4.6, and
recalling that counting quantifiers can simulate parity quantifiers, one gets the following theorem.

Theorem 4.8 (restated). There is a constant c such that if there is a function f : {0, 1}l → {0, 1} in CTIME (O(1), l)
that is (2Ω(l), 1)-hard for TC0 [c+ d], then there is a n-PRG against TC0 [d] with seed length O(log n) and com-
putable in CTIME (O(1), log n).

In particular, if for every d there is a function f : {0, 1}l → {0, 1} in CTIME (O(1), l) that is (2Ω(l), 1)-hard
for TC0 [d], then BP · CTIME (O(1), log n) = CTIME (O(1), log n).

Now we focus on Theorem 4.7. For proving it we use the same construction in Theorem 3.10, but without the
worst-case to average-case hardness amplification step in Theorem 3.3. The correctness of this construction has
already been proved in [1], so we only need to show that has an implementation in ATIME (O(1), logn).

Recall this construction combined the conditional PRG from Section 3.1 with Nisan’s unconditional PRG (The-
orem 3.9). We have already shown in Section 5 how to compute the conditional PRG. So it is only left to
discuss Nisan’s unconditional PRG. In particular, we need to show that the following items are computable in
ATIME (O(1), logn):

• Family of (log n, logc n) designs of size n over a universe of size logd n, for every given value of c ≥ 1 and
some d ≥ c.

• parity over logc n bits, for every given value of c.

The result about parity has been proved in Lemma 6.10. We now show that the design construction in [27] is
computable in ATIME (O(1), log n).

Lemma 8.1. For every constant c there is a constant d such that there is a family {Dn} of (log n, logc n) designs
of size n over a universe of size logd n with the following property: There is a machine in ATIME (O(1), log n)
such that, given n and k ≤ n, computes the characteristic vector of the k-th set in Dn.

Proof: Let l := logn. Let us first recall the construction in [27]. Let lc be the cardinality of a field F . Let d := 2c,
i.e. the universe size is |F |2 = ld. Given a string i of length l, we view the string as the coefficients of a univariate
polynomial î with coefficients in F . The corresponding set is

Si := {a ◦ î(a) : a ∈ F}.

It is pointed out in [27] that S1, . . . , Sn is a (l, lc) design. Thus we only need to show that it is computable in
ATIME (O(1), l).

Our task is, given k and an element j of the universe, decide whether j ∈ Sk in ATIME (O(1), l). Let
j|c log l be the first c log l bits of j. Now, j ∈ Sk if and only if j = j|c log l ◦ k̂(j|c log l). To compute k̂(j|c log l)
we need to perform poly(l) field operations. Note that the field F can be found, and operated with, in time
poly log lO(1) = poly log l [34]. Moreover, we can use the same space for all the field operations, for a total of
poly log l space. Consequently, we can decide whether j ∈ Sk in ATIME (O(1), l) by Theorem 2.2.

This completes the proof of Theorem 4.7.

Theorem 4.7 (restated). There is a constant c such that if there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l)
that is (2Ω(l), 1 − 1/lb)-hard for AC0 [c · max(b, d)], then there is a (n, 1/ logO(1) n)-PRG against AC0 [d] with
logarithmic seed length and computable in ATIME (O(1), logn).

In particular, if there is a constant b such that for every d there is a function in ATIME (O(1), l) that is
(2Ω(l), 1− 1/lb)-hard for AC0 [d], then BP ·ATIME (O(1), log n) = ATIME (O(1), logn).

9. Open Problems

Notice that gap between Theorems 4.6 and 4.8. While parity quantifiers are sufficient for a PRG construction
from a worst-case hard function, we seem to need hardness against circuits with majority gates for proving its
correctness. It is true that one can still derandomize BP · AC0 from hardness assumptions for AC0 , using the
construction in Theorem 3.10. However, this construction requires a strong unconditional PRG, and no such result
is known for AC0 with parity gates. Can one derandomize BP ·AC0 with parity gates from a worst-case hardness
assumption for AC0 with parity gates? Essentially the same question was independently raised by Eric Allender
and Sambuddha Roy (personal communication, Nov. 2002).

Can we, under some complexity assumption for AC0 , build a (n, 1/n)-PRG against AC0 with seed length
O(logn)? (Theorem 3.10 and Theorem 4.7 only give a (n, 1/ logO(1) n)-PRG.)

10. Acknowledgements

Adam Klivans pointed out [1] to us. Madhu Sudan suggested the sensitivity approach for proving lower bounds
for AC0 . Thanks to Ronen Shaltiel for a helpful conversation. Many thanks to Salil Vadhan for encouragement,
illuminating discussions and suggesting the problem. We also thank Oded Goldreich and the anonymous referees
for the useful comments.

References

[1] M. Agrawal. Hard sets and pseudo-random generators for constant depth circuits. In Twenty First Foundations of
Software Technology and Theoretical Computer Science, December 13-15, Bangalore, India, pages 58–69. 2001.

[2] M. Ajtai. Approximate counting with uniform constant-depth circuits. In Advances in computational complexity theory
(New Brunswick, NJ, 1990), pages 1–20. Amer. Math. Soc., Providence, RI, 1993.

[3] E. W. Allender and K. W. Wagner. Counting hierarchies: Polynomial time and constant depth circuits. Bulletin of the
European Association for Theoretical Computer Science, 40:182–194, 1990.

[4] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless EXPTIME has
publishable proofs. Computational Complexity, 3(4):307–318, 1993.

[5] Z. Bar-Yossef, O. Reingold, R. Shaltiel, and L. Trevisan. Streaming through combinatorial objects. In Seventeenth
Annual IEEE Conference on Computational Complexity. IEEE Computer Soc., Los Alamitos, CA, 2002.

[6] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. J. Comput. System Sci., 41(3):274–
306, 1990.

[7] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. on
Computing, 13(4):850–864, Nov. 1984.

[8] R. B. Boppana. The average sensitivity of bounded-depth circuits. Inform. Process. Lett., 63(5):257–261, 1997.
[9] M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In 26th International Symposium on Mathematical

Foundations of Computer Science (MFCS 01), pages 272–284. Springer-Verlag, 2001.
[10] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems

Theory, 17(1):13–27, April 1984.
[11] O. Goldreich. A sample of samplers - a computational perspective on sampling (survey). Electronic Colloquium on

Computational Complexity (ECCC), 4(020), 1997.
[12] T. Hartman and R. Raz. On the distribution of the number of roots of polynomials and explicit logspace extractors.

In Proceedings of the Fourth International Workshop on Randomization and Approximation Techniques in Computer
Science, pages 3–22, July 14 2000.

[13] J. Hastad. Computational Limitations for Small Depth Circuits. PhD thesis, M.I.T., 1986.
[14] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th Annual Symposium on Foundations of

Computer Science, pages 538–545, Milwaukee, Wisconsin, 23–25 Oct. 1995. IEEE.
[15] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset sum. Journal of Cryptology:

the journal of the International Association for Cryptologic Research, 9(4):199–216, Fall 1996.
[16] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? J. Computer & Systems

Sciences, 63(4):512–530, Dec 2001.
[17] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Extractors and pseudo-random generators with optimal seed length.

In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, pages 1–10, Portland, Oregon,
May 2000. See also ECCC TR00-009.

[18] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 220–229, El Paso, Texas,
4–6 May 1997.

[19] J. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions (extended abstract). In 29th Annual
Symposium on Foundations of Computer Science, pages 68–80, White Plains, New York, 24–26 Oct. 1988. IEEE.

[20] M. Kharitonov, A. V. Goldberg, and M. Yung. Lower bounds for pseudorandom number generators. In 30th Annual
Symposium on Foundations of Computer Science, pages 242–247, Research Triangle Park, North Carolina, 30 Oct.–1
Nov. 1989. IEEE.

[21] A. R. Klivans. On the derandomization of constant depth circuits. In Proceedings of the Fifth International Workshop
on Randomization and Approximation Techniques in Computer Science, August 18–20 2001.

[22] A. R. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs unless the polynomial-
time hierarchy collapses. In Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), pages 659–667
(electronic). ACM, New York, 1999.

[23] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability. J. Assoc. Comput.
Mach., 40(3):607–620, 1993.

[24] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.
[25] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. In 38th Annual

Symposium on Foundations of Computer Science, pages 458–467, Miami Beach, Florida, 20–22 Oct. 1997. IEEE.
[26] V. Nepomnjaščiĭ. Rudimentary predicates and turing calculations. Soviet Mathematics-Doklady, 11(6):1462–1465,

1970.
[27] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70, 1991.
[28] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167, Oct. 1994.

[29] N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43–52, Feb. 1996.
[30] R. O’Donnell. Hardness amplification within NP . In Proceedings of the 34th Annual ACM Symposium on Theory of

Computing, pages 751–760. ACM, May 2002.
[31] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and reducing the error in Trevisan’s extractors. In

Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), pages 149–158 (electronic). ACM, New York,
1999.

[32] R. Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the European Association for
Theoretical Computer Science, 77:182–194, 2002.

[33] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudo-random generator. In 42nd Annual
Symposium on Foundations of Computer Science. IEEE, 14–17 Oct. 2001.

[34] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Math. Comp., 54(189):435–447, 1990.
[35] M. Sipser. Borel sets and circuit complexity. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of

Computing, pages 61–69, Boston, Massachusetts, 25–27 Apr. 1983.
[36] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma. J. Comput. System Sci.,

62(2):236–266, 2001. Special issue on the Fourteenth Annual IEEE Conference on Computational Complexity (At-
lanta, GA, 1999).

[37] J. Torán. Structural properties of the counting hierarchies. PhD thesis, Facultat d’Informatica de Barcelona, Barcelona,
Spain, 1988.

[38] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879, 2001.
[39] L. Trevisan and S. Vadhan. Pseudorandomness and average-case complexity via uniform reductions. In Seventeenth

Annual IEEE Conference on Computational Complexity, pages 129–138. IEEE Computer Soc., Los Alamitos, CA,
2002.

[40] C. Umans. Pseudo-random generators for all hardnesses. In Proceedings of the 34th ACM Symposium on Theory of
Computing, pages 627–634. ACM Press, 2002.

[41] H. Vollmer. Introduction to circuit complexity. Springer-Verlag, Berlin, 1999.
[42] K. W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta Inform., 23(3):325–

356, 1986.
[43] A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd Annual Symposium on Founda-

tions of Computer Science, pages 80–91, Chicago, Illinois, 3–5 Nov. 1982. IEEE.
[44] X. Yu and M. Yung. Space lower-bounds for pseudorandom-generators. In Ninth Annual Structure in Complexity

Theory Conference, pages 186–197. IEEE Computer Soc., Los Alamitos, CA, 1994.

A Noise sensitivity of AC0

In this section we prove Lemma 6.6.

Lemma 6.6 (restated). Let C : {0, 1}n → {0, 1} be a circuit of size g and depth d. Let X ∈ {0, 1}n be a random
input and let X̃ be obtained from X by flipping each bit independently with probability δ < 1/2. Then:

Pr
X,X̃

[C(X) 6= C(X̃)] ≤ O(δ logd−1 g).

Although it is well known that constant depth circuits have small noise sensitivity, the bound we need is not
stated anywhere, and to prove it we need to introduce the Fourier machinery and then combine several results.

We now set up the usual Fourier machinery, see e.g. [23] for details. Whenever we discuss Fourier coefficients,
we will use {+1,−1} instead of {0, 1}. Let f : {+1,−1}n → {+1,−1} be any boolean function. Then f has
a unique representation as a multilinear polynomial in x1, . . . , xn of total degree at most n. The S-th Fourier
coefficient of f , denoted f̂(S), is the coefficient of the monomial

∏

i∈S xi in this polynomial. We also have, by
Parseval’s identity:

∑

S⊆[n]

f̂(S)2 = 1,

where [n] := {1, . . . , n}.
The first result we need is a characterization of the noise sensitivity of a function in terms of its Fourier coeffi-

cients. Such a characterization is given by O’Donnell [30].

Lemma A.1 ([30]). Let f : {+1,−1}n → {+1,−1} be any boolean function. Let X ∈ {+1,−1}n be a random
input and let X̃ be obtained from X by flipping each bit independently with probability δ < 1/2. Then:

Pr
X,X̃

[f(X) 6= f(X̃)] =
1

2
−

1

2

∑

S⊆[n]

(1− 2δ)|S|f̂(S)2.

The second result we need is a bound on the Fourier coefficients of functions computed by constant depth
circuits. In [8], Boppana gives a tight bound on the average sensitivity of constant depth circuits. Combining this
bound with the characterization of average sensitivity in terms of Fourier coefficients given by Kahn, Kalai and
Linial [19] (see also [23]), we obtain the following bound.

Lemma A.2. [19, 8] Let f be computable by a circuit of size g and depth d. Then

∑

S⊆[n]

|S|f̂(S)2 ≤ O(logd−1 g).

We can now prove Lemma 6.6.

Proof of Lemma 6.6: Let f : {+1,−1}n → {+1,−1} be the function computed by C. Then:

Pr
X,X̃

[C(X) 6= C(X̃)] =
1

2
−

1

2

∑

S⊆[n]

(1− 2δ)|S|f̂(S)2 (by Lemma A.1)

≤
1

2
−

1

2

∑

S⊆[n]

(1− 2δ|S|)f̂(S)2 (by Bernoulli’s inequality)

=
1

2

∑

S⊆[n]

2δ|S|f̂(S)2 (by Parseval’s identity)

≤ O(δ logd−1 g) (by Lemma A.2)

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

