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Abstract

We continue the study of the degree of polynomials representing threshold functions modulo 6 ini-
tiated by Barrington et al.[1]. We use the framework established in [4] relating representations by
symmetric polynomials to simultaneous protocols. We show that proving bounds on the degree of
Threshold functions is equivalent to counting the number of solutions to certain Diophantine equations.
This allows us to use tools from number theory to study such polynomial representations.

When £ is a fixed constant, we show that the degree of the Threshold-k function (T}) is O(n2+<) for
any € > 0. The proof uses a result of Filaseta [6] on factors of numbers of the form N (N + d). We show
an upper bound of O(n*+¢) when m has ¢ distinct prime factors using a theorem due to Granville 8],
which generalizes Filaseta’s result but which assumes the abc conjecture [9]. We show that for ¢t = 2,
the abc conjecture implies that the degree of Ty is O(nk)z+e.

We show a lower bound of Q(n%k%) for strong representations of T}, over Z,,. This improves the
previous bound of Q(max(k,nt)) [17]. When t = 2, it nearly matches the upper bound of O(nk)z+e.
Further, when ¢t = 2, we also show a similar weak lower bound. These lower bounds are proved by
constructing solutions to the equations in question using a pigeonhole argument.

The O(y/n) upper bound for the OR function can be interpreted as follows: For suitably chosen
parameters (ks,ks) if 0 < w < n and w mod 2¥2 and w mod 3*3 are both zero, then in fact w = 0.
Our bounds for T}, give a similar result about the size of w: For n sufficiently large and suitably chosen
parameters (k2, k3), if the residues w mod 2*2 and w mod 3*3 are both less than k, then in fact they are
both equal to w itself and w < k. Conversely, if w > k, then one of the residues must be large.
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1 Introduction

Representations of Boolean functions as polynomials over various rings such as R and Z,, have been well
studied in computer science starting with the work of Minsky and Papert [13]. In addition to having several
applications to complexity theory and learning theory, this study has produced many surprising results
and challenging open questions (see the survey by Beigel [2]). One of the complexity theoretic motivations
for studying polynomials over Z,, is to understand the power of modular counting. Razborov [14] and
Smolensky [15] prove strong lower bounds for AC, with Mod-p gates when p is a prime. In contrast,
proving lower bounds for circuits with modg gates is an important open problem. A first step towards this
problem might be to better understand the computational power of polynomials over Zg.

The study of the degree of polynomials that represent threshold functions modulo 6 was initiated by the
seminal work of Barrington, Beigel and Rudich [1] who proved the surprising result that the OR function
can be strongly represented over Zg by a polynomial of degree ©(y/n). It can be seen that AND requires
degree Q(n) for strong representation but can be weakly represented by polynomials of degree ©(y/n).
Define the threshold k& function T to be 1 if the input contains k& or more 1s and 0 otherwise. OR and
AND correspond to 77 and T, respectively. This raises the following natural question:

What is the (strong/weak) degree of Threshold k is for 1 <k <mn ¢

1.1 Our Results

We show that proving bounds on the degree of T} for 1 < k < n is equivalent to showing that certain
Diophantine equations have only finitely many solutions. More precisely, we show that there exists a strong
protocol for T; on n variables with parameters ko, k3 iff there are no non-trivial solutions to the equation

|a2k2 _ b3k3| —¢ a2k <, b3k <n, L<k

Bounds on the degree of the OR and AND functions follow directly from the Chinese Remainder Theorem
(CRT). Resolving the strong degree for other values of k is equivalent to much harder questions about
Diophantine equations.

When £ is a fixed constant, we show an upper bound of O(n%“) for any € > 0. The proof uses a result
of Filaseta [6] on factors of numbers of the form N (N + d) which implies that the above equation has only
finitely many solutions. We show an upper bound of O(n%"'g) when m has t distinct prime factors using
a theorem due to Granville [8], which is a generalization of Filaseta’s result but which assumes the abc
conjecture from number theory [9]. We also show that for all values of k, when ¢ = 2, the abc conjecture
implies that the degree of T}, is bounded by O(nk)%"'g.

The O(y/n) upper bound for the OR function can be interpreted as follows: For suitably chosen
parameters (kg, k3) if w mod 2k2 and w mod 3%3 are both zero, then in fact the number w must equal 0.
Our bounds for T, give a similar result about the size of w: For suitably chosen parameters (k2, k3) if the
residues w mod 2¥? and w mod 3%% are both less than k, then in fact they are both equal to w itself and
w < k. Conversely, if w > k, then one of the residues must be large.

We show a lower bound of Q(n%k%) for strong representations of Ty over Z,,. This improves the
previous bound of Q(max(k, n%)) [17]. When ¢ = 2, the lower bound nearly matches the upper bound of
O(nk)%+E for all values of k. Further, when ¢ = 2, we show a weak lower bound of O(nk)%ﬁ. The lower
bounds are proved through a pigeonhole argument which shows that for appropriate settings of parameters,
the equations in question do have solutions. In [4], it is shown that T} can be represented by probabilistic
polynomials of deg O(max(k,+/n)) over Zgs. Hence our deterministic lower bound of Q(v/nk) shows that
even for symmetric polynomials, probabilistic representations can have lower degree than deterministic
representations.



1.2 Previously Known Results

In this section we give the basic definitions and survey some known results about of representations of
Boolean functions as polynomials over Z,,.

There are many possible definitions of what it means for a polynomial to represent a Boolean function
over Zp,. In what follows, the inputs to the polynomial are 0-1 inputs denoted by X = X1, Xo,--- , X,,.

Definition 1.1 Polynomial P 0-1 represents function f if P(X) = f(X) .

Definition 1.2 Polynomial P strongly represents function f if f(X)=0= P(X) =0 and f(X)=1=
P(X)#0.!

Definition 1.3 Polynomial P weakly represents function fif f(X) # f(Y) = P(X) # P(Y).

Such representations are easy to understand when p is a prime and Z, is a field. Using the fact that
every function from Z, — Z, is a polynomial, we can obtain a 0-1 representation from either a strong
or a weak representation while increasing the degree only by a constant. While there could be many
polynomials that 0-1 represent f, their degrees can vary by at most a constant. This can be proved using
Fermat’s little theorem. Hence proving lower bounds is not a challenge, since any polynomial representing
f is only a constant factor away from optimal.

Over Z,, when m is not a prime power however, things are very different. For convenience, we take
m = 6. Let P(X) be a 0-1 representation of OR. Let P»(X) = P(X) mod 2 and P3(X) = P(X) mod 3.
Then both P(X) and P3(X) are 0-1 representations of OR over Z; and Z3 and have degree 2(n). For
a strong or a weak representation however, this no longer holds. Indeed Barrington et al. [1] proved the
surprising result that the OR function can be strongly represented by a symmetric polynomial of degree
O(+/n) over Zg showing that such representations are greatly different from 0-1 representation mod 6.
They prove that O(y/n) is the best possible for symmetric polynomials. It is not known if this bound is
optimal for general polynomials. While there is no better upper bound, the best lower bound is O(logn)
due to Tardos and Barrington [16]. Grolmusz uses this upper bound to construct a super-polynomial size
set system where the size of each set is 0 mod 6 but all pairwise intersections are nonzero mod6. He uses
this to construct explicit Ramsey graphs whose parameters approach those of the best known construction
[12].

There has been considerable success in proving lower bounds in the strong representation. Lower bounds
of Q(n) are known in the strong representation for some functions using general (not just symmetric)
polynomials [1, 17, 10]. Tsai shows a lower bound of k on the degree of T} [17]. However as pointed out
by [16] the task of proving lower bounds for strong representations is simplified by the fact that P must
output 0 whenever f is 0. The weak representation seems a more natural definition and here far less is
known with regard to lower bounds. The best lower bound known in this case for general polynomials is
Q(logn) [11, 16].

Representations using symmetric polynomials were studied by the authors in [4]. There it was shown
that representations using symmetric polynomials are equivalent to certain two player simultaneous pro-
tocols. The protocol framework allows the use of ideas from communication complexity to show Q(n)
lower bounds on weak representations of some Threshold and Mod functions by symmetric polynomials.
In addition, it shows that questions about the degree of threshold functions are equivalent to questions in
number theory about exponential Diophantine equations. Using this connection, an upper bound of o(n)
was shown on the strong degree of T, for any constant c. A lower bound of max(k,+/n) was shown for
Ty. Since Tsai shows a lower bound of k for T with general polynomials, this bound can be inferred by

'Tardos and Barrington [16] use the terminology one-sided representation for what we call strong representation



combining his result with the lower bound for the OR function [1]. Using this framework, Beigel [3] shows
that an upper bound of O(v/nk) holds for infinitely many n for k < cy/n. His result is unconditional.

The remainder of this paper is organized as follows. In section 2, we state without proof some results
from [4] relating symmetric polynomial representations to simultaneous protocols. We show upper bounds
in Section 3. We prove lower bounds in Section 4.

2 Symmetric Polynomials and Simultaneous Protocols

Simultaneous communication protocols were first defined by Yao in [18]. In this model Alice receives
an input z, Bob receives an input y and they wish to compute f(z,y) € {0,1}. They cannot directly
communicate with each other. They simultaneously write messages on a blackboard. A referee reads the
messages and decides the output. There is an equivalence between symmetric polynomials representing f
over Z,, and certain simultaneous communication protocols for computing the function f.

As a first step towards showing this equivalence, consider symmetric polynomials over Z,. Every
symmetric polynomial P(X) over Z, computes a function f : {0,1,--n} — Z, where f(w) is the value of
P on a 0-1 input of weight w. Functions that can be computed by a low degree symmetric polynomial in
Z,| X] are exactly those than can be computed from the first few digits of the base p representation of the
weight. This is a consequence of a classical result in number theory called Lucas’ Theorem [7] which tells
us how to evaluate binomial coefficients modulo p. This is made precise by the following theorem.

Theorem 2.1 The symmetric functions f : {0,1}" — Z, that can be computed by a symmetric polynomial
P[X] € Zy|X] of degree d < p' are ezactly those functions that can be computed from w(X) mod p'.

Equivalently these functions can be computed from the [ least significant digits of w(X) in base p. A
similar equivalence holds over Zpj.. We now introduce the notion of a protocol for computing a Boolean
function f : w € {0,---n} — {0,1}. For convenience, we take m = 6.

Definition 2.2 A strong protocol for computing f is a simultaneous protocol involving two players Py and
P3. P, is given i = w mod 2¥? as input and outputs Py(i) in Zy. P3 is given j = w mod 33 as input and
outputs Ps(j) in Zs. If f(w) = 0, then both players must output 0. If f(w) = 1, at least one player must
output a non-zero value. The cost of the protocol is max(2¥2, 3%3).

Definition 2.3 A weak protocol is defined similarly except that if f(w) # f(w') then at least one player
should give different outputs on w and w'.

In both cases, the two players cannot communicate but they can agree on a procedure beforehand.
They compute their outputs independently of one another and write them on a blackboard. A referee then
reads their outputs and decides if the value of the function is 0 or 1. In a strong protocol, the referee’s
strategy is fixed, he outputs 0 iff both players say 0. In a weak protocol, the referee can choose any strategy.
For m with ¢ distinct prime factors p1,--- , p;, we define protocols with ¢ players where player P; reads the
input in base p;.

We can now make the connection between symmetric polynomials and simultaneous protocols. By
the CRT, a degree d symmetric polynomial P(X) over Zg corresponds to symmetric polynomials P5(X)
and P3(X) over Zo and Zs respectively whose degrees are at most d. By Theorem 2.1 this means that
the function computed by P can be computed from the residues of w mod 2¥? and 3% where these are
the smallest powers of 2 and 3 which exceed d. Conversely assume there exists a low cost protocol for
f- By Theorem 2.1 the function computed by each player can be represented by a low degree symmetric
polynomial. We now use the CRT to combine these polynomials and get a low degree polynomial over Zg.
This gives us the following theorem.



Theorem 2.4 There exists a symmetric polynomial over Zg of degree d that strongly (weakly) represents
f iff there exists a strong (weak) protocol of cost ©(d) for computing f.

This theorem allows us to prove both upper and lower bounds on the degrees of polynomials for both
representations by viewing them as simultaneous communication protocols. We first need some notation.
Player P, receives i = w mod 2*2 and P receives j = w mod 3¥3. They wish to compute f(w). If 2¥23k < n
there might be multiple values of w between 0 and n satisfying the congruences for ¢ and j. If f(w) is not
the same for all these values, then clearly no protocol with parameters ko, k3 exists.

Assume that the value of f is well defined for every pair (i,7). We define a 22 x 3%3 input matrix
A = a;j, 0§’i<2k2, 0§j<3k3.

i mod 2%

j mod 3k2

a”

a/ij

P, receives the same input ¢ for all inputs in the same row of A and hence outputs the same value. Similarly
inputs in a column are indistinguishable to P3. For a function f, we then define the 2¥> x 3%3 matrix Af
as below.

Al — flaiz) 0<aij<n
LY X aij >N

The symbol x indicates that the function is not defined for this value of weight. We wish to know whether
for given parameters (kq, k3), there exists a protocol for f. We can give a combinatorial characterization in
terms of the matrix Af. The next two lemmas are proved by adapting standard results about deterministic
simultaneous protocols.

Lemma 2.5 There is a strong protocol for f with parameters ko, k3 iff Vi, j such that f(a;;) =1, either
there are no 0s in row i or there are no 0s in column j of A7.

Definition 2.6 Two rows i,i' in the matriz AY are distinct, if there exists a column indez j such that
aij,ai; <n and f(ai;) # flai;). Rows i1,--- iy are said to be distinct if they are pairwise distinct.

Lemma 2.7 For a weak protocol for f over Zyq with parameters (ky, kq) to exist, the matriz AF must have
at most p distinct rows and q distinct columns.

3 Upper Bounds for Threshold

We wish to know if there exists a protocol for T} on n variables with parameters ko, k3. The following
lemma gives a necessary condition on ko, ks.

Lemma 3.1 [}/ Any strong protocol for Ty has cost Q(max(k,+/n)).

Proof: Suppose 2¥23%3 < . Choose a < k < a + 2¥23k3. Both players receive the same inputs for these
weights but Ty (a) = 0 while T} (a 4 2¥23%3) = 1. This proves a lower bound of \/n.

Now suppose max(2¥?,3%3) < k. Consider any w > k. Since j = wmod 2¥? and 2¥ < k,j < k.
Similarly 4 < k. The entry 4 lies in the same row as a while j lies in the same column.

Ty (w)
Te(i) = 0
Tp(j) =



Now apply lemma 2.5. Hence max(22,3%3) > k. |

We now prove a theorem that equates showing degree bounds on threshold to the number of solutions
to certain families of equations. Note that we already have a lower bound of max(k, 1/n) by Corollary 3.1.
Since we wish to minimize the cost of the protocol which is defined as max(2*2,3%3), we will assume that
282 and 3%2 are both greater than max(k,/n).

Theorem 3.2 There exists a strong protocol for T, on n variables with parameters ko, ks iff the equation
a2k — b3k =2 a2k <, b3 <n, L<k (1)
has no non-trivial solutions.

Proof: As a first step, we show that it suffices to analyze the following strong protocol.

Protocol 3.3 Strong Protocol for Threshold-%

e Leti = wmod 2. If i > k, P, outputs 1, else P, outputs 0.

e Let j = wmod 3. If j > k, P; outputs 1, else P3 outputs 0.

In a strong protocol, if f(w) = 0 both players must output 0. Hence when ¢ < k, P» must output 0
since the input could be i. If i > k, then clearly w > k, hence P> can output 1. Similarly, this is also the
best strategy for Ps.

We now analyze inputs on which the protocol fails. Let w > k, i < k, j < k. On such inputs, both
players output 0 whereas the value of the function is 1, and so the protocol is incorrect. Note that i # j
since if ¢ = j, by the CRT w = 4, which contradicts the fact that w > k. But now

w=a2" +i=>b3" 4
Assume that i > j and let 4 — j = £ where 0 < £ < k. Then, we have

b3ks — a2k = ¢
a2k2,b3k3§ w < n

Hence any such input gives a solution to Equation (1).
Conversely, we will show that any solution to Equation (1) for fixed n gives an input w so that the
protocol is incorrect. Assume that we have

a2k —b3%3| =0 st a2%2 <, b3 <n, L<k
Assume b3%3 > a2F2. Set w = b3k = 2*2 4 ¢. From this setting, we obtain

i=wmod 2" = ¢

j =wmod 3k =0

Hence we have w > 252 > k whereas 4, j < k and hence the protocol is incorrect. |



In using this theorem, a = b = 0 is considered a trivial solution. We will é)nly be interested in non—triviéal
solutions. As an example suppose we were trying to show a bound of n1 on Th. We set 2¥2, 3% > ni.
This implies that a,b < n1 = (2¥2)3. We are looking for solutions to

1

la2%> — b3ks| = 1 a< (3k)3 b< (2P)3

If we relax the constraints on a,b to a < 3% and b < 2¥2, by the GCD equation, we will have a solution

for every value of ks, k3 Since (2¥2,3%2) = 1. We are asking how many solutions exist with the constraint
1

that a,b < (2¥2)3. We will show that the answer is only finitely many.

3.1 Constant Threshold with Two Players

We now prove an upper bound of O(n%“) for constant threshold when m has two prime factors. This
improves the bound of o(n) in [4]. We set m = 6 for convenience. We will use the following Theorem by
Filaseta which builds on work by Mahler [6].

Theorem 3.4 Let £ be a fized non-zero integer. Let M be a fized positive integer. Let € > 0. Let D be the
largest divisor of N(N — £) which is relatively prime to M. If N is sufficiently large (depending on £, M
and €), then D > N1 ¢,

Theorem 3.5 Any symmetric polynomial that strongly represents T, over Zp, has degree O(n%+€) Ve >0
for any fized constant c.

Proof: We prove the theorem over Zg.
Set 2k2 . 3k3 > nlte We will show with this setting of parameters, Protocol 3.3 works for sufficiently
large n. By Theorem 3.2, the protocol for n fails iff there is a solution to

la2k2 — b3ks| = 4 a2k <n, b3k <n, L<c (2)
We first show that for each £ < ¢, this equation has only finitely many solutions. Set M = 6. Take
N = a2 = p3ks 44
= N(N —{) = ab2k23ks
Let D be largest divisor of N(N — /) relatively prime to 6. It follows that D < ab. By our setting of
parameters,
2k23l€3 > n1+6 > Nite
ab2k23ks = N(N —£) < N?
= D <ab< N'—¢
By Theorem 3.4, this is possible for only finitely many N. Hence, with fixed £, there are only finitely many

solutions. There are only finitely many possibilities for £ since 1 < £ < ¢. Hence Equation 2 has only
finitely many solutions in a2*2,b3%3. This implies an upper bound on n since

ok2  gks > plte — < gpokagks

Hence there are only finitely many solutions in n. Hence Protocol 3.3 works for all sufficiently large n. We
can take 22 and 33 approximately equal to give the desired degree bound. |

Theorem 3.6 For any constant c, the degree of threshold T, over Zy, is O(n%“) Ve > 0.

By the CRT, we know that if 2¥23% > n, and if w = 0 modulo 2¥? and 3%* then in fact w = 0. The
above theorem states that if 2¥23k3 > nl+¢ for any positive ¢, and if the residues of w modulo 2¥2 and 3*3
are both less than ¢ then in fact w < ¢ for sufficiently large n.



3.2 Constant Threshold with Multiple Players

In this section we consider the case when m has t distinct prime divisors pi,po, - p;. For T, with ¢
constant, it is easy to show a lower bound of Q(n%) We will show an upper bound of O(n%ﬁ) for all
e > 0. No upper bounds better than o(n) were previously known for this class of functions.

We will use a result due to Granville which generalizes Filaseta’s result. But this result holds only
under the assumption of the abc conjecture. This is a very powerful conjecture which has many important
implications, including an asymptotic version of Fermat’s Last Theorem. A survey about the conjecture
and its consequences can be found in [9].

Definition 3.7 The Radical of M denoted by R(M) is the product of distinct primes dividing M.

Conjecture 3.8 The abc-conjecture [9]: Let ¢ > 0. If a,b,c are coprime positive integers satisfying
a+b=c, then

¢ < D - R(abc)**¢
where D is constant that depends only on €.

Theorem 3.9 [8] Assume the abc-conjecture is true. Suppose that g(X) € Z[X] has no repeated roots.
For e > 0, and w sufficiently large,

R(g(w)) > [w|?es)=17

Using this result, we analyze the following protocol which is the natural generalization of Protocol 3.3.

Protocol 3.10 Threshold-c with multiple players

o Take piiph>...pht > plte,

e Set w; = w mod pl.”. If w; < ¢, Player ¢ outputs 0 else player ¢ outputs 1.
3

Theorem 3.11 Let ¢ > 0 be a constant and let t belthe number of distinct prime factors of m. If the abc
conjecture is true, there exist symmetric degree O(nt ™) that strongly represent T, over Z,.

Proof: Fix a value of n. If Protocol 3.10 is incorrect for some w € {0,---n}. Then it must be that w > ¢
but w; < ¢ for all 5. Let w = aipf" + w;. Note that we must have a; > 0 for all 4 since otherwise w < c.
This gives us a non-trivial solution to the following system of equations in the a;s and n.

aipl <n Vie{l,---t} (3)
|aipfi—ajp§j| <c Vi<ij
We now set
gX) = XX-1)---(X—-c+1)

Clearly g(X) has no repeated roots and we can apply Theorem 3.9. Hence, Ve > 0, for all but finitely
many n,

R(g(w)) > w17 (4)



We will show that if Protocol 3.10 is incorrect on w, then g(w) is divisible by high prime powers, and
so R(g(w)) is small, which contradicts Equation (4).

gw)=w(w—-1)---(w—c+1)
We know that w — az-pi-“ = w; where 0 < w; < ¢. Hence for all 4,

w—w; | g(w)
w—w; = aipfi

= piilg(w)

By the CRT, for a suitable constant C,
g(w) = O]
i

We now bound the size of C.
Hpii > nlte > wite
7

glw) = ww—-1)---(w—c+1) < w
= C g(w) < c—1—¢

sz'i "

%

This gives an upper bound on R(g(w)).

R(g(w)) < Cpipa---pt
< W  Epipy e py
— wcflfs’

This gives a contradiction to Equation 4. Hence w must be one of only finitely many exceptions. This
bounds the value of n since

w > a;p;* > p;’
Hpi?i > nl—l—e
7

= wt > n'te

_t
=>n < wlits

Hence there are only finitely many solutions in 7 and the protocol works correctly for n sufficiently
large. The degree bound follows by taking nearly equal powers of p;. |

3.3 Upper Bounds for General Threshold Functions

We now return to the case when m has two prime divisors and show that the abc—conjecture implies an
1+¢
upper bound of O(nk) % on T}, for all values of k in the strong representation. We begin with the following

technical lemma.



Lemma 3.12 Assume the abc conjecture holds for some € > 0. There ezists a constant ny(e) such that
for n > ny(e), the equation

|a2k2 — b3k = ¢ a2k <n, b3k <, 2k23k3 > (ne)lte
has no solutions with a2¥>,b3k2 ¢ relatively prime.

Proof: Assume that we have a solution where a2%2 > b3%3. Applying the abc conjecture to the equation
a2k2 = b3%3 4+ ¢, we must have

D - R(a2k2,b3k3,£)1+5 > G,2k2 > (a2k2b3k3)% (5)

where the last inequality holds since a2 > b3¥2. We can bound R(a2*2,b32 ¢) by 6abl. Plugging this
bound into (5), for a suitable constant D’ depending only on €, we get

1+e¢
2

o=

D' - (abbt)'*e > (ab2F23%2)2 > (ab)2 (nl)

The last inequality uses the fact that 2¥23%3 > (n#)!*¢. Rearranging terms,

14

D' - (ab)zteeMte > (no) = (6)

We now upper bound the size of ab.

1-¢
a2k2b3k3 < n2’ 2k23k3 > (ng)l—ks = ab < F
A calculation now gives the following bound on the LHS of (6).
D' (ab)%-i—sel-i—s < D/nlga _522155 —g2 (7)

Plugging this bound into (6), we have

14e_ 2 1—e_ 2 1+¢
D'n2 =077 7% > (nf)2

For all n > ny(e), this gives a contradiction. Hence for sufficiently large n, the equation has no solutions.

Theorem 3.13 If the abc—conjecture is true for some € > 0, there exist symmetric polynomials of degree
14e
O((nk)%) that strongly represent Ty, over Zg.

Proof: Note that for a non-trivial bound, we need ¢ < 1, else (nk)% = Q(n) for all k. Take n > ny(e)
as in Lemma 3.12. Set 2¥23%3 > (nk)'*¢. We claim that there are no solutions to

a2 — b3ks| = ¢ a2 <m, B35 <n, L<k ()

Assume that a solution exists. If a2*2, b33 ¢ are coprime, then we get a contradiction to Lemma 3.12.
Assume that a2¥2,b3%3_ ¢ are not coprime. Their GCD can be written as 223" g where g is relatively prime
to 2 and 3. Dividing throughout we get

k
91233

|al2k2—t2 o bl3k3—t3| — gl a12k2—t2 < n, bl3k3 < n, é’ <

10



Further, we now have that a’2%2—%2 1/3%3=t3 ¢’ are relatively prime. To apply Lemma 3.12, we need to
check that 2k2—%23k3=ts > (ng')1+2 Tt is easy to see that this condition does hold.

1+
ka—taqks—t ("k)H_E nk N1+

However, by Lemma 3.12, our choice of n guarantees that such a solution cannot exist. Hence in fact
Equation (8) has no solutions. The degree bound then follows by taking 2¥2 and 3% nearly equal and
applying Theorem 3.2. |

While the techniques in this section will allows us to show the same bound for Z,,, we do know how
to show an upper bound for the ¢-player case for ¢ > 3.

4 Lower Bounds for Threshold-k Functions

4.1 Strong Representations

In this section, we will show a Q(vkn) lower bound on the strong degree of the T}, function over Z,,. For
small €, this matches the upper bounq of tlhe previous section. Over Z,,, when m has ¢ distinct prime
factors, we show a lower bound of Q(ntk!~7) on the strong degree of T}.

Theorem 4.1 The strong degree of Ty, over Zg is Q(vVnk).

Proof: Set 2k2, 3k < @ We will construct solutions to the following equation for all n.
la2k2 — b33 = ¢ a2k2 b3k <m0 < k (9)

By Theorem 3.2 this implies that the lower bound on the degree of T}.

We construct the solutions by a pigeonhole argument. By Lemma 3.1 we may assume 2F2, 3%3 >
max(k, /n). Consider all pairs (u,v) such that u2¥? < n, v3¥ < n. We map the pair (u,v) to the point
Py, = u2¥? —v3%3_ 50 that P, € [-n,n]. Each pair u,v is mapped to a distinct point, since if

Puv = Lsty (u,v) 7é (S’t)
= (u—s)2F2 —(v—1)3k =0
= 2k23ks|(y — 5)2k2
= |(u—s)2F|>n
However, |(u — 5)2¥2| < n by our choice of u and s.
We can now count the total number of points P, ,. We can take 0 < u,v < 2\/%. Hence there are 4%

points lying in the interval [—n,n], and hence by the pigeonhole principle, there are two points within a
distance of W < k. Call them P,, and Py;. Hence

|(u—s)2%2 — (v —t)3%3| = ¢ <k
Set @ =u — s, and b = v — t. Assume that a > 0. This implies that b > 0, since 2¥2 > k,3% > k so we

cannot add multiples of 2¥2 and 3*3 to get £ < k. Also, a2¥? < u2*? < n and similarly b3%3 < v3%3 < n.
Hence a, b, £ give the desired solution to Equation 9. |
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degree(T-k)

1 n/2 n
k(m)

Figure 1: Strong Degree of T}, over Zg

Theorem 4.2 The strong degree of Ty, over Zyq is Q(Vnk).

Note that the lower bound of v/nk almost matches the upper bound of (nk)éﬁ implied by the
abc—conjecture. In personal communication, Beigel shows unconditionally that the bound of O(\/ﬂ)
holds for infinitely many n for k < ¢y/n for some constant ¢ [3].

We now generalize this proof to get a lower bound for the ¢- player case. We will construct a lattice in
t — 1 dimensional space and argue that it contains short vectors using the pigeonhole principle. The set of
points is not really a lattice because we will not allow all integer linear combinations, but place restrictions
on the size of the scalars.

Theorem 4.3 Let p1,---p; be the prime divisors of m. The strong degree of Ty over Zy, is Q(n%kl_%)
Proof: Let p;* < %n%kl_% Vi. We will construct solutions to the equation

Vi, apli < n (10)
. . ki k;
Vi#j, laip —apy’| < k

By Theorem 3.2, this will imply the desired lower 1bound.
By Lemma 3.1 we may assume that pfi > k,nt Vi. We define ¢ vectors v1,---v¢ in t — 1 dimensions.

k k k
V1 = (pllaplla"' apll)
V2 = (pgzaoa"' 70)
vy, = (Oa Oa pii ,0)

vy = (07()’ 7pft)

For i = 1,---1, consider b; such that bipf”" < n. We map every such t-tuple b = (b1, b2,--- ,b;) to a point
P, in t — 1 dimensional space.

P, = bivi —bvg--- — by
= (bipf* — boph?, bipht — baphe, - bipht — byplt)

12



We can use the fact that p’flp;c2 - -pft > n to show that if b # ¢, then P, # P,.. For each ¢ we can

take 0 < b; < 3(%)1_%. This gives a total of 3'(%)""! points. Since each co-ordinate of P, lies between
[~n,n], every point lies in [—n,n]*~! which is a cube of volume (2n + 1)*~1. We can partition this cube
into [22EL7071 < (32)71 gmaller cubes with each side of length k — 1. However there are 3¢(%)!"! distinct
points. By the pigeonhole principle, two points lie in the same cube of side k¥ — 1. Call these points P, and
P.. This implies for 2 < 4 <t we have

ki
|(by — c1)pft — (bi — ci)pfi| <k —1
Assume that b; > ¢;. Since pf" > k Vi, this implies b; > ¢; Vi. We set a; = b; — ¢;.
Vi, aipl < bpl <n
. . ki k;
Vi#j, lap; —aip;’| <k

Hence we get a solution to Equation 10. |

4.2 'Weak Representations

In [4] we show a lower bound of Q(max(k, y/n)) on the degree of symmetric polynomials weakly representing
Ty over Zg when k < %. In what follows, we improve this bound by applying the results obtained above
on the strong degree of T.

Theorem 4.4 Any symmetric polynomial weakly representing the threshold function Ty, over Zg has degree

Q(Vnk) for k<2

Proof: We apply the construction in the proof of Theorem 4.1 with 5 and % Set 2k2 3ks < @. There
exist a,b and £ satisfying the following equation.

N |

|a2k> — b3ks| = ¢ a2, 3% < 2.0 < (11)
We show that there does not exist a weak protocol for T}, of cost max(2*2,3%2). By Lemma 2.7 it suffices
to show that A’k has a submatrix with 3 distinct rows. We use solutions to Equation (11) to construct
this submatrix. Assume a2*? > b3%3. By Lemma 3.1 we may assume 22, 3¥3 > max(k,/n) and hence
a2k2 > k. We choose the submatrix V of A

0 a2k2 2. q2k2
vV = x q2k2 — p3ks 2. q2k2 _ p3ks
X X 2(a2k2 — b3ks)
0 a2k 2.2k
= X 4 A4 a2k
X X 20
0 1 1
= V=[x 0 1
x x 0

We need to ensure that all entries in the fooling set are valid. The largest entry in the fooling set is 2-a22.
From Equation (11), we have 2 - a2¥? < n. By Lemma 2.7 a weak protocol cannot exist since V7 has at
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least 3 distinct columns. Hence max(2*2,3%3) > @. Note that 2a2%2 < n, on the other hand, a2¥? > k.
Combining the inequalities, we obtain k < . |}

In general, over Z,, we have the following theorem:

Theorem 4.5 Any symmetric polynomial weakly representing the threshold function Ty, over Zp, where
p < q has degree Q(V/nk) for k < %.

We believe that this bound too holds for £ < . It is natural to ask if one can show linear bounds for
all k£ > 3. The next theorem shows that the answer is no (see Figure 2). It explains the remark in the
introduction that the weak degree of the AND function is ©(y/n).

Theorem 4.6 The weak degree of the threshold function Ty is equal to the weak degree of Tp_+1.

Proof: Assume that there is a weak protocol for T}, where the players read ko and ks digits respectively.
On an input w, let

i=wmod 2¥, j=wmod 3+
Since both players know the value of n, they can compute

' = (n —14) mod 2¥? = (n — w) mod 2*2
§' = (n — j) mod 3** = (n — w) mod 32

Now if the players use the protocol for T} with the values 7’ and ;' instead, they can differentiate the values
w such that n —w < k and n —w > k. This is then a weak protocol differentiating values of w > n —k +1
and w < n — k + 1 of cost max(2*2,3%3). A symmetric argument shows that a weak protocol for Tj,_j 1
gives a weak protocol for Ty. By Theorem 2.4 shows the weak degrees of T and T), 1 are equal. |}

Upper Bound with abc ——
Lower Bound -----
Lower Bound from [4] ------

degree(T-k)

1 n/2 n
k(m)

Figure 2: Weak Degree of T}, over Zg
Corollary 4.7 Assume the abc-conjecture is true for some 0 < € < 1. The weak degree of the threshold

function Ty, over Z¢ for k > % is bounded by (n(n — k + 1 =
2
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This shows that for k > 7, there is a gap between the strong and weak degree. This raises the question:
Is there a k < § where there is a gap between the strong and weak degree? Also, is there a k such that
the degree of Ty over Zg and Z15 differ significantly? To answer these questions, we will use the following
upper bound for weak protocols (also observed by Beigel in [3]).

Theorem 4.8 The weak degree of T, over Zp, where ¢ < min(p, q) is O(y/n).

Proof: We prove the bound for T, over Zi5, the general bound is similar. We give a weak protocol for
Ts, where the players read k3 and ks digits of the weight in base 3 and 5 respectively. On input w, let
i = w mod 3*3 and j = mod5*s.

Weak Protocol for T,
o Let \/n < 3%3 < 3y/n and /n < 5% < 5y/n.
e Ifi=0, P3s(i) =0. Ifi =1, P3(z) = 1. If i > 2, P3(3) = 2.
e Ifj=0,P5(j)=0.If =1, Ps(j) =1. If j > 2, P3(j) = 2.

e The referee outputs 0 if P3(i) = P5(j) < 2, and 1 otherwise.

We argue that this is a weak protocol protocol for T5. If the referee answers 0, either i = j =0ori =j = 1.
In both cases, since 3%, 5¥5 > \/n, by the CRT, w = 0 or w = 1 respectively. On the other hand, if the
referee answers 1, there are two cases. In the first case ¢ # 7, in which case w was not 0 or 1. In the second
case, i = j > 2. Thus we have a weak protocol of cost at most 5y/n. |}

In comparison, the best strong upper bound we have for T3 over Zi5 is n3+ for all sufficiently large n.
The best strong lower bound is /7 so this does not prove that there is a gap. But clearly, the weak upper
bound is much easier to prove. A similar comparison can be made between the weak degree of Ty over Zg
and Zi5 since the only upper bound we have over Zg is the strong upper bound of O(n%“).

5 Conclusions

We have shown that resolving the degree of Threshold functions for symmetric polynomials is equivalent to
questions regarding Diophantine equations. These are rather hard questions and it does not seem that tight
upper bounds can be shown unconditionally. Is showing tight bounds on threshold for general polynomials
as hard? Perhaps we run into hard number theoretic questions because we are restricted to symmetric
polynomials and proving upper bounds with general polynomials is easy. We do not believe that this is the
case, but we cannot rule out this possibility. Proving lower bounds on the other hand can only be harder
for general polynomials. The fact that the best known lower bound for OR is Q(logn) suggests that indeed
lower bounds are much harder for general polynomials.
We conclude with some open problems.

e Is it possible to improve on the lower bound of k£ due to Tsai [17] for T}, with general polynomials? A
bound of Q(v/nk) for all & would resolve the degree of OR over Zg, which has been open for a while.

e Show upper bounds on T}, over Z,, either unconditionally or with weaker assumptions (For instance
Beigel [3] shows an upper bound of O(v/nk) unconditionally for £ = O(y/n). Show an upper bound
(even conditional) on T} for 3 or more players that beats O(v/nk) (The bound of O(v/nk) follows
from the 2 player case) .
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e Grolmusz [12] uses the O(y/n) upper bound on OR to construct a super polynomial size set system
with restricted intersection mod 6 and explicit Ramsey Graphs. Can one obtain similar constructions
by using upper bounds on T} for k > 17

e The following question is related to a question raised by Grolmusz in [12]. In all our strong protocols,
each player outputs either 0 or 1. What about protocols where both players cannot simultaneously
say 1?7 It is not hard to show an Q(n) lower bound for symmetric polynomials representing OR with
this restriction. Can one show a better lower bound for general polynomials representing OR, with
this restriction?

e Consider the permutation on {1,---,3% — 1} defined by o(a) = a2*2 mod 3¥. The bounds in this
paper can be interpreted as saying that this permutation behaves like a random permutation in some
respects. Permutations of the kind o(a) = k - @ mod m, where k € Z7,, are well studied and are

known to be quasirandom [5]. Can this be used to say anything interesting about the degree of T} ?
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