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Abstract

We derive certain properties for problems which are parameter-
ized tractable both in their “primal” and in their “dual” parameter-
ization. In particular, we derive the first ever lower bounds result
for kernel sizes of parameterized problems. We discuss various con-
sequences of this result. Moreover, we explain how to get improved
non-parameterized algorithms from known parameterized algorithms
by a “two-side attack.”
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1 Introduction

Parameterized duality. It was observed that many problems which are
parameterized tractable are becoming intractable when the parameter is
“turned around,” see [14, 21], although also the contrary has been found,
cf. [4, 15]. For example, the minimum vertex cover problem is (as min-
imization problem) naturally parameterized by the entity to be minimized,
in this case by an upperbound k on the number of vertices permitted in a
feasible cover. If n denotes the number of vertices in the whole graph G,
then it is well-known that (G, k) is a YES-instance of k-vertex cover if
and only if (G, kd) is a YES-instance of kd-independent set, if we take
kd = n−k. In this sense, independent set is the parametric dual problem
to vertex cover. While vertex cover is parameterized tractable on
general graphs, independent set is parameterized intractable on general
graphs. Similarly, while dominating set is parameterized intractable on
general graphs, its parametric dual called nonblocker is fixed-parameter
tractable, instead.

The landscape changes when we turn our attention towards special graph
classes, e.g., problems on planar graphs [4]. There, e.g., both independent
set and dominating set are parameterized tractable. In fact (and con-
trasting the “rule” stated above), there are quite a lot of problems for which
both the problem itself and its dual are parameterized tractable.

The results of this paper. The beauty about problems which are in FPT
together with their dual sibling problem is that this constellation allows,
from an algorithmic standpoint, for a two-side attack on the original, non-
parameterized problem. This means that, by playing a win-win game, we are
able to arrive at new non-parameterized algorithms which may be superior to
other published algorithms. From a complexity point of view, this two-side
attack enables us to use classical complexity assumptions to prove that (most
likely) certain problems have no tiny problem kernels. This first lower bound
result on kernel sizes has a number of concrete consequences and opens up
completely new lines of research.
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2 Notions from parameterized complexity

A parameterized problem P is a usual decision problem together with a spe-
cial entity called parameter. Formally, this means that the language of YES-
instances of P , written L(P ), is a subset of Σ∗×N. An instance of a param-
eterized problem P is therefore a pair (I, k) ∈ Σ∗ × N.

To formally specify what we mean by the dual of a parameterized problem,
we explicitly need a proper notion of a size function. A mapping s : Σ∗×N →
N is called a size function

• if 0 ≤ k ≤ s(I, k),1

• if s(I, k) ≤ |I| (where |I| denotes the length of the string I) and

• if s(I, k) = s(I, s(I, k′) for all appropriate k, k′ (independence).

“Natural size functions” (in graphs, for example, these are entities as the
“number of vertices” or the “number of edges”) are independent. We can
then also write s(I).

For clarity, we denote a problem P together with its size function s
as (P, s). To the dual problem Pd then corresponds the language of YES-
instances L(Pd) = {(I, s(I) − k) | (I, k) ∈ L(P )}. The dual of the dual of a
problem with size function is again the original problem due to the symmetry
condition. Sometimes, we will call P the primal problem (distinguishing it
from Pd). Then, k is the primal and kd is the dual parameter.

Example 1 d-hitting set
Given: A hypergraph G = (V,E) with edge degree bounded by d, i.e., ∀e ∈
E(|e| ≤ d)
Parameter: k
Question: Is there a hitting set of size at most k, i.e.,

∃C ⊆ V, |C| ≤ k,∀e ∈ E(C ∩ e 6= ∅)?
The special case d = 2 is known as the vertex cover problem in

undirected graphs. Let L(d − HS) denote the language of d-hitting set.
Taking as size function s(G) = |V |, it is clear that the dual problem obeys
(G, kd) ∈ L(d − HSd) iff G has an independent set of cardinality kd.

1We deliberately ignore instances with k > s(I, k) in this way, assuming that their
solution is trivial. Moreover, it is hard to come up with a reasonable notion of “duality”
if larger parameters are to be considered.
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Example 2 dominating set
Given: A (simple) graph G = (V,E)
Parameter: k
Question: Is there a dominating set of size at most k, i.e.,

∃D ⊆ V, |D| ≤ k, ∀v ∈ V \ D ∃d ∈ D ({d, v} ∈ E)?

Taking as size function s(G) = |V |, it is clear that the dual problem obeys
(G, kd) ∈ L(DSd) iff G has a nonblocker set of cardinality kd.

Example 3 feedback vertex set
Given: A (simple) graph G = (V,E)
Parameter: k
Question: Is there a feedback vertex set of size at most k, i.e.,

∃F ⊆ V, |F | ≤ k,∀c ∈ C(G)(F ∩ c 6= ∅)?

Here, C(G) denotes the set of cycles of G, where a cycle is a sequence of ver-
tices (also interpreted as a set of vertices) v0, v1, . . . , v` such that {vi, v(i+1) mod `} ∈
E for i = 0, . . . , ` − 1.

This problem is (again) a vertex selection problem. Hence, we naturally
take s(G) = |V | as the size function. Then, the dual problem can be described
as follows.

maximum vertex-induced forest
Given: A (simple) graph G = (V,E)
Parameter: kd

Question: Is there a vertex-induced forest of size at least kd, i.e.,

∃F ⊆ V, |F | ≥ kd, C(G[F ]) = ∅?

Here, G[F ] denotes the graph induced by F in G.
In a similar fashion, one can define the problem feedback edge set,

where we ask if it is possible to turn a graph into a forest by deleting at most
k edges. Being an edge selection problem, the natural size function is now
s(G) = |E|. The dual problem can be hence called maximum edge-induced
forest.

Generally speaking, it is easy to “correctly” define the dual of a problem
for selection problems as formalized in [5].
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If P is a parameterized problem with L(P ) ⊆ Σ∗ × N and {a, b} ⊆ Σ,
then Lc(P ) = {Iabk | (I, k) ∈ L(P )} is the classical language associated to
P . So, we can also speak about NP-hardness of a parameterized problem.

A parameterized problem P is called fixed-parameter tractable if there
exists a solving algorithm for P running in time O(f(k)p(|I|)) on instance
(I, k) for some function f and some polynomial p.

As detailed in [13], d-hitting set and feedback vertex set are
known to be fixed-parameter tractable for general graphs.

A kernelization for a parameterized problem P with size function s is a
polynomial-time computable reduction which maps an instance (I, k) onto
(I ′, k′) such that s(I ′) ≤ g(k) and k′ ≤ k, where g is an arbitrary function.
I ′ is also called the problem kernel of I.

It is known (see [13]) that a parameterized problem is fixed-parameter
tractable iff it has a kernelization. The complexity class characterized in this
way is known as FPT. Similarly to the classical theory of NP-hardness, there
is also a “hardness theory” for parameterized problems, the most important
notion being that of W [1]-hardness. For example, dominating set and
independent set are known to be W [1]-hard and it is therefore thought to
be unlikely that these problems lie in FPT.

Of special interest in the following will be linear kernels where g(k) = αk
for some α in the kernelization. Such small kernels are known, in particular,
for graph problems restricted to planar graphs.

3 Small kernels

In a certain sense, kernels are the essential ingredient of parameterized algo-
rithmics, since a problem is fixed-parameter tractable iff it admits a problem
kernel. The smaller the problem kernel, the “more tractable” is the cor-
responding problem. As we will see in this section, we cannot hope for
arbitrarily small kernels for NP-hard problems (unless P = NP), especially
if both primal and dual problem are fixed-parameter tractable.

Lemma 1 If (P, s) is a parameterized problem with size function and if P
admits a kernelization r such that s(r(I, k)) ≤ αk for some α < 1, then P is
in P.

Proof. s(I ′, k′) ≥ k′ for each instance (I ′, k′) according to our definition of
a size function. This is in particular true for the parameter k′ of the problem
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kernel instance I ′ = r(I, k). So, k′ ≤ αk for some α < 1. Repeatedly ker-
nelizing, we arrive at a problem with arbitrary small parameter and hence of
arbitrarily small size. Basically, we need O(log k) many such kernelizations,
each of them requiring polynomial time. Hence, the classical language Lc(P )
can be decided in polynomial time. Q.E.D.

We now discuss the case when both the primal and the dual version of a
problem admits a linear kernel.

Theorem 3.1 Let P be an NP-hard parameterized problem with size func-
tion. If P admits an αk-size kernel and its dual Pd admits an αdkd-size
kernel (α, αd ≥ 1), then

(α − 1)(αd − 1) ≥ 1

unless P equals NP.

Proof. Let r(·) denote the assumed linear kernelization reduction for
P . Similarly, rd(·) is the linear kernelization for Pd. Consider the following
program for a reduction R, given an instance (I, k) of P :

if k ≤ αd

α+αd

s(I) then compute r(I, k)

otherwise, compute rd(I, s(I) − k)

For the size of the R-reduced instance I ′, we can compute:

• If k ≤ αd

α+αd

s(I), then s(I ′) ≤ αk ≤ ααd

α+αd

s(I).

• Otherwise,

s(I ′) ≤ αdkd

= αd(s(I) − k)

< αd

(

s(I) − αd

α + αd

s(I)

)

=
ααd

α + αd
s(I)

By repeatedly applying R, the problem P is solvable in polynomial time, if
ααd

α+αd

< 1. Q.E.D.

From the previous theorem, we can immediately deduce a couple of

Corollaries: Assuming P is not equal to NP , we can conclude:
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1. For any ε > 0, there is no (4/3 − ε)k kernel for planar k-vertex
cover.

Proof. Recall that planar kd-independent set has a 4kd kernel
due to the four-color theorem. Q.E.D.

This “negative result” immediately transfers to more general graph
classes in the following manner:

2. If there is any way to produce a kernel smaller than 4/3k for k-vertex
cover on general graphs, then the corresponding reduction rules must
“somehow” possibly introduce K3,3 or K5 as subgraphs (or as minors)
into the reduced instance.

Proof. Assume that there were a kernelization algorithm which
does not introduce K3,3 or K5 as subgraphs (or as minors) into the
reduced instances. Then, this would also be a kernelization algorithm
for planar k-vertex cover, since it would be planarity preserving
due to Kuratowski’s theorem. Therefore, Cor. 1 applies. Q.E.D.

3. Conversely, for any ε > 0, there is no (2 − ε)kd kernel for planar
kd-independent set. Likewise, there is no (2 − ε)kd kernel for kd-
independent set on graphs of maximum degree bounded by
three. This is even true for the combination problem (which is still
NP-hard): There is no (2 − ε)kd kernel for kd-independent set on
planar graphs of maximum degree bounded by three.

Proof. The general k-vertex cover has a 2k kernel based on
a Theorem due to Nemhauser and Trotter [9]. For our purposes, it
is enough to know that that rule identifies a subset of vertices V ′,
|V ′| ≤ 2k of the given graph instance G = (V,E) and a parameter
k′ ≤ k such that G has a k-vertex cover iff the induced subgraph in
G[V ′] has a k′-vertex cover. Since the class of planar graphs, as well
as the class of graphs of a specified bounded degree, are closed under
taking induced subgraphs, the claims are true by Theorem 3.1. Q.E.D.

4. Based on a theorem due to Grötzsch (which can be turned into a
polynomial-time coloring algorithm; see [8, 20]) it is known that pla-
nar triangle-free graphs are 3-colorable. This implies a 3kd kernel
for kd-independent set restricted to this graph class. Hence, a
(1.5 − ε)k lower bound for a possible kernel for k-vertex cover
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restricted to triangle-free planar graphs. Observe that
the Nemhauser/Trotter kernelization preserves planarity and triangle-
freeness. This is interesting due to the following result:

Lemma 2 k-vertex cover restricted to triangle-free pla-
nar graphs is NP-hard.

Proof. (Sketch) In the standard construction [17] reducing (pla-
nar) 3SAT to (planar) vertex cover, we replace each triangle
clause gadget by a gadget which is a circle of length nine, where each
third vertex is representing a literal and is hence connected to the cor-
responding variable gadget as before. The “non-literal” vertices are
not connected to any vertices outside of the gadget. Such a gadget
itself necessarily brings five vertices into the cover. This is the core
observation for stating that, given a planar 3SAT instance I with m
clauses, I is satisfiable if the reduced vertex cover instance I ′ has a
cover of size 8m. Q.E.D.

5. Since “Euler-type” theorems exist for graphs of arbitrary genus g, it
can be shown that there is a constant cg such that each graph of genus
g is cg-colorable. Hence, according lower bounds for kernel sizes of k-
vertex cover on graphs of genus g can be derived. For triangle-
free graphs of genus g, Thomassen has shown that the corresponding
constant c′g is in O(g1/3(log g)−2/3), see [18, 26].

6. There is no (336/335 − ε)kd kernel for planar kd-nonblocker for
any choice of ε > 0.

Proof. A 335k kernel for k-dominating set on planar graphs
was recently derived [3]. Hence, the lower bound follows. Q.E.D.

7. For any ε > 0, there is no (2 − ε)k kernel for k-dominating set on
planar graphs. This is also true when further restricting the graph
class to planar graphs of maximum degree three (due to the known
NP-hardness of that problem).

Proof. C. McCartin has derived a 2kd kernel for kd-nonblocker
on general graphs which does not introduce any possible violations of
planarity or degree bounds.2 Q.E.D.

2 In ongoing work together with F. Dehne, M. Fellows, E. Prieto-Rodriguez, F. Rosa-
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This opens a completely new line of research:

• Can we find examples of problems such that the derived kernel sizes
are optimal (unless P equals NP)?

• If not, can we close the gaps more and more? According to our previous
discussion, planar vertex cover on triangle-free graphs is
our “best match:” we know how to derive a kernel of size 2k (due to
Nemhauser & Trotter), and (assuming P 6= NP) we know that no
kernel smaller than 1.5k is possible.

• Are there other, possibly more sophisticated arguments for showing
lower bounds on kernel sizes? Especially, it would be interesting to
have arguments ruling out say the existence of a kernel of size o(k3) in
a situation when a kernel of size O(k3) has been obtained. The kind of
algebra we used in the proof of Theorem 3.1 does not extend.

• Although we are only able to derive results for problems where both the
primal and the dual parameterization allow for linear size kernels, this
might already give a good starting point, especially for graph problems.
Observe that many NP-hard graph problems are still NP-hard when
restricted to the class of planar graphs. However, in the planar case,
our general impression is that linear bounds can be obtained due to
the known linear relationships amongst the numbers of edges, faces
and vertices.

4 An algorithmic attack from two sides

It is natural that algorithms developped in the parameterized framework can
also be used to solve the “non-parameterized” versions of the problem, in
many cases simply by possibly testing all parameter values. As shown in the
case of solving the independent set problem on graphs of maximum
degree three, sometimes upper bounds on the possible parameter values
are known. In the mentioned example, the size of a mimum vertex cover is up-
perbounded by 2/3n for connected graphs, where n here and in the following

mond and U. Stege we have derived a 7/4kd kernel for kd-nonblocker on general graphs.
Unfortunately, the corresponding reduction rules do possibly increase the maximum de-
gree in the graph and do possibly destroy planarity. To our knowledge, McCartin’s result
never got published.
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is the number of vertices of the graph instance. Chen, Kanj and Xia [10] used
this result to turn their O(1.194k + kn) algorithm for k-vertex cover on
graphs of maximum degree three into an O(1.1942n/3) = O(1.1254n)
algorithm for independent set problem on graphs of maximum de-
gree three. So, knowing bounds on the possible parameter values helps
considerably reduce the bounds on the computing time. In a similar spirit,
the four-color theorem teaches us that each n-vertex planar graph has a min-
imum vertex cover of size at most 3/4n. The known O(1.29k +kn) algorithm
for k-vertex cover this way implies an O(1.2853n/4) = O(1.207n) algo-
rithm for planar independent set, which is slightly better than Robson’s
algorithm [25] (for general graphs) needing O(1.211n) time.

With problems having both FPT algorithms for their primal and for their
dual parameterizations, we have the possibility of converting both algorithms
into one non-parameterized algorithm, kind of attacking the problem from
two sides. This means that we can use either of the two FPT algorithms.

Theorem 4.1 Let (P, s) be a parameterized problem with size function and
Pd its dual. Assume that both P and Pd are in FPT. Let f be some mono-
tone function. Assume that there is an algorithm A for solving P on in-
stance (I, k), having running time O(f(βk)p(s(I))) for some polynomial p,
and that Ad is an algorithm for solving Pd on instance (I, kd) running in time
O(f(βdkd)pd(s(I))) for a polynomial pd.

Then, there is an algorithm A′ for solving the non-parameterized problem
instance I running in time

O(f(
ββd

β + βd

s(I))p′(s(I)))

for some polynomial p′.

Proof. Algorithm A′ will use A as long as it is better than using Ad. This
means we have to compare

f(βk) versus f(βd(s(I) − kd))

Since f is monotone, this means we simply have to compare

βk versus βd(s(I) − kd)

Some algebra shows that the following algorithm A′ is then “best” for the
de-parameterized problem P , given an instance I:
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For all parameter values k do:

if k ≤ βd

β+βd

s(I) then compute A(I, k)

otherwise, compute Ad(I, s(I) − k)
output the ‘best’ of all computed solutions

Considering the boundary case k = βd

β+βd

s(I) gives the claimed worst case

running time. Here, p′(j) = j(p(j) + pd(j)). Q.E.D.

Let us explain this theorem by some example computations.

1. By taking the O(1.194k+n) algorithm for k-vertex cover on graphs
of maximum degree three and the (trivial) O(4kdn) for the dual
kd-independent set problem on graphs of maximum degree
three, we obtain an O(1.171n) algorithm for maximum indepen-
dent set on graphs of maximum degree three. This algo-
rithm is worse than the one obtained by Chen, Kanj and Xia (see
above). Why? The case distinction within the combined algorithm is
at k ≤ 0.8866n, while we know that always k ≤ 0.666n. Hence, the
parameterized independent set algorithm will be never employed.

2. We can play the same game for maximum independent set on
planar graphs.

Combining the O(6kd + p(n))-algorithm for kd-independent set on
planar graphs and the known O(1.285k +kn) algorithm for vertex
cover (on general graphs) [9], we get an O(1.246n) algorithm, clearly
worse than Robson’s.

By using some results of Borodin et al., see [1], we can show:

Theorem 4.2 kd-planar independent set can be solved in time
O(5.1623kd + p(n)).

This then yields an O(1.243n) algorithm, still worse than Robson’s.

Alternatively, we can start with the parameterized algorithms of “type”
O(c

√
k + n) which are known for both problems. This means (in the

setting of the theorem) that we let f(x) to be 2
√

x.

Plugging in the best-known constants, i.e.,

• β = 4.52 = 20.25 in the case of k-vertex cover on planar
graphs [16] and
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• βd = 48 in the case of kd-independent set on planar graphs
(long version of [4]),

we get an
O(23.773

√
n) = O(13.68

√
n)

algorithm for maximum independent set on planar graphs. Us-
ing that a minimum vertex cover in planar graphs has at most 3/4n
vertices this time gives us a worse result, namely an algorithm running

in time O(2
√

20.25∗3/4∗n) = O(23.898
√

n) = O(14.90
√

n).

More precisely, taking (in the spirit of klam values as described in [13])
a value of 1020 “operations” as “benchmark” for how far each type of
algorithm might take us, we see that with Robson’s algorithm graphs
with about 250 vertices are still manageable, while our new algorithm
can cope with graphs with over more than 300 vertices.

By a completely different approach, namely by bounding the tree-width
of any planar graph G = (V,E) by 3.182

√

|V |, Fomin and Thilikos
were recently able to obtain an even better algorithm, running in time
O(9.08

√
n). This means that actually planar graphs with up to 500

vertices are manageable.

3. We now consider feedback vertex set. Since on general graphs
the parameterized dual is hard [21], we again consider the problem
restricted to planar graphs.

Based on a coloring theorem of Borodin [7] and on the reasoning given
by Goemans and Williamson [19], in parts explicitly formulated in
terms of parameterized complexity in [23], the following two lemmas
can be shown:

Lemma 3 kd-maximum vertex-induced forest on planar graphs
has a 2.5kd kernel and can hence be solved in time

O





(

2.5

(

2.5

1.5

)1.5
)kd

+ p(n)



 = O(5.3792kd + p(n)).

Lemma 4 k-feedback vertex set on planar graphs can be
solved in time O(5kn).
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Taken together, this gives an algorithm for maximum vertex-induced
forest on planar graphs running in time O(2.5914n). Taking the
1020-benchmark, this means that planar graphs with up to 50 vertices
can be treated this way.

4. Let us finally consider planar minimum dominating set. We will
only consider the ck-type algorithms.

• For k-dominating set on planar graphs, an O(8k + kn)
algorithm is known [2].

• For kd-nonblocker (on general graphs), an O(3.31k + n) algo-
rithm is has been recently developed, see footnote 2.

Combining both algorithms leads to an O(5.67n) algorithm for pla-
nar minimum dominating set. By an alternative approach, an
O(32.97

√
n) algorithm has been exhibited [16].

Similar results can be also obtained for other graph families, as they
are described in [11]. As a non-graph-theoretic example, let us mention
the “tardy task problem” from [15]. Keeping the second “parameter” m
described in that paper, our method provides an O(mmn/(m+1)) algorithm
for this problem, where n is the number of tasks.

5 Conclusions

We had a closer look at parameterized problems P of the form that both P
(the “parameterized primal”) and the parameterized dual problem Pd are in
FPT, where the dualization was based upon the availability of a “nice” size
function.

These problems seem to form an interesting subclass of FPT (maybe to
be called PD-FPT [primal-dual FPT]), since they show nice relations to the
non-parameterized optimization problem, both regarding hardness results
and new algorithms.

A natural question is especially if there are other subclasses of FPT prob-
lems for which lower bounds on the size of the kernels could be shown. If
not, then PD-FPT surely deserves to be studied on its own account.

There is an alternative interpretation of our hardness results: namely,
whenever somebody is insisting on getting a really small kernel for pla-
nar vertex cover, say 1.1k, then this is only possible by a parameterized
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tractable kernelization reduction, i.e., a kernelization computing (I ′, k′) from
(I, k) running in time O(f(k)p(s(I))) for some polynomial p and an arbitrary
function f , because the proof of the hardness result relies on the definition
of a kernelization reduction function being computable in polynomial time.
Of course, this would perfectly fit into the whole picture of parameterized
algorithmics. So, in this interpretation, our hardness results mean that pa-
rameterized tractable kernelizations may be sometimes unavoidable.

Finally, possible connections to approximability come to one’s mind. Let
us explain this (again) by means of the example vertex cover. Firstly, it
appears to be that any progress that we make into designing kernelizations
which give smaller kernels has its bearing into developing better approxima-
tion algorithms. Namely, we just take all vertices “left over” after kernel-
ization into the vertex cover. In actual fact, Hochbaum’s interpretation of
Nemhauser and Trotter’s kernelization theorem (this is how it could be read,
although this interpretation is anachronistic) for vertex cover is doing just
this. Due to the lower bounds we derived in this paper, this approach to de-
rive approximation algorithms cannot pursued “forever”. In a certain sense,
we already knew this, since minimum vertex cover is APX complete. But
the kernelization lower bounds we got (1.3333) are (just by comparing the
raw numbers) only slightly worse than the best known lower bounds on the
(non-)approximability of vertex cover (current record: 1.3607 [12]; actu-
ally, there is a link with a certain conjecture in “PCP games” established in
[22]). Along this reasoning, the 7/6+ ε approximation algorithm for vertex
cover on graphs with maximum degree three due to Berman and
Fujito3 cannot be matched by an approximation algorithm which is derived
from a kernelization algorithm.

Are there any further (formalizable) connections between APX and PTAS
on the one hand and FPT and PD-FPT (both with linear kernels)? Note that
recently many interesting relationships between parameterized tractability
and approximability had been established, see [13], so that (in principle)
these connections would not come as such a surprise.

It is also possible to define the notion of a kernelization scheme, requiring
that for each α > 1 we find a polynomial time kernelization function r (whose
running time can depend on the chosen α) such that s(r(I, k)) ≤ αk. Theo-
rem 3.1 shows that whenever a problem (P, s) happens to have a kernelization
scheme, then its parameterized dual Pd cannot have a linear kernel (unless

3All the approximability results are taken from [6].
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P equals NP). Hence, is is quite unlikely to find a kernelization scheme for
vertex cover on planar graphs, while approximation schemes for this
problem are well-known.

Acknowledgment: We are very grateful for remarks of Gerhard Woeg-
inger on a draft version of this paper and for further hints due to Oleg Borodin
and Klaus-Jörn Lange.
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Appendix: More details on the proof of Lemma 2

We give a simple modification of the proof of the NP-hardness of planar
k-vertex cover as presented by Lichtenstein [24]. In that reduction argu-
ment from planar 3SAT, the only possibility to introduce triangles is in
the gadget representing clauses. In fact, each such gadget is a triangle, where
each vertex represents the occurrence of a literal in that clause. Moreover,
these vertices are connected to the vertices representing positive or negative
occurrences of variables in the variable gadgets. Obviously, each clause gad-
get needs two vertices from the gadget in the vertex cover. If one of the
literals is indeed “selected” (by putting its neighboring vertex in the corre-
sponding variable gadget into the cover), then the mentioned two necessary
vertices in the clause gadget are enough to cover both the edges in the clause
gadget and the yet uncovered edges incident with the clause gadget. Con-
versely, if none of the literals is “selected,” then obviously three vertices are
needed to cover the clause gadget and its incident edges. This is the core ob-
servation for stating that, given a planar 3SAT instance I with m clauses,
I is satisfiable if the reduced vertex cover instance I ′ has a cover of size
5m.

Now, we replace each triangle clause gadget by a gadget which is a circle
of length nine, where each third vertex is representing a literal and is hence
connected to the corresponding variable gadget as before. The “non-literal”
vertices are not connected to any vertices outside of the gadget. Such a
gadget itself necessarily brings five vertices into the cover. Those vertices
can be arranged such that two of them are representing literals. But if we
require that three of them represent literals (which means that none of the
literals occurring in that specific clause is selected), then we will need three
further vertices to cover the clause gadget. This is the core observation for
stating that, given a planar 3SAT instance I with m clauses, I is satisfiable
if the reduced vertex cover instance I ′ has a cover of size 8m.

Appendix: An improved algorithm for

planar independent set

In [1], the authors have shown the following result:

Theorem 5.1 Every connected plane graph with at least two vertices has
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1. two vertices with degree sum at most 5, or

2. two vertices of distance at most two and with degree sum at most 7, or

3. a triangular face with two incident vertices with degree sum at most 9,
or

4. two triangular faces neighbored via an edge {u, v} where the sum of the
degrees of u and v is at most 11.

Based on that theorem, we propose the following algorithm:

BOOLEAN PIS((V ,E), k, S, S ′):

IF k <= 0 THEN { S ′ = S; return TRUE;}
IF V is NOT empty THEN return FALSE;

Let v be a vertex of lowest degree;

IF δ(v) <= 1 THEN return PIS((V \ N [v], E), k − 1, S ∪ {v}, S ′);

IF δ(v) <= 4 THEN branch at v // 5 branches

IF δ(v) == 5 THEN // the fourth case of the above theorem applies

// N(v) = {x, y, u, v1, v2}
// N(u) = {x, y, v, u1, u2, u3}
// branch 1: v in IS ?

IF PIS((V \ N [v], E), k − 1, S ∪ {v}, S ′) THEN return TRUE;

// branch 2: v is not in IS, but u
IF PIS((V \ N [u], E), k − 1, S ∪ {u}, S ′) THEN return TRUE;

// branch 3: v, u is not in IS, but x
IF PIS((V \ N [x], E), k − 1, S ∪ {x}, S ′) THEN return TRUE;

// branch 4: v, u, x is not in IS, but y
IF PIS((V \ N [y], E), k − 1, S ∪ {y}, S ′) THEN return TRUE;

stop = FALSE;

FOR i = 1, 2; j = 1, 2, 3 AND WHILE NOT stop DO

// branch 5(i, j): v, u, x, y is not in IS, but {vi, uj}
stop=PIS((V \ (N [vi] ∪ N [uj ]), k − 2, S ∪ {vi, uj}, S ′);

return stop;

Initially, given an instance (G, k) of planar independent set, we call
PIS with argument (G, k, ∅, S ′), where S ′ is a set variable in which the so-
lution will be stored. The correctness of the algorithm immediately follows
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from the quoted theorem. The running time T of the new algorithm, mea-
sured in terms of the number of leaves of the search tree, satisfies

T (k) ≤ 4T (k − 1) + 6T (k − 2).

This recurrence can be solved, showing T (k) ≤ 5.1623k as claimed.
This shows Theorem 4.2.

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



