Electronic Colloquium on Computational Complexity, Report No. 28 (2004)

Aggregates with Component Size One

Characterize Polynomial Space

Arfst Nickelsen and Till Tantau Lorenz Weizsacker
Technische Universitat Berlin Humboldt Universitat Berlin
Fakultét fiir Elektrotechnik und Informatik Institut fiir Informatik
10623 Berlin, Germany 12489 Berlin, Germany
{nicke , ta.ntau}@cs .tu-berlin.de weizack@informatik.hu-berlin.de

March 19, 2004

Abstract

Aggregates are a computational model similar to circuits, but the underlying graph is not
necessarily acyclic. Logspace-uniform polynomial-size aggregates decide exactly the languages
in PSPACE; without uniformity condition they decide the languages in PSPACE/poly. As a
measure of similarity to boolean circuits we introduce the parameter component size. We prove
that already aggregates of component size 1 are powerful enough to capture polynomial space.
The only type of cyclic components needed to make polynomial-size circuits as powerful as
polynomial-size aggregates are binary xor-gates whose output is fed back to the gate as one of
the inputs.

1 Introduction

Aggregates are a computational model which was introduced by Dymond and Cook in 1980 [DC80].
As in the circuit model, an aggregate consists of gates, each of them computing a binary boolean
function. In order to perform more complex computations, the gates are connected to each other,
forming a graph with the gates as nodes. The input is fed to the circuit through special input
gates; similarly, the output is taken from special output gates. In contrast to circuits, the graph of
an aggregate may contain cycles and a gate can be used several times during a computation. This
entails a more sophisticated concept of evaluation: rather than assigning just one value to each
gate during the computation, we assign a (possibly varying) value to each gate of an aggregate in
each step of the computation.

There is an apparent gap between the computational power of polynomial-size circuits and
polynomial-size aggregates: it is known that aggregate size corresponds to Turing-machine space
[DC89, Hon86]. In particular, any language in PSPACE can be decided by a logspace-uniform
polynomial-size family of aggregates. Proofs for this result up to now make extensive use of the
possibility of connecting the gates in cycles.

We consider aggregates where the component size, i. e., the maximum number of nodes that are
reachable from each other, is bounded. This parameter is important since it measures how much
an aggregate does look like a circuit. The underlying graph of an aggregate with component size ¢
is acyclic except for clusters of at most ¢ gates. We show that restricting the component size does
not reduce the computational power of aggregates. Even if we allow no cycles at all except loops
on xor-gates, all languages in PSPACE can be decided.

ISSN 1433-8092

This paper is organized as follows. In Section 2 we review the aggregate model of Hong [Hon86].
We introduce uniform complexity classes USIZE(s), where the number of gates in the aggregate is
bounded by a size bound s, and show that these classes are equal to DSPACE(s) for well-behaved
space bounds s. We also show that the nonuniform classes SIZE(s) correspond to Turing machine
space classes with advice linear in s. In Section 3 we introduce and explain some special gadgets
for aggregates that we will use later on. The most simple one is the flipflop, which is obtained by
connecting the outgoing edge of an xor-gate to one of its ingoing edges. We prove our Main Theorem
in Section 4 and also present a nonuniform version of it. In Section 5 we point out the connection
between our results and techniques of Section 4 and the theory of leaf language characterisations
of complexity classes. We explain how to obtain a weaker version of the Main Theorem using the
fact that PSPACE has a regular leaf language.

2 Basics on aggregates

In this section we give a definition of aggregates, discuss uniformity conditions, define parameters
like size and computation time of aggregates, and introduce aggregate language classes. We will
use the definition of aggregates of Hong [Hon86] which differs from the definition of Dymond and
Cook [DC80, DC89] regarding the input scheme. Their input scheme is more elaborate and allows
aggregates of sublinear size, but we do not consider such size bounds.

2.1 Description of the Computational Model

Aggregates can be regarded as circuits where the condition that the underlying graph has to be
acyclic simply is dropped. However, this does not immediately yield a computational model since
the absence of cycles is crucial in the circuit model, since the canonical definition of the function
computed by a given circuit depends on this property: First, a number depth(v) is assigned to each
gate v in the circuit’s graph, where depth(v) is defined as the length of longest path from a node
with zero fan-in to v. Then recursively a value in {0, 1} is assigned to all gates. Gates of depth zero
get a value depending on their labeling or their corresponding input bit. Gates of greater depth
are assigned a value depending on the gate function and the values of its parent gates.

This procedure is obviously not applicable to graphs containing cycles. Although one can still
assign values to gates with zero fan-in, gates can be connected in such a way that neither of them
can be assigned a value before the other one has been assigned a value. This problem is solved by
assigning an initial value, for instance 0, to all non-constant gates and by then starting a stepwise
re-evaluation according to each gate’s function and its parents’ values. Since there is no reason
why after any number of re-evaluations the values should stop to change, we stop the stepwise
re-evaluation as soon as a special “flag gate” outputs 1.

2.2 Formal Definition of the Model

We introduce the following notions: aggregates, computation of an aggregate, function computed
by an aggregate.

An aggregate D is a directed graph with labeled nodes and labeled edges. Every node v has
in-degree 0, 1, or 2, and a node with in-degree i is labeled with a function f,: {0,1}* — {0,1}.
Its incoming edges have distinct labels in {1, 2} such that for non-symmetric functions f, the first
and the second argument can be distinguished. The input bits z1,...,z, € {0,1}, where n is
the input length of D, are delivered to the aggregate via n special input gates. These are gates of

in-degree zero and are labeled with a number ¢ € {1,...,n}. The specification of D is completed
by indicating the output gates and the flag gate. The output gates are indicated by an m-tuple
whose ith entry tells us which gate yields the ith output bit. The number of gates in an aggregate
is referred to as its size.

For an aggregate D let V' be the set of its nodes and n its input length. Together with an
input £ =z -+ z, € {0,1}" it induces the value function valp z: V x N — {0,1}, which assigns a
boolean value to every node v in every step t. For t = 0 we set valp ;(v,0) = 1 for every node v
with in-degree zero that is labeled 1 and for input gates with a label ¢ such that z; = 1. We set
valp z(v,0) = 0 for all other nodes. For every step ¢ > 0 the value valp (v,) is defined according
to v’s label and the values of v’s parent nodes w; and wy at step ¢t — 1, where the edge from w; to
v has label i:

valp z(v,t) == fy(valp g(wi,t — 1), valp z(wa, t — 1)).

This re-evaluation is defined analogously when v’s in-degree is one.

The length of the computation or the computation time, denoted tsiop, is the least ¢ € N for
which the flag gate has value 1. The output of D on input x are the values of the output gates at
step tstop- If the flag gate has value 0 in every step ¢ € N, neither an output nor the computation
time is defined. The function computed by D is a partial boolean function from {0,1}" to {0,1}™,
where n is the number of input gates and m is the number of output gates. This function need not
be total since the computation may deliver no output. A function f: {0,1}* — {0,1}* is computed
by a family of aggregates (Dy)nen if for every n € N and every z € {0,1}" the aggregate D,
computes f(x) upon input z.

The size of an aggregate with n input gates is at least n. In contrast, the definition of aggregates
given in [DC89] uses a special input scheme that allows aggregates with sublinear size.

Just as for circuits, complexity classes can be defined via aggregates by asymptotically restricting
the size and /or the computation time that the families of aggregates are allowed to use in order to
compute a function on {0,1}*. In this paper we consider only size classes. Before introducing such
classes, we fix a notion of uniformity for this paper, namely logspace uniformity.

Definition 2.1. A family of aggregates (Dy,)nen is logspace-uniform, if there exists a Turing ma-
chine that outputs (a standard encoding of) D,, for every input of length n using O (log s(n)) space,
where s(n) is the size of D,,.

In this definition s(n) can be replaced by the length of the encoding, since, although the encoding
length is not exactly specified, in any case the two values are polynomially related.

2.3 Size Classes

Definition 2.2. A language A C {0,1}* is in USIZE(s) if there exists a logspace-uniform family of
aggregates (Dy)nen that computes the characteristic function x4 of A, where the size of each D,
is bounded by O(s).

It is known [DC89, Hon86] that the size of uniform aggregates corresponds to Turing machine
space. Of course, for the aggregate model presented here this only holds for bounds with at least
linear growth. Indeed, we need another assumption on the bounds to make this correspondence
hold, see the following definition and theorem.

Definition 2.3. A function f: N — N is a proper size function if f € Q(n) and there exist a
Turing machine M/ that on every input of length n outputs 1/™) | using at most O(log f (n)) space.

The proof of the following theorem is similar to the well-known proof that a language A is in
P if and only if its decidable by logspace-uniform polynomial size circuits [Sav72]. The details can
be taken from that proof, see for example [BDG95].

Theorem 2.4. USIZE(s) = DSPACE(s) for proper size functions s.

Proof. Let A € USIZE(s) via an aggregate family (Dp),en. The computation of D), for a given
input z of length n can be simulated by a Turing machine M. First, M constructs the encoding
of D,, and then simulates the computation. Besides the encoding, only the values of the gates have
to be stored. Since the family (Dy,),en is logspace-uniform, the construction of D,, does not affect
the O(s) space bound of M.

For the other direction, let M be a Turing machine with an O(s) space bound. Any configuration
of M on an input of size n can be mapped to the next configuration by a layered circuit of size
g(n), g € O(s), which has constant depth. It can be built by a Turing machine that needs storage
only to compute the correct size g(n). The circuit is fed with its own output so that in step i - d it
yields the ith configuration of M’s computation, where d is the circuit’s depth.

The same output is also given to a second circuit of logarithmic depth that checks for each
incoming configuration whether a final state has been reached. If so, it makes the aggregate output
the result. Inputs that do not represent a configuration of M are ignored. Again, the only space
needed for the construction is that for the computation of the right size. Both the sizes of the first
and second circuits can be assumed to be proper size functions since s is a proper size function.
Hence the construction of the aggregate that computes the characteristic function of L(M) is
logspace-uniform and of size O(s). O

Non-uniform variants of the size classes have a simple characterization as well. The definition
below differs from Definition 2.2 only insofar that the logspace-uniformity condition is omitted.

Definition 2.5. A language A C {0, 1}* is in SIZE(s) if there exists a family of aggregates (Dp,)nen
that computes the characteristic function x4 of A, where the size of D,, is bounded by O(s).

Just as the class of languages decided by nonuniform polynomial-size circuit families equals
the advice class P/poly, nonuniform polynomial-size aggregates characterize PSPACE/poly. The
following theorem formulates this relationship in a general way. For the definition of advice classes
C/F see [KL80].

Theorem 2.6. SIZE(s) = DSPACE(s)/O(s) for every s € Q(n).

Proof. We follow the same procedure as in the proof of Theorem 2.4. To show that SIZE(s) C
DSPACE(s)/O(s), the Turing machine gets the encoding of D,, as advice. The length of the encoding
is O(s) since the gates have bounded fan-in.

For the opposite direction, where the aggregates D,, have to simulate the Turing machine, the
advice for input length n can be fed to D,, via O(s) constant gates. O

3 Components for Assembling Aggregates

In this section we present special gadgets, called components, like flipflops, bit counters, and bit
enumerators that will be used in later proofs. A component of an aggregate is a part of an ag-
gregate that has incoming and outgoing edges through which it gets (respectively delivers) input
(respectively output) tuples throughout the computation.

Figure 1: The flipflop, storage, and parity counter components. For the flipflop and for the parity
counter, also the corresponding transition graphs are depicted. The marking of each state in the
flipflop’s transition graph equals the value of the xor-gate (= the output of the flipflop). The
marking s1so of a state in the transition graph of the parity counter means that the value of the
xor-gate is s; and the value of the and-gate (= the output of the counter) is s.

A component has not only incoming and outgoing edges, but also internal edges. Therefore the
output depends on both, the external input and the input from its own gates. The last can be seen
as an internal state; thus components are much like (deterministic) finite state transducers. Such
transducers start from an initial state reading one character per step from an infinite tape, passing
to a next state according to their transition function and producing an output that is a function
of the new state. In our case, the set of characters and the set of states are {0,1}* respectively
{0,1}?, where k is the number of incoming edges and s the number of gates of the component. The
output is a selection of [bits from the s state bits, where [is the number of outgoing edges.

Flipflops. The first component shown in Figure 1 has just one incoming and one outgoing edge.
Its only gate is an xor-gate, of which one input is fed by its output. The component changes its
state, i.e., its output, after every incoming 1. Therefore we call it a flipflop.

Storage Components. The storage component S is a “controlled” flipflop. The first input line
is used to feed an input signal to the flipflop. The second input line is the control line. Only when
this control line is set to 1, the first input reaches the flipflop.

Parity Counters. A parity counter, see Figure 1 once more, is a component with one incoming
and one outgoing edge. It outputs a 1 for every two 1’s in the input stream. It can be built using
an and-gate, where one input is fed directly by the input of the component while the second passes
through a flipflop before it is fed to the and-gate.

=)
[y
=)
[\
S
w
QS
iy
S
()]

Figure 2: A 5-bit counter. The small boxes are components. Those with label “pc” are parity
counters, while flipflops are labeled ”ff.”

Bit Counters. An m-bit counter, see Figure 2, outputs in binary the number of 1’s which have
been fed into its input so far modulo 2™. The output is delivered with a certain delay. The
component is constructed as follows: We connect m — 1 parity counters into a chain. The kth
parity counter outputs, with a delay of k steps, a single 1 for every 2¥ 1’s fed into the chain. The
outputs of the parity counters are passed to flipflops that yield the kth bit of the counter. This
bit has to flip every 2* incoming 1’s. By delaying the signal by m — k steps, a constant delay of
m steps can be attained. Thus the m flipflops deliver the number of incoming 1’s in binary with a
delay of m steps.

Bit Enumerators. An m-bit counter can easily converted to an m-bit enumerator that enumer-
ates all bitstrings of length m without getting any input. This is done by feeding the m-bit counter
with a 1-gate. The enumeration starts in step m with 0™, which is also the output until that step.
As the counter’s input is always fed with a 1, the output is incremented in each step. When all
words of length m have been enumerated, the enumeration starts over again without any delay.

Deterministic Finite Automata. In general, a deterministic finite automaton M can be sim-
ulated by a component B as follows. Let M’s input symbols be encoded using & bits. The compo-
nent B has k incoming edges. Additionally, there is one incoming edge that should be fed with a
1 only in those step in which B should interpret the input on the other edges as an input symbol
for M. The signal must not necessarily be present at regular intervals, but it often is convenient
that it is present every d steps for some d that depends on the construction of the aggregate. The
component has a single outgoing edge. A 1 on that edge indicates that, with a delay of d steps, the
automaton M accepts the input fed in so far.

The component B uses a subcomponent F to store a coding of the current state of M. When
an input symbol is delivered, a layered circuit C' is used that maps that symbol and the current

state to the new current state according to M’s transition function. The result is stored in £. The
circuit C also computes a bit that indicates whether the new current state is accepting or not. This
bit is stored in E as well.

4 Characterization of Polynomial Space by Component Size One

We have seen in Section 2 that uniform polynomial-size aggregate decide exactly those languages
that are in PSPACE. Is this still true if we impose restrictions on the graphs of the aggregates? We
are especially interested in restrictions that in some sense make aggregates more similar to circuits.
One way to do so is to bound the component size of aggregates, i.e., the maximal number of gates
that are mutually reachable from each other. Surprisingly, even component size one is sufficient to
capture PSPACE. Note that a “smaller” component size than one yields essentially circuits again,
which accept the class P. Thus component size one is optimal.

4.1 Loops on Xor-Gates

We now show that PSPACE is characterized by aggregates with component size one. In fact, it
suffices to consider only aggregates whose graphs are acyclic except for loops in flipflops.

Theorem 4.1 (Main Theorem). A language A C {0,1}* is recognized by a family of logspace-
uniform polynomial size aggregates that are acyclic except for loops on zor-gates iff A € PSPACE.

Proof. For the only-if part, note that restrictions on the graph of the aggregates do not affect the
fact that their computations can be simulated by Turing machines using polynomial space.

For the if part, let A € PSPACE. For every input length n we construct an aggregate D,, that
has the desired properties. The computation of D, on input z € {0,1}" consists of two phases.
First, z is mapped to a quantified boolean formula ®, that is true iff z € A. In a second phase,
D,, examines ®, and outputs 1 iff @, is true.

The set of true quantified boolean formulas is PSPACE-complete with respect to logspace many-
one reductions [SM73]. Therefore the mapping of inputs z to formulas ®, reduction can be realized
by a layered polynomial-size circuit C,,. We use C),, as a component of D, to implement the
first phase of the computation. The input z is fed into C,, which outputs ®, in every step from
step p(n) onwards. Here p(n) is the depth of C,,. We may assume that ®, is in prenex form
with an even number of alternating quantifiers, beginning with an existential quantifier. Thus
&, = Iy VyoTys - - - Vym (Y1, - - -, Ym) for some quantifier-free ¢. This form of @, canonically yields
a circuit that decides whether @, is true or not; see [Pap94].

The circuit, see Figure 3, has the following form. It is a balanced binary tree with m + 1 levels,
one for each quantifier in ¢, plus the leaf level. The leaves are the input gates and the root is the
output gate. The input of the leaf at path by - - by, is ¢(b1,...,by) is ¢(by, ..., by), i.e., the value
of ¢ when the variables y1, ..., yn, are assigned b --- by,,. The nodes inside the tree are or-gates
on odd and and-gates on even levels, where the root level is numbered 1. Each level corresponds
to one of the quantifiers and the circuit outputs 1 iff &, is true.

This circuit cannot be used as a part of the aggregate D, since it has exponential size. For-
tunately, we are allowed to re-use gates. Instead of using 2° or-gates resp. and-gates on level 4 in
parallel, we can use the same gate 2¢ times in order to evaluate the circuit. The values ¢(by, ... ,by,)
are fed successively in lexicographical order with respect to the assignments to the component shown
in Figure 4. To achieve this, we feed the output of an m-bit enumerator together with the formula ¢
to a layered evaluation circuit that outputs the desired sequence of values.

SioiEE s AR e R s AEEER
SHistialial st ist g i i g Al i iS! iS] = i
=) SIS IS i e S IS S S =k b e e
SIS IS IS IS IS IS IS el e e T
:v‘ :v‘ :v‘ :_/‘ :v‘ :_/‘ :v‘ :v‘ :v‘ :v‘ :_/‘ :v‘ :_/‘ :v‘ :v‘ :v‘
A i S S e S e e S RS SIS

Figure 3: The circuit for verifying ®, with m = 4 quantifiers.

The first of any two values fed to the aggregate from Figure 4 has to be stored for one step,
because it has to be delivered together with the next incoming value to the and-gate that processes
them and that delivers its output to the next level. The output in the second step will be called
a relevant output since it presents an output of a gate in the circuit, in this case the very left one
in level m. The first of two relevant outputs has to be stored until the second is available, in order
to deliver them together to the gate presenting the next level in the circuit. The same scheme is
applied to each level; and thus the last or-gate in the component at last yields a relevant output,
which is exactly the output of the simulated circuit.

One problem remains to be solved: It is not apparent how to build a storage device that fits the
needs of our construction without using components of size at least 2. The problem is not solved
directly, but circumvented. Each relevant output that has to be stored is computed twice in order
to reset the storage device based on a flipflop.

Let a1 and ag be a successive pair of relevant outputs, that are to be processed together. First,
ay is stored in a flipflop. After as has been delivered and processed with a; on the next level, aq
is computed once more to reset the flipflop. Then, just to simplify the construction, as is also
computed again, before it is the next pair’s turn.

The construction of the storage component S shown in Figure 1 guarantees that a 1 can only
reach the flipflop if a signal in the second input indicates a relevant output from the previous level.
Without the recomputation we could generate the needed sequence of assignments for m variables
by an m-bit enumerator. Now we have to guarantee that the feeding of the values ¢(b1,... ,by) is
done in the right order.

When a pair (aj,a2) of relevant outputs on level 7 has to be computed a second time, the
sequence of assignments used to obtain those values has to be fed in a second time as well. That
sequence contains exactly those assignments that have by - -- b;_1 as prefix, where by --- b;_1 is the
path to the gate in the simulated circuit that gets a; and ag as input. We can thus use an (m+1)-bit

Figure 4: The aggregate replacing the circuit of Figure 3.

enumerator and skip the (i — 1)-th bit of the output to obtain an m-bit enumerator which repeats
that sequence one time. As on each level the relevant outputs have to be computed twice, we use
an 2m-bit enumerator and skip one bit out of every two bits and keep only the second.

All parts of the aggregate, namely the reduction circuit, the enumerator, the evaluation circuit,
and the aggregate in Figure 4, are of size polynomial in n and logspace-uniform. Besides the loops
used in the flipflops there are no cycles in the graph of the aggregate. O

The above proof also works for a nonuniform variant of the theorem:

Theorem 4.2. A language A C {0,1}* is recognized by a family of polynomial size aggregates that
are acyclic except for loops on zor-gates iff A € PSPACE/poly.

Proof. As in the proof of Theorem 2.6 we can use the encoding of the aggregate as advice in order
to simulate its computation on a Turing machine. Conversely, let A € PSPACE/poly via a set
B € PSPACE and an advice function f. We can argue the same way as in the previous proof,
except that (z, f(|z])) instead of z is reduced to ®,. O

4.2 Loops on Other Gates

In the Main Theorem 4.1 we consider aggregates where loops are only allowed on xor-gates. Does
Theorem 4.1 still hold if we use another type of gates instead, nand-gates for instance? The answer
is no for most the 16 types of gates with fan-in two. Only for xor- and equality-gates, which
compute the negation of xor, the corresponding class is PSPACE. In all other cases we only get P.
(Of course, if P = PSPACE, all gates have the same power.)

Figure 5: The component ff. The equality-gate flips to output 1 at the beginning of the compu-
tation. Appropriate sequences are fed to the or-gate and the and-gate such that the equality-gate
flips back to 0 until the simulation of the flipflop starts.

Theorem 4.3. Let F be a set of functions f: {0,1}2 — {0,1}. Let Cx denote the class of languages
that can recognized by a logspace-uniform family of polynomial-size aggregates that are acyclic except
for loops on the f-gates, f € F. Then

1. Cx = PSPACE, if the zor-function or the equality-function belongs to F,
2. Cr = P, otherwise.

Proof. For the first statement we only need to show PSPACE C Cx, where F contains the equality-
function, but not the xor-function. In order to show this, the construction of the aggregate D,
from the proof of Theorem 4.1 is altered the following way.

We replace every flipflop ff by a small component ff that simulates ff with a delay of » = 3 steps
starting in step ¢ = 4. That is, if ff maps an input bit sequence (ege; ...) to an output bit sequence
(agay ---), then ff maps (* * *ege1 ...) to (x * * % * * xaga1 - - -). The stars represent arbitrary values
from {0,1}. Figure 5 shows how to build ff using looped equality-gates.

Outside the components ff, we have to balance the delay r by inserting additional identity-gates.
Consider a node g in D, whose output has at least two branches, one of which leads without further
branching to a flipflop ff, which is to be replaced by ff. We insert three identity-gates between g
and any of the other branches. Note that this method of delay balancing makes use of the special
structure of D,,.

For the second statement, the inclusion P C Cr can easily be obtained using the well-known
circuit characterization of P. We sketch how to show Cx C P. As above, we may consider the
looped gates of the aggregate D,, as special gates with fan-in 1, so that the graph of the aggregate
D,, becomes acyclic. For a gate v, let depth(v) be defined as for circuits in Section 2. We will argue
that, since the maximum depth of a node in D,, is bounded by D,,’s size, the computation time
is bounded by a polynomial. Therefore the computation can be simulated by a polynomial-time
Turing machine.

We say gate g has period 2 from step ¢ on, if g, from step ¢ on, outputs repeatedly the sequence
ab for some a,b € {0,1}. If all parent gates of a gate g have period 2 from step ¢ on, then g itself
has period 2 from step ¢t + 1. By easy, but rather tedious calculations it can be shown that this
also holds for the special gates, provided the underlying looped gate is neither an xor-gate nor an

10

equality-gate. Since all gates of depth 0 have period 1 from step 1, we conclude that the gates of
layer k& have period 2 from step k. Therefore, if the flag-gate does not output 1 within the first
k + 1 steps, it will never do so. O

5 Using Leaf Language Characterizations

In this section we show that a weaker result than Theorem 4.1 can be obtained with much less
effort, using the leaf language characterization of PSPACE given in [HLS'93]. Hertrampf et al.
have shown that PSPACE has a regular leaf language. We use this to give an easy proof that every
language in PSPACE can be decided by an logspace-uniform aggregate of polynomial size where the
component size is bounded by a fixed constant.

For the concept of leaf languages, consider a nondeterministic polynomial-time Turing ma-
chine M that is normalized. This means that for every input string z € {0,1}" with n € N there
are exactly p(n) binary nondeterministic branchings, where p is a polynomial. Let M (z,y) be
the result on input z and with y € {0,1}?™ as coding of the p(n) nondeterministic decisions.
For a given pair (z,y) € {0,1}" x {0, 1}1”(”) the result M (z,y) can be deterministically computed
in polynomial time. Let leafy/(z) = (M(x,y))ye{o,l}p(n) be the string of the results on input x
where the y’s are taken from {0, 1}?(™) in lexicographical order. For any language L C {0,1}*, the
class LEAF(L) contains all languages A for which there exists a normalized polynomial-time Turing
machine M such that z € A iff leaf;/(z) € L.

Fact 5.1 ([HLS193]). There is a regular language R such that LEAF(R) = PSPACE.

Theorem 5.2. There isa k € N such that every language A € PSPACE can be recognized by a
family of logspace-uniform polynomial-size aggregates that have component size at most k.

Proof. Let A € PSPACE = LEAF(R) via a normalized polynomial-time Turing machine My that
uses p(n) binary decisions for inputs of length n. We can assume R C {0,1}*. Let R be accepted
by a deterministic finite automaton Mpg.

The aggregate for input length n is constructed as follows. A p(n)-bit enumerator successively
produces all strings y € {0,1}?(™ in lexicographical order. Together with the input z, they are
fed to a circuit that computes M4(z,y). Then this circuit will output the sequence leafys, (z) as
the values for y are enumerated. This sequence is fed to a component B that simulates Mp. It
processes one input symbol, i.e., one bit, within 2¥ steps for some k € N. By using a (p(n) + k)-bit
enumerator instead of the p(n)-bit enumerator and skipping the k first bits of its output, we make
sure that only every 2* steps a new bit of the sequence leaf s, () is delivered to B.

When the last bit of sequence has been processed, the output of B is 1 iff the input = was
in A. O

6 Conclusion and Open Problems

The essential properties of the aggregate model are that

1. every gate can be used many times and
2. intermediate results can be fed back to the components that produced them.

In the case of polynomial-size aggregates we have seen that the second property can almost entirely
be abandoned without any loss computational power.

11

In this work we focused on the computational power of aggregates with component size one.
Theorem 4.3 tells us that the computational power depends on which type of gates are allowed to
have loops, unless P = PSPACE. If we consider component size ¢ > 1, one may ask again: Which
components of size ¢ yield exactly PSPACE as opposed to P? If we consider a component that can
be used to simulate flipflops, it is one of them. However, if B cannot simulate flipflops, can we
conclude that any gate will have period 2?7

The component size of a graph is not its only parameter of interest. We suggest to investigate
which other graph parameters affect the computational power of aggregates. A natural candidate is,

for instance, the depth of an aggregate. Can we characterize P in terms of aggregates of logarithmic
depth?

References

[Ata98] Mikahail Atallah, editor. CRC Handbook on Algorithms and Theory of Complexity. CRC
Press, 1998.

[BDGY5] José Balcdzar, Josep Diaz, and Joaquim Gabarré. Structural Complexity I. Springer-
Verlag, 1995.

[DC80] Patrick W. Dymond and Stephen A. Cook. Hardware complexity and parallel compu-
tation. Proceedings of the IEEE 21st Annual Symposium on Foundations of Computer
Science, pages 360-372, 1980.

[DC89] Patrick W. Dymond and Stephen A. Cook. Complexity theory of parallel time and
hardware. Information and Computation, 80:205-226, 1989.

[HLS'93] Ulrich Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On
the power of polynomial bit-reductions. Proceedings of the 8th Structure in Complexity
Theory, pages 200-207, 1993.

[Hon86] J. W. Hong. Computation: Computability, Similarity and Duality. John Wiley and Sons,
1986.

[KL8O0] R. Karp and R. Lipton. Some connection between non-uniform and uniform complexity
classes. Proceedings of the 12th ACM Symposium on Theory of Computing, pages 302—
309, 1980.

[Pap94] Christos H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

[Sav72] E. Savage. Computational work and time of finite machines. Journal of the ACM,
19:660-674, 1972.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. Proceed-
ings of the 5th ACM Symposium on the Theory of Computing, pages 1-9, 1973.

12

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

