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Abstract

Scaled dimension has been introduced by Hitchcock et al (2003) in
order to quantitatively distinguish among classes such as SIZE(2αn)
and SIZE(2nα

) that have trivial dimension and measure in ESPACE.
This paper gives an exact characterization of effective scaled di-

mension in terms of resource-bounded Kolmogorov complexity. We
can now view each result on the scaled dimension of a class of lan-
guages as upper and lower bounds on the Kolmogorov complexity of
the languages in the class.

We prove a Small Span Theorem for Turing reductions that implies

the class of ≤
P/poly

T -hard sets for ESPACE has (−3)rd-pspace dimen-
sion 0.

As a consequence we have a nontrivial upper bound on the Kol-
mogorov complexity of all hard sets for ESPACE for this very general

nonuniform reduction, ≤
P/poly

T . This is, to our knowledge, the first such
bound. We also show that this upper bound does not hold for most

decidable languages, so ≤
P/poly

T -hard languages are unusually simple.

1 Introduction

The relationship between uniform and nonuniform complexity measures is
one of the main sources of open problems in computational complexity.
In this context it is very informative to quantify the difference in size of
nonuniform and uniform complexity classes and this has been possible so
far for space-bounded complexity classes. Lutz started in [20] by showing
that the Boolean circuit-size complexity class SIZE( 2n

n ) has measure 0 in
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ESPACE (linear exponential space). In 2000, Lutz [21] defined resource-
bounded dimension as an effectivization of Hausdorff dimension, and he
further refined his previous result by proving that SIZE(α 2n

n ) has dimension
α in ESPACE, for each α ∈ [0, 1].

But classes such as SIZE(2αn) or SIZE (2nα
) resisted the dimension ap-

proach because they had trivial dimensions, and in 2003 the definition of
scaled dimension [9] made it possible to precisely quantify the difference be-
tween those circuit-size classes. Several results on scaled dimension of other
classes have also been proven [9, 8].

In this paper we explore the interpretation of space-bounded scaled di-
mension as an information content measure. Space-bounded Kolmogorov
complexity has been investigated extensively [15, 6, 22, 16, 19, 4, 12]. Roughly
speaking, for A ⊆ {0, 1}∗, m ∈ N and space bound t, the space-bounded
Kolmogorov complexity KSt(A[0 . . . m − 1]) is the length of the shortest
program that prints the m-bit prefix of characteristic sequence of A using
at most t units of workspace. In this setting KS t(A[0 . . . m − 1]) is the
amount of information of A[0 . . . m − 1] that is accessible by a t-bounded
space computation.

Here we obtain an exact characterization of space-bounded scaled di-
mension in terms of space-bounded Kolmogorov complexity for the cases
where such a characterization is possible. For example, the (−1)st-scaled
pspace-dimension of a class X is the minimum s for which there is a c such
that for every A ∈ X,

KSmc
(A[0 . . . m − 1]) ≤ m − m1−s i.o. m

Equivalently, (−1)st-scaled pspace-dimension of X is the the minimum s for
which there is a c that for every A ∈ X,

KS2cn
(A≤n) ≤ 2n+1 − 2n(1−s) i.o. n

This means that the (−1)st-scaled pspace-dimension of X is directly related
to the best i.o. upper bound (equivalently, to the worse a.e. lower bound)
of the form 2n+1 − 2nα on the space-bounded Kolmogorov complexity of all
languages in X.

We can now interpret each scaled dimension result as a Kolmogorov
complexity (tight) upper bound.

Juedes and Lutz in [14] prove a measure Small Span Theorem for ≤
P/poly
T -

reductions in ESPACE. This result says that for each A ∈ ESPACE, either
the class of languages reducible to A (lower span) or the class of problems
to which A can be reduced (upper span) has pspace-measure 0. Here, we
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improve this result by showing that, for ≤
P/poly
T -reductions, for each A ∈

ESPACE, either the lower span or the upper span of A has (−3)rd-scaled
pspace-dimension 0. This result also improves the scaled dimension Small
Span Theorem for polynomial-time many-one reductions given by Hitchcock
in [8].

In particular, the class of ≤
P/poly
T -hard sets for ESPACE has (−3)rd-

scaled pspace-dimension 0 and therefore unusually low space-bounded Kol-
mogorov complexity.

Juedes and Lutz extensively study in [14] upper and lower bounds on

KS(A=n). Their best results for hard languages are for the ≤
P/poly
m -reductions,

that is, non-uniform but many-one reductions. Our result is the first non-

trivial upper bound on the Kolmogorov complexity of ≤
P/poly
T -hard sets.

We also show that the upper bound we have obtained on the Kolmogorov
complexity of these (very general) hard languages is very unusual, because
it does not hold for most decidable languages (in the sense of both measure
and scaled dimension).

The paper is organized as follows. Section 2 contains notation and pre-
liminaries. Section 3 reviews the main concepts in scaled dimension. Section
4 contains our characterization and section 5 our results for the Kolmogorov
complexity of hard sets.

2 Preliminaries

The Cantor space C is the set of all infinite binary sequences. If w ∈ {0, 1}∗

and x ∈ {0, 1}∗ ∪C, w v x means that w is a prefix of x. For 0 ≤ i ≤ j, we
write x[i . . . j] for the string consisting of the i-th trough the j-th bits of x.

If s0, s1, s2 . . . is the standard enumeration of {0, 1}∗ in lexicographical
order, we identify each language with its characteristic sequence χA ∈ C

where

χA[i] =

{
1 if si ∈ A
0 if si /∈ A

Abusing this identification, for each n ∈ N, we will use both

A=n = A ∩ {0, 1}n and A=n = A[2n − 1 . . . 2n+1 − 2]

A≤n = A ∩ {0, 1}≤n and A≤n = A[0 . . . 2n+1 − 2]

For each i ∈ N we define a class Gi of functions from N to N as follows.

G0 = {f |(∃k)(∀∞n)f(n) ≤ kn}

Gi+1 = {f |(∃g ∈ Gi)(∀
∞n)f(n) ≤ 2g(log n)}

3



We also define the functions ĝi ∈ Gi by ĝ0(n) = 2n, ĝi+1(n) = 2bgi(log n).
We regard the functions in these classes as growth rates. In particular, G0

contains the linearly bounded growth rates and G1 contains the polynomially
bounded growth rates. Each Gi is closed under composition, each f ∈ Gi is
o(ĝi+1) and each ĝi is o(2n). Thus, Gi contains superpolynomial growth rates
for all i > 1, but all growth rates in the Gi-hierarchy are subexponential.

Within the class of all decidable languages, we are interested in the
exponential space complexity classes EiSPACE=DSPACE(2Gi−1) for i ≥ 1.
In particular E1SPACE = ESPACE = DSPACE(2O(n)) and E2SPACE =

DSPACE(2nO(1)
).

We use the following classes of total functions.

all = {f | f : {0, 1}∗ → {0, 1}∗}

comp = {f ∈ all | f is computable}

pispace = {f ∈ all | f is computable in Gi space} (i ≥ 1)

(Then length of the output is included as part of the space used in computing
f). We write pspace for p1space. Throughout this paper, ∆ denotes one of
the classes comp, pispace (for some i ≥ 1).

A constructor is a function δ : {0, 1}∗ → {0, 1}∗ that satisfies x v δ(x)
for all x. The result of a constructor δ (i.e. the language constructed by
δ) is the unique language R(δ) such that δn(λ) v R(δ) for all n ∈ N. Our
interest in the above-defined classes of functions is because of the following
facts.

R(all) = C

R(comp) = DEC

R(pispace) = EiSPACE for i ≥ 1

If D is a discrete domain, then a function f : D → [0,∞) is ∆-computable if
there is a function f̂ : N×D → Q ∩[0,∞) such that |f̂(r, x)−f(x)| ≤ 2−r for
all r ∈ N and x ∈ D and f̂ ∈ ∆ (with r coded in unary and the output coded
in binary). We say that f is exactly ∆-computable if f : D → Q ∩ [0,∞)
and f ∈ ∆.

We use log(i) for the i-times iterated application of log, log(i)(x) =
i︷ ︸︸ ︷

log(. . . log x).
The binary entropy is the function H : [0, 1] → [0, 1] defined as H(x) =

−x log(x) − (1 − x) log(1 − x), with H(0) = 0 and H(1) = 0.
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3 Scaled Dimension

Hitchcock, Lutz and Mayordomo [9] introduced resource-bounded scaled
dimension. In this section we review the essentials of this theory and state
some useful properties.

A scale is a function g : H × [0,+∞) → R where H = (a,∞) for some
a ∈ R ∪ {−∞}. A scale must satisfy certain properties stated in [9]. Here
we concentrate in the following family of scales.
Definition. We define gi : Hi × [0,∞) → R and g−i : Hi × [0,∞) → R by
recursion on i ∈ N as follows:

g0(m, s) = ms.

gi+1(m, s) = 2gi(log m,s)

g−i(m, s) =

{
m + gi(m, 0) − gi(m, 1 − s) for 0 ≤ s ≤ 1
gi(m, s) for s > 1

The domain of gi coincides with that of g−i and is of the form Hi =
(ai,∞), where a0 = −∞ and ai+1 = 2ai . We write mi = m−i = max{0, ai}.
2

Example 3.1 For 0 ≤ s ≤ 1,

g3(m, s) = 22(log log m)s

g2(m, s) = 2(log m)s

g1(m, s) = ms

g0(m, s) = ms

g−1(m, s) = m + 1 − m1−s

g−2(m, s) = m + 2 − 2(logm)1−s

g−3(m, s) = m + 22 − 22(log log m)1−s

Scaled dimension is defined using functions called scaled gales [9]. Par-
ticular cases of this concept are gales and martingales.
Definition. Let k ∈ Z and s ∈ [0,∞).

1. An s(k)-gale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−gk(|w|+1,s)+gk(|w|,s)[d(w0) + d(w1)]

for all w ∈ {0, 1} with |w| ≥ mk.
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2. An s-gale is a s(0)-gale, that is, a function d : {0, 1}∗ → [0,∞) satisfy-
ing

d(w) = 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.

3. A martingale is a 0-gale, that is, a function d : {0, 1}∗ → [0,∞)
satisfying

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗.

2

Definition. Let k ∈ Z, s ∈ [0,+∞) and d be an s(k)-gale.

1. We say that d succeeds on a sequence S ∈ C if

lim sup
n→∞

d(S[0 . . . n]) = ∞

2. The success set of d is

S∞[d] = {S ∈ C | d succeeds on S}

2

Definition. Let X ⊆ C and k ∈ Z.

1. G
(k)
∆ (X) is the set of all s ∈ [0,∞) such that there is a ∆-computable

s(k)-gale d such that X ⊆ S∞[d].

2. The kth-order scaled ∆-dimension of X is

dim
(k)
∆ (X) = inf G

(k)
∆ (X)

3. The kth-order scaled dimension of X in R(∆) is

dim(k)(X|R(∆)) = dim
(k)
∆ (X ∩ R(∆))

2

For the scale g0(m, s) = ms we have the resource-bounded dimensions
defined in [21].

dim∆(X) = dim
(0)
∆ (X)

dim(X|R(∆)) = dim(0)(X|R(∆))
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For every X, k and ∆, dim
(k)
∆ (X) is in [0, 1], and dim

(k)
∆ (R(∆)) = 1 [9].

For this reason ∆ is the right resource bound for dimension in R(∆). If
∆ ∈ {comp,pispace},

dim
(k)
∆ (X) ≤ dim

(k+1)
∆ (X)

We are particularly interested in the case ∆ = pspace, that is, dim
(k)
pspace(X)

and dim(k)(X|ESPACE).
We will use pspace-measure and measure in ESPACE when referring to

results in [14].
Definition. A class X ⊆ C has pspace-measure 0 (denoted by µpspace(X) =
0) iff there exists a martingale d ∈ pspace such that, X ⊆ S∞[d].

A class X ⊆ C has pspace-measure 1 (denoted by µpspace(X) = 1) iff Xc

has pspace-measure 0.
A class X ⊆ C has measure 0 in ESPACE iff X ∩ESPACE has pspace-

measure 0. This is denoted by µ(X|ESPACE) = 0.
A class X ⊆ C has measure 1 in ESPACE iff X c has measure 0 in

ESPACE. This is denoted by µ(X|ESPACE) = 1. 2

A basic result relating measure and dimension is the following

Proposition 3.2 [21, 9] Let X ⊆ C, k ∈ Z

1. If dim
(k)
pspace(X) < 1, then µpspace(X) = 0.

2. If dim(k)(X|ESPACE) < 1, then µ(X|ESPACE) = 0.

Finally, we will use the following inverses of gk.
Definition. Let i ∈ N. We define fi : N×[0,∞) → R and f−i : N×[0,∞) →
R by

fi(n, x) =
log(i) x

log(i) n

(f−i)(n, x) = 1 −
log(i)(n − x)

log(i) n

2

Notice that for each k ∈ Z, x ∈ [0,∞), fk tends to the inverse of gk, that
is,

gk(n, fk(n, x)) = x + ε(n)

where limn ε(n) = 0.
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We end this section with a few technical properties of scaled dimension
that will be useful in our proofs.
Definition. Let d an s(k)-gale. The unitary success set of d is

S1[d] = {S ∈ C | ∃n d(S[0 . . . n − 1]) ≥ 1}

A series
∑∞

n=0 an of nonnegative real numbers an is ∆-convergent if there is
a function h : N → N such that h ∈ ∆ and

∞∑

n=h(r)

an ≤ 2−r

for all r ∈ N. Such a function h is called a modulus of the convergence.
Adding a layer of uniformity, a sequence

∞∑

n=0

aj,n (j = 0, 1, 2, . . .)

of series of nonnegative real numbers is uniformly ∆-convergent if there is a
function m : N2 → N such that m ∈ ∆ and, for all j ∈ N, mj is a modulus
of the convergence of the series

∑∞
n=0 aj,n. 2

The scaled-dimension version of Borel-Cantelli Lemma [9] is the follow-
ing.

Lemma 3.3 Let k ∈ Z and s ∈ [0,∞). If d : N2 × {0, 1}∗ → [0,∞) is a
∆-computable function such that for each j, n ∈ N, dj,n is an s(k)-gale, and
such that for each w with |w| = mi the series

∞∑

n=0

dj,n(w) (j = 0, 1, 2 . . .)

are uniformly ∆-convergent, then

dim
(k)
∆ (

∞⋃

j=0

∞⋂

t=0

∞⋃

n=t

S1[dj,n]) ≤ s.

Proposition 3.4 Let 0 < s′ < s ≤ 1 and i, j ∈ N with i ≤ j.

1. gi(n, s) and g−i(n, s) are pspace-computable for s < 1 and pispace-
computable for s ≥ 1.
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2.

∞∑

n=mi

2gi(n,s′)−gi(n,s) is pjspace-convergent.

3.

∞∑

n=mi

2g−i(n,s′)−g−i(n,s) is pjspace-convergent.

Proof. Part 1. follows by induction on i.
Notice that g−i(n, s′)−g−i(n, s) = gi(n, 1−s)−gi(n, 1−s′), so 3. follows

from 2.
To prove 2, let s′ < s′′ < s. Then gi(n, s′′) = o(gi(n, s) − gi(n, s′)).
Notice that gi(gi(m, 1

s′′ ), s
′′) = m for each m > mi.

Let n0 be such that for each n ≥ n0

gi(n, s′′) < gi(n, s) − gi(n, s′)

and

gi(n,
1

s′′
) < 2

n
2 .

We define h(k) = n0 + gi(2k + 2n0 + 4, 1
s′′ ). Then

∞∑

n=h(k)

2gi(n,s′)−gi(n,s) ≤

∞∑

n=h(k)

2−gi(n,s′′)

≤
∞∑

m=k+n0+2

2−2m(gi(2m + 2,
1

s′′
) − gi(2m,

1

s′′
))

≤
∞∑

m=k+2

2−2m+m+1 = 2−k

2

4 Characterization

In this section we examine the relationship between scaled dimension and
space-bounded Kolmogorov complexity. We start with a brief summary of
definitions and notation for resource-bounded Kolmogorov complexity.
Definition. Given a Turing machine M , t : N → N, S ∈ C and n ∈ N

1. The t-space-bounded Kolmogorov complexity of S[0 . . . n − 1] is,

KS
t(n)
M (S[0 . . . n−1]) = min

{
|π|
∣∣M(π) = S[0 . . . n−1] in ≤ t(n) space

}
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2. The t-time-bounded Kolmogorov complexity of S[0 . . . n − 1] is,

K
t(n)
M (S[0 . . . n−1]) = min

{
|π|
∣∣M(π) = S[0 . . . n−1] in ≤ t(n) time

}

2

Well-know techniques [17] show that there is a machine U that is optimal
in the sense that for each machine M there is a constant c such that for all
total computable t, S ∈ C and n ∈ N, we have

KS
ct(n)+c
U (S[0 . . . n − 1]) ≤ KS

t(n)
M (S[0 . . . n − 1]) + c

K
ct(n) log(t(n))
U (S[0 . . . n − 1]) ≤ K

t(n)
M (S[0 . . . n − 1]) + c

As usual, we fix an optimal machine U and omit it from the notation.
Our characterization will use the following notation.

Definition. Let S ∈ C, k ∈ Z, t a resource bound.

KSt
(k)(S) = lim inf

n
fk(n,KSt(n)(S[0 . . . n − 1]))

Kt
(k)(S) = lim inf

n
fk(n,Kt(n)(S[0 . . . n − 1]))

2

For instance, for k between -2 and 2 we have

KSt
(2)(S) = lim inf

n

log log(KSt(n)(S[0 . . . n − 1]))

log log n

KS t
(1)(S) = lim inf

n

log(KSt(n)(S[0 . . . n − 1]))

log n

KS t
(0)(S) = lim inf

n

KSt(n)(S[0 . . . n − 1])

n

KSt
(−1)(S) = lim inf

n

(
1 −

log(n − KSt(n)(S[0 . . . n − 1]))

log n

)

KS t
(−2)(S) = lim inf

n

(
1 −

log log(n − KSt(n)(S[0 . . . n − 1]))

log log n

)
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The following observation states the precise meaning of KS in terms of
i.o. upper bounds.

Observation 4.1 Let k ∈ Z and S ∈ C. Let t be a resource bound. Then,

KSt
(k)(S) = inf{s ∈ [0,∞)|∃∞nKSt(n)(S[0 . . . n − 1]) < gk(n, s)}

For example, KS t
(−1)(S) is the smallest s for which

KSt(n)(S[0 . . . n − 1]) < n − n1−s i.o. n

For classes of languages we take the worse case upper bound.
Definition. Let X ⊆ C, k ∈ Z and j ∈ N

KS
pjspace

(k) (X) = inf
t∈pj space

sup
S∈X

KSt
(k)(S)

Kcomp
(k) (X) = inf

t∈comp
sup
S∈X

Kt
(k)(S)

2

The main result in this section is the following characterization of scaled-
dimension.

Theorem 4.2 Let X ⊆ C

1. For all i, j ∈ N with i ≤ j

dim(i)
pjspace(X) = KS

pjspace

(i) (X)

dim(−i)
pjspace(X) = KS

pjspace

(−i) (X)

2. For all k ∈ Z

dim(k)
comp(X) = Kcomp

(k) (X)

A similar characterization for the cases dim
(−i)
pjspace (i > j) is not possible

because it is known (Theorem 3.3 in [14]) that for each A ∈ ESPACE there
is an ε > 0 such that KS22n

(A≤n) < 2n+1 − 2εn a.e. n, therefore

KSpspace
(−2) (ESPACE) = 0

whereas we know that dim
(−2)
pspace(ESPACE) = 1 [21].

The case i = 0 corresponds to resource-bounded dimension and is proven
in [7].
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A dual version of Theorem 4.2 can be proven for the packing or strong
dimension as characterized in [3].

Theorem 4.2 is proven from the next two lemmas. The first one states
that dimension is smaller that KS , and it only holds for i ≤ j in the space-
bounded case.

Lemma 4.3 Let X ⊆ C

1. For all i, j ∈ N with i ≤ j

dim(i)
pjspace(X) ≤ KS

pjspace

(i) (X)

dim(−i)
pjspace(X) ≤ KS

pjspace

(−i) (X)

2. For all k ∈ Z

dim(k)
comp(X) ≤ Kcomp

(k) (X)

Proof. We start with the first part of case 1. The proof is based in Lemma
3.3.

Let s > s′ > KS
pjspace

(i) (X) be rational and let t ∈ pjspace with t(n) ≥ n
such that

∃∞n KSt(n)(S[0 . . . n − 1]) < gi(n, s′)

for all S ∈ X. Such a t exists by Observation 4.1.
For all n ∈ N, if we define

Yn = {A ∈ C | KSt(n)(A[0 . . . n − 1]) < gi(n, s′)}

then

X ⊆

∞⋂

m=0

∞⋃

n=m

Yn.

Let a be such that 2gi(n, s′) < gi(n, s) + a for every n ∈ N.
For all n ∈ N define dn : {0, 1}∗ → [0,∞) by

dn(w) =





2−gi(n,s′)+a+gi(mi,s) if |w| ≤ mi

2gi(|w|,s)−gi(mi,s)dn(w[0 . . . mi − 1])ρ(w) if mi < |w| ≤ n

2gi(|w|,s)−gi(n,s)−|w|+ndn(w[0 . . . n − 1]) if |w| > n
where

ρ(w) =
#{π | |π| < gi(n, s′), w v U(π) in ≤ t(n) space}

2gi(n,s′) − 1
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Then, dn is an s(i)-gale computable in O(t(n))-space for all n ∈ N, and
for all w ∈ {0, 1}mi ,

∞∑

n=0

dn(w)

is pjspace-convergent. Moreover, for all n ∈ N, Yn ⊆ S1[d]. By Lemma 3.3,

dim
(i)
pjspace(X) ≤ s. Since this holds for each s > KS

pjspace

(i) (X) it follows

that dim
(i)
pjspace(X) ≤ KS

pjspace

(i) (X).
The proof for the second part of case 1. can be done by substituting gi

by g−i in the proof of the first part, with the exception of the definition of
dn(w) for |w| ≤ mi that is now

dn(w) = 2−gi(n,s′)+a+g−i(mi,s).

The proof of case 2. is analogous and easier, since we don’t have to worry
about resource-bounds.

2

The second inequality, KS smaller than dimension, holds without re-
striction on the scale used. This will be useful in the next section.

Lemma 4.4 Let X ⊆ C. For all j ∈ N, k ∈ Z

KS
pjspace

(k) (X) ≤ dim(k)
pjspace(X)

Kcomp
(k) (X) ≤ dim(k)

comp(X)

Proof. Let s > dim
(k)
pjspace(X). Let d be a pjspace-computable s(k)-gale with

X ⊆ S∞[d]. Let t ∈ pjspace be such that t(n) ≥ n and d can be computed
in space t. Assume without loss of generality that d(w) < 1 for all |w| = mk.
For all n ≥ mk, we have that by the Kraft’s inequality (Lemma 3.6 in [9])
for C = 2−gk(mk ,s) ∑

w∈{0,1}n

d(w) ≤ C2gk(n,s).

Define A = {w | d(w) > 1}. Then, for all n ≥ mk, |A=n| < C2gk(n,s) and
A ∈ EjSPACE.

Each w ∈ A=n can be described by giving n and its index within a list
of A=n in lexicographical order. By reusing space, w can be computed from
this description in 3t(n) space. Therefore, for all w ∈ A=n (n ≥ mk),

KS3t(n)(w) ≤ log(|A=n|) + O(log n) < gk(n, s) + O(log n)
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Let S ∈ X. Then
∃∞n S[0 . . . n − 1] ∈ A=n

therefore

∃∞n KS3t(n)(S[0 . . . n − 1]) < gk(n, s) + O(log n)

Therefore, KS3t
(k)(S) ≤ s and KS

pjspace

(k) (X) ≤ s. Since this holds for each

s > dim
(k)
pjspace(X) it follows that KS

pjspace

(k) (X) ≤ dim
(k)
pjspace(X).

The proof of the second part is analogous.
2

Lemma 4.4 holds for the polynomial time scaled dimension and the cor-
responding polynomial-time-bounded Kolmogorov complexity. This can be
proven by using the techniques in [11] and [10].

Our characterization also holds when restricting to Kolmogorov com-
plexity of prefixes of the form A≤n, except for the 0th-scale case.

Theorem 4.5 Let X ⊆ C,

1. For all i, j ∈ N with 0 < i ≤ j,

dim(i)
pjspace(X) < s

iff there is a t ∈ pjspace such that for any A ∈ X

KSt(2n+1)(A≤n) < gi(2
n+1, s) i.o. n.

2. For all i, j ∈ N with 0 < i ≤ j,

dim(−i)
pjspace(X) < s

iff there is a t ∈ pjspace such that for any A ∈ X

KSt(2n+1)(A≤n) < g−i(2
n+1, s) i.o. n.

3. For all k ∈ Z, k 6= 0,
dim(k)

comp(X) < s

iff there is a t ∈ comp such that for any A ∈ X

KT t(2n+1)(A≤n) < gk(2
n+1, s) i.o. n.

14



Proof. In all cases, the second implication follows directly from Theorem
4.2.

For the proof of case 1., let s′ be such that dim
(−i)
pjspace(X) < s′ < s. From

Theorem 4.2 we know that there is a t ∈ pjspace such that for every A ∈ X
and infinitely many m,

KSt(m)(A[0 . . . m − 1]) < g−i(m, s′) = m − gi(m, 1 − s′). (1)

Let A ∈ X, m ∈ N be such that (1) holds, with m big enough to have
gi(2m, 1 − s) + log(m + 1) ≤ gi(m, 1 − s′). Let n be the smallest such that
2n+1 − 1 ≥ m.

KSt(2n+1)+2n
(A[0 . . . 2n+1 − 2]) < m − gi(m, 1 − s′) + (2n+1 − m) + n

= 2n+1 − gi(m, 1 − s′) + log(m + 1)

≤ 2n+1 − gi(2
n+1, 1 − s) = g−i(2

n+1, s)

If t′(m) = t(m) + m/2 then t′ ∈ pjspace, so the first implication holds.
For case 2., repeat the argument but this time using the biggest n such

that 2n+1 − 1 ≤ m.
Case 3. is a combination of the other two.

2

For example for the pspace case, dim
(−1)
pspace(X) < s iff there is a c such

that for any A ∈ X

KS2c(n+1)
(A≤n) < 2n+1 − 2(n+1)(1−s) i.o. n.

As a final remark, notice that it is not equivalent in general to consider
KS(A=n) and KS(A≤n). Whereas KS2cn

(A=n) < 2n − 2εn implies that

KS2c′n
(A≤n) < 2n+1−2εn, the quantity KS2cn

(A≤n) can be much lower than
KS(A=n), relative to the corresponding length. Juedes and Lutz extensively
study KS(A=n) in [14], mainly for languages in ESPACE and languages that

are ≤
P/poly
m -hard, that is, hard for many-one non-uniform reductions.

5 The Kolmogorov complexity of hard and weakly

hard sets

In this section we are interested in adaptive nonuniform reductions in the

class ESPACE, namely P/poly-Turing reductions (≤
P/poly
T ) which are nonuni-

form Turing reductions that can be computed by polynomial-size circuits.
The lower and upper spans are defined as follows.

Definition. Let A ⊆ {0, 1}∗
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1. The ≤
P/poly
T - lower span of A is

(P/poly)T(A) = {B ⊆ {0, 1}∗|B≤
P/poly
T A}

2. The ≤
P/poly
T - upper span of A is

(P/poly)−1
T (A) = {B ⊆ {0, 1}∗|A≤

P/poly
T B}

2

Juedes and Lutz [14] prove the following Small Span Theorem for these
reductions.

Theorem 5.1 [14] For every A ∈ ESPACE

µ((P/poly)T(A)|ESPACE) = 0

or
µpspace((P/poly)−1

T (A)) = 0.

This theorem states that for each A ∈ ESPACE, at least one of the lower
and upper spans of A is small in the sense of resource-bounded measure.

Small Span Theorems for the class of exponential time languages and
polynomial time reductions have been studied for both measure and dimen-
sion [13, 1, 18, 2, 5, 8].

Here we prove the following generalization of Theorem 5.1.

Theorem 5.2 For every A ∈ ESPACE,

dim(1)( (P/poly)T(A) | ESPACE) = 0

or
dim(−3)

pspace( (P/poly)−1
T (A) ) = 0.

The proof is based in the following lemma.

Lemma 5.3

dim(1)
( {

A ⊆ {0, 1}∗
∣∣∣ dim(−3)

pspace( (P/poly)−1
T (A) ) > 0

} ∣∣∣ESPACE
)

= 0.

We defer the proof of Lemma 5.3 for a moment; first we use the lemma
to establish our Small Span Theorem.

Proof. Let Z =
{
A ⊆ {0, 1}∗

∣∣∣ dim
(−3)
pspace( (P/poly)−1

T (A) ) > 0
}

. We con-

sider two cases.
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1. Suppose that (P/poly)T(A) ∩ ESPACE ⊆ Z. Then it follows from
Lemma 5.3 that dim(1)((P/poly)T(A) | ESPACE) = 0.

2. Otherwise there is a language B ∈ (P/poly)T(A)∩ESPACE∩Zc. Then
we have (P/poly)−1

T (A) ⊆ (P/poly)−1
T (B) and

dim(−3)
pspace( (P/poly)−1

T (A) ) ≤ dim(−3)
pspace( (P/poly)−1

T (B) ) = 0.

2

Proof of Lemma 5.3.

Let

Y = {A ⊆ {0, 1}∗ | dim(−3)
pspace( (P/poly)−1

T (A) ) = 0}.

Our goal is to prove dim(1)(Y c | ESPACE) = 0. The argument is based
on the proof of Theorem 4.5 in [14]. We begin by recalling some of the
definitions and notations used in that proof, slightly adapting them for use
in our argument.

For each r ∈ N, define the functions

ar, br : N → N

ar(n) = nr + r,

br(n) =

n∑

i=0

ar(n).

Let ADVr be the class of all advice functions h : N → {0, 1}∗ satisfying

|h(n)| = ar(n) for all n ∈ N. For any A,B ⊆ {0, 1}∗ satisfying A≤
P/poly
T B,

there exist r, k ∈ N and h ∈ ADVr such that

A = L(MB
k /h),

where Mk is the kth polynomial time-bounded oracle Turing machine.
A partial ar(n)-advice function is a finite function

h′ : {0, 1, . . . , k − 1} → {0, 1}∗

for some k ∈ N such that for all 0 ≤ n < k, |h′(n)| = ar(n). For each partial
ar(n)-advice function h′, the cylinder generated by h′ is

CYL(h′) = {h ∈ ADVr | h � {0, 1, . . . , k − 1} = h′},
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where h � {0, 1, . . . , k − 1} denotes h restricted to domain {0, 1, . . . , k − 1}.
The probability of this cylinder is defined to be

Pr(CYL(h′)) =
k−1∏

n=0

2−ar(n).

For each r ∈ N, we will use the sample space

Ωr = ADVr ×P({0, 1}∗).

Here we use the product probability measure, with the above probability
measure on ADVr and the uniform distribution on P({0, 1}∗).

For each r, k, j ∈ N, define the event EA
r,k,j ⊆ Ωr by

EA
r,k,j = {(h,B) | (∀ 0 ≤ i < j) [[si ∈ A]] = [[si ∈ L(MB

k /h)]]}.

For each r, k, j ∈ N and A ⊆ {0, 1}∗, let

NA(r, k, j) =

∣∣∣∣
{

i < j
∣∣∣ Pr(EA

r,k,i+1) ≤
1

2
Pr(EA

r,k,i)

}∣∣∣∣ .

Then for all r, k, j ∈ N and A ⊆ {0, 1}∗, we have

Pr(EA
r,k,j) ≤ 2−NA(r,k,j).

For each A ⊆ {0, 1}∗ and rational s, δ > 0, define an s(−3)-gale dA
s,δ :

{0, 1}∗ → [0,∞) by

dA
s,δ(w) = 2−g3(|w|,1−s)

∞∑

r=0

∞∑

k=0

∞∑

j=0

2−(r+k)/4−jδ
· dA

r,k,j(w),

where for all r, k, j ∈ N, dA
r,k,j is the martingale

dA
r,k,j(w) =

{
2|w|Pr(ADVr ×Cw | EA

r,k,j) if Pr(EA
r,k,j) > 0

1 if Pr(EA
r,k,j) = 0.

It is routine to show that dA
s,δ is pspace-computable if A ∈ ESPACE.

Let A,B ⊆ {0, 1}∗, k, r ∈ N, and h ∈ ADVr such that A = L(MB
k /h).

There is a polynomial time-bound on Mk and a polynomial length bound
on h, so there is a constant c ∈ N so that all queries of (M B

k /h)(si) have
length strictly bounded by |si|

c for all sufficiently large i. Defining n(i) =
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dlog(i + 2) − 1e, we have |si| = n(i) for all i. For now, fix j ∈ N. If we
choose

l = 2(log(j+1))c
,

then all queries of L(MB
k /h)(si) for 0 ≤ i < j are among s0, s1, . . . , sl−1. In

other words, A[0..j − 1] is determined by B[0..l − 1]. Note that

j + 1 = 2(log l)
1
c .

Let hj = h � {0, 1, . . . , n(j − 1)}. Then hj is a restriction of h that provides
advice for all the inputs s0, . . . , sj−1. It follows that CYL(hj)×CB[0..l−1] ⊆

EA
r,k,j, so we can argue as in [14] that

Pr(EA
r,k,j | ADVr ×CB[0..l−1]) ≥ 2−br(n(j)),

and then obtain

dA
r,k,j(B[0..l − 1]) ≥ 2NA(r,k,j)−br(n(j)).

Let ε > δ > 0 and define

Xε = {A ⊆ {0, 1}∗ | (∀k)(∀r)(∀∞j)NA(r, k, j) > jε}.

We claim that Xε ∩ ESPACE ⊆ Y , i.e., that

dim(−3)
pspace( (P/poly)−1

T (A) ) = 0 (2)

for every A ∈ Xε ∩ ESPACE. For this, let A ∈ Xε ∩ ESPACE and let
B ∈ (P/poly)−1

T (A). Then there exist k, r ∈ N and h ∈ ADVr such that
A = L(MB

k /h). Let j be sufficiently large to ensure NA(r, k, j) > jε. Then,
defining c and l as above, we have

log dA
s,δ(B[0..l − 1]) ≥ log dA

r,k,j(B[0..l − 1]) − g3(l, 1 − s) − (r + k)/4 − jδ

≥ jε − br(n(j)) − g3(l, 1 − s) − (r + k)/4 − jδ

=
(
2(log l)1/c

− 1
)ε

− br(n(j)) − 22(log log l)(1−s)

− (r + k)/4 −
(
2(log l)1/c

− 1
)δ

.

Since r and k are constants here, it follows that B ∈ S∞[dA
s,δ]. Therefore

(P/poly)−1
T (A) ⊆ S∞[dA

s,δ]. Since A ∈ ESPACE, dA
s,δ is pspace-computable,

so dim
(−3)
pspace((P/poly)−1

T (A)) ≤ s. This holds for all s > 0, so we obtain (2).
Now we show that for every ε > 0,

dim(1)
pspace(X

c
ε ) ≤ ε. (3)
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Let A ∈ Xc
ε . Then there exist r, k ∈ N such that NA(r, k, j) ≤ jε for

infinitely many j ∈ N. Notice that NA(r, k, j) is determined by A[0..j − 1].
For each j ∈ N, let

Zr,k,j = {B[0..j − 1] | NB(r, k, j) ≤ jε} ⊆ {0, 1}j .

We can bound the size of Zr,k,j as

|Zr,k,j| ≤ jε

(
j

jε

)
2jε

≤ jε · 2H(jε−1)j+jε

because we can specify an element of the set by first identifying the at most
jε positions i on which EA

r,k,i+1 ≤ 1
2E

A
r,k,i and then using jε bits to specify

which of the two possibilities to use for the ith bit in case EA
r,k,i+1 = 1

2E
A
r,k,i.

Therefore
H(jε−1)j + jε + log j

bits are enough to identify each string in Zr,k,j. From this description along
with encodings of r, k, and j we can compute the string using polynomial
space: for some polynomial p we have

KSp(w) ≤ H(jε−1)j + jε + 2 log j + log r + log k

for all w ∈ Zr,k,j. We have a single polynomial p that works for every r, k
and for every j ≥ j0(r, k) for some j0(r, k).

Notice that

H(jε−1)j =

(
jε−1 log j1−ε + (1 − jε−1) log

1

1 − jε−1

)
j

= jε(1 − ε) log j + j(1 − jε−1) log

(
1 +

jε−1

1 − jε−1

)

≤ jε(1 − ε) log j + j(1 − jε−1)
jε−1

1 − jε−1
log e

= jε[(1 − ε) log j + log e].

It follows from the above that KSp
(1)(A) ≤ ε because A satisfies A[0..j −1] ∈

Zr,k,j infinitely often. Since A ∈ Xε is arbitrary and the polynomial p does
not depend on A, we have KSpspace

(1)
(Xε) ≤ ε. Appealing to Theorem 4.2, we

establish (3).
We proved that Xε ∩ ESPACE ⊆ Y for all ε ∈ (0, 1). This implies

Y c ∩ ESPACE ⊆ Xc
ε , so

dim(1)(Y c | ESPACE) = dim(1)
pspace(Y

c ∩ ESPACE) ≤ dim(1)
pspace(X

c
ε ) ≤ ε
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for all ε ∈ (0, 1). Therefore dim(1)(Y c | ESPACE) = 0, so the lemma holds.
2

Theorem 5.2 generalizes Theorem 5.1 because dim(−3)(X) < 1 implies
µpspace(X) = 0. Hitchcock shows in in [8] that (−2)nd-scaled Small Span
Theorems are not possible, since for A a ≤P

m-complete language for ESPACE,

dim
(−2)
pspace(P−1

m (A)) = 1. Therefore we can’t substitute −3 by a bigger scale
in the statement of Theorem 5.2.

Because of the connections we have obtained between scaled dimension
and Kolmogorov complexity we can conclude the following.

Theorem 5.4 For every A ∈ ESPACE, if

dim(1)((P/poly)T(A)|ESPACE) > 0

then
KS (−3)

pspace((P/poly)−1
T (A)) = 0

Proof. The theorem follows from Theorem 5.2 and Lemma 4.4.
2

In particular for hard languages we have the following corollary.

Corollary 5.5 Let H be the class of languages that are ≤
P/poly
T -hard for

ESPACE. Then
KS (−3)

pspace(H) = 0,

that is, for each ε > 0 there is a c such that for every ≤
P/poly
T -hard H

KS2cn
(H≤n) < 2n+1 − 22(log n)1−ε

i.o. n

This corollary tells us that ≤
P/poly
T -hard languages are unusually simple,

since for most languages the opposite holds, even when allowing any resource
bound on the Kolmogorov complexity.

Theorem 5.6 For very resource bound t, the class of all sets A such that
for any ε

KSt(2n)(A≤n) < 2n+1 − 22(log n)1−ε

i.o. n

has (−3)rd comp-dimension 0.
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Proof. The result follows from our characterization in Theorem 4.2.
2

Theorem 5.6 implies that most decidable languages (in a very strong

sense) don’t have the upper bound on Kolmogorov complexity that ≤
P/poly
T -

hard languages have.
Notice that the best known lower bound on the Kolmogorov complexity

of ≤
P/poly
T -hard sets is Theorem 4.1. in [14], stating that for each ≤

P/poly
T -

hard H there is an ε > 0 such that

KS2nε

(H≤n) > 2nε
a.e. n

6 Conclusion

We have obtained a Kolmogorov complexity characterization of scaled di-
mension for the cases where such a characterization is possible. We expect
that the combination of fractal and information theory techniques will pro-
duce interesting results on the problem of uniform vs nonuniform complexity.
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