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Abstract

Solovay [3] has proven that the minimal length of a program enu-
merating a set A is upper bounded by 3 times the absolute value of the
logarithm of the probability that a random program will enumerate A. It
is unknown whether one can replace the constant 3 by a smaller constant.
In this paper, we show that the constant 3 can be replaced by the constant
2 for finite sets A.

We recall first two complexity measures (“information content”) of com-
putably enumerable sets defined by Solovay [3].

Let M be a machine with one infinite input tape and one infinite output
tape. At the start the input tape contains an infinite binary string w called the
input to M. The output tape is empty at the start. We say that a program
p enumerates a set A C N if in the run on every input w extending p machine
M prints all the elements of A in some order and no other elements. We do
not require M to halt in the case when A is finite.! Let KE)(A) denote the
minimal length of a program enumerating A. There is a machine My (called a
universal machine) such that for every other machine M there is a constant ¢
such that

KEMO (A) S KEM(A) +c

for all A C N. Fix any such My and call KE(A) & KEy, (A) the complexity of
enumeration of A. This complexity thus depends on the choice of the universal
machine but this dependence is rather weak: for any other universal machine M;
the difference |KEn, (A) — KEpr, (A)] is bounded by a constant not depending
on A.

Similar to the a priori probability distribution on finite strings (or integer
numbers) Solovay [3] has defined the a priori probability distribution on enu-
merable sets. The definition is as follows.

*Moscow Lomonossov University, Leninskie Gory 1, Moscow 119992, Email:
ver@mccme.ru. Work was done while visiting Laboratoire d’Informatique Fondamentale,
Université de Provence. Supported in part by the RFBR grants 02-01-22001, 03-01-00475,
358.20003.1

1In the case of finite sets any such program is called an implicit description of A, as opposed
to explicit description of A when M is required to halt after having printed the last element
of A.

ISSN 1433-8092



Let M be a machine with one infinite input tape and one infinite output
tape as described above. For every A C N consider the probability

mSs(A) = Pr[M on input w enumerates AJ.

One can easily show that if m§,(A) > 0 then A is enumerable.

The class of distributions of such form has a maximal one up to a multi-
plicative constant. In other words, there is a machine M; (called optimal) such
that for every machine M there is a constant ¢ such that

c-miy, (A) 2 mi,(A)
for all A C N. Fix any such My and call m®(A) def m§y, (A) the a priori
probability of enumerating A. The a priori distribution thus depends on the
choice of the optimal machine but this dependence is also weak: for any other
optimal machine M, both ratios m§,, (4)/m§,, (A) and m,, (A)/mf,, (A) are
bounded by a constant not depending on A.

It is easy to see that 2~ KF(4) = O(me(A)). In other words, —logm®(A) <
KE(A) + O(1) for all A. Solovay [3] has proven that conversely KE(A) <
—3logm®(A) + O(log(—logme(A)) for all A. It is unknown whether we can
replace the constant 3 in this inequality by a smaller constant. In this paper,
we show that the constant 3 can be replaced by the constant 2 for finite sets A.

Theorem 1. There is a constant ¢ such that for every finite set A we have
KE(A) < —2logm?®(A) + 2log(— log(m®(A))) + c.

The proof is based on the ideas used to prove a lemma of Martin from [2].
The statement of Martin’s lemma was used also in the Solovay’s proof. In
contrast, we are unable to use only the statement of the lemma.

Proof. Let k = [—logm®(A)]+ 1. Given k we will enumerate K = 2%(2F +1)/2
sets C1,...,Ck such that each finite set B with m¢(B) > 2~ ¥+! coincides with
some C;. There is a machine M’ that on every input beginning with

0'1(binary notation of k)(binary notation of i)

enumerates C;, where [ stands for the length of the binary notation of k. For
this machine it holds KEy (C;) < 21 +1+1log K and by universality KE(C;) <
KEu (C;) + O(1) <log K + 21 + O(1) for all i. As m¢(A) > 27+l we obtain

KE(A) <log K + 21+ O(1) < 2k +2logk + O(1).

To enumerate Ci,...,Ckx we run the optimal machine M defining m® in
steps and try all possible finite inputs to M. Say, on the stage ¢, we make ¢
steps of the run of M on all inputs p of length t. Let M!(p) stand for the set
enumerated by M in ¢ steps on input p of length ¢ (note that M cannot read in
t steps more than ¢ symbols from its input tape). Let Q stand for the set of all
infinite binary sequences and (2, for those beginning with the finite sequence p.



For each finite set B and on each stage ¢ consider the set S(B) = S*(B) C Q that
is the union of ©,, over all p of length ¢ such that M*(p) = B. Note that S(B) can
both increase and decrease on stage t. Indeed, assume that M¢~!(p) = B and
on step t of the run on input p of length ¢ the machine M writes a new element
b on the output tape. Then S(B) decreases on stage t: St(B) = S*=}(B) \ Q,,
while S*(B U {b}) increases: St*(BU {b}) = St~} (B U {b}) UQ,. Without loss of
generality we may assume that on stage ¢ this happens only for one pair (p, b).
Otherwise we can split the stage into several substages.

Observing S(B) for different B’s we will enumerate sets C1,...,Cx C N. At
each stage t we will enumerate a finite number of elements in some of C4, ...,Ck
so that at the end of stage ¢ the following be true

every finite set B with A(S(B)) > 2% coincides with C; for some i < K (1)

where A\ denotes the uniform measure on (2.

Let us prove first that it suffices to keep true (1). Assume that B is a
finite set such that m¢(B) > 27%+1. We claim that m®(B) = lim;_, o, A(S*(B)).
Indeed, the set S*(B) is the difference of two sets: S¥(B) = {w | M (w) prints
in at most ¢ steps all the elements of B} and S§(B) = {w | M;(w) prints in
at most ¢ steps all the elements of B and an element outside B}. Let Sf°(B)
be the union of all St(B) and S$°(B) the union of all S{(B). As the uniform
measure is continuous we have

A(Si°(B)) = lim A(S{(B))

t—o0

A(S5°(B)) = lim A(S3(B))
and

m®(B ) A(S°(B) \ $5°(B))
A(ST°(B)) = A(S5°(B))
= lim A(S{(B)) — lim A(S3(B))

= Jim (\(S{(B)) - ASY(B))
= Jim A(S}(B) \ S}(B)) = Jim A(S'(B)).

Therefore for almost all ¢t we have A(S*(B)) > 27*. By (1) this implies that
for almost all ¢ there is ¢ such that B coincides with C;. Therefore there is ¢ such
that for infinitely many ¢ we have C; = B. Since C; increases as t increases,
this obviously implies that B coincides with C;.

Now we need to explain how to enumerate C4,...,Ck to keep true con-
dition (1). Let us call numbers in the segment {1,...,K} inspectors. On
each stage t, we assign to each inspector ¢ its rank, a number in the segment
{1,2,...,K}. Also we assign to each inspector i a subset of Q of the measure
27% called the set controlled by inspector i on stage t. At the end of each stage
the ranks and controlled sets will satisfy the following invariant.



1. For all » < 2% there are exactly r different inspectors of rank r.

2. The sets controlled by different inspectors of the same rank are disjoint.
As there are 2% inspectors of rank 2%, this item implies that the sets
controlled by inspectors of rank 2* form a partition of €.

3. If the set controlled by inspector i intersects with S*(B) then C; C B.

4. For every finite B with A\(S(B)) > 2~ * there is an inspectors i with C; = B
(condition (1)).

We start with empty Ci,...,Ck and the ranks are assigned somehow to
satisfy item 1. The controlled sets are also defined somehow so that item 2 be
true. The items 3 and 4 are fulfilled, as all Cy,...,Ck are empty and S(B) is
non-empty only for B = ().

Let us proceed to the stage t. Assume that on stage t the set S(B) decreases
by Q,: S¢(B) = S*71(B)\ Qp, while S(BU {b}) increases by Q,: S{(BU{b}) =
St-1(BU{b}) U Q,. Recall that we assume that this happens only for one pair
(p,b). (If this happens for no (p,b) we do nothing, as the invariant remains true
in that case.)

As S(BU{b}) has increased, the item 4 may become false for the set BU{b}.
Let us prove first that this is the only possible violation of the invariant. Item 1
remains true, since we have not yet changed the ranks. Item 2 remains true, since
we have not yet changed the controlled sets. Let us prove that the item 3 remains
true. Assume that the set controlled by inspector i intersects with S*(B'). If
B’ is different from B U {b} then it intersects also with S*=!(B’) D S*(B') and,
since item 3 was true at the end of stage t — 1 it remains true for B’. Assume
that B’ = BU{b}. As S{(BU{b}) C St=1(B)US!~1(BU{b}), the set controlled
by inspector i intersects with S*=!(B) or with S*=!(B U {b}). As item 3 was
true at the end of stage t — 1 C; is included in B or BU {b}. In both cases it is
included in B U {b}.

Now we explain how to fulfill item 4 for BU {b} in the case A(S(BU{b})) >
27k, Choose any part T of S(B U {b}) of measure 27%. Let C; be an inspector
of the lowest rank r whose controlled set intersects with T' (there is such an
inspector, as the parts controlled by inspectors of rank 2* form a partition of Q).
Decrease by 1 the rank of all inspectors of rank r except C; and simultaneously
increase by 1 the rank of all inspectors of rank » — 1. Now the sets controlled by
all inspectors of rank r except C; are disjoint with 7" and we make C; control 7.
So the item 2 remains true, as well as item 1. By item 3 the set C; is included
in BU {b}. Enumerate the difference B U {b} \ C; into C;. The item 4 is now
true for B U {b}. However, as C; has been changed, item 4 may become false
for B' equal to the previous content of C;. The point is that this can happen
only when B’ is a proper subset of B U {b}. Apply the same procedure to B'.
Again the item item 4 may become false only for one B" that is a proper subset
of B'. Hence after a finite number of applications of this procedure we restore
item 4 for all sets. O
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