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Abstract

The information contained in a string z about a string y is defined as the difference between the
Kolmogorov complexity of y and the conditional Kolmogorov complexity of y given z, i.e., I(x : y) =
C(y) — C(y|z). From the well-known Kolmogorov-Levin Theorem it follows that I(z : y) is symmetric up
to a small additive term O(log C(z,y)). We are interested in if this property can hold for several versions
of polynomial time bounded Kolmogorov complexity.

It is proven in papers by L. Longpré and S. Mocas [LM93] and L. Longpré and O. Watanabe [LW95]
that, under a natural assumption, symmetry of information does not hold for the polynomial time
bounded printing version of Kolmogorov complexity. In this paper, we investigate symmetry of informa-
tion for some variants of distinguishing complexity CD, where CD(z) is the length of a shortest program
which accepts = and only z. We show relativized worlds where symmetry of information does not hold
for deterministic and nondeterministic polynomial time distinguishing complexities CDP°% and CNDP°Y.
For nondeterministic polynomial time distinguishing with randomness, CAMDP°Y | we prove that sym-
metry of information holds for most pairs of strings in any set in NP. In proving this last statement we
extend a recent result of Buhrman et al. [BLvMO04], which may be of independent utility.

1 Introduction

One of the most beautiful theorems in Kolmogorov Complexity is the principle of “Symmetry of Information”,
independently proven by Kolmogorov and Levin [ZL70]. Roughly speaking, symmetry of information states
that for any two strings z and y, the information contained in z about y is equal to the information
contained in y about z, up to logarithmic factors. More formally, letting C(x) be the length of a shortest
program which prints z, and C(y|z) be the length of a shortest program which prints y when given input z,
symmetry of information can be stated as C(y) — C(y|z) ~ C(z) — C(z|y). Besides its inherent attractiveness,
this principle has also seen applications in diverse areas of theoretical computer science, for example in
[JSV97, VV02, ABK*02].

In this paper, we investigate the principal of symmetry of information when resource bounds are placed
on the program to describe y given z. While the argument of [ZL70] can be used without modification to
show that symmetry of information holds for programs using exponential time or polynomial space, things
become trickier with polynomial time bounds. Though this question has been around for some time, few
definite answers are known, see Section 7.1 of [LV97] for a survey. The series of works [LM93, LW95] give
evidence that symmetry of information does not hold for polynomial time printing complexity: in particular,
they show that the existence of certain kinds of one-way functions implies that polynomial time symmetry of
information does not hold for printing complexity. Intuitively, if f is a polynomial time computable one-way
function, and f(z) = y, then y is simple given z. On the other hand, if z is simple in polynomial time given
y then this would provide a way to invert the function, by cycling through all small programs.

En route to showing that BPP is in the polynomial hierarchy, Sipser [Sip83] introduced a relaxation of
printing complexity called distinguishing complexity, denoted CD. For a string z, CD(z) is the length of a
shortest program which accepts x and only z. Note that while printing and distinguishing complexity are
equivalent up to a constant additive factor without resource bounds, this is not believed to be the case in
the polynomial time setting [FK96, BFL02].
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The arguments of [LM93, LW95] leave open the question if symmetry of information can hold for dis-
tinguishing complexity. Now if f is a polynomial time computable one-way function and f(z) = y, then
CDPY (z]y) is constant, as with a description of f, on input z we accept if and only if f(z) = y.

We investigate this possibility in considering symmetry of information for the following distinguishing
complexity measures:

e Polynomial time distinguishing complexity, denoted CDP°Y (z).
e Nondeterministic polynomial time distinguishing complexity, denoted CNDP°Y .
e Nondeterministic polynomial time distinguishing with randomness, denoted CAMDP®Y

We show relativized worlds where symmetry of information fails in a strong way for CDP°Y and CNDP°Y.
On the other hand, we show that for any set A € NP symmetry of information holds for most pairs of strings
(z,y) € A with respect to the measure CAMDP®Y . To prove this last statement we extend a recent result of
[BLvMO04], which may be of independent interest.

1.1 Background

Denote by CP°Y a version of polynomial time-bounded Kolmogorov complexity, which can be CP°Y, CDPY,
CNDPY  or CAMDPY. To formulate the problem of symmetry of information more precisely, we isolate
three associated properties. The first is the Fasy Direction of Symmetry of Information:

For any polynomial p there exists a polynomial ¢ such that for all x,y

EDSI
C1(a,y) < C(z) + C¥(ylz) + Ollog(n)). (EDSD
Next is the Hard Direction of Symmetry of Information:
For any polynomial p there exists a polynomial g such that for all z,y (HDSI)
Ci(z) +Ci(ylz) S CP(z,y),
where the inequality should hold up to an additive logarithmic term, or at least up to o(|z| + |y|)-
Finally we also consider the property of Symmetry of Mutual Information:

For any polynomial p there exists a polynomial g such that for all z,y (SMT)

Ci(z) + C(ylx) S CP(y) +CP(xly)

Notice that if both (EDSI) and (HDSI) hold for a complexity measure C, then also (SMI) holds for C.
The property (EDSI) is quite easy to prove for CP°Y, CDP°Y CNDP°Y, or CAMDPY. For the sake of
completeness, in Section 3 we present a proof of this statement for distinguishing complexities.

It was shown in [LM93, LW95] that (HDSI) is not true for CP°Y if certain kinds of one-way functions
exist (using a relativization from [IR89] we get a relativized world where (HDSI) is not true for CP°Y). Are
(HDSI) and (SMI) true for CDP°Y and CNDP°Y? It was claimed (without a complete proof) in [BF95] that
these properties do not hold in some relativized world. In this paper we give the first published proof of this
fact. Let us note that non-relativized variants of the properties above are probably very hard to prove, as
the answer depends on such computational complexity problems as “P = NP?” and “P = PSPACE?”.

1.2 Owur Results

We show a relativized world where property (HDSI) fails in a very strong way for CDP°Y and CNDP°Y. In
fact, we show that there is a set A and a polynomial p such that for any constant k, any polynomial ¢, for
infinitely many (z,y) € A

k- CDPMA (g ) < CDI™A(z) + CDA) (y)2),

where n = |z| + |y|. Analogously, for any € > 0 there is a set A and a polynomial p such that for any
polynomial ¢, for infinitely many {(z,y) € A

(2 — €)CNDPMA () < CNDUMA () 4 CNDU™ A (y[ ),



n = |#| + |y|. The bound (2 — €) in the last inequality is tight as 2CND4P°Y (z y) > CNDAPW (z) 4
CNDAPY (y|z) — O(1). We also find relativizations where property (SMI) fails in a strong way for CDP°Y

and CNDP°Y.
We do not know if property (HDSI) holds absolutely for CAMDP®Y complexity. We are able to prove,
however, that it holds for most pairs (z,y) in any set A € NP. More generally, the following property holds:

For any set A and any polynomial p there is a polynomial ¢ such that for most {z,y) € An{0,1}"
CAMDP4(z,y) > CAMD?*(z) + CAMD%* (y|z) — O(log® n).

We also unconditionally prove the following weaker form of property (HDSI):

For polynomial p(n) there exists a polynomial g(n) such that Vz,y
CP(z,y) > CAMD!(z) + CAMD?(y|z) — O(log® (|| + [y]))-

1.3 Organization

The rest of the paper is organized as follows. In section 3 we shortly prove a few simple properties of
CDP°Y complexity. In particular, we prove that (HDSI) and (SMI) do not for CDP°Y complexity with
some oracles. In section 4 we present a relativization such that (HDSI) and (SMI) are false for CNDP°Y
complexity in a strong way. Also we show that in the constructed relativized world BPP ¢ NP (note that
other relativizations such that BPP ¢ NP are well known, see [Hel86]). In section 5 we prove (1) and (2);
technically it is the most difficult part of the paper. The techniques in each section are quite different, and
so the sections may be read independently.

2 Preliminaries

We use the following notation:

e denote by B the set {0,1}; similarly, B” is the set of all binary strings of length n;

denote by |z| the length of a binary string z;

denote by ||A|| the cardinality of a finite set A;

for a set A C B* denote by A" the set {z : = € A and |z| = n}.

for a set of pairs of strings A C B* x B* denote by A=" the set {(z,y) € A : |z| + |y| = n}.

2.1 Kolmogorov Complexity Measures

We use notation for Kolmogorov complexity from the book of Li and Vitdnyi [LV97]:

Definition 1 The Kolmogorov complezity function Cr(y|x) is defined as
Cr(yle) = min{lp| : F(p,z) =y}
where F' is a partial recursive function.
By the Kolmogorov theorem [Kol65] there exists a universal machine U such that for any other F'
Je Vz,y Cu(ylz) < Cr(ylz) +c

We fix such a function U and denote C(y|z) = Cy(y|z). We define unconditional Kolmogorov complexity
by C(z) = C(z|A) (A is the empty word). The choice of U affects the Kolmogorov complexity by at most an
additive constant.

We also use a time bounded versions of Kolmogorov complexity.



Definition 2 We define Ct(y|z) as

Cl(y|z) = min{|p| : U(p,z) =y and U(p, ) runs in at most t(|z| + |y|) steps}
)

for a universal machine U. Also Ct(z) = C(z|]\).

The choice of universal machine U affects C*(z|y) by at most an additive constant and the time bound ¢ by
at most a log(t) multiplicative factor.

In the time bounded case, the distinction between a program which prints a string z and one which
distinguishes a string z, that is accepts z and only z, becomes important. Sipser [Sip83] defined time
bounded distinguishing complexity as follows.

Definition 3 Distinguishing complexity of y conditional to x is defined as

1) Ul(p,z,y) accepts
CDY(y|lz) =min{ |p| : 2) U(p,z,2) rejects for Vz #y
P 3) U(p,z,z) runs in at most t(|z| + |2|) steps Vz
for a universal machine U. Once again, CD'(z) = CD!(z|\).

In [BFL02] a nondeterministic variant of distinguishing complexity is defined.

Definition 4 Let U, be a nondeterministic universal machine.

1) Un(p,z,y) accepts
CND!(y|z) =min< |p| : 2) Un(p,=,2) rejects forVz #y
P 3) Un(p,z,2) runs in at most t(|z| + |z|) steps Vz

As usual, we let CND*(2) = CND!(z|)).
Further, following [BLvMO04] we define a complexity based on the complexity class AM:

Definition 5 Let U, be a nondeterministic universal machine.

1) Prob.cw [Un(p,z,y,r) accepts] > 2/3
CAMD!(y|z) = min< |p| : 2) Probyew [Un(p,2,y,r) accepts] < 1/3 Yz # z ,
P 3) Un(p,z,z,r) runs in at most t(|z| + |z| + |r|) steps

and CAMD?(z) = CAMD!(z|)).

We also use relativized version of Kolmogorov complexities. The complexity C*4 is defined as complexity
Ct above except that the universal machine U has access to the set A as an oracle. The complexities CD*4,
CAMD*4, and CND%* can be defined similarly.

2.2 Language Compression Theorems
A fundamental theorem of Kolmogorov complexity, and one that is very useful in applications, is the following;:

Theorem 6 (Language Compression Theorem) For any recursively enumerable set A, and all z €
A=
C(z) <log||A="[| + O(logn).

This is as £ can be described by its index in the enumeration of A=".

In particular, this theorem is essentially used in the proof of (HDSI) in the resource unbounded case
given in [ZL70]. Similarly, our results about resource bounded symmetry of information (both positive and
negative) crucially rely on recent resource bounded language compression theorems.

In [BLvMO04] the following analogue of the Language Compression Theorem is shown for CND complexity.



Theorem 7 ([BLvMO04]) There is a polynomial p(n) such that for any set A C B* and for all x € A"

n

CNDPA™" (z) < log |A="| + O(v/1og[| A="[| log(n)).

Further [BLvMO04] show that with the power of Arthur-Merlin protocols a Language Compression Theo-
rem holds which is optimal up to an additive log3 n term:

Theorem 8 ([BLvMO04]) There is a polynomial p(n) such that for any set A C B* and for all x € A=
CAMDPA™" () < log [|A="|| + O(log®(n)).

For comparison we remark that for CD complexity the situation is somewhat different. In [BFL02] it is
shown that there is a polynomial p(n) such that for any set A and for all z € A="

CDP™A™ () < 21og [|A="]| + O(log ).

Furthermore, [BLMO00] show that there is a set A where this bound is tight up to O(logn) terms. That is,
the factor of 2 in general cannot be improved.

3 On CD complexity

In this section we present a few simple propositions concerning CD complexity. At first we prove a positive
fact: the inequality (EDSI) is true for CDP°Y complexity:

Proposition 9 For any polynomial p(n) there exists a polynomial q(n) such that for any oracle A and any

T,y
CDq(n),A(x’y) < CDP(”)aA(x) + CD‘J(")’A(y|x) + O(logn),

where n = |z| + |y|.

Proof: Let s; be a shortest distinguishing program for z and ss be a shortest distinguishing program for y
conditional to z, and both programs have access to the oracle A and run in time p(n). Let us show that a
pair (s, s2) can be used as a polynomial time distinguishing program for the pair (z,y).

Given a pair (a, b) we do as follows:

1. run s;(b); if s1 rejects the string a, then reject {a, b);
2. otherwise run s2 on the string b given a; accept {a, b) if s, accepts.

Obviously, this algorithm works in time poly(n) and accepts only the pair (x,y). Extra O(logn) bits are
required to provide a prefix free encoding of the pair, so CDY™4(z,y) < [s1| + |s2| + O(log n). |
The proof above obviously works for CNDP°Y and CAMDP®Y as well.

In contrast to Proposition 9, we show that inequality (HDSI) does not hold for CDP°Y complexity in
some relativized worlds. Note that for any polynomial g(n)

CD*" 4 (y|z) < CDP™A(y|z)

for large enough n. Hence, it is enough to find an oracle such that CDP™A(z y) <« CD2"4(y) +
CD*" (zly).

Proposition 10 There ezxists an oracle A and a polynomial p(n) satisfying the following condition. For any
€ > 0 and large enough n there erists a pair (z,y) € A=2" such that

o CD*" AT (y) > (1—en - 0(1),

o CDX" AT (z]y) > (1 — €)n — O(logn),



o CDPM AT (3,y) = 0(1),
i.e., CD”(")’A=2n (z,y) € CD2€"’A=2H (y) + cp2AT" (z]y).

Proof: We shall construct an extremely simple oracle A=2" C B” x B"”. Namely, there will be only one
point in the whole set. We choose (g, yo) € B" x B" such that C(zo) > n and C(yo|zo) > n — O(1). Now
set A=2" = {(z9,¥0)}, and the construction is finished. Obviously, CDr(mA=" (z0,y0) = O(1). It remains
to show that CD>" 4™ " (z0) and cp>" AT (yo|®o) are large enough.

Fix a shortest CD-program s for zg. If this program does not query the point (zg,yo) from the oracle,
then it could work with a trivial oracle (which returns 0 for all queries) as well. In this case we get

Clzo) < [s| + O(1).
Conversely, if at some step t < 2¢" the program s does query the point {xg,yo) from the oracle, we get
C(zo) < |s| +logt < |s] + en + O(logn).

Thus in both cases L
CD?" A7 (1) > (1 — €)n — O(logn).

AT (yo|mo) > (1 — €)n — O(logn), and we are done. O

The same arguments imply CcD*"
The proof above provides a relativized world where (HDSI) is false. In fact in this world even the expected

property CDP(z,y) > CD?” () is false. To find a relativization where also (SMI) is false for CDP°Y we need
a bit more complex construction. The proof of the next proposition follows the idea outlined in [BF95].

Proposition 11 There exists an oracle A and a polynomial p(n) satisfying the following condition. For any
€ > 0 and large enough n there exists a pair (x,y) € B" x B" such that

o CD>*" AT () > (1—e)n—0(1),

o CD*" AT (zly) > (1 — €)n — O(logn),

o CDPMA™"(2) = 0(1),

o CDP(M)AT™" (y|z) = O(1) and even Cp(n), A= (ylz) = O(1),

i.e., Ccpr(m)A=" (z) + CDP(mAT" (y|r) < Ccp2" AT (y)+ cp2 AT (z|y). Thus, (SMI) doe not hold with
the oracle A.

Proof: Fix n and choose a random pair (x,,y,) € B” x B". Let f, be a random permutation of strings of
length n such that fn(z,) = yn.

Now we define A=2". At first we define two auxiliary oracles B,, and Cy,: let B,, contain the graph of the
permutation f, (on input (z, i) the oracle B, returns the i-th bit of y = f,,(x)) and C,, contain a single string
x, (on input x € B" the oracle C), returns 1 if and only if x = z,). A query to B, consists of (n + logn)
bits, and a query to C), consists of n bits. So a query to B, ® C,, can be encoded as a strings of length
(n +logn + 1), which is less than 2n. Thus, we may set A=2" = B,, ® C,,.

Obviously, for some polynomial p(n) we have CDP(™ (z) = O(1) (it is enough to query Cj, to distinguish
x from any other stings) and CP(") (y|z) = O(1) (it is enough to query from B, the value f,(z,)).

The same arguments as in the proof of Proposition 9 imply that for randomly chosen f,, we have

CD>" 4™ (y,) > (1 — ©)n — O(logn) and CD*™ 47" (2, |y,) > (1 — €)n — O(logn). =

In Proposition 9 and Proposition 11 the universal machine accesses the oracle A=", which obviously
depends on the length of input. These results hold also for a more usual in complexity theory ‘uniform’
relativization:



Corollary 12 There exists an oracle A and a polynomial p(n) satisfying the following condition. For any
€ > 0 and large enough n there exists a pair (x,y) € B™ x B" such that CDP™A(z) + CDPMA(y|z) <«
CD*"4(y) + CD* " A(zly).

Proof: Let A be the oracle from Proposition 11. Denote by A’ the set G A=2""_ Then we may assume that
i=1

on input of length n = 22" the universal machine, which runs in time less than 2¢*, can query from the oracle
only strings of length not greater than n. Further, the list of all positive answers of the oracles for queries of
length less than n contains only O(logn) bits. Hence, for any (x,y) € A=" the difference between cp? (y|z)
and CD?™ " (y|z) is O(logn). Thus, it follows from Proposition 11 that CcDPMA () + CDPM-A' (y]z) <
CD*™ 4 () + CD* "4 (zly).

O

4 On CND complexity

In this section we prove that (HDSI) and (SMI) are not true for a relativized version of polynomial time
bounded CND complexity. Our proof is based on the Language Compression Theorem 7.

Theorem 13 Let m = m(n),s = s(n),t = t(n) be functions such that
Zs(n) + 2m(n) < 93n

and
t(n)Qm(n) < 93n—3

Then there is a polynomial p(n), and sets A, X such that
o X=3n ]BSn, ”X:3n” — 2s(n),
° A:6n C 13371, X IBISn’
o [{y : (2,y) € A=} > 7/8-2%" for any x € X=°",

° | LzJX{y : (z,y) € A=} < 1/8- 237,

and for large enough n, for all x € X=3", for at least 3/4-23" strings y € B*™ the following conditions hold:

(z,y) € A=,
CNDPA™" (z]y)
CNDP A~ (z,v)
CND*™47™" (y|)
CNDH™A™™ (7))

s(n) + 0(6(n)),

3n + s(n)) + O(6(n)),
3n — O(1),

m(n) — O(1),

IV IV IA A

where §(n) = /nlog®(n).
Note that the term d(n) = /nlog®(n) comes from Theorem 7.

Corollary 14 There exists an oracle A such that a CNDPY yersion of (HDSI) does not hold. Moreover,
for any € > 0 there exists a polynomial p such that for any polynomial q for large enough n

(2 — e)CNDPA™" (z,y) < CND®A~" (z) + CND*4~"" (y|)

for most (z,y) € A=".



Proof: It follows from Theorem 13 for s(n) = en, m(n) = (3 — )n, t(n) = 2°/2. O
The bound (2—¢) in Corollary 14 is tight. This can be easily seen as, CNDPOW-A™" (z,y) > CNDPOW-A™" (z)—

O(1) and CNDPoly-A=" (z,y) > CNDPoly-A="" (y|z) — O(1). Hence for any oracle A
2CNDPA™" (z,) > CND?4™"" () + CND24™"" (y|2) — O(1).

Corollary 15 There exists an oracle A such that a CNDP°Y yersion of (SMI) does not hold, i.e., for some
polynomial p, any polynomial q, and large enough n

CNDPA™ (y) + CNDPA™"" (z]y) < CND*4™"" (z) + CND*4™"" (y|x)

for most (z,y) € A=".

Proof: Again, we can apply Theorem 13. For example, set s(n) = n, m(n) = 2n, t(n) = 2" (for small
enough £ > 0). Than for most (z,y) € A=5" we have CNDPA™"" (y) + CNDPA™" (z]y) < 4n + O(1) and
CND%A™"" (z) + CND®A~" (y|z) > 5n — O(1). O

Remark: Using the same trick as in Corollary 12, we can get an analog of Theorem 13 with a ‘uniform’
relativization, i.e., we may assume that the oracle does not depend on n. So, Corollary 14 and Corollary 15
also can be formulated for a uniform relativization: there exists an oracle A and polynomial p such that for
any polynomial q and large enough n

CNDPA() + CNDP (z]y) < CND™(2) + CND** (y )

for most (z,y) € ANB".
Proof:(Theorem 13) Fix an integer n > 0. We denote by F the characteristic function of A=%" i.e.,
F({z,y)) = 1if (z,y) € A7 and F(z,y) = 0 otherwise. Our goal is to define a function F so that the
statement of the theorem hold. We define this function in a few stages: construct a sequence of functions
FOth"'aFZm(")a

F; : B*" x B*" — {0, 1, undef}.

For ¢ < j the function F} should be an extension of Fj, i.e.,
V(a,b) if Fi(a,b) # undef then Fj;(a,b) = Fi(a,b).

The initial function is trivial: Fy(a,b) = undef for all (a,b); the last function Fym») should range over B,
i.e., Fym) (a,b) # undef for any a,b. We set F' = F,me) .
Let us introduce some notation. We say that a set B C B*" x B3" respects a function F; if

{ Fi(a,b) =1 = {a,b) € B,
Fi(a,b) =0 = ({(a,b) ¢ B.

Let s1,...,89m(n)_1 be the list of all CND-programs of length less than m(n). We suppose each program
s; can access an oracle O (the oracle is not fixed in advance). Also we suppose that each s; is clocked and
runs in time less than t(n). We say that s; is a well defined CND program for an oracle O if sjo accepts
exactly one string .
Further define F; by induction. Let the functions Fy, ..., Fy_; be already defined. We must construct a
function
Fy, : B x B*" — {0,1, undef}

which is an extension of Fj_;. Consider the program sj. There are two possibilities:
1. for any B C B3® x B3” that respects Fy 1, the program s; is not well defined for the oracle B;

2. there exists at least one set B C B®" x B®" that respects Fy_;, and the program s;, is well defined for
the oracle B.



The first case is trivial: we set Fy(x,y) = Fj—1(z,y) for all (z,y). In the second case there exists a set B
and a string z such that sP accepts z in time T'(B, z) < t(n) and rejects all other strings. If there are more
than one B as above, we choose a set B that provides minimum to the value T'(B,z). Denote by zj the
fixed string z. Let the list of all queries of the program sP () to the oracle (for one of the accepting paths)
be

<a0: bO)a ((11, b1)7 L) (aTa bT‘)

(r < t(n)). We include all these pairs in the oracle. More precisely, define F}, as follows:

Fy(a,b) = Fjy 1(a,b) if Fy_1(a,b) # undef,

Fk(aj,bj) =1 if (aj,bj)EB, 3=0,...,m

Fk(aj,bj) =0 if <aj,bj)¢B, j:O,...,r,

Fy(a,b) = undef if Fy,_1(a,b) = undef and (a,b) # (a;,b;), j=0,...,r.

For any set R that respects F}, the program skR accepts the string ;. This means that for any time bound

T < t(n) the program skR cannot distinguish any string except for zy.

Thus we have described an inductive procedure, which defines the functions Fp,..., Fomn)_;- At each
step ¢ we set F;(a,b) # F;_1(a,b) for at most ¢(n) values {a, b). Hence the function Fh2-_; is equal to undef
for all values in B?" x B*" except for at most t(n)2"(" values.

Besides we get the list L of strings x; which can be accepted by distinguishing programs s if a set R
respects Flomm) . This set is rather small: [|L|| < 2m(n)

Further we choose an arbitrary set

X=r Cc B\ L

of size 25(") . Now define the function Fzgm(n) as follows:

F22m(") (.CL', y) = FZZ"—I (Z‘, y) if F22m(") ,1('(177 y) # undef7
Fome (z,y) = 1 if Fyymn) ,(,y) = undef and z € X,
Fomm (z,y) = 0 if Fomm)_,(z,y) = undef and z ¢ X.

The characteristic function F22m(n) defines the oracle A=%" and the construction is finished. Note that
{y : (z,y) € A=°"}|| > 7/8.2%"

for any £ € X3, and
I U {v: (zy) e A=} <1/8- 25",

g X=3n

Remark: If z € X=3" then for at least 7/8 of all y € B> we have (z,y) € A; If v € X" then for at
most 1/8 of strings y € B*™ we have (z,y) € A. We shall use this observation in Corollary 16 below.

Now fix any string o € X. Obviously, CND!m-A="" (xo) > m(n) because x ¢ L. Further, there are at
least
23n _ 2m(n)t(n) _ 23n—3 > 3/4 R 2371

strings y such that
* (z0,y) € A=,
o (z,y) & A=5" for any z ¢ X=3", and
o CA™" (ylzo) > 3n — 3.
Denote by yo any of these strings. From the conditions above it follows that

o CND!m:A™" (yo|zo) > 3n — O(1) since resource bounded complexity is not less than plain complexity;

o CNDPMA™ (30]yo) < log|[{z : (z,50) € A=0"}|| + O(3(n)) < s(n) + O(6(n)) (from Theorem 7);



o CNDP™MA™" (3. 4) < log || A=5"|| + O(6(n)) = (3n + s(n)) + O(5(n)) (also from Theorem 7).

Corollary 16 3M : BPPM ¢ NPM,

o i
Proof: Apply Theorem 13 for s(n) = n, m(n) = 2n, and t(n) = 2%, Denote X' = |J X=32° and
i=1

A= G A:“Ql, where A and X are sets from Theorem 13. It is easy to check that X' belongs to the class
i=1
BPP*'. Let = be a string of length 3n (n= 22i), and say we want to solve if x € X'. Choose at random a
string y € B*" and check whether (z,y) € A=5"; if z € X=3", then probability of this event is at least 7/8,
otherwise probability is at most 1/8. Obviously, the complement X' of the set X' also belongs to BPP4'.
The same time X’ or X’ does not belong to NP#'. Assume the converse, i.e., X' and X' are both in
NP4'. Then a non-deterministic polynomial machine with the oracle A’ can solve if z € X'.
Hence, from Theorem 7 we have for all z € X=3"

CNDP¥4'(z) < log [ X=*"|| + O(3(n)) = n + O(5(n)).-

n

On the other hand, CNDPY-4’ (z) > CNDPOY- X~ (z) — O(logn), and from Theorem 13
CNDPOW-X =" (z) > 2n.

Thus, we get a contradiction. m|

5 On CAMD complexity

In this section we study symmetry of information under the CAMD complexity measure. In contrast to the
case of CND complexity, with the power of nondeterminism and randomness we can prove some positive
results, showing that some weaker versions of (HDSI) hold for CAMD.

Our proof will follow the proof in the resource unbounded case as given in [ZL70]. We now recall this
proof to highlight how it can be adapted for our purposes. Let a, 8 be two strings such that |a|+|8| = n, and
suppose that C(a, 8) = m. We define the set A, = {y : C(z,y) < m}. Notice that ||Az | < 2™*! and
that given z and m the set A, ., is recursively enumerable. Thus as § € A, ., by the Language Compression
Theorem (Theorem 6), C(B|a) < log||Aa,m| + O(logn). Let k* be such that 2*" < ||Aq.m|| < 2% 1. Then
the above says that C(8|a) < k* + O(logn).

Now consider the set By, x, = {z : || Az,m|| > 2¥}. Notice that the size of By, x is less than 2™~ %, and that
o € By, . The set By, j, is recursively enumerable given m, k, thus by the Language Compression Theorem,
C(a) <m —k* 4+ O(logn). And so

m—k* + k* + O(logn)

<
< C(e,8) + O(logn)

Let us see what happens when we try to apply this argument to CAMD complexity. We no longer know
if the set A,, = {(z,y) : CAMDP?(z,y) < m} is decidable in AM. We can, however, decide if (z,y) satisfies
CP(z,y) < m in nondeterministic polynomial time, by guessing the polynomial time printing program and
running it. Thus we redirect our attempts at the weaker statement: for all z,y € B",

CP(z,y) > CAMDY(z) + CAMDY(y|z) — O(log® n).

Now the first half of the argument works as in the resource unbounded case, and, using the Language
Compression Theorem for AM, Theorem 8, we have CAMD?(8|a) < k* + O(log® n).
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The set By, is more tricky to decide, as we need to count the number of y such that CP(z,y) < m.
In AM, however, we can approximately lower bound the size of NP relations as shown in Theorem 5.2 of
[Bab85], using Sipser’s Coding Lemma [Sip83]. In our case this means there is a polynomial time predicate
@ such that

o if © € By, then Pr,.[qy Qa(z,y,7) =1] > 2/3
o if £ ¢ By g1 then Pr,.[Fy Qa(z,y,r) =1 <1/3

We would now like to apply the language compression theorem for AM, but there remains a small problem:
the set Bp, x is mot actually in AM. Note that if = is such that there are between 2¥~! and 2* strings y such
that C(z,y) < m, then we have no guarantee about the behavior of the above algorithm: we cannot decide
if x € By, 1, or not. This obstacle, however, is the only problem with the above argument going through.

In the next theorem, we extend the language compression results of [BLvMO04] to also work for AM gap
sets of this type, thus allowing the above argument to go through.

Theorem 17 Let A C B*. Suppose there is a polynomial time bound q(n), and predicate @ such that
o for all u € A", Pr e [V Q(u,v,r) =1] > 2/3
o L= {u € B" : Proggn [Bv Q(uyv, ) = 1] > 1/3}]| < 2%,

and for all u,v,r the predicate Q(u,v,r) can be computed in polynomial time. Then there is a polynomial
time bound p(n) such that for all u € A=", we have CAMDP?(u) < k + O(log® n).

Before going into the proof, we briefly recall the technique of [BLvM04]. Let TR : B* x B! — B™ be the
function underlying Trevisan’s extractor [Tre99], that is the composition of a good error correcting code with
the Nisan-Wigderson generator [NW94]. The output of TR(u,e) is the evaluation of the Nisan-Wigderson
generator on seed e when using 4 as the ‘hard’ function supplied to the generator, where 4 is the image of
u under an error correcting code. The key property of this function, what makes it a good extractor and
compressor, is that if TR(u, e) is not close to uniform over choice of e € B? on some set B C B™, then u has
a short description given oracle access to B. In [BLvMO04] it is shown that u can be printed in polynomial
time from this description and oracle access to B.

To give the elements of a set A € B" short descriptions, we let the set B be the image of A x B? under
the the function TR. That is, B = Ugea U.ecpe TR(z,e). Notice that for any = € A, Pr.[TR(z,e) € B] =1.
On the other hand if we take m to be log||A|| + d + 1 then the probability that a uniformly chosen y € B™
is in B is less than 1/2. Thus all the elements of A have a short description relative to B. Now notice that
with nondeterminism and an oracle for A, we can decide membership in B, thus all the elements of A have
a short CND“ description. The elements of A can be given an even more succinct CAMD? description by
using the randomness in the AM protocol to simulate part of the probabilistic argument in [NW94, Tre99].
Proof:(Theorem 17) By amplification and the results of [FGM*89], we can transform the predicate @ into
a predicate @' taking random strings of length a polynomial ¢'(n) and with the property

o if u € A=" then Pr,.[3v Q'(u,v,r) =1] =1
o |L'={u:Pr[Iv Q' (u,v,r) =1] >2 "2} <2k

for r chosen uniformly over B¢ (™).
For each r € B? (") we define a set

B, ={w:3u € B",Jv,e TR(u,e) = wA Q' (u,v,r) =1}

Clearly if u € A=", then Pr.[B,(TR(u,e)) = 1] = 1, for any r € B? (™. We now calculate the probability
that for a randomly chosen w € B™ and randomly chosen r € BY (™) that w € B,. As for a 0 /1 variable the
probability of being 1 is equal to the expectation of the variable, we have

71315[11] € Br] = Er,w[BT(w)]'

11



By linearity of expectation, we can divide the latter into two contributions, that from elements w for which
Ju € L' and seed e such that TR(u,e) = w, and those w for which this is not the case.

E,wB(w)]= Y E[B.(wl+ Y  E[B(w)]

w=TR(u,e) w#TR(u,e)
ueL! ueL!

By taking m = k+d+2 the first term can be bounded by 1/4. The second term is bounded by 2272 < 1/4.
Going back to probability notation, we have for any u € A="

Pr{B,(TR(u,€)) = 1] - Pr[B, (w) = 1] > 1/2.

It follows by the hybrid argument that there is an i € [m] such that

Pr [B,(dy(x) ... 4; 1 (z)a(z)r] — Pr b[Br(al (%) ...40; 1(z)br')] > 1/2m (3)
T,T,T z,r,r!,
Let F(z,b,r") = G41(x)...4;—1(z)br'. Our algorithm to approximate & will do the following: on input
x, choose uniformly at random b,r,r' and evaluate B,.(F(z,b,r')); if this evaluates to 1, then output b,
otherwise output 1 — b. Call the output of this algorithm gy(z,r,7’). It follows from equation (3) that
I}:’r la(@) = gy(z, ")) > 1/2+ 1/2m
The rest of the argument now proceeds as in the proof for relativized language compression in AM

(Theorem 3 in [BLvMO04]), to show that the computation of gy(z,r,r') can be approximated by an AM
algorithm. m|

Note that the proof of Theorem 17 relativizes. We will make use of this fact in observing that the
argument of [ZL70] outlined above can be used with respect to any set A of pairs of strings, not just the set
of pairs with complexity at most m.

Theorem 18 There is a polynomial p(n) such that for any set A C B* x B* and all (z,y) € A="
log ||A="|| > CAMDP4™" (z) + CAMDP ™" (y|z) — O(log® n).
Furthermore, if A € NP then then there is a polynomial g(n) such that

log [|A="|| > CAMD?(z) + CAMDY(y|z) — O(log® n).

Proof: We follow the proof of symmetry of information in the resource unbounded case, as outlined above.
Now the set A takes the place of the set {(z,y) : C(z,y) < m} used before. Fix n and (a,3) € A=".
Denote m = log||A="|| and A, = {y : (z,y) € A="}. Membership in the set A, can be decided in
polynomial time given z and the oracle A=". As 8 € A, it follows from Theorem 8 that CAMD®4™" (3 la) <
log || 44|l + O(log® n).

Now consider the set B, = {x : ||A,|| > 2¥}. Let k* be such that 2¥" < ||44|| < 2¥"t'. Then o € By-.
Again by the approximate lower bound counting property of AM, as shown in [Bab85], there is a predicate
Q@ (computable in polynomial time given the oracle A=™) such that

o If z € By, then Pr.[FyQ(z,y,r) =1] > 2/3
o If & ¢ By_1 then Pr,[FyQ(z,y,r) =1] <1/3

Thus if Pr,[Jy Q(z,y,r) = 1] > 1/3 then z € By_1. However ||A™"|| = 2™ implies that ||Bj—1]| < gm—k+1,
Now by Theorem 8 we obtain CAMD?*™" (a) < m — k* + O(log® n).
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Putting the above together we have
CAMD%™" (@) + CAMD?4™" (Bla) < m — k* + k* 4+ O(log® n) < m + O(log® n)

which gives the first statement of the theorem.
To prove the “furthermore”, note that approximate lower bound counting of NP sets can be done in AM
[Bab85], and apply Theorem 17 to give the bound on (unrelativized) CAMD complexity of NP sets. |

Corollary 19 For any set A C B* x B* and any polynomial p(n) there is a polynomial q such that for all
but at most a 1/n fraction of (z,y) € A=,

CAMDP™A™" (g 4) > CAMDY®A™" (z) + CAMD®™" (y|z) — O(log® n).
Furthermore, if A € NP then

CAMDP™ (z,4) > CAMD?(z) + CAMDY(y|z) — O(log® n).

Proof: For all but at most a 1/n fraction of (z,y) € A=" we have CAMDP™A™" (1 ) > log||A="|| —
O(logn). Applying Theorem 18 we get the first statement of the corollary. Applying the “furthermore” of
Theorem 18 gives the furthermore here. m|

Theorem 20 For any strings x,y € B", and polynomial p(n) there is a polynomial g(n) such that

CP(z,y) > CAMDY(x) + CAMDY(y|x) — O(log® n).

Proof: Fix a pair of strings (o, ). Let n = |a| + |8|, and suppose that CP(a, 8) = m. Consider the set
A= {{(z,y) : CP(z,y) < m}. As membership in A can be decided in nondeterministic polynomial time, we
may invoke the “furthermore” of Theorem 18 to give

log ||A]| > CAMD?(a) + CAMD?(8|a) — O(log® n)
for some polynomial q.
On the other hand, ||A4|| < 2™*!, and the theorem is proven. O
From Theorem 20 we obtain as a corollary a result of [LW95], up to an additive O(log®(n)) factor.

Corollary 21 If P = NP then for any polynomial p = p(n) there is a polynomial ¢ = q(n) such that for all
z,y € B
CP(z,y) > C!(z) + C(y|z) — O(log® n)

It remains an interesting open problem if polynomial time symmetry of information for printing com-
plexity holds under a weaker assumption than P = NP.

Acknowledgments AR thanks Harry Buhrman and Lance Fortnow for helpful comments on [BF95]
and [BFL02] and on the history of the problems under consideration. TL would like to thank Harry Buhrman
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