
A new algorithm for optimal constraint satisfaction

and its implications

Ryan Williams∗

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a novel method for exactly solving (in fact, counting solutions to) general con-
straint satisfaction optimization with at most two variables per constraint (e.g. MAX-2-CSP
and MIN-2-CSP), which gives the first exponential improvement over the trivial algorithm; more
precisely, it is a constant factor improvement in the base of the runtime exponent. In the case
where constraints have arbitrary weights, there is a (1 + ε)-approximation with roughly the
same runtime, modulo polynomial factors. Our algorithm may be used to count the number of
optima in MAX-2-SAT and MAX-CUT instances in O(m32ωn/3) time, where ω < 2.376 is the
matrix product exponent over a ring. This is the first known algorithm solving MAX-2-SAT and
MAX-CUT in provably less than cn steps in the worst case, for some c < 2; similar new results
are obtained for related problems. Our main construction may also be used to show that any
improvement in the runtime exponent of either k-clique solution (even when k = 3) or matrix
multiplication over GF(2) would improve the runtime exponent for solving 2-CSP optimization.
As a corollary, we prove that an no(k)-time k-clique algorithm implies SNP ⊆ DTIME[2o(n)], for
any k(n) ∈ o(

√

n/ log n).
Further extensions of our technique yield connections between the complexity of some (poly-

nomial time) high dimensional geometry problems and that of some general NP -hard problems.
For example, if there are sufficiently faster algorithms for computing the diameter of n points
in `1, then there is an (2− ε)n algorithm for MAX-LIN. Such results may be construed as either
lower bounds on these high-dimensional problems, or hope that better algorithms exist for more
general NP -hard problems.

1 Introduction

The extent to which NP -hard problems are indeed hard to solve is still largely undetermined. For
some problems it intuitively seems that the best one can do is examine every candidate solution,
but this intuition has been shown to fail in many scenarios. The fledgling development of im-
proved exponential algorithms in recent times suggests that for many hard problems, something
substantially faster than brute-force search can be done, even in the worst case. However, some
fundamental problems have persistently eluded researchers from significantly better algorithms; one
popular example in the literature is MAX-2-SAT.

There has been high recent theoretical interest in finding a way to solve MAX-2-SAT that would
run in O((2 − ε)n) steps on all instances, for some ε > 0. Unlike other problems such as Vertex

∗Email: ryanw@cs.cmu.edu. Supported by a NSF Graduate Research Fellowship and the NSF ALADDIN Center
(http://www.aladdin.cs.cmu.edu/).

1

Electronic Colloquium on Computational Complexity, Report No. 32 (2004)

ISSN 1433-8092

Cover and k-SAT, where a sophisticated analysis of branch-and-bound techniques (or random choice
of assignments) sufficed for improving the naive bounds (e.g. [33, 23, 29]), MAX-SAT has been
surprisingly difficult to attack. Previous work has only been able to show either a (2 − ε)m time
bound, where m is the number of clauses, or an approximation scheme running in (2− ε)n [13, 12]
(but ε → 0 as the quality of the approximation goes to 1). Of course, the number of clauses can
in general be far higher than the number of variables, so the (2 − ε)m bounds only improve the
trivial bound on some instances. The current best worst-case bound for MAX-2-SAT explicitly in
terms of m is Õ(2m/5) 1, by [11] (so for m/n > 5, this is no better than 2n). This result followed
a long line of previous papers on bounds in terms of m [14, 26, 10, 6, 4, 22, 23]; a similar line
has formed for MAX-CUT [38, 21]. A partial answer to the problem (of a (2 − ε)n algorithm for
MAX-SAT) was recently given by [39], who proved that sparse instances of MAX-k-SAT can be
solved in (2 − ε)n. That is, for every constant k and constant ∆ there is a constant ck,∆ such that
MAX-k-SAT instances with at most ∆n clauses are solvable in (ck,∆)n steps (however, ck,∆ → 2 as
∆ → ∞ or k → ∞). [31] showed that when every variable occurs at most three times, MAX-2-SAT
remains NP -complete, but has an O(n3n/2) algorithm. While definite stepping stones, these results
still appeared distant from an improved exponential algorithm. As a result, several researchers (e.g.
[31, 1, 12, 40]) explicitly proposed a (2 − ε)n algorithm for MAX-2-SAT (and/or MAX-CUT) as a
benchmark open problem in the area.

1.1 Outline of our approach: Split and List.

Previous exact algorithms in the literature for MAX-2-SAT (indeed, most known algorithms for
exactly solving NP -hard problems) involve either a case analysis of a branch-and-bound strategy
[11], repeated random choice of assignments [29], or local search [35]. Our design is a major
departure from these approaches; its pre-processing step resembles earlier algorithms from the
70’s, and a recent (toy) algorithm of Pudlák [30, 16, 36]. We split the set of n variables into
k partitions (for k ≥ 3) of (roughly) equal size, and list the (roughly) 2n/k assignments for the
variables of each partition. From these k2n/k assignments, we build a graph with weights on its
nodes and edges, arguing that a optimum weight k-clique in the graph corresponds to a optimum
solution to the original instance. The weights are eliminated using a polynomial reduction, and
a fast k-clique counting algorithm on undirected graphs yields the improvement over 2n. To get
a (1 + ε)-approximation when constraints have arbitrary weights, we can adapt results concerning
approximate all pairs shortest paths [41] for our purposes.

Our reduction can also be used to prove stronger complexity results concerning the fixed-
parameter tractability of k-clique; cf. Section 4.2. Finally, we investigate the possibility of efficient
split-and-list algorithms for more general problems such as SAT and MAX-LIN-2 (satisfying a
maximum number of linear equations in 0-1 variables). In particular, we will demonstrate some
connections between this question and problems in high dimensional geometry. For example, if a
furthest pair out of n d-dimensional points in `1 norm can be found faster than its known solutions
(say, in O(poly(d) ·n2−ε) time), then there exists a (2− ε)n split-and-list algorithm for MAX-LIN-2.

1.2 Notation.

Let V = {x1, . . . , xn} be a set of variables over (finite) domains D1, . . . , Dn, respectively. A k-
constraint on V is defined as a function c : D1 × · · · × Dn → {0, 1}, where c only depends on k
variables of V (one might say c is a k-junta). For a k-constraint c, define vars(c) ⊆ V to be this

1The Õ suppresses polynomial factors.

2

k-set of variables. Partial assignments a to variables of V are given by a sequence of assignments
xi1 := v2, xi2 := v2, . . . , xik := vk, where ij ∈ [n] and vij ∈ Di,j . A partial assignment a satisfies a
constraint c if vars(c) is a subset of the variables appearing in a, and c(a) = 1 (the restriction of c
to the variables in a evaluates to 1, on the variable assignments given by a).

Given a set S, Sm×n is the set of m × n matrices with entries taken from S.

Throughout, ω refers to the smallest real number such that for all ε > 0, matrix multiplication
over a ring can be performed in O(nω+ε) time. We will discuss three types of matrix product in
the paper; unless otherwise specified, the default is matrix product over the ring currently under
discussion. The other two are the distance product (⊗d) on Z ∪ {−∞,∞}, and Boolean matrix
product (⊗b) on 0-1 matrices. Let A, B ∈ (Z ∪ {−∞,∞})n×n. A ⊗d B is matrix product over the
(min, +)-semiring; that is, the usual + in matrix product is replaced with the min operator, and
× is replaced with addition. When A and B are 0-1 matrices, the Boolean product ⊗b replaces +
with ∨ (OR) and × with ∧ (AND).

2 Fast k-Clique Detecting and Counting.

We briefly review an algorithm [25, 3] for detecting if a graph has a k-clique in less than nk steps.

Theorem 2.1 ([25]) Let r ∈ Z
+. Then 3r-clique on undirected graphs is solvable in O(nωr) time.

Proof. First consider k = 3. Given G = (V, E) with n = |V |, let A(G) be its adjacency
matrix. Recall that tr(M), the trace of a matrix M , is the sum of the diagonal entries. tr(A(G)3)
is computable in two matrix multiplications; it is easy to see that tr(A(G)3) is non-zero if and only
if there is a triangle in G. For 3r-cliques when r > 1, build a graph Gr = (Vr, Er) where Vr is
the collection of all r-cliques in G, and Er = { {c1, c2} : c1, c2 ∈ Vr, c1 ∪ c2 is a 2r-clique in G}.
Observe that each triangle in Gr corresponds to a unique 3r-clique in G. Therefore tr(A(Gr)

3) 6= 0
if and only if there is a 3r-clique in G, which is determined in O(nωr) time. Finding an explicit
3r-clique given that one exists may be done by using an O(nω) algorithm for finding witnesses to
Boolean matrix product [2]; details omitted. 2

In fact, the above approach may be used to count the number of k-cliques as well. Let Ck(G)
be the set of k-cliques in G, and Gr be as defined in the previous proof.

Proposition 2.1 tr(A(Gr)
3) = 6|C3r(G)|.

Proof. In tr(A(G)3), each triangle {vi, vj , vk} is counted once for each vertex v (say, vi)
in the triangle, times the two paths traversing the triangle starting from that v (for vi, they are
vi → vj → vk → vi and vi → vk → vk → vi). Similar reasoning shows that each 3r-clique is counted
six times in tr(A(Gr)

3). 2

3 Algorithm for 2-CSP optimization.

Let us explicitly define the problem our optimization algorithm will tackle, in its full generality.

Problem COUNT-2-CSP:

Input: A set of m 1-constraints and 2-constraints C on n variables x1, . . . , xn with domains of
size d1, . . . , dn (respectively), and a parameter N ∈ {0, 1, . . . , m}.

Output: The number A of variable assignments (0 ≤ A ≤ ∏n
i=1 di) such that exactly N

constraints of C are satisfied.

3

Let κ(k) be such that the number of k-cliques on n-node undirected graphs can be found in
O(nκ(k)) time. (One may think of κ(k) as the “k-clique exponent”, analogous to the mysterious
matrix multiplication exponent ω. But note also that k may be a function of n, in which case κ(k)
might be as well.) Assume for simplicity that |di| is the same for all i = 1, . . . , n, and is equal to d.

Theorem 3.1 Let k(n) ≥ 3 be monotone non-decreasing and time-constructible. Then

COUNT-2-CSP is in O

(

(N+(k(n)
2)−1

(k(n)
2)−1

)

[k(n)dn/k(n)]κ(k(n))

)

time,

where m is the number of constraints, n is the number of variables, and d is the domain size.

Corollary 3.1 MAX-2-SAT and MAX-CUT solutions can be counted in O(m31.732n) time; an
explicit optimal assignment can be found in O(nm31.732n) time.

Proof of Corollary 3.1. Set d = 2 and k = 3; search for the largest N ∈ [m] such that
the number of assignments a satisfying N constraints is non-zero and return a; this incurs an extra
O(m) factor. An explicit assignment can be found using self-reducibility, increasing the runtime
by a O(n) multiplicative factor: assign x1 := 1 in the set of constraints and test if there is still an
assignment satisfying N constraints. If yes, keep x1 := 1; try assignments for x2, x3, . . . similarly.
If not, assign x1 := 0; try assignments for x2, x3, . . . similarly. 2

Proof of Theorem 3.1. We reduce the problem to counting k-cliques in a large graph.
Assume w.l.o.g. that n is divisible by k. Let C be a given instance. Arbitrarily partition the n
variables of C into sets P1, P2, . . ., Pk with n/k variables each. For each Pi, make a list Li of all
dn/k assignments to the variables of Pi.

Step 1: Delegating responsibility.

Certain partitions (or pairs of partitions) will be responsible for satisfying certain constraints of
C. Let [k] = {1, . . . , k}, and

(

k
2

)

denote the collection of 2-sets from [k]. We define a responsibility

map r : C → ([k]∪
(

k
2

)

) from constraints to partitions and 2-sets of partitions. Intuitively r(c) = i
(r(c) = {i, j}) means that Pi is (Pi and Pj are) “responsible” for satisfying c.

• r(c) := i ∈ [k], if vars(c) ⊆ Pi,

• r(c) := {i, j} ∈
(

k
2

)

, if vars(c) ∩ Pi 6= ∅ and vars(c) ∩ Pj 6= ∅.

Observe that r is well-defined assuming c is dependent on at most two variables (|vars(c)| ≤ 2).

Step 2: Weighting accordingly.

Next, build a weighted graph G with

V =
⋃k

i=1 Li and E = {{u, v} ∈ V : u ∈ Li, v ∈ Lj ⇒ i 6= j}.
That is, G is a complete k-partite graph, with dn/k nodes per partition. For a vertex v in some

list Li, let av denote the partial assignment to which v refers. The weight function w for G is on
nodes and edges of G, and is defined:

• w(v) := |{r(c) = i : c ∈ C, v ∈ Li, c(av) = 1}|,
• w({u, v}) := |{r(c) = {i, j} : c ∈ C, u ∈ Li, v ∈ Lj , c(au av) = 1}|.
(Given a partial assignment a, “c(a)” denotes the value of c when a is assigned to its variables.

Assuming all variables in vars(c) are assigned in a, c(a) is well-defined; for us this is the case, by
definition of r.) Generally speaking, w(t) tells the number of constraints c ∈ C for which (a) t is
in a partition/pair of partitions responsible for c, and (b) the partial assignment that t denotes
satisfies c.

When k = 3 and d = 2, G resembles the picture below, for vertices 1 ∈ L1, 2 ∈ L2, 3 ∈ L3.

4

011010101

101100100

000110110
w(1,2)

w(1,3)

w(3)

w(2)w(1)

w(2,3)L3

L2L1

Let K = {v1, . . . , vk} be a k-clique in G. Define w(K) :=
∑k

i=1 w(vk) +
∑

{i,j}∈(k
2)

w({vi, vj}); i.e.

the weight of all nodes and edges involved in K.

Claim. The number of k-cliques of weight N in G is equal to the number of assignments
satisfying exactly N constraints in C.

Proof. Let a be an assignment to all n variables of C, and suppose a satisfies exactly N
constraints of C. Clearly, there exist unique vi ∈ Li for i = 1, . . . , k such that a = av1av2 · · · avk

,
i.e. a corresponds to a unique clique Ka = {v1, . . . , vk} in G. We have that

w(Ka) =
k

∑

i=1

|{r(c) = i : v ∈ Li, c(av) = 1}| +
∑

{i,j}∈(k
2)

|{r(c) = {i, j} : u ∈ Li, v ∈ Lj , c(au av) = 1}|.

That is, w(Ka) counts the number of c ∈ C that are satisfied by a, such that either r(c) = i ∈ [k]
for some i, or r(c) = {i, j} ∈

(

k
2

)

for some i, j. But as we argued above, r(c) is well-defined over
all c ∈ C, therefore w(Ka) is precisely the number of constraints satisfied by a. As there is a
1-to-1 correspondence between k-cliques in G and assignments to C, and k-cliques with N weight
correspond to assignments satisfying N constraints, the claim is proven. 2

Step 3: Reduction from weighted to unweighted graphs.

There is a slight difficulty: we want to count k-cliques in the above, but the efficient algorithm
for counting k-cliques only works for unweighted graphs. We can remove this difficulty and tack on
a multiplicative factor that is polynomial in N ≤ m but exponential in k. Consider the

(

k
2

)

-tuples
(i1,2, i1,3, . . . , ik−1,k) where ij,l ∈ [N], and i1,2 + i1,3 + · · ·+ ik−1,k = N . For each tuple, construct a
graph G(i1,2,i1,3,...,ik−1,k) where (unweighted) edges are placed between vj ∈ Lj and vl ∈ Ll according
to the rules:

• If j = 1 and l = 2, put {v1, v2} in G(i1,2,i1,3,...,ik−1,k) iff w(v1) + w(v2) + w({v1, v2}) = i1,2,

• If j = 1 and l > 2, put {v1, vl} in G(i1,2,i1,3,...,ik−1,k) iff w(vl) + w({vj , vl}) = i1,l,

• If j > 1, put {vj , vl} in G(i1,2,i1,3,...,ik−1,k) iff w({vj , vl}) = ij,l.

(Note w(vj) and w({vj , vl}) have values in [m]; this bounds the possible ij,l values.) Then,
for each k-clique K = {v1, . . . , vk} appearing in the unweighted graph G(i1,2,i1,3,...,ik−1,k) (it takes

O([kdn/k]κ(k)) time to count them), it follows that N equals

∑

{j,l}∈(k
2)

ij,l = [w(v1)+w(v2)+w({v1, v2})]+
∑

{1,l}∈(k
2),l>2

[w(vl)+w({vj , vl})]+
∑

{j,l}∈(k
2),j>1

w({vj , vl}) = w(K).

5

That is, each k-clique counted in G(i1,2,i1,3,...,ik−1,k) is a k-clique of weight N in G. Moreover, every
distinct G(i1,2,...,ik−1,k) represents a new (disjoint) set of weight N cliques in G. Therefore the total
sum of k-clique counts over all G(i1,2,...,ik−1,k) is the number of weight-N k-cliques in G. The possible
(

k
2

)

-tuples correspond to all non-negative integral solutions to x1 + x2 + · · · + x(k
2)

= N , which is

(N+(k
2)−1

(k
2)−1

)

. A list of these solutions may be formed in such a way that each solution appears exactly

once, with O(1) (amortized) time to generate each one [34]. 2

4 General Remarks.

4.1 On triangles and matrix multiplication in the algorithm.

The current O(n3−ε) matrix multiplication algorithms only begin to outperform Gaussian elimi-
nation (in practice) for very large cases. This coincides nicely with the fact that the size of our
matrices are exponential in n. Still, it would be very desirable to find a practical efficient algorithm
which detects if an undirected graph has a triangle in O(n3−ε) time; on the other hand, this problem
has been open since the 70’s [18, 3]. We can in fact show that if one only wishes to detect a k-clique
in a graph, it suffices to matrix multiply quickly over GF(2). (To us, this gives some hope that
triangles can be found more quickly, as GF(2) is the simplest possible field.) We prove the result
for triangles; the generalization to k-clique follows from the reduction in Theorem 2.1.

Theorem 4.1 If n × n matrices can be multiplied over GF(2) in O(nc) time, then there is a
randomized algorithm for detecting if a graph has a triangle, running in O(nc log n) time and
succeeding with high probability.

Proof. Adi Shamir (unpublished) proposed a method for reducing Boolean matrix product
(⊗b) to GF(2) matrix product (⊗2). Given two 0-1 matrices A and B to be Boolean-multiplied,
randomly change each 1 in A to 0 with probability 1/2, getting a matrix A′. Then compute
A′ ⊗2 B; it turns out that (A′ ⊗2 B)[i, j] = (A⊗b B)[i, j] with probability 1/2, for all i, j. Creating
k ≥ log(n2/ε) different A′s (call them A′

1, . . . , A
′
k), we have that with probability 1 − ε

(A′
1 ⊗2 B)[i, j] ∨ (A′

2 ⊗2 B)[i, j] ∨ · · · ∨ (A′
k ⊗2 B)[i, j] = (A ⊗b B)[i, j]

holds for all i, j.

This motivates the following procedure. Similar to [3], randomly color each vertex of G with
an element from {1, 2, 3}, removing all edges connecting nodes with the same color. There is still
a triangle in this graph with constant probability, if G has one. (Observe in our split-and-list
algorithm, the graph already has this tripartite structure when k = 3, so we need not perform
this step there.) Now orient the edges between the 1-partition and 2-partition to point from the 1-
partition to the 2-partition; do similarly for edges from 2 to 3, and edges from 3 to 1. Make matrices
Ai,j representing connections between nodes from the i-partition to the j-partition: Ai,j [x, y] = 1
if there is an edge from the xth node in the i-partition to the yth node in the jth partition;
Ai,j [x, y] = 0 otherwise. The theorem follows from the fact that (with constant probability) there
is an i such that (A1,3 ⊗b A2,3 ⊗b A3,1)[i, i] = 1 if and only if there is a triangle in G. 2

4.2 A complexity-theoretic implication.

[9] showed that if one can efficiently find cliques of size log n in an n node graph, then a substantially
faster deterministic simulation of nondeterministic time is possible.

6

Theorem 4.2 ([9]) If (log n)-clique ∈ P , then NTIME[t] ⊆ DTIME[2O(t1/2polylog(t))] for any
time-constructible function t.

Define SE := TIME[2o(n)] =
⋂

ε>0 TIME[2εn]. SE is typically called sub-exponential time
[17]. The class SNP is defined in [27] and its set of complete problems includes most well-studied
NP -complete problems. One may derive a simple proposition from results of [9] and [17]: if k-
clique is fixed-parameter tractable, then SAT (and thus, all of SNP) is in sub-exponential time
(sub-exponential in both m and n, the number of clauses and variables, respectively).

Proposition 4.1 (Follows from [9], [17]) If there exists c > 0 and some function f such that for
all k, k-clique is in O(ncf(k)) time, then SNP ⊆ SE.

Using Theorem 3.1, a significantly weaker hypothesis still yields the above conclusion.

Corollary 4.1 Let k(n) ∈ o(
√

n/ log n) be unbounded and time-constructible. If k(n)-clique is in
no(k(n)) time, then SNP ⊆ SE.

Proof. (Sketch) First, it is known that if Vertex Cover is in 2o(n) time (n being the number of
vertices) then the consequent holds [17]. Given the assumption, we prove Vertex Cover is quickly
solvable using a variant of the COUNT-2-CSP algorithm. Suppose we want to find a vertex cover
of size at most s. Essentially the algorithm for COUNT-2-CSP is executed (vertices are partitioned
into k(n) sets, all subsets of vertices are listed, etc.) except the reduction to undirected k-clique is
run over all k-tuples (j1, . . . , jk) ∈ [s] such that

∑k
i=1 ji ≤ s. A graph G(j1,...,jk) is constructed by

removing all vi ∈ Li where the number of 1’s in avi is not ji; now k-cliques in this graph represent
vertex subsets of size ≤ s. An additional scheme (over all

(

k
2

)

tuples of non-negative integers
summing up to m, the number of edges in the Vertex Cover instance) is used to determine how edges
are added to G(j1,...,jk). The total runtime is bounded from above by [k2n/k]o(k) ·(s+k)k ·(m+k2)k2

,

which is at most (
√

n/ log n)o(
√

n/ log n)2o(n) · (n +
√

n/ log n)o(
√

n/ log n) · (m + n/ log n)o(n/ log n) ≤
2o(n)+o(n) · 2o(n) · 2log(m+n)·o(n/ log n) ≤ 2o(n) (note m ≤ n2, and tighter upper bounds on the number
of tuples will not improve the outcome by much). 2

Remark 1 We could have also used the Max Clique problem in the above; that is, for any un-
bounded k(n) ∈ o(

√

n/ log n), an no(k(n)) algorithm for k(n)-Clique implies a 2o(n) algorithm for
general Max Clique.

4.3 On the arbitrary weight case.

We may also employ our main algorithm to get a (1 + ε)-approximation to MAX-2-CSP and MIN-
2-CSP with arbitrary weights on the constraints. The approximation will have similar runtime to
the exact algorithm in the unweighted case. Formally, the arbitrary weight problem is:

Problem OPT-WEIGHT-2-CSP:

Input: A 2-CSP instance with C = {c1, . . . , cm}, n variables, and weight function w : C → Z
+.

Output: An assignment a such that
∑

i∈{j : cj(a)=1} w(ci) is minimized/maximized.

If the constraints have weights describable in O(log m) bits, we could simply modify the above
algorithm (where the weight of an assignment node is now the sum of weights of clauses) and get
runtime O(poly(m) · 1.732n), as we try all possible weight-sums for the clauses satisfied. When
the weights are independent of m and n, it is possible to use components from an approximate

7

all-pairs shortest paths algorithm of [41] to get a (1 + ε)-approximation to the optimum in roughly
O(nm31.732n) time (setting k = 3 in Theorem 3.1).

Recall ⊗d (defined earlier) is the distance product on matrices. If A is the adjacency matrix of
a weighted (on edges) graph G, then minn

i=1(A⊗d A⊗d A)[i, i] gives the length of a smallest triangle
in G (and is 0 if there is no triangle in G). Say that C is an a-approximation to D iff for all i, j,
C[i, j] ≤ D[i, j] ≤ aC[i, j]. Then the following theorem implies an efficient (1 + ε)-approximation
to our problem.

Theorem 4.3 ([41]) Let A, B ∈ (Z∪{−∞,∞})n×n. A⊗dB has a (1+ε)-approximation computable
in O((nω/ε) log(W/ε)) time, where W = max{A[i, j], B[i, j] : i, j ∈ [n]}.

(The minimum case is obvious; to get the maximum case, just negate all constraints.)

4.4 Improvement on the quadratic assignment problem.

The quadratic assignment problem (QAP) arises in facility location and scheduling. One has a set
of n sites and n facilities; each facility must be built at one of the sites. Between pairs of facilities
there are demands that must be met, and between pairs of sites there are distances. Informally
speaking, we wish to build facilities with high pairwise demands close to one another. Formally,
there are n × n matrices C and D of costs and demands (respectively), and we wish to find a
permutation π ∈ Sn such that

∑

i,j D[i, j]C[π(i), π(j)] is minimized.

In practice, the QAP is quite difficult; solving instances with n > 20 is state-of-the-art [28].
Hence it is an example where a significant improvement in the theoretical upper bound could have
immediate practical impact. Prior to our work, there was no better exact algorithm than the
obvious O(poly(n) · n!) one; we can gain a little over the non-trivial bound, since the QAP may
be construed as a 2-CSP with variable domain n. (Care must be taken so that only permutations
have k-cliques in the constructed graph, but this is fairly easy to add into our framework.)

Corollary 4.2 If the entries of C and D are describable in O(log n) bits, then QAP on n nodes is
solvable (and the number of optimal permutations can be counted) in nωn/3+O(1) time.

5 Further Directions.

Is it possible to solve general problems like SAT significantly faster than the trivial algorithm, using
a “split-and-list” method akin to the above? Depending on your outlook, the following results may
interpreted as lower bounds on solving various high-dimensional problems, or they may be taken
to be promising signs that much better algorithms exist for general NP -complete problems, using
split-and-list methods. We will give a few (polytime solvable) problems such that if their trivial
solutions can be improved time-wise, then there exist (2 − ε)n algorithms for SAT and MAX-LIN.

5.1 Cooperative subset queries and orthogonal vectors

Usually in query problems, one considers a database D of objects, and an adversarial list of queries
q1, . . . , qk about D. Such a model often leads to very difficult problems, in particular the subset
query problem ([20], p.557): given a database D of sets S1, . . . , Sk over a universe U , build a space-
efficient data structure to answer (time-efficiently) queries q of the form: “Is q a subset of some
Sj ∈ D?”.

8

This problem is a special case of the partial matching problem; that is, supporting queries
with wildcards (e.g. “S**RCH”) in a database of strings. Non-trivial algorithms exist [32, 5],
but all known solutions for the problem still require either Ω(|D|) query time (search the whole
database) or 2Ω(|U |) space (store all the possible subsets) in general. For the subset query problem,
[19] recently proved a lower bound of Ω(|U |/ log |D|) probes in the cell-probe model, assuming a
polynomial number of cells of polynomial size. Our cooperative version of the subset query problem
is the following:

Given two databases D1 and D2 of subsets over U , find s1 ∈ D1 and s2 ∈ D2 such that s1 ⊆ s2.

That is, queries are explicitly given to us as part of the input, and all we want is to determine
if one of the queries will get an yes answer. The cooperative version ought to be significantly easier
than the general one– all query information is known to us. Of course, it is trivially solvable in
O(|U | · |D1| · |D2|) time; try all the possible pairs of sets from D1 and D2. Can it be solved much
faster? If so, then SAT in conjunctive normal form can be solved much faster than the 2n bound.

Theorem 5.1 Let f be time constructible. If the cooperative subset query problem with d = |U |
and k = max{|D1|, |D2|} is solvable in Õ(f(d)k2−ε) time, then CNF-SAT is in Õ(f(m)2(1−ε/2)n)
time, where m is the number of clauses and n is the number of variables.

Proof. (Sketch) Recall that CNF-SAT is a constraint satisfaction problem where the constraints
are arbitrary clauses, which are OR’s of negated and non-negated variables. Suppose the clauses
are indexed c1, . . . , cm. Partition variables into two sets P1, P2 of size n/2 each, making lists L1,
L2 of the 2n/2 assignments. Associate with each p ∈ L1 a set Sp, defined by putting cj ∈ Sp iff p
does not satisfy cj . For p′ ∈ L2, make a set Sp′ , defined by putting cj ∈ Sp′ iff p′ satisfies cj . Now
determine if there is Sp ∈ L1 and Sp′ ∈ L2 whereby Sp ⊆ Sp′ . It is not hard to show that the set
of clauses is satisfiable iff the cooperative subset query instance has a “yes” answer. 2

This is either evidence that the trivial algorithm for the cooperative problem cannot be improved
upon significantly (and therefore the general subset query problem is also hard), or evidence that
SAT can be solved significantly faster than 2n. (The current best SAT algorithm is randomized,
and runs in 2n−Ω(n/ log n) time [37].) Note the cooperative subset query problem is equivalent to the
following linear algebra problem, which also has a similar non-cooperative version that has been
extensively studied (e.g. [8]).

Orthogonal Vectors Problem: Given two lists L1 and L2 of m-bit vectors with |Li| ≤ N for
i ∈ {1, 2}, is there u ∈ L1 and v ∈ L2 such that 〈u, v〉 = 0?

5.2 Furthest pair of points in `1 and MAX-LIN

Recall that the `1 distance between two d-dimensional points (x1, . . . , xd) and (y1, . . . , yd) is |x −
y|1 =

∑d
i=1 |xi − yi|. A classic high dimensional geometry problem is `1-Furthest-Pair: given a set

S ⊆ R
d of n points, find a pair x, y ∈ S for which |x − y|1 is maximized; it is sometimes called the

diameter problem as well. (It may be trivially seen as a cooperative version of a problem where,
given a query, one reports points furthest from it.) Of course, trying all pairs takes O(dn2) time;
using an isometric embedding from `1 in d dimensions to `∞ in 2d dimensions, one can find a pair of
points with largest `1 distance in O(2dn) time. We shall prove if `1-Furthest-Pair can be solved in
(for example) O(2o(d)n2−ε), then there is a better algorithm for the general MAX-LIN-2 problem.
Recall the MAX-LIN-2 problem is, given a system of m linear equations over n variables in GF(2),
to find a variable assignment that maximizes the number of equations satisfied.

9

Theorem 5.2 If `1-Furthest-Pair (of n points in d-dimensions) is in O(f(d)n2−ε) time, then
MAX-LIN-2 is in O(f(m + 1)2(1−ε/2)n) time.

Proof. Rewrite each GF(2) linear equation as a constraint: an equation
∑

i aixi = d becomes
c(x1, . . . , xn) =

∑

i aixi + d + 1. Let c1, . . . , cm be the resulting constraints. As before, split the
variables into two n/2 sets P1, P2, and have two lists of assignments L1 and L2. For each cj , let cj |Pi

be the restriction of cj to the variables of Pi. In the case where +1 appears in cj , add +1 to cj |P1 .
For example, suppose we had the partitions P1 = {x1, x2} and P2 = {x3, x4}; if c =

∑4
i=1 xi+1, then

c|P1 = x1+x2+1, c|P2 = x3+x4. Clearly, cj(x1, . . . , xn) = cj |P1(x1, . . . , xn/2)+cj |P2(xn/2+1, . . . , xn).
For i ∈ {1, 2} and for all assignments a ∈ Li, make an (m + 1)-dimensional point

va = (c1|Pi(a), . . . , cm|Pi(a), 2m · i)

Let va and va′ be a furthest pair of points out of these, with respect to `1 distance.

Claim: The assignment (x1, . . . , xn) = (a, a′) satisfies a maximum number of constraints in the
original instance.

Proof. (Sketch) Use the fact that addition in GF(2) is subtraction in GF(2); the last component
of va ensures that the furthest pair of points consists of one point from L1 and one from L2.

2

6 Conclusion.

We have presented the first improved exponential algorithm (in n) for solving and counting solutions
to 2-constraint optimization. Our techniques are general enough to be possibly employed on a
variety of problems. We have also established interesting connections between the complexity of
some efficiently solvable problems and some hard problems (matrix multiplication and counting
2-CSP optima, furthest pair of points and MAX-LIN-2, subset queries and SAT). Let us describe
a few directions worth following.

• How does one extend our results for k-CSPs, when k ≥ 3? A straightforward generalization
of the above for 3-CSPs results in a weighted hypergraph of edges and 3-edges. (A 3-edge seems
needed, in the event that three partitions contain variables from a single constraint.) It is conjec-
tured that matrix multiplication can be done in O(n2+o(1)) time, in which case the above algorithm
(setting k(n) = O(1)) runs in Õ(22n/3) time. In our investigation of 3-CSPs, it appears that 23n/4

might be possible using an extension of our ideas. Let us therefore conjecture hopefully that for all

k, COUNT-k-CSP is in Õ(2n(1− 1
k+1

)) time.

• Are there faster algorithms for 2-CSP optimization that only use polynomial space?

• Is there a randomized k-clique detection/counting algorithm running in O(n2+o(1))? (Is there
merely a good one that doesn’t use matrix multiplication?)

• We avoided brute-force search for a class of NP -hard problems by splitting feasible solutions
into pieces, listing possible settings to the pieces, associating different pieces, then constructing an
optimal solution from the pieces efficiently. What other NP -hard problems are amenable to this
general idea?

7 Acknowledgements.

I am indebted to my advisor Manuel Blum, to Nikhil Bansal, and to Virginia Vassilevska, for
numerous helpful conversations on this work.

10

References

[1] J. Alber, J. Gramm and R. Niedermeier. Faster exact algorithms for hard problems: a parameterized
point of view. Discrete Mathematics 229:3–27, Elsevier, 2001.

[2] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and construction
of perfect hash functions. Algorithmica 16:434–449, 1996.

[3] N. Alon, R. Yuster, and U. Zwick. Color-Coding. JACM 42(4):844–856, 1995.

[4] N. Bansal and V. Raman. Upper bounds for Max-Sat: Further Improved. In Proceedings of ISAAC99,
Springer LNCS 1741:247–258, 1999.

[5] M. Charikar, P. Indyk, and R. Panigrahy. New Algorithms for Subset Query, Partial Match, Orthogonal
Range Searching, and Related Problems. In Proceedings of ICALP, 451–462, 2002.

[6] J. Chen and I. Kanj. Improved Exact Algorithms for MAX-SAT. In Proceedings of LATIN, Springer
LNCS 2286:341–355, 2002.

[7] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. JSC 9(3): 251–
280, 1990.

[8] E. Cohen and D. D. Lewis. Approximating Matrix Multiplication for Pattern Recognition Tasks. In
Proceedings of ACM-SIAM SODA, 682–691, 1997.

[9] U. Feige and J. Kilian. On Limited versus Polynomial Nondeterminism. Chicago Journal of Theoretical
Computer Science 1, 12 March 1997.

[10] J. Gramm and R. Niedermeier. Faster exact solutions for Max2Sat. In Proceedings of the 4th Conference
on Algorithms and Complexity, Springer LNCS 1767: 174-186, 2000.

[11] J. Gramm, E.A. Hirsch, R. Niedermeier and P. Rossmanith. Worst-case upper bounds for MAX-2-
SAT with application to MAX-CUT. Discrete Applied Mathematics 130(2):139–155, 2003. Preliminary
version appeared in SAT 2000.

[12] E. Dantsin, M. Gavrilovich, E. A. Hirsch, and B. Konev. MAX-SAT approximation beyond the limits
of polynomial-time approximation. Annals of Pure and Applied Logic 113(1-3): 81–94, 2001.

[13] E. A. Hirsch, Worst-case study of local search for MAX-k-SAT. Discrete Applied Mathematics 130(2):
173-184, 2003. First appeared in Proceedings of RANDOM 2000.

[14] E. A. Hirsch. A 2m/4-time Algorithm for MAX-2-SAT: Corrected Version. Electronic Colloquium on
Computational Complexity Report TR99-036, Revision 2, 2000.

[15] T. Hofmeister, U. Schöning, R. Schuler, O. Watanabe. A probabilistic 3-SAT algorithm further im-
proved. In Proceedings of STACS02, 192-202, 2002.

[16] E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack problem. JACM 21:
277–292, 1974.

[17] R. Impagliazzo, R. Paturi, and F. Zane. Which Problems Have Strongly Exponential Complexity?
JCSS 63(4): 512–530, 2001.

[18] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J. Computing, 7(4): 413-423, 1978.

[19] T. S. Jayram, S. Khot, R. Kumar, and Y. Rabani. Cell-probe lower bounds for the partial match
problem. In Proceedings of ACM STOC, 667–672, 2003.

[20] D. Knuth. The Art of Computer Programming: Sorting and Searching. 1973.

[21] A. S. Kulikov and S. S. Fedin. A 2|E|/4-time Algorithm for MAX-CUT. Zapiski nauchnyh seminarov
POMI, No.293, 2002, pp.129-138.

11

[22] M. Mahajan and V. Raman. Parameterizing above Guaranteed Values: MAXSAT and MAXCUT.
J. Algorithms 31(2): 335-354, 1999. Preliminary version in Electronic Colloquium on Computational
Complexity, 1997.

[23] B. Monien, E. Speckenmeyer, 3-satisfiability is testable in O(1.62r) steps. Bericht Nr. 3/1979, Reihe
Theoretische Informatik, Universität-Gesamthochschule-Paderborn.

[24] B. Monien and E. Speckenmeyer. Upper bounds for covering problems. Bericht Nr. 7/1980, Reihe
Theoretische Informatik, Universität-Gesamthochschule-Paderborn.

[25] J. Nesetril and S. Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae
Universitatis Carolinae, 26(2): 415–419, 1985.

[26] R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability. J. Algorithms 26:63–
88, 2000.

[27] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. JCSS
43:425–440, 1991.

[28] P. Pardalos, F. Rendl, and H. Wolkowicz. The quadratic assignment problem: A survey and recent
developments. In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 16, 1–42, 1994.

[29] R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-SAT. In
Proceedings of the 39th IEEE FOCS, 628-637, 1998.

[30] P. Pudlak. Satisfiability - Algorithms and Logic. In Mathematical Foundations of Computer Science,
Springer Lecture Notes in Computer Science 1450, 129–141, 1998.

[31] V. Raman, B. Ravikumar, and S. Srinivasa Rao. A Simplified NP-Complete MAXSAT problem. Infor-
mation Processing Letters 65:1–6, 1998.

[32] R. Rivest. Partial match retrieval algorithms. SIAM J. on Computing, 5:19–50, 1976.

[33] M. Robson. Algorithms for maximum independent sets. J. Algorithms, 7(3):425–440, 1986.

[34] F. Ruskey. Simple combinatorial Gray codes constructed by reversing sublists. In Proceedings of Inter-
national Symposium on Algorithms and Computation, Springer LNCS 762:201–208, 1993.

[35] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceedings
of the 40th IEEE FOCS, 410–414, 1999.

[36] R. Schroeppel and A. Shamir. A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-Complete Problems.
SIAM J. Comput. 10(3): 456–464, 1981.

[37] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal form. Accepted
in J. Algorithms, 2003. ftp://theorie.informatik.uni-ulm.de/pub/papers/ti/cnf4sat.ps

[38] A. Scott and G. Sorkin. Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected
Time for Sparse Instances. In Proceedings of RANDOM 2003, to appear.

[39] R. Williams. On Computing k-CNF Formula Properties. To appear in Springer-Verlag LNAI. Prelimi-
nary version in SAT 2003.

[40] G.J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial Optimization -
Eureka! You shrink!. M. Juenger, G. Reinelt and G. Rinaldi (eds.). LNCS 2570, Springer, 185–207,
2003.

[41] U. Zwick. All Pairs Shortest Paths using bridging sets and rectangular matrix multiplication. JACM
49(3):289–317, May 2002.

12

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

