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Abstract

We study networks of spiking neurons that use the timing of pulses
to encode information. Nonlinear interactions model the spatial group-
ings of synapses on the dendrites and describe the computations per-
formed at local branches. We analyze the question of how many exam-
ples these networks must receive during learning to be able to general-
ize well. Bounds for this sample complexity of learning are derived in
terms of the pseudo-dimension. In particular, we obtain almost linear and
quadratic upper bounds in terms of the number of adjustable parameters
for depth-restricted and general feedforward architectures, respectively.
These bounds are also shown to be asymptotically tight for networks that
satisfy realistic constraints.

1 Introduction

One of the computational features that is most common to artificial neural net-
works is the combination of synaptic input signals using a summation. This is a
remarkable fact, as results from neurobiology have exhibited several exemplars of
nerve cells that accomplish complex tasks through nonlinear synaptic interactions
[10, 16, 17, 18]. Although in recent years artificial neurons have come closer to the
biological paradigm and, in particular, spiking neuron models that use temporal
coding are currently a highly active area of research [11, 14, 20, 25, 27], nonlin-
earity in dendritic processing has not played a major role, despite experimental
evidence.

In this article, we study a model of spiking neurons that uses temporal coding

and employs nonlinear operations for synaptic interactions. This model encodes
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information in terms of single firing events. Thus, it takes account of the fact
that examples of biological information processing have been found supporting
the hypothesis that, in contrast to the firing rate, the timing of the first spike
is the crucial quantity [9, 13, 24]. Models with linear interactions are sufficient
for capturing the passive properties of the dendritic membrane where synaptic
inputs occur as currents that are combined using a summing operation. The
nonlinearities of synaptic computations included in the model considered here
reflect the spatial groupings of synapses on the dendrites (also called “synaptic
clusters” [22]) and model the information processing steps performed at local
branches. Rectangular pulses are used to represent the postsynaptic responses
evoked by input spikes. The nonlinearities employed for synaptic interactions
are given in terms of arithmetic operations that can easily be implemented in
analog VLSI circuits and thus be used for pulsed neural hardware [2, 23, 26]. We
allow the nonlinear synaptic interactions to be from a comprehensive class: the
set of rational functions. These nonlinearities comprise not only multiplicative
but also divisive operations and account for the finding that dendrites are able
to compute division [5, 8|.

Networks of spiking neurons have recently been studied with regard to their
capabilities for learning [6, 7, 19, 28]. In addition to the tuning of the synap-
tic efficacies, the ability to adjust the transmission delays between neurons is
a feature that is considered to be relevant for learning mechanisms [15]. Our
model includes not only the classical synaptic weights as parameters, but also
the transmission delays.

We investigate the complexity of learning for these networks in terms of a com-
binatorial parameter known as the pseudo-dimension. The Vapnik-Chervonenkis
(VC) dimension and its generalization to real-valued functions, the pseudo-
dimension, are well established measures for the sample complexity of learn-
ing [1, 3, 31]. They provide bounds for the number of training examples that
are required by a wide class of learning algorithms for producing results with
good generalization performance. We consider feedforward networks and calcu-
late tight bounds for their pseudo-dimension. In particular, we show that the
pseudo-dimension is bounded by (W log W) for networks with constant depth
and degree-limited synaptic interactions, where W is the number of network
parameters. Further, we derive the bound ©(W?) for networks without depth
constraints. These two major results indicate that the property of small depth,
which is prevailing in biological as well as in artificial neural networks, must be
taken into account for obtaining good pseudo-dimension bounds. For traditional
networks consisting of neurons with polynomial activation functions but with-
out adjustable delays, analogous results have been obtained previously [4, 12].
The results established here imply that, although temporal coding, synaptic
nonlinearities, and adjustable delays enhance the computational power of these
networks considerably, the sample complexity of learning does not become pro-
hibitive.



In the following section, we give the definition of the network model. Section 3
introduces the VC dimension and the pseudo-dimension. The results for depth-
restricted networks are derived in Section 4, while Section 5 deals with arbitrary
architectures. Results in this article have been presented at the International
Conference on Artificial Neural Networks ICANN 2001 in Vienna [29].

2 Spiking Neurons with Nonlinear Synaptic In-
teractions

In a network of spiking neurons, each node receives inputs as spikes through its
synaptic connections from other nodes. We characterize each synapse by a weight
w; € R and a transmission delay d; € Rt, where we let Rt = {z € R: z > 0}.
If the neuron that is presynaptic to connection 7 emits a spike at time 7; € R*,
this generates after a delay of d; in the postsynaptic neuron a rectangular pulse
that has unit duration and a height corresponding to the strength, or efficacy,
w; of the synapse. This pulse is called the postsynaptic pulse of synapse ¢ and
described by a function ¢ — h;(t — 7;), where h; : Rt — R is defined as

W; ifdi§t<di+1,
hi(t) = .
0 otherwise.

The delays d; and the weights w; are the adjustable parameters of the neuron.
Assume that neuron v has m input connections. A synaptic cluster of v
represents a group of synapses that interact nonlinearly. It is specified by a
subset I C {1,...,n}. A synapse may be a member of more than one cluster
as it may be the case in a biological neuron that a synapse participates in the
computation of several spatial groups on the dendritic tree. The nonlinearity

is described for every synaptic cluster {i;,...,4;} C I by a rational function
fiir,.iyy in 1 variables. We call the function fy;,, ;) the synaptic interaction of
{#1,...,4;} and assume without loss of generality that the denominator of f;, ;3

is never zero. (This requirement does not impose constraints on the modeling of
biologically realistic nonlinearities.)

We consider the computations of the network of spiking neurons during a
given time interval [to,t;] C RT. Let F C {1,...,n} be the set of synapses of
neuron v that receive a spike during this interval. For every synaptic cluster [
we introduce the function J; : [tg,t1] — 27 defined in such a way that J;(t) is
the set of synapses in I that are simultaneously active at time ¢, that is,

Jj(t) = {’LEIﬂFh,(t—Tz)%O}

The interaction of the synapses in I is specified by the function My : [to, 1] — R
with

M[(t) = f{il,---,il}(wiv . ,wil), where {il, ceey Zl} = J[(t)
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Figure 1: The time course of the membrane potential P,(¢) for a neuron v with
three presynaptic neurons and a single synaptic cluster I = {1,2, 3}, implying
that P,(t) = M2 (t). Each presynaptic neuron ¢ = 1,2,3 emits a spike
at time 7; which generates a postsynaptic pulse at time 7; + d;. The value of
P,(t) is determined by the synapses that are active at time ¢ (see equation (1)).
The synaptic interactions are defined as fpy(wi) = wi, fu g (wi, ws) = wi —
w1/2, fi1,2,3) (W1, w2, w3) = wWiwaws, fiz2,31 (w2, w3) = wows/2, and fiz(w2) = ws.



Assume that neuron v has k synaptic clusters Iy,...,I;. The membrane
potential P, : [to, t;] — R of v is the sum

P,(t) = ZMIj(t). (1)

Thus, the time course of the membrane potential is represented by a sequence
of pulses. An example is shown in Figure 1. If the synaptic clusters are pairwise
disjoint and the synaptic interactions have degree one, we regain the model with
linear synaptic interactions introduced in [21].

Neuron v fires when its membrane potential reaches a value specified by
another parameter of v: the threshold §. The firing time t{ of v is defined by

t! = min{t € [to,t:] : P,(t) > 6}.

If ¢, is undefined, v does not fire. The networks of spiking neurons that we
consider use temporal coding, that is, they encode information in the timing of
single firing events. Precisely, if neuron v fires at time t/ € R*, this event is
supposed to encode the real number tf. We consider feedforward networks with
a given number of input nodes and one output node. Input vectors enter the
network in terms of firing times of the input nodes. The output value of the
network is the firing time of the output node. If the output node does not fire,
the network output is defined to be 0. We also impose restrictions on the depth
of networks, that is, the length of the longest path, measured as the number of
connections, from an input node to the output node.

3 VC Dimension and Pseudo-Dimension

The VC dimension and the pseudo-dimension are based on the notion of shat-
tering: A class F of {0, 1}-valued functions in n variables is said to shatter a set
S C R™ if F induces all dichotomies on S, that is, if for every partition of S into
two disjoint subsets (Sp, S1) there is some f € F satisfying

f(So0) € {0} and f(51) C {1}.

The Vapnik-Chervonenkis (VC) dimension of F is the cardinality of the largest
set shattered by F.

If F is a class of real-valued functions in n variables, the pseudo-dimension
of F is defined as the VC dimension of the function class

{g:R*! — {0,1} | there is some f € F
such that for all z € R* and y € R : g(z,y) = sgn(f(z) —y)},



where sgn : R — {0,1} is the function satisfying sgn(z) = 1if z > 0, and 0
otherwise. Thus, the pseudo-dimension can be considered as the VC dimension
of a function class that is forced to be {0, 1}-valued by imposing a threshold on
the output value, where each input vector x may have its own threshold y.

The VC dimension of a network of spiking neurons is defined to be the VC
dimension of the set of functions computed by the network with all possible
assignments of values to its adjustable parameters, that is, its delays, weights,
and thresholds. The same holds for the pseudo-dimension. To define the VC
dimension for a network with real-valued output we assume that the output
values are mapped to {0, 1} by specifying some constant threshold. Clearly, the
VC dimension of a network is not larger than its pseudo-dimension.

4 Networks of Bounded Depth

In the following we provide an upper bound on the pseudo-dimension for networks
of spiking neurons with depth restrictions. The bound is almost linear in the
number of network parameters (delays, weights, and thresholds) and the network
depth. At the end of the section we show that for constant-depth networks with
rational synaptic interactions of bounded degree, the result is asymptotically
tight. We recall that the degree of a rational function is defined as the sum of
the degrees of the numerator and denominator polynomial.

Theorem 1. Let N be a network of spiking neurons with W parameters and
depth D. Assume that each neuron employs rational synaptic interactions with
degree no larger than p. Then the pseudo-dimension of N is at most

202W D + W)

22WD + W) log ( 1u0

) + 2W D log(16e*W (p + 1))
+ 2(W log(2e) + D),

and, hence, O(W D log(W Dp)). For fixed depth D and degree p, this entails the
bound O(W logW).

The proof is based on the method of solution set components bounds [1].
Assuming a set of input vectors, we derive a set of rational functions in the pa-
rameter variables of N. Then we calculate a bound for the number of connected
components into which the parameter domain is partitioned by the zero-sets of
these rational functions. (A connected component of a set R is a maximal subset
Q@ of R such that any two points are connected by a continuous curve that is
contained in @.) This bound limits the number of dichotomies that A/ induces
on the set of input vectors. Assuming that this set is shattered, we obtain the
bound on the pseudo-dimension.

We require some definitions from [1]: A set {f1,..., fx} of differentiable real-
valued functions on R? has regqular zero-set intersections if for every non-empty
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set {i1,...,4} C {1,...,k} the Jacobian (that is, the matrix of the partial
derivatives) of (fi,, ..., fi) : R — R has rank [ at every point of the set

{a€R': fi(a) == fi(a) = 0}.

A class G of real-valued functions defined on R? has solution set components
bound B if for every k € {1,...,d} and every {fi,..., fr} C G that has regular
zero-set intersections, the number of connected components of the set

{a €R': fi(a) =+~ = fula) = 0}

is at most B. In the proof of the theorem, we make use of the following solution
set components bound.

Lemma 2. Consider the class of functions from R¢ to R that can be represented
as a finite sum where each term is a rational function with degree no more than p

and has a denominator that is never zero. This class has solution set components
bound 2(2p + 2)4.

Proof. The result is a special case of [1, Lemma 8.16]. A rational function ¢/
can be expressed in terms of a polynomial equation by introducing a new variable
z and a new function g in z and the variables z of ¢/r defined as

g(z,z) = zr(z) —q(z).

Then, g is a polynomial of degree at most p+ 1. Thus, sums of rational functions
of degree at most p can be represented by polynomials of degree no more than
p~+ 1. The class of polynomials of degree at most p+ 1 in d variables has solution
set components bound 2(2p + 2)? [1, Corollary 8.2]. The assumptions together
with the reasoning provided in [1, Lemma 8.16] yield that this value is also a
solution set components bound for the class considered here. O

A class F of real-valued functions is closed under addition of constants if for
every ¢ € R and f € F, the function z — f(2) + c is also a member of F. A
proof of the following result is provided in [30, Lemma 3].

Lemma 3. Let F be a class of real-valued functions (yi,...,Yd, T1,...,Tpn)
f(y1,---,Ya, 21, - - -, Tn) that is closed under addition of constants and where each
function in F is C¢ in the variables yi, ..., ya. If the class G = {(v1,...,v4) —
fy1,---,Ya,8) : f € F,s € R*} has solution set components bound B then for
any sets {f1,..., fx} CF and {s1,...,sm} C R", where m > d/k, the function
T :RY — {0,1}™ defined by

T(a) = (sgn(fi(a, s1)),...,sgn(fi(a, sm)), ... ,sgn(fr(a, s1)),--.,sgn(fr(a, sm)))



partitions R? into at most

Bi("f) < Blemk/ay

=0

equivalence classes (where ay,as € R? are equivalent if and only if T(a;) =

T(as)).
We now have all that is needed for the proof of the main result.

Proof of Theorem 1. Given N as supposed, let {si,...,s,} be a set of input
vectors and wuq,..., U, real numbers. The main aim is to derive a bound on
the number of dichotomies induced on S = {(s1,u1), .-, (8m,um)} by functions
of the form (z,y) — sgn(f(z) — y) where f is computed by N. We proceed
inductively through the levels of the network, from the input nodes towards the
output node. The level of a node v is defined as the length of the longest path
from an input node to v. Thus, input nodes have level 0 and the level of the
output node is equal to the depth of the network.

We derive sets Gy, A > 0, of functions in the network parameters that satisfy
the following condition: The set G, partitions the parameter domain RY into
equivalence classes such that for all parameter vectors within the same class, the
computations of the nodes of level 0,..., A on inputs from S remain unchanged
in the following sense: For each node, consider the successive subsets of synapses
that are simultaneously active. This sequence of subsets remains the same and,
if the node fires, the firing is triggered by the same set of (starting or ending)
postsynaptic pulses.

Clearly, as the input nodes have no parameters, we may set Go = (). Hence,
there is only one class of parameters, which is the entire R”. This constitutes
the base of the induction.

Suppose that G,_1, A > 1 has been obtained with the properties stated above.
Let (s,u) € S be given. Assume that v is some node of level A that receives spikes
through its 4-th and j-th synapse with corresponding delay parameters d,; and
d, ;. To specify the temporal order of starting and ending points of postsynaptic
pulses caused by the presynaptic spikes, we introduce the expressions

T + dv,i +bi — Tvj — d’U,j - bj' (2)

Here r,; and r,; are the firing times of the corresponding presynaptic nodes.
(If X\ = 1 then r,; and r,; are firing times of input nodes.) Further, b; and
b; are binary values depending on whether we refer to the starting or ending
point of the corresponding postsynaptic pulse, respectively. Thus, the sign of
the expression (2) indicates the temporal order of these points. As a function of
dyi,dy, j, the expression is affine in these delay variables.



Let C) denote the total number of synapses of nodes of level A. Varying
over 7, j and the possible assignments of values to b;, b;, there are at most (2C})?
functions of the form (2) for the given input vector (s,u). The union of these
functions partitions the parameter domain of the delays of the nodes of level
A into equivalence classes such that for parameters within the same class, the
temporal order of postsynaptic pulses for each of these nodes does not change.
This implies that for input vector (s,u) and each node of level )\, the sequence
of subsets of simultaneously active synapses remains unchanged within the same
class of delay parameters.

Having taken into account the delays of level A, we next consider its weights
and thresholds. We partition the space of these parameters into equivalence
classes such that for each node on level A the same set of postsynaptic pulses
(some starting, some ending) is responsible for the firing of the node when choos-
ing weights and thresholds within the same class. (This also includes the possible
non-firing of the node.) This then completes the induction step.

For given input vector (s,u) € S, node v of level A\, and time t € [to, ],
consider the function

k
> My, (t) - 6., (3)
Jj=1

where 1,1, ..., I, are the synaptic clusters of v and 6, is its threshold. Let n be

the number of synapses of v. If the delay values for the nodes of level at most A
remain within the same class, the firing of v on input (s, ) depends on at most
2n functions of the form (3). This follows from the fact that for fixed delays, the
subset of synapses that are active at a certain point in time can change only when
some postsynaptic pulse starts or ends. Thus, the 2n starting and ending points
define no more than 2n — 1 intervals during each of which a particular subset
of synapses is active. (We use the weaker bound 2n for simplicity.) Considering
all nodes of level A\, which have C) synapses altogether, there are at most 2C)
functions that partition the parameter space of the weights and thresholds into
equivalence classes such that for each node the same set of postsynaptic pulses
triggers its firing. The partition of the parameter domain arising from these is
such that for the given input vector (s,u), the firing of the nodes on level A
remains unchanged. Each function is a sum of at most k£ rational functions in
the weights and thresholds of level A\, where each term in the sum has degree at
most p.

Using solution set components bounds, we are now able to estimate the num-
ber of equivalence classes. Clearly, the class of affine functions has solution set
components bound B = 1. According to Lemma 2, the class of sums of rational
functions in d variables with degree at most p has solution set components bound
B = 2(2p + 2)%. Both function classes are closed under addition of constants.
Let W, denote the total number of parameters of nodes of level A\. For the given
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set of m input vectors, we apply Lemma 3 to the two sets of functions specified
above. The first set consists of at most (2C,)? affine functions, the second set
has no more than 2C), rational functions of degree at most p. Thus, we obtain
for the number of equivalence classes generated by the functions defined in (2)
and (3) the upper bound

(em(2Cy)2 /W)X - 2(2p + 2)"* - (2emCy /Wy )WA, (4)

where the first factor is due to the affine functions and the last two factors take
account of the rational functions.

Bound (4) is derived assuming a given class in the partition of the parameter
domain that arises from the function class G,_;. Defining G, to include Gy_;
and the functions from (2) and (3), it follows by the induction hypothesis that
the product of expression (4), for A = 1,...,[, provides an upper bound on the
number of equivalence classes for the parameter domain of all nodes of level at
most [. At level D, we additionally have to account for the threshold values
U1, ..., Uy. For these we include 2mC'p additional affine functions

Ty,i + dyi + b — u,

with b; € {0,1} and v € {u1,...,un}, to describe the starting or ending of
postsynaptic pulses relative to u. By Lemma 3, they give rise to at most
(2emCp/Wp)WP equivalence classes. Combining all levels, we eventually ob-
tain for the number of equivalence classes of the parameter domain of the entire
network the upper bound

Wp D 2\ Wx Wi
2emCp . H em(2C,) 22+ 2 2emC)
WD W,\ W/\

A=1

)

such that within each class the same dichotomy is induced on S via the function
(z,y) — sgn(f(z)—y), where f is computed by . Using Cy < W) and W, < W
for A\=1,..., D yields the upper bound

2P (2em)W (16>m*W (p + 1))"7P.

If S is shattered, 2™ dichotomies must be induced and hence at least this
many equivalence classes for the parameter domain of the network must exist.
This implies that

Now we use the well known fact that for every a, 3 > 0, the inequality In «
af + In(1/8) — 1 holds [1, Appendix A.1.1]. This yields for « = m and
(In2)/(2(2W D + W)),

m < (2WD+ W)logm + W Dlog(16e*W (p+ 1)) + W log(2e) + D. (5)
<

QWD +W)logm < %

2(2WD
+ @WD + W)log (%) .
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Substituting this in the right-hand side of (5), we obtain

22WD+ W)
eln2
+ 2W D log(16e*W (p + 1)) + 2(W log(2e) + D),

m < 2(2WD+W)log<

which is the claimed bound on the pseudo-dimension. O

If the depth and the degree of synaptic interactions are fixed, the previous
theorem yields an asymptotically tight bound as provided by the following state-
ment. The result also improves the quadratic bound for networks with linear
interactions given in [21].

Corollary 4. Consider the class of networks of spiking neurons where the depth
and the degree of the rational synaptic interactions are bounded by constants.
Suppose that N is a network from this class and has W parameters. Then the
pseudo-dimension of N is ©(W logW).

Proof. The upper bound is due to Theorem 1, the lower bound is given by
Theorem 2.2 in [21], where it was shown that a single spiking neuron with W
delay parameters has VC dimension Q(W logW). O

5 Networks of Arbitrary Depth

As the depth of a network is not larger than the number of parameters, Theo-
rem 1 can be used to obtain for networks of arbitrary depth a bound that does
not depend on the depth. A direct method yields a better bound that is even
asymptotically tight for networks with rational synaptic interactions of fixed
degree.

Theorem 5. Let N be a network of spiking neurons with W parameters and
rational synaptic interactions of degree at most p. Then the pseudo-dimension
of N is at most

4 1
AW? + 2W log (%> 2,

(In2)2

and hence bounded by O(W?2logp).

Proof. The reasoning is similar to the proof of Theorem 1. Given a set S =
{(s1,1),- -, (Sm, Um)}, we introduce functions that partition the parameter do-
main RY of the network. First, we specify the possible firing times of the output

node in response to an input vector s; and relative to the output threshold wu;.
This is accomplished by the functions

SZ,[L + Z v,j + b a]a u’“ (6)

(v.g)epP
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where s; , is the firing time of the p-th input node, d, ; is the j-th delay parameter
of node v, and b, ;; € {0,1}, for [ € {0,1}, refers to the starting or ending of
a postsynaptic pulse. Further, P is a set of synapses through which the signal
travels from the input node to the output node. For a given input vector, the
number of functions can be upper bounded by 2% - 2% where one factor 2% is a
bound on the number of paths and the other factor limits the number of possible
assignments of values to the b, ;.

Next, we include functions that specify the firing conditions of the nodes. For
a node v with synaptic clusters I, 1, ..., I, and threshold 8,, they are given by

Z My, ,(t) — 6,. (7)

It was argued in the proof of Theorem 1 that for a given input vector and a fixed
class of delay values, there need no more than 2n functions be taken into account
for each v, where n is the number of synapses of v. For the entire network, this
gives rise to at most 2W functions of this form.

The functions of (6) are affine in the network parameters, whereas the func-
tions of (7) are sums of rational functions with degree at most p. These classes
have solution set components bound B = 1 and B = 2(2p + 2)%, respectively.
The set S has m elements, the affine and rational functions specified above are
bounded in number by 22% and 2W, respectively. According to Lemma 3, this
yields the upper bound

em22W 2emW \ "W
220+ 2)W .
( W ) (2p+2) ( W )

for the number of equivalence classes. If S is shattered, this implies that

2
m < 2W?+2Wlogm + W log (W)—Fl. (8)

Similar as in the proof of Theorem 1, the inequality Ina < af + In(1/8) — 1 for
a=m and § = (In2)/(2W) yields

4w
2Wlogm < m—i—QWlog —
2 eln?2

which, used in (8), implies that

In2 w

64W (p + 1)
et l) v

4 4e2(p + 1
m < AW?+ 4W log (%) + 2W log (M) +2

< 4W? +2W log (
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In analogy to Corollary 4, we obtain a tight bound where the lower bound is
provided by Theorem 3.1 in [21].

Corollary 6. Consider the class of networks of spiking neurons with rational
synaptic interactions where the degree is bounded by a constant. Let N be a

network from this class having W parameters. Then the pseudo-dimension of N
is O(W?).

6 Conclusions

We have derived upper bounds on the pseudo-dimension of networks of spiking
neurons that use temporal coding and have nonlinear synaptic interactions. The
bounds are almost linear for networks with depth restrictions, whereas for gen-
eral networks they are quadratic. The fact that the bounds are rather low is
remarkable, since due to the powerful network model with adaptive delays and
nonlinearities in interactive computations a much larger variety of network func-
tions is available. The results lead to tight bounds when the network depth or
the degree of the rational interactions is considered as a constant. Thus, depth-
restricted networks have a significantly smaller pseudo-dimension than arbitrary
architectures.

The pseudo-dimension is well known to be an upper bound for another com-
binatorial parameter known as the fat-shattering dimension. Both dimensions
yield bounds on the so-called covering numbers. These numbers can be employed
to obtain estimates for the sizes of training samples such that learning processes
in these networks lead to small generalization errors. The results presented here
show that even when the computational power of networks of spiking neurons
increases considerably due to nonlinear interactions, the sample complexity re-
mains close to that of linear interactions. As an issue for further theoretical
studies, the question arises whether this is the most general model of spiking
neuron networks for which such low and tight bounds can be obtained.

By introducing nonlinear synaptic interactions in spiking neurons that use
temporal coding we have enhanced previous models with an essential realistic
element. Clearly, there is still a gap between this model and biological neurons,
but this might now be a gap that is to be bridged more easily. The results in
this article may encourage the use of nonlinear synaptic interactions in imple-
mentations and hardware designs of pulse-based computations to obtain more
powerful spiking neuron networks.
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