Generation Problems

Elmar Böhler, Christian Glaßer, Bernhard Schwarz, and Klaus Wagner *
Theoretische Informatik
Julius-Maximilians-Universität Würzburg
97074 Würzburg, Germany

14th April 2004

Abstract

Given a fixed computable binary operation f, we study the complexity of the following generation problem: The input consists of strings a_{1}, \ldots, a_{n}, b. The question is whether b is in the closure of $\left\{a_{1}, \ldots, a_{n}\right\}$ under operation f.

For several subclasses of operations we prove tight upper and lower bounds for the generation problems. For example, we prove exponential-time upper and lower bounds for generation problems of length-monotonic polynomial-time computable operations. Other bounds involve classes like NP and PSPACE.

Here the class of bivariate polynomials with positive coefficients turns out to be the most interesting class of operations. We show that many of the corresponding generation problems belong to NP. However, we do not know this for all of them, e.g., for $x^{2}+2 y$ this is an open question. We prove NP-completeness for polynomials $x^{a} y^{b} c$ where $a, b, c \geq 1$. Also, we show NP-hardness for polynomials like $x^{2}+2 y$. As a by-product we obtain NP-completeness of the extended sum-of-subset problem $\operatorname{SOS}_{c}=\left\{\left(w_{1}, \ldots, w_{n}, z\right): \exists I \subseteq\{1, \ldots, n\}\left(\sum_{i \in I} w_{i}^{c}=z\right)\right\}$ for any $c \geq 1$.

1 Introduction

No, this paper is not about problems between generations. ${ }^{1}$ However, genealogy presents an example that explains the matter we are interested in. There is hardly any other prehistoric question where scientists grope in the dark as in the following: Are Neanderthals completely extinct or are there traces of them left in some of us? To examine whether a person, e.g., one of the authors, is not a descendant of a Neanderthal, one would usually build the whole family tree of the author and check whether every leaf of the tree is labeled with a homo sapiens. This becomes a generation problem in the following way. We go back to the time where Neanderthals and homo sapiens still lived segregated from each other. It is well-known that it is the operation of marriage (in a very natural sense) that produces children. We start with this first generation of homo sapiens and apply this operation to obtain their children. Then we apply the marriage operation again and again, until we reach today's people. Now we see whether our author has been generated.

[^0]Similar generation problems are for example:

- Does b belong to the closure of $\left\{a_{1}, \ldots, a_{n}\right\}$ under pairwise addition? This is equivalent to a modifi cation of the sum-of-subset problem where factors other than 0 and 1 are allowed. It can be shown that this is NP-complete [vEB79].
- Does the empty clause belong to the closure of the clauses $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ under the rule of the resolution proof system. This problem is coNP-complete.
- Does a given element of a monoid belong to the submonoid that is generated by a given set?

In this paper we investigate sets that are generated by arbitrary computable binary operations. For a fi xed such operation we study the complexity of the question:

Does a given string b belong to the set that is generated from strings $\left\{a_{1}, \ldots, a_{n}\right\}$?
To make this precise, let $\Sigma=\{0,1\}$ be the alphabet and let f be a computable binary operation on Σ^{*}, i.e., $f: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$. For $B \subseteq \Sigma^{*}$, let $[B]_{f}$ be the f-closure of B, i.e., the smallest set that contains B and that is closed under f. For fi xed f we defi ne the generation problem.

```
Generation problem GEN \((f)\)
InPuT: \(a_{1}, \ldots, a_{n}, b \in \Sigma^{*}\)
Question: Is \(b\) in \(\left[\left\{a_{1}, \ldots, a_{n}\right\}\right]_{f}\) ?
```

Equivalently we can use this defi nition in the context of natural numbers, since these can be identifi ed in the standard way with Σ^{*}. For convenience we write operations like addition in infi x form.

In Section 3, we observe that generation problems for computable operations are recursively enumerable, and there exist associative, commutative, polynomial-time computable operations whose generation problems are many-one complete for recursively enumerable sets. There remain undecidable problems even if we further restrict the operation's resources like time and space. However, we achieve decidability when we demand the operation to be length-monotonic which means that in the generation tree of some x, the lengths of all intermediate results are bounded by the length of x. If the operations are length-monotonic and polynomial-time computable, all generation problems are solvable in exponential time and there are also such operations for which the generation problem is hard for EXPTIME. We study the complexity of various restrictions of these operations. If additionally the operation is associative, then the corresponding generation problem belongs to PSPACE, and is even PSPACE-complete for suitable operations. If we further restrict the operations to be commutative, then we obtain generation problems that belong to NP, and some of them are even NP-complete (e.g., the usual integer addition).

The most interesting operations we consider in this paper are bivariate polynomials with positive coeffi cients which are studied in Section 4. Such polynomials are length-monotonic and hence, the corresponding generation problems are decidable. However, in general these polynomials are neither associative nor commutative, and hence the generation problems for such polynomials turn out to be non-trivial and exciting. For example, does $\operatorname{GEN}\left(x^{2}+2 y\right)$ or $\operatorname{GEN}\left(x^{2} y^{3}\right)$ belong to NP? If so, are they NP-complete?

There are two main results in this section: For one, we show that if p is not of the form $q(x)+k y$ where q is non-linear and $k \geq 2$, then the generation problem belongs to NP. Besides that, we present a proof of NP-completeness for polynomials of the form $x^{a} y^{b} c$ where $a, b, c \geq 1$. Proving hardness is diffi cult already for such simple polynomials, since we have to cope with the various different trees that generate one number. As a tool to control the shape of generation trees we introduce (a, b)-weighted trees which are special trees with additional information. In the proof we force the generation trees into the shape of so-called complete (a, b)-weighted trees.

We do not know whether the generation problem belongs to NP, if the generating polynomial is of the form $q(x)+k y$ where q is non-linear and $k \geq 2$. In this regard, as an upper bound we can easily show that all bivariate polynomials with positive coeffi cients have generation problems in NTIME-SPACE $\left(2^{\log ^{2} n}, n \log n\right)$. Our discussion in Section 5 suggests that this class appears to be a class not far from NP. As a special case of these polynomials, we consider $p(x, y)=x^{c}+k y$ where $c, k \geq 1$. The main result of Section 5 shows that $\operatorname{GEN}(p)$ is NP-hard. Here the operation x^{c} brings the main diffi culty for the proof. We have to find a way to encode information to numbers such that this information is not destroyed by taking the numbers to a high power. This is not easy to solve, since already squaring a number heavily changes its (binary) representation. To overcome this, for $c \geq 1$ we introduce generalized sum-of-subset problems

$$
\operatorname{SOS}_{c} \stackrel{d f}{=}\left\{\left(w_{1}, \ldots, w_{n}, z\right): \exists I \subseteq\{1, \ldots, n\}\left(\sum_{i \in I} w_{i}^{c}=z\right)\right\} .
$$

We show that for all $c \geq 1, \mathrm{SOS}_{c}$ is NP-complete and then reduce these problems to $\operatorname{GEN}(p)$. Although all SOS_{c} are just auxiliary problems in our proof, we feel that this new NP-completeness result is interesting in its own right.

Finally, in Section 6 we summarize our results and give a table that shows a convenient overview of the upper and lower bounds of generation problems.

2 Preliminaries

For $a \geq 0$ let $\operatorname{bin}(a)$ be a 's binary representation (without leading zeros, if $a>0$). For convenience we use the operation mod in two ways: $\operatorname{In} a \equiv b(\bmod m)($ or $a \equiv b(m)$ for short) it is used in the usual way, while the expression $(n \bmod m)$ denotes the remainder of n divided by m.

We work with pairs (A, B) of disjoint languages (where for example $A \in \mathrm{NP}$ and $B \in \mathrm{coNP}$). Say that pair (A, B) reduces to pair (C, D), in notation $(A, B) \leq{ }_{m}^{p p}(C, D)$, if there exist a polynomial-time computable function f such that for all x,

$$
\begin{aligned}
x \in A & \Rightarrow f(x) \in C, \\
x \in B & \Rightarrow f(x) \in D .
\end{aligned}
$$

$A \leq{ }_{m}^{p p}(C, D)$ and $(A, B) \leq{ }_{m}^{p p} C$ are abbreviations for $(A, \bar{A}) \leq{ }_{m}^{p p}(C, D)$ and $(A, B) \leq{ }_{m}^{p p}(C, \bar{C})$.
A fi nite tree is called binary tree, if every node is either a leaf or has exactly two successors. Let $\mathrm{L}(T)$ be the set of leaves, $\operatorname{root}(T)$ be the root and $\operatorname{Node}(T)$ be the set of nodes of a tree T. We characterize a path from the root to a node by a word $w \in\{l, r\}^{*}$ where l defi nes a left turn and r defi nes a right turn.
 path of T. In contrast, every path in $\operatorname{path}(T)$ that is not an initial path is a full path. Let ipath (T) be the set of initial paths of T and $\operatorname{fpath}(T)$ be the set of full paths in T. For $q \in \operatorname{path}(T)$, let $l(q)$ and $r(q)$ be the number of left steps and right steps, resp., in q. For a node x of T with path v, let $l(x) \stackrel{d f}{=} l(v)$ (resp., $r(x) \stackrel{d f}{=} r(v))$.

The process of generating elements by an iterated application of a binary operation can be visualized by a generation tree. Let $B \subseteq \Sigma^{*}$ be the base set. If f is a binary operation, then a binary tree is called f-generation tree from B for z if

- every leaf has a value from B,
- every node that has successors with values x and y has value $f(x, y)$,
- the root of the tree has value z.

Note that $z \in[B]_{f}$, if and only if there exists an f-generation tree from B for z.

3 Generation Problems for General Operations

Since we are mostly interested in complexity issues, we restrict ourselves to computable operations. All of the corresponding generation problems are recursively enumerable and we show that there are polynomialtime computable operations whose generation problems are undecidable. There remain undecidable problems even if we further restrict the operation's resources like time and space. The reason is that even with restricted resources it is possible to let a generation problem simulate grammatical derivation trees of arbitrary formal languages. We achieve decidability when we demand the operation to be length-monotonic. Hence we study the complexity of various restrictions of length-monotonic operations.

Theorem 3.1 GEN (\circ) is recursively enumerable for every computable operation $\circ: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$.
Proof Consider the following algorithm working on o-formulae, i.e., formulae built up from words in Σ^{*} using the operation \circ. Given such a formula $F\left(x_{1}, \ldots, x_{n}\right)$ with $x_{1}, \ldots, x_{n} \in \Sigma^{*}$, the algorithm evaluates the formula and outputs $\left(x_{1}, \ldots, x_{n}, z\right)$ where z is the value of $F\left(x_{1}, \ldots, x_{n}\right)$. Obviously, the algorithm just enumerates GEN(o).

We observe that polynomial-time computable operations are still too diffi cult for a complexity-oriented examination of generation problems. For example, with such an operation we can simulate single steps of arbitrary Turing machines.

Theorem 3.2 There is an associative, commutative, polynomial-time computable operation $\circ: \Sigma^{*} \times \Sigma^{*} \rightarrow$ Σ^{*} such that $\mathrm{GEN}(\circ)$ is m-complete for recursively enumerable sets.

Proof Let $\varphi: \Sigma^{*} \rightarrow \Sigma^{*}$ be a recursive function such that $D_{\varphi} \stackrel{d f}{=}\{x: \varphi(x)$ is defi ned $\}$ is the halting problem, and let M be a machine that computes φ. We defi ne \circ as follows: For $n, m_{1}, m_{2} \geq 0$ let

$$
0^{n+1} 1^{m_{1}} \circ 0^{n+1} 1^{m_{2}} \stackrel{d f}{=} \begin{cases}0^{n+1} 1^{m_{1}+m_{2}}, & \text { if } M \text { on } n \text { does not stop within } m_{1}+m_{2} \text { steps } \\ 1, & \text { otherwise }\end{cases}
$$

and for all other $x, y \in \Sigma^{*}$ let $x \circ y \stackrel{d f}{=} 1$.
Observe, that \circ is commutative and $\circ \in \mathrm{FP}$. For associativity let $x, y, z \in \Sigma^{*}$. In case that there are $n, m_{1}, m_{2}, m_{3} \geq 0$ such that $x=0^{n+1} 1^{m_{1}}, y=0^{n+1} 1^{m_{2}}, z=0^{n+1} 1^{m_{3}}$ and M on n does not stop within $m_{1}+m_{2}+m_{3}$ we obtain $x \circ(y \circ z)=(x \circ y) \circ z=0^{n+1} 1^{m_{1}+m_{2}+m_{3}}$. In all other cases we obtain $x \circ(y \circ z)=(x \circ y) \circ z=1$.

Now, if M on n stops within m steps, then $\left[\left\{0^{n+1} 1^{1}\right\}\right]_{\circ}=\left\{0^{n+1} 1^{1}, 0^{n+1} 1^{2}, \ldots, 0^{n+1} 1^{m-1}, 1\right\}$. If M on n does not stop, then $\left[\left\{0^{n+1} 1^{1}\right\}\right]_{\circ}=\left\{0^{n+1} 1^{1}, 0^{n+1} 1^{2}, \ldots\right\}$. Hence,

$$
n \in D_{\varphi} \Leftrightarrow M \text { on } n \text { stops } \Leftrightarrow 1 \in\left[\left\{0^{n+1} 1^{1}\right\}\right]_{\circ} \Leftrightarrow\left(0^{n+1} 1,1\right) \in \operatorname{GEN}(\circ) .
$$

3.1 Length-Monotonic Polynomial-Time Operations

We have seen that in order to get decidable generation problems we have to restrict the class of operations. Therefore, we demand that in the generation tree of some x, the lengths of all intermediate results are bounded by $|x|$, the length of x. This is equivalent to say that we restrict to operations o that satisfy $|x \circ y| \geq$ $\max (|x|,|y|)$. Call such operations length-monotonic. If $|x \circ y|=\max (|x|,|y|)$, then the operation is called minimal length-monotonic. Generation trees of such operations can be exhaustively searched by an alternating polynomial-space machine.

Theorem 3.3 GEN(o) \in EXPTIME for every length-monotonic, polynomial-space computable operation ○ : $\Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$.

Proof Let o be a length-monotonic, polynomial-space computable operation. GEN(o) can be decided by the following alternating algorithm that uses at most polynomial space:

```
function GEN(x1,\ldots,xm,z)
    repeat
        if z \in {x1,\ldots,xm} then accept;
        if }|z|=0 then reject
        existentially choose z1 and z2 such that (z1 o z2) = z;
        universally choose z from {z1,z2}
    forever
```

Every polynomial-space-bounded alternating algorithm can be simulated by a deterministic exponential-time-bounded algorithm [CKS81]. So GEN $(\circ) \in$ EXPTIME.

This exponential-time upper bound for length-monotonic, polynomial-space computable operations is tight, even for polynomial-time computable operations. To see this we start with a technical lemma which simplifi es the argumentation. It shows that for certain sets A, we can translate operations $*: A \times A \rightarrow A$ to operations $\circ: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ such that the complexity of the generation problem and other properties are preserved. This is done by an appropriate encoding of elements from A.

Lemma 3.4 Let A_{1}, \ldots, A_{k+l} be finite sets, $A \stackrel{\text { df }}{=} A_{1}^{*} \times \ldots \times A_{k}^{*} \times A_{k+1} \times \ldots \times A_{k+l}$, and let $*: A \times A \rightarrow A$ be a polynomial-time computable operation. Then there exists a polynomial-time computable operation o : $\Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ such that:

1. $\operatorname{GEN}(*) \leq_{\mathrm{m}}^{\log } \operatorname{GEN}(\circ)$.
2. If $*$ is commutative then \circ is commutative.
3. If $*$ is associative then \circ is associative.
4. If $*$ is minimal length-monotonic then \circ is minimal length-monotonic.

Proof Let $m \geq 2$ be such that $\left|A_{i}\right| \leq 2^{m}$ for $i=1,2, \ldots, k+l$, let $h_{i}: A_{i} \rightarrow \Sigma^{m}$ be a block encoding with block length m for $i=1,2, \ldots, k+l$, let $d: \Sigma^{*} \rightarrow \Sigma^{*}$ be the homomorphism defi ned by $d(0) \stackrel{d f}{=} 00$ and $d(1) \stackrel{d f}{=} 11$, and let code : $A \rightarrow \Sigma^{*}$ be an encoding given by $\operatorname{code}\left(x_{1}, x_{2}, \ldots x_{k+l}\right) \stackrel{d f}{=} d\left(h_{1}\left(x_{1}\right)\right) 01 d\left(h_{2}\left(x_{2}\right)\right) 01 \ldots 01 d\left(h_{k+l}\left(x_{k+l}\right)\right)$. Note that $|\operatorname{code}(u)|=2 m|u|+$ $2(k+l-1)$. For $w_{1}, w_{2} \in \Sigma^{*}$, o can be defi ned as

$$
w_{1} \circ w_{2} \stackrel{d f}{=} \begin{cases}\operatorname{code}\left(u_{1} * u_{2}\right) & \text { if } w_{1}=\operatorname{code}\left(u_{1}\right) \text { and } w_{2}=\operatorname{code}\left(u_{2}\right) \\ 0^{\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)} & \text { otherwise. }\end{cases}
$$

Obviously, if $*$ is commutative then so is \circ, and if $*$ is associative then so is \circ. Now let $*$ be minimal length-monotonic. If $w_{1}=\operatorname{code}\left(u_{1}\right), w_{2}=\operatorname{code}\left(u_{2}\right)$, and $u_{1} * u_{2}=v$ then we conclude:

$$
\begin{aligned}
\left|w_{1} \circ w_{2}\right| & =\left|\operatorname{code}\left(u_{1} * u_{2}\right)\right|=|\operatorname{code}(v)|=2 m|v|+2(k+l-1) \\
& =2 m \cdot \max \left(\left|u_{1}\right|,\left|u_{2}\right|\right)+2(k+l-1) \\
& =\max \left(2 m\left|u_{1}\right|+2(k+l-1), 2 m\left|u_{2}\right|+2(k+l-1)\right) \\
& =\max \left(\left|\operatorname{code}\left(u_{1}\right)\right|,\left|\operatorname{code}\left(u_{2}\right)\right|\right)=\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)
\end{aligned}
$$

Otherwise, $\left|w_{1} \circ w_{2}\right|=\left|0^{\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)}\right|=\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)$. Hence, \circ is minimal length-monotonic.
Finally, by defi nition of $\mathrm{o}, v \in\left[\left\{u_{1}, \ldots, u_{m}\right\}\right]_{*}$ if and only if $\operatorname{code}(v) \in\left[\left\{\operatorname{code}\left(u_{1}\right), \ldots, \operatorname{code}\left(u_{m}\right)\right\}\right]_{\circ}$. This completes the proof.

Theorem 3.5 There is a commutative, minimal length-monotonic, polynomial-time computable operation $\circ: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ such that $\operatorname{GEN}(\circ)$ is $\leq_{\mathrm{m}}^{\mathrm{log}}$-complete for EXPTIME.

Proof We follow the idea of Cook [Coo71] to simulate deterministic exponential-time computations. Without loss of generality, a deterministic exponential-time one-tape Turing machine M deciding a set $A \subseteq \Sigma^{*}$ can be normalized in such a way that on input $x=a_{1} a_{2} \ldots a_{n}$ it makes $2^{p(|x|)}$ sweeps, where p is a suitable polynomial. For $0 \leq 2 i<2^{p(|x|)}$, the $(2 i+1)$-st sweep is a right move from tape cell 1 (with the first symbol of x) to tape cell $i+2$ within $i+1$ steps, and the $(2 i+2)$-nd sweep is a left move from tape cell $i+2$ to tape cell 1 within $i+1$ steps. Each of the turning points belongs to two sweeps.

Furthermore, let M have the tape alphabet Δ, the set of states S, the initial state s_{0}, and the accepting state s_{1}. In the case of acceptance the tape of M is empty. If M is in state s and reads a, then the next state is $\sigma(s, a)$, and the symbol printed is $\lambda(s, a)$.

We say that the quintuple (x, i, j, s, a) is correct if during the i-th sweep on input x the machine M prints the symbol a in tape cell j and leaves that cell with state s. One can compute a correct (x, i, j, s, a) by knowing only two other correct quintuples, namely the correct $\left(x, i-1, j, s^{\prime}, a^{\prime}\right)$ and the correct $\left(x, i, k, s^{\prime \prime}, a^{\prime \prime}\right)$ where $k \in\{j-1, j+1\}$. The idea of our operation is as follows: multiply ($x, i-1, j, s^{\prime}, a^{\prime}$) with ($x, i, k, s^{\prime \prime}, a^{\prime \prime}$) and obtain (x, i, j, s, a). In an accepting computation of M on x (and only in this case) one generates fi nally the correct $\left(x, 2^{p(|x|)}, 2, s_{1}, \square\right)$.

To make this precise, let $a_{j} \stackrel{\text { df }}{=} \square$ for all $j>n$. Furthermore we assume that, in a quintuple (x, i, j, s, a) where $i, j \in\left\{0,1, \ldots, 2^{p(\mid x)}\right\}$, the numbers i and j are given in binary presentation of length exactly $p(|x|)+1$. Now defi ne the operation $*$ as follows.
Right sweep, for $1 \leq 2 i<2^{p(|x|)}$ and $j=1,2, \ldots, i$:

$$
(x, 2 i, j+1, s, \bar{a}) *\left(x, 2 i+1, j, s^{\prime}, b\right) \stackrel{d f}{=}\left(x, 2 i+1, j+1, \sigma\left(s^{\prime}, a\right), \lambda\left(s^{\prime}, a\right)\right)
$$

Left sweep, for $1 \leq 2 i+1<2^{p(|x|)}$ and $j=1,2, \ldots, i+1$:

$$
(x, 2 i+1, j, s, a) *\left(x, 2 i+2, j+1, s^{\prime}, b\right) \stackrel{d f}{=}\left(x, 2 i+2, j, \sigma\left(s^{\prime}, a\right), \lambda\left(s^{\prime}, a\right)\right)
$$

New tape cell right, for $1 \leq 2 i+1<2^{p(|x|)}$:

$$
(x, 2 i+1, i+1, s, a) *\left(x, 0,0, s_{0}, \square\right) \stackrel{d f}{=}\left(x, 2 i+1, i+2, \sigma\left(s, a_{i+2}\right), \lambda\left(s, a_{i+2}\right)\right)
$$

Turning point left, for $1 \leq 2 i<2^{p(|x|)}$:

$$
(x, 2 i, 1, s, a) *\left(x, 0,0, s_{0}, \square\right) \stackrel{d f}{=}(x, 2 i+1,1, s, a)
$$

Turning point right, for $1 \leq 2 i+1<2^{p(|x|)}$:

$$
(x, 2 i+1, i+2, s, a) *\left(x, 0,0, s_{0}, \square\right) \stackrel{d f}{=}(x, 2 i+2, i+2, s, a)
$$

If $u * v$ is defi ned in this way then $v * u$ is defi ned in the same way. For all other products not yet defi ned, we defi ne $(x, u, v, s, a) *\left(x^{\prime}, u^{\prime}, v^{\prime}, s^{\prime}, a^{\prime}\right) \stackrel{d f}{=}\left(0^{\max \left(|x|+|u|+|v|,\left|x^{\prime}\right|+\left|u^{\prime}\right|+\left|v^{\prime}\right|\right)}, \varepsilon, \varepsilon, s_{0}, \square\right)$.

Obviously, $*$ is polynomial-time computable, minimal length-monotonic and commutative. By our definition, starting with $\left(x, 1,1, \sigma\left(s_{0}, a_{1}\right), \lambda\left(s_{0}, a_{1}\right)\right)$ and $\left(x, 0,0, s_{0}, \square\right)$ one can generate exactly the correct quintuples of the form (x, \ldots) together with $\left(x, 0,0, s_{0}, \square\right)$ and $\left(0^{|x|+p(|x|)+2}, \varepsilon, \varepsilon, s_{0}, \square\right)$. Hence, M accepts x if and only if $\left(\left(x, 1,1, \sigma\left(s_{0}, a_{1}\right), \lambda\left(s_{0}, a_{1}\right)\right),\left(x, 0,0, s_{0}, \square\right),\left(x, 2^{p(|x|)}, 2, s_{1}, \square\right)\right) \in \operatorname{GEN}(*)$, and consequently $A \leq_{\mathrm{m}}^{\log } \operatorname{GEN}(*)$. By Lemma 3.4, we fi nally obtain a polynomial-time computable, minimal length-monotonic and commutative operation $\circ: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ such that $A \leq_{\mathrm{m}}^{\log } \mathrm{GEN}(\mathrm{\circ})$.

3.2 Length-Monotonic Associative Polynomial-Time Operations

We have seen that in general, commutativity does not lower the complexity of the generation problem for length-monotonic, polynomial-time computable operations. In this subsection we show that associativity does. Here we exploit that for associative operations o we do not need to know the exact structure of an o-generation tree for z : Associativity makes all generation trees with the same sequence of leaves equivalent with respect to the generated element. We show that PSPACE is upper bound for all generation problems with associative, polynomial-space computable operations and that it is lower bound even for associative, polynomial-time computable operations.

Theorem 3.6 GEN(O$) \in$ PSPACE for every length-monotonic and associative polynomial-space computable operation $\circ: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$.

Proof The following algorithm decides GEN(o) in polynomial space:

```
function GEN(z,x1,\ldots,xn);
    choose an i }\in{1,\ldots,n} nondeterministically;
    z1 := xi;
    while (z1 \not= z) and (|z1| \leq |z|) do begin
        choose an i \in {1,\ldots,n} nondeterministically;
        z1 := z1 o xi
    end;
    if (z = zl) then accept else reject
```

The polynomial-space bound is tight even for polynomial-time operations 0 .
Theorem 3.7 There is a minimal length-monotonic and associative polynomial-time computable operation $\circ: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$ such that GEN (o) is $\leq_{\mathrm{m}}^{\log }$-complete for PSPACE.

Proof Let $L \subseteq \Sigma^{*}$ be a set which is $\leq_{\mathrm{m}}^{\log }$-complete for PSPACE. By Lemma 3.4, it suffi ces to prove existence of a fi nite alphabet Δ and a minimal length-monotonic and associative polynomial-time computable operation $*:\left(\Sigma^{*} \times \Delta^{*}\right) \times\left(\Sigma^{*} \times \Delta^{*}\right) \rightarrow\left(\Sigma^{*} \times \Delta^{*}\right)$ such that $L \leq_{\mathrm{m}}^{\log } \operatorname{GEN}(*)$.

Since $L \in$ PSPACE, it follows [CF91] that there exists a polynomial-time computable function $f: \Sigma^{*} \times \mathbb{N} \rightarrow \mathrm{A}_{5}$ and a polynomial p such that for all $x \in \Sigma^{*}$,

$$
x \in L \leftrightarrow f(x, 0) \cdot f(x, 1) \cdots \cdot f\left(x, 2^{p(|x|)}-1\right)=a_{0}
$$

where $\left(\mathrm{A}_{5}, \cdot\right)$ is the group of even permutations on fi ve elements with identity permutation a_{0}. Fix an $x \in \Sigma^{*}$ and let $K \stackrel{\text { df }}{=} p(|x|)$ and $M \stackrel{\text { df }}{=} 4 K+3$. Further, for $i=0,1, \ldots, 2^{K}-1$, let $\mathrm{b}(i)$ be that length K binary representation of i.

We consider the set

$$
E_{x}^{\prime} \stackrel{\text { df }}{=}\left\{(x, \mathrm{~b}(i) a \mathrm{~b}(j)): 0 \leq i<j<2^{K}, a \in \mathrm{~A}_{5}\right\} \subseteq\{x\} \times\left(\Sigma^{K} \cdot \mathrm{~A}_{5} \cdot \Sigma^{K}\right)
$$

with multiplication $*$ whose essential part is given by

$$
(x, \mathrm{~b}(i) a \mathrm{~b}(j)) *(x, \mathrm{~b}(j+1) b \mathrm{~b}(m)) \stackrel{d f}{=}(x, \mathrm{~b}(i) a \cdot f(x, j) \cdot b \mathrm{~b}(m)) .
$$

We obtain

$$
x \in L \leftrightarrow\left(x, 0^{K} a_{0} 1^{K}\right) \in\left[\left\{(x, \mathrm{~b}(i) f(x, i) \mathrm{b}(i+1)): 0 \leq i<2^{K}-1\right\}\right]_{*} .
$$

This cannot be used as reduction function for $L \leq_{\mathrm{m}}^{\log } \operatorname{GEN}(*)$, since $\left\{(x, \mathrm{~b}(i) f(x, i) \mathrm{b}(i+1)): i<2^{K}-1\right\}$ has exponentially many elements (in the length of x). So we have to generate this set from a few basic pairs. For this we modify E_{x}^{\prime} and $*$ as follows. We use a new separation symbol $\#$ and, to achieve minimal length-monotonicity, a new padding symbol 2 . For $u \in\{0,1, \#\}^{*}$, let $\langle u\rangle \stackrel{d f}{=} u 2^{M-|u|} \in\{0,1,2, \#\}^{M}$, and for $w \in\{0,1,2, \#\}^{*}$, let $\bar{w} \in\{0,1, \#\}^{*}$ be the word w without symbols 2 . Now consider the following set $E_{x} \subseteq\{x\} \times\left(\{0,1,2, \#\} \cup \mathrm{A}_{5}\right)^{M}$:

$$
E_{x} \stackrel{d f}{=}\left\{(x,\langle u\rangle): u \in \Sigma^{\leq K} \cup \Sigma^{\leq K} \# \Sigma^{\leq K} \cup \Sigma^{\leq K} \# \Sigma^{K} \# \Sigma^{\leq K} \cup \Sigma^{\leq K} \# \Sigma^{K} \cdot \mathrm{~A}_{5} \cdot \Sigma^{K} \# \Sigma^{\leq K}\right\}
$$

We defi ne the operation $*: E_{x} \times E_{x} \rightarrow E_{x}$. The defi nition of the product $(x, v) *(x, w)$ splits into three cases:

1. If $\overline{v w} \in \Sigma^{\leq K} \cup \Sigma^{\leq K} \# \Sigma^{\leq K} \cup \Sigma^{\leq K} \# \Sigma^{K} \# \Sigma^{\leq K}$ then $(x, v) *(x, w) \stackrel{d f}{=}(x,\langle\overline{v w}\rangle)$.
2. If $\overline{v w}=u \# \mathrm{~b}\left(i_{1}\right) c_{1} \mathrm{~b}\left(i_{2}\right) c_{2} \ldots c_{s-1} \mathrm{~b}\left(i_{s}\right) \# u^{\prime}$ such that $s \geq 2, u, u^{\prime} \in \Sigma^{\leq K}, 0 \leq i_{1}<\cdots<i_{s}<2^{K}$, $c_{1}, c_{2}, \ldots, c_{s-1} \in \mathrm{~A}_{5} \cup\{\#\}$, and $\left(c_{j}=\# \Rightarrow i_{j}+1=i_{j+1}\right)$ for $j=1, \ldots, s-1$ then

$$
(x, v) *(x, w) \stackrel{d f}{=}\left(x,\left\langle u \# \mathrm{~b}\left(i_{1}\right) a \mathrm{~b}\left(i_{s}\right) \# u^{\prime}\right\rangle\right)
$$

where $a \stackrel{\text { df }}{=} b_{1} \cdot b_{2} \cdot \ldots \cdot b_{s-1}$ such that $b_{j}=c_{j}$ if $c_{j} \in \mathrm{~A}_{5}$ and $b_{j}=f\left(x, i_{j}\right)$ otherwise.
3. If $\overline{v w}$ is different from both of the above cases then let $(x, v) *(x, w) \stackrel{d f}{=}(x,\langle\varepsilon\rangle)$.

The operation $*$ inherits associativity from the concatination of words.
Furthermore, we observe $(x,\langle u \# \mathrm{~b}(i) a \mathrm{~b}(j) \# v\rangle)$ is in $[\{(x,\langle 0\rangle),(x,\langle 1\rangle),(x,\langle \#\rangle)\}]_{*}$ if and only if $i<j$ and $f(x, i) \cdot f(x, i+1) \cdots f(x, j-1)=a$. Consequently, we obtain

$$
x \in L \leftrightarrow\left(x,\left\langle \# 0^{K} f\left(x, 2^{K}-1\right)^{-1} 1^{K} \#\right\rangle\right) \in[\{(x,\langle 0\rangle),(x,\langle 1\rangle),(x,\langle \#\rangle)\}]_{*} .
$$

So far the operation $*$ has been defi ned separately on every single set E_{x}. Without loss of generality assume that $\varepsilon \notin L$. If there is no $x \in \Sigma^{*}$ such that $(y, v),(z, w) \in E_{x}$, then we define $(y, v) *(z, w) \stackrel{d f}{=}\left(\varepsilon, 2^{\max (|y|+|z|,|z|+|w|)}\right)$. In such a way we obtain an associative, minimal length-monotonic operation $*$ on the entire set $\Sigma^{*} \times\left(\{0,1,2, \#\} \cup \mathrm{A}_{5}\right)^{*}$ such that $L \leq_{\mathrm{m}}^{\log } \mathrm{GEN}(*)$.

Now let us additionally assume o to be commutative. Again, if we want to know whether or not $z \in$ $\left[\left\{x_{1}, \ldots, x_{n}\right\}\right]_{0}$, associativity enables us to ignore the o-generation tree and instead search for a word over $\left\{x_{1}, \ldots, x_{n}\right\}$. Together with commutativity, we just have to guess exponents k_{1}, \ldots, k_{n} and test whether $x_{1}^{k_{1}} \circ \cdots \circ x_{n}^{k_{n}}=z$. If the operation is computable in polynomial-time, then the exponentiations are computable in polynomial-time, too (by squaring and multiplying), which yields the following theorem.

Theorem 3.8 $\mathrm{GEN}(\mathrm{o}) \in \mathrm{NP}$ for all length-monotonic, associative, and commutative polynomial-time computable operations $\circ: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$.

Again, this upper bound is tight, i.e., there exist associative, commutative, and length-monotonic polynomial-time computable operations whose generation problems are NP-complete. Even the usual addition on natural numbers has this property.

Theorem 3.9 GEN $(+)$ is $\leq \log _{\mathrm{m}}^{\log }$-complete for NP , where + is the addition on \mathbb{N}.

Proof It is known that GEN $(+)$ is NP-complete for the addition on integers [vEB79]. This proof exclusively uses natural numbers.

4 Generation Problems for Polynomials

The previous section gave an overview over the complexity of generation problems for polynomial-time computable operations. Now we want to have a look at the more restricted class of generation problems whose operations are polynomials. The Davis-Putnam-Robinson-Matiyasevich theorem [Mat70] states that every recursively enumerable set is range of a polynomial with integer coeffi cients. Based on this, there are such polynomials where the generation problem is undecidable. To give an idea of this, take a polynomial p with undecidable positive range and replace every variable x by $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$. Take another polynomial q that is capable to generate all negative numbers and negative numbers only. Build a new polynomial out of p and q with an additional variable y such that for $y=0$ the value of q is calculated, and for $y \neq 0$ the value of p is calculated. In this way it is possible to generate all negative numbers which in turn allow the generation of the positive range of p. However, to obtain this undecidability result, the polynomials must have negative coeffi cients and they usually contain a rather large number of variables. Therefore, we concentrate on bivariate polynomials with positive coeffi cients. These are always length-monotonic and hence, the corresponding generation problem is decidable. We show that many of them are even in NP and all of them belong to NTIME-SPACE $\left(2^{\log ^{2} n}, n \log n\right)$. So far we have no evidence against the conjecture that all these generation problems belong to NP (see also the discussion in Section 5). However, we cannot prove this.

This section has two main results: First, we show that if p is not of the form $q(y)+k y$ where q is non-linear and $k \geq 2$, then the corresponding generation problem belongs to NP. Second, we prove NPcompleteness for polynomials of the form $x^{a} y^{b} c$ where $a, b, c \geq 1$.

4.1 The Main Case

Let us start our investigation with univariate polynomials p, i.e., $p(x, y)=q(x)$ for a suitable polynomial q.
Theorem 4.1 If p is a univariate polynomial, then $\operatorname{GEN}(p)$ is in P .
Proof If $p(x, y)=q(x)=c$, then we have $\left[\left\{a_{1}, \ldots, a_{n}\right\}\right]_{p}=\left\{a_{1}, \ldots, a_{n}, c\right\}$. If $p(x, y)=q(x)=x+c$, then $\left[\left\{a_{1}, \ldots, a_{n}\right\}\right]_{p}=\left\{a_{i}+k c: i=1, \ldots, n, k \geq 0\right\}$. In all other cases we have $q(x) \geq 2 x$ or $q(x) \geq x^{2}$. It follows that $e \in\left[\left\{a_{1}, \ldots, a_{n}\right\}\right]_{p} \Leftrightarrow e \in\left\{p_{k}\left(a_{i}\right): i=1, \ldots, n, k=0,1, \ldots,|\operatorname{bin}(e)|+1\right\}$ where $p_{0}(x) \stackrel{\text { df }}{=} x$ and $p_{k+1}(x) \stackrel{\text { df }}{=} p\left(p_{k}(x)\right)$ for $k \geq 0$.
So in all cases the membership to $\left[\left\{a_{1}, \ldots, a_{n}\right\}\right]_{p}$ can be easily verifi ed in polynomial time.
A univariate polynomial $p(x)$ is linear, if there are $a, c \in \mathbb{N}$ such that $p(x)=a x+c$.

Theorem 4.2 If p is a bivariate polynomial that is not of the form $p(x, y)=k x+q(y)$ or $p(x, y)=q(x)+k y$ where q is non-linear and $k \geq 2$, then $\operatorname{GEN}(p) \in \mathrm{NP}$.

Proof We show that p must have one of the following properties:
(1) $p(x, y)=x+q(y)$ or $p(x, y)=q(x)+y$ for some univariate polynomial q,
(2) $p(x, y)=a x+b y+c$ for some $a, b, c \in \mathbb{N}$ such that $a, b \geq 2$, and
(3) $p(x, y) \geq x \cdot y$ for all x, y.

After this, the proof of the theorem is completed by the following three lemmas.
Assume that the polynomial p has non of the properties (1), (2), and (3). Since p does not fulfill (3) there are univariate polynomials q and r such that $p(x, y)=q(x)+r(y)$. Since $x^{2}+y^{2} \geq x \cdot y$ at least one of the polynomials q and r is linear. Consequently there exist a univariate polynomial q and an $k \geq 0$ such that $p(x, y)=k x+q(y)$ or $p(x, y)=q(x)+k y$. Since p does not fulfill(2), the polynomial q is not linear. Since p does not fulfi ll (1), we obtain $k \geq 2$.

Lemma 4.3 If $p(x, y)=x+q(y)$ for some univariate polynomial q, then $\operatorname{GEN}(p) \in \mathrm{NP}$.
Proof It is suffi cient to prove:

$$
\left[\left\{a_{1}, \ldots, a_{r}\right\}\right]_{p}=\left\{a_{j}+\sum_{i=1}^{r} \alpha_{i} \cdot q\left(a_{i}\right): j \in\{1, \ldots, r\} \text { and } \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{N}\right\} .
$$

The inclusion from right to left is obvious. For the other direction, we observe that $\left\{a_{1}, \ldots, a_{r}\right\}$ is included in the right hand side (which is obvious) and that the right hand side is closed under p. For the latter let $\alpha_{i}, \beta_{i} \in \mathbb{N}$ for $1 \leq i \leq r$ and $j, k \in\{1, \ldots, r\}$. Then for some $c \geq 0$,

$$
\begin{align*}
p\left(a_{j}+\sum_{i=1}^{r}\left(\alpha_{i} \cdot q\left(a_{i}\right)\right), a_{k}+\sum_{i=1}^{r}\left(\beta_{i} \cdot q\left(a_{i}\right)\right)\right) & =a_{j}+\sum_{i=1}^{r}\left(\alpha_{i} \cdot q\left(a_{i}\right)\right)+q\left(a_{k}+\sum_{i=1}^{r}\left(\beta_{i} \cdot q\left(a_{i}\right)\right)\right) \\
& =a_{j}+\sum_{i=1}^{r}\left(\alpha_{i} \cdot q\left(a_{i}\right)\right)+q\left(a_{k}\right)+c \sum_{i=1}^{r}\left(\beta_{i} \cdot q\left(a_{i}\right)\right) \tag{1}\\
& =a_{j}+\sum_{i=1}^{r}\left(\left(\alpha_{i}+c \beta_{i}\right) \cdot q\left(a_{i}\right)\right)+q\left(a_{k}\right) .
\end{align*}
$$

To see equality (1), observe that by binomial theorem, for all $a, b \geq 0, q(a, b)=q(a)+c b$ for some $c \in \mathbb{N}$.

Lemma 4.4 If $p(x, y)=a x+b y+c$ for $a, b, c \in \mathbb{N}$ and $a, b \geq 2$, then $\operatorname{GEN}(p) \in \operatorname{NP}$.
Proof Let T be a p-generation tree for e. Without loss of generality we can assume that value 0 occurs only in the leaves of this tree T. Since $a, b \geq 2$, the depth of T is bounded by $|\operatorname{bin}(e)|+1$.

Let T be an arbitrary binary tree whose leaves have values from $\left\{a_{1}, \ldots, a_{n}\right\}$. For a full path q in T, choose $i(q) \in\{1, \ldots, n\}$ such that the leaf of q has value $a_{i(q)}$. We obtain that $e \in\left[\left\{a_{1}, \ldots, a_{n}\right\}\right]_{p}$ if and only if there exists a binary tree T whose leaves have values from $\left\{a_{1}, \ldots, a_{n}\right\}$ such that

$$
e=\sum_{q \in \operatorname{fpath}(T)} a_{i(q)} \cdot a^{l(q)} \cdot b^{r(q)}+\sum_{q \in \operatorname{ipath}(T)} c \cdot a^{l(q)} \cdot b^{r(q)} .
$$

For a binary tree T of depth bounded by d and for $i, j \in\{0, \ldots, d\}$ we defi ne the characteristics

$$
\begin{array}{cl}
s_{i, j}^{T} & \stackrel{d f}{=} \quad \#\{q: q \in \operatorname{ipath}(T), l(q)=i \text { and } r(q)=j\} \text { and } \\
r_{i, j}^{T} & \stackrel{d f}{=} \quad \#\{q: q \in \operatorname{fpath}(T), l(q)=i \text { and } r(q)=j\} .
\end{array}
$$

Note that the $r_{i, j}^{T}$ can be computed from the $s_{i, j}^{T}$ by

$$
\left.\begin{array}{l}
-r_{0,0}^{T}=1-s_{0,0}^{T} \tag{*}\\
-r_{0, j+1}^{T}=s_{0, j}^{T}-s_{0, j+1}^{T} \text { for } j \in\{0, \ldots, d\} \\
-\quad r_{i+1,0}^{T}=s_{i, 0}^{T}-s_{i+1,0}^{T} \text { for } i \in\{0, \ldots, d\}, \text { and } \\
-\quad r_{i+1, j+1}^{T}=s_{i, j+1}^{T}+s_{i+1, j}^{T}-s_{i+1, j+1}^{T} \text { for } i, j \in\{0, \ldots, d\}
\end{array}\right\}
$$

Using these characteristics we obtain that $e \in\left[\left\{a_{1}, \ldots, a_{n}\right\}\right]_{p}$ if and only if there exist a binary tree T of depth $d \leq|\operatorname{bin}(e)|+1$ and a set of natural numbers $\left\{r_{i, j, k}: i, j \in\{0, \ldots, d\}, k \in\{1, \ldots, n\}\right\}$ such that $\sum_{k=1}^{n} r_{i, j, k}=r_{i, j}^{T}$ and

$$
e=\sum_{i=0}^{d} \sum_{j=0}^{d}\left(\sum_{k=1}^{n} r_{i, j, k} \cdot a_{k}\right) \cdot a^{i} \cdot b^{j}+\sum_{i=0}^{d} \sum_{j=0}^{d} s_{i, j}^{t} \cdot c \cdot a^{i} \cdot b^{j}
$$

Observe that the characteristics $s_{i, j}^{T}$ have the following properties.

$$
\left.\begin{array}{l}
-s_{0,0}^{T} \leq 1 \tag{**}\\
-s_{0, j+1}^{T} \leq s_{0, j}^{T} \text { for } j \in\{0, \ldots, d-1\} \\
-s_{i+1,0}^{T} \leq s_{i, 0}^{T} \text { for } i \in\{0, \ldots, d-1\} \\
-s_{i+1, j+1}^{T} \leq s_{i+1, j}^{T}+s_{i, j+1}^{T}, \text { for } i, j \in\{0, \ldots, d-1\}, \text { and } \\
-s_{i, d}^{T}=s_{d, j}^{T}=0 \text { for } i, j \in\{0, \ldots, d\}
\end{array}\right\}
$$

On the other hand, we can prove the following.
Claim. Consider arbitrary natural numbers $s_{i, j}$ where $i, j \in\{0, \ldots, d\}$. If these $s_{i, j}$ fulfill $(* *)$, then there exists a binary tree T such that $s_{i, j}^{T}=s_{i, j}$ for $i, j \in\{0, \ldots, d\}$.
Proof of the claim. By induction on $w(M) \stackrel{d f}{=} \sum_{i=0}^{d} \sum_{j=0}^{d} s_{i, j}$.
If $w(M)=0$, then the tree with only one node fulfi lls the statement.
If $w(M)>0$, then we have $s_{0,0}>0$. Since $s_{i, d}=s_{d, j}=0$ for $i, j \in\{0, \ldots, d\}$ there exists a pair $(i, j) \in\{0, \ldots, d\}^{2}$ such that $s_{i, j}>0$ and $s_{i+1, j}=s_{i, j+1}=0$. Let $\left(i_{0}, j_{0}\right)$ be such a pair. Defi ne $M^{\prime} \stackrel{d f}{=}\left\{s_{i, j}^{\prime}: i, j \in\{0, \ldots, d\}\right\}$ such that $s_{i_{0}, j_{0}}^{\prime} \stackrel{d f}{=} s_{i_{0}, j_{0}}-1$ and $s_{i, j}^{\prime}=s_{i, j}$ for all other $(i, j) \in\{0, \ldots, d\}^{2}$. Obviously, M^{\prime} fulfi lls $(* *)$ and $w\left(M^{\prime}\right)=w(M)-1$. By the induction hypothesis, there exists a binary tree T^{\prime} such that $s_{i, j}^{T^{\prime}}=s_{i, j}^{\prime}$ for $i, j \in\{0, \ldots, d\}$. To know that there exists a full path q in T^{\prime} such that $l(q)=i_{0}$ and $r(q)=j_{0}$ we have to prove $r_{i_{0}, j_{0}}^{T^{\prime}}>0$. We do this by considering four cases.
If $i_{0}=j_{0}=0$ then $s_{0,0}^{T^{\prime}}=s_{0,0}^{\prime}<s_{0,0} \leq 1$ and hence $s_{0,0}^{T^{\prime}}=0$.
If $i_{0}=0$ and $j_{0}>0$ then $s_{0, j_{0}}^{T^{\prime}}=s_{0, j_{0}}^{\prime}<s_{0, j_{0}} \leq s_{0, j_{0}-1}=s_{0, j_{0}-1}^{\prime}=s_{0, j_{0}-1}^{T^{\prime}}$.
If $i_{0}>0$ and $j_{0}=0$ then $s_{i_{0}, 0}^{T^{\prime}}=s_{i_{0}, 0}^{\prime}<s_{i_{0}, 0} \leq s_{i_{0}-1,0}=s_{i_{0}-1,0}^{\prime}=s_{i_{0}-1,0}^{T^{\prime}}$.
If $i_{0}>0$ and $j_{0}>0$ then $s_{i_{0}, j_{0}}^{T^{\prime}}=s_{i_{0}, j_{0}}^{\prime}<s_{i_{0}, j_{0}} \leq s_{i_{0}-1, j_{0}}+s_{i_{0}, j_{0}-1}=s_{i_{0}-1, j_{0}}^{\prime}+s_{i_{0}, j_{0}-1}^{\prime}=s_{i_{0}-1, j_{0}}^{t^{\prime}}+s_{i_{0}, j_{0}-1}^{T^{\prime}}$.
Now choose a full path q in T^{\prime} such that $l(q)=i_{0}$ and $r(q)=j_{0}$ and attach two successors to it. For the binary tree T defi ned in such a way, we have $s_{i_{0}, j_{0}}^{T}=s_{i_{0}, j_{0}}^{T^{\prime}}+1=s_{i_{0}, j_{0}}^{\prime}+1=s_{i_{0}, j_{0}}$ and $s_{i, j}^{T}=s_{i, j}^{T^{\prime}}=s_{i, j}^{\prime}=$ $s_{i, j}$ for all other $(i, j) \in\{0, \ldots, d\}^{2}$. This completes the proof of the claim.

Consequently, we obtain that $e \in\left[\left\{a_{1}, \ldots, a_{n}\right\}\right]_{p}$ if and only if for $d \stackrel{\text { df }}{=}|\operatorname{bin}(e)|+1$ and $i, j \in\{0, \ldots, d\}$ there exist natural numbers $s_{i, j}$ and there exists a set of natural numbers $\left\{r_{i, j, k}: i, j \in\{0, \ldots, d\}, k \in\right.$ $\{1, \ldots, n\}\}$ such that

1. the $s_{i, j}$ fulfill $1(* *)$,
2. $\sum_{k=1}^{n} r_{i, j, k}=r_{i, j}$ for $i, j \in\{0, \ldots, d\}$ (where the $r_{i, j}$ are computed from the $s_{i, j}$ as in $(*)$), and
3. $e=\sum_{i=0}^{d} \sum_{j=0}^{d}\left(\sum_{k=1}^{n} r_{i, j, k} \cdot a_{k}\right) \cdot a^{i} \cdot b^{j}+\sum_{i=0}^{d} \sum_{j=0}^{d} s_{i, j} \cdot c \cdot a^{i} \cdot b^{j}$.

This shows $\operatorname{GEN}(p) \in \mathrm{NP}$.

Lemma 4.5 If the polynomial p fulfills $p(x, y) \geq x \cdot y$ for all x, y, then $\operatorname{GEN}(p) \in \operatorname{NP}$.
Proof Let $A \subseteq \mathbb{N}$ be fi nite. Let $A^{\prime} \stackrel{\text { df }}{=} A \cup\{p(c, c): c \in\{0\} \cap A\}$. Obviously we have $[A]_{p}=\left[A^{\prime}\right]_{p}$ and for every $z \in\left[A^{\prime}\right]_{p}$ there is a p-generation tree that has no node v that has only child nodes with value 0 . If for every $x \in \mathbb{N}$ (resp., $y \in \mathbb{N}$),

- $p(x, 0) \geq 2 x$ (resp., $p(0, y) \geq 2 y$) or
- $p(x, 0) \geq x^{2}$ (resp., $p(0, y) \geq y^{2}$) or
- $p(x, 1) \geq 2 x$ (resp., $p(1, y) \geq 2 y$) or
- $p(x, 1) \geq x^{2}$ (resp., $p(1, y) \geq y^{2}$),
then there is a p-generation tree for z from A^{\prime} such that there are at most $|z|$ nodes with left (resp., right) child that has a value $\geq 2(*)$. Let D be a p-generation tree from A^{\prime} for z. We can assume that there are at most $|z|$ leaves v in D that have a value greater than 1 and there can at most be $|z|$ nodes having two children with values greater than 1 . Furthermore, we can assume that there are at most $|z|$ nodes v in D such that both children of v are leaves with values from $\{0,1\}$. That means that if D has exponentially many nodes, then nearly every node (except polynomially many ones)
- has one child with value ≤ 1 and another one that is no leaf, or
- is a leaf with value ≤ 1, and its parent's other child is no leaf.

We consider four cases:

- Let there be $x_{1}, \ldots, x_{8} \in \mathbb{N}$ such that $\left(p\left(x_{1}, 0\right) \nsupseteq 2 x_{1}\right.$ and $p\left(x_{2}, 0\right) \nsupseteq x_{2}^{2}$ and $p\left(x_{3}, 1\right) \nsupseteq 2 x_{3}$ and $\left.p\left(x_{4}, 1\right) \nsupseteq x_{4}^{2}\right)$ and $\left(p\left(0, x_{5}\right) \nsupseteq 2 x_{5}\right.$ and $p\left(0, x_{6}\right) \nsupseteq x_{6}^{2}$ and $p\left(1, x_{7}\right) \nsupseteq 2 x_{7}$ and $p\left(1, x_{8}\right) \nsupseteq x_{8}^{2}$). Then $p(x, y)=x y+c$, where $c \in \mathbb{N}$. Note that $p(x, 0)=p(0, y)=c$. Since $c \in A^{\prime}$ if $0 \in A^{\prime}$, we can assume that there are no leaves with value 0 . Furthermore, $q(x) \stackrel{d f}{=} x+c=p(1, x)=p(x, 1)$ for all $x \in \mathbb{N}$. Note that

$$
\underbrace{q(q(\ldots q}_{k}(x) \ldots))=x+k c,
$$

so k applications of q can be guessed in one step. Using property ($* *$), we can guess a polynomially sized generation tree, where each node either represents a normal generation step or $k \leq z$ steps of the above form.

- Let there be $x_{1}, \ldots, x_{4} \in \mathbb{N}$ such that for all $x \in \mathbb{N}$ we have $\left(p(x, 0) \geq 2 x\right.$ or $p(x, 0) \geq x^{2}$ or $p(x, 1) \geq 2 x$ or $p(x, 1) \geq x^{2}$) and $\left(p\left(0, x_{1}\right) \nsupseteq 2 x_{1}\right.$ and $p\left(0, x_{2}\right) \nsupseteq x_{2}^{2}$ and $p\left(1, x_{3}\right) \nsupseteq 2 x_{3}$ and $\left.p\left(1, x_{4}\right) \nsupseteq x_{4}^{2}\right)$. Then $p(x, y)=x^{k} y+\sum_{i=1}^{n} b_{i} x^{i}+d$ where $k \geq 1, n, b_{i}, d \in \mathbb{N}(1 \leq i \leq n)$. Because of $(*)$ there can only be polynomially many nodes in D with a left child that has a value greater than 1. So if there are exponentially many nodes in D, then all of them except polynomially many ones have a left child with value ≤ 1 and a right child that is not a leaf. Observe that $p(0, y)=d$ for all y, so we can assume that there is no left child labeled with 0 since if $0 \in A^{\prime}$, so is d. Furthermore, $p(1, y)=y+\sum_{i=1}^{n} b_{i}+d$ and

$$
\underbrace{p(1, p(1, \ldots p}_{k}(1, y) \ldots))=y+k\left(\sum_{i=1}^{n} b_{i}+d\right) \text {. }
$$

Therefore we can guess a polynomial-sized generation tree for z where each node is either a normal generation step or $k \leq z$ subsumed steps of the form $p(1, y)$.

- Let there be $x_{1}, \ldots, x_{4} \in \mathbb{N}$ such that for all $x \in \mathbb{N}$ we have $\left(p\left(x_{1}, 0\right) \nsucceq 2 x_{1}\right.$ and $p\left(x_{2}, 0\right) \nsucceq x_{2}^{2}$ and $p\left(x_{3}, 1\right) \nsupseteq 2 x_{3}$ and $\left.p\left(x_{4}, 1\right) \nsucceq x^{2}\right)$ and $\left(p(0, x) \geq 2 x\right.$ or $p(0, x) \geq x^{2}$ or $p(1, x) \geq 2 x$ or $\left.p(1, x) \geq x^{2}\right)$. Here a symmetrical argumentation holds.
- Let for all $x \in \mathbb{N}$ hold ($p(x, 0) \geq 2 x$ or $p(x, 0) \geq x^{2}$ or $p(x, 1) \geq 2 x$ or $p(x, 1) \geq x^{2}$) and ($p(0, x) \geq 2 x$ or $p(0, x) \geq x^{2}$ or $p(1, x) \geq 2 x$ or $p(1, x) \geq x^{2}$). By (*) there is a polynomial sized p-generation tree from A^{\prime} for b that can be guessed and checked in P .

4.2 $\operatorname{GEN}\left(\boldsymbol{x}^{a} \boldsymbol{y}^{b} \boldsymbol{c}\right)$ is NP-complete

By Theorem 4.2, if we consider a polynomial of the form $\sum_{a, b} x^{a} y^{b} c_{a b}$ where $a, b \geq 1$, then the generation problem belongs to NP. Here we pick out those polynomials that consist of only one term of the sum. For this special case we can show that $\operatorname{GEN}\left(x^{a} y^{b} c\right)$ is NP-complete if $c \geq 1$. For $a=1$ or $b=1$ this is easy to prove.

Proposition 4.6 For $a, c \geq 1, \operatorname{GEN}\left(x^{a} y c\right)$ is \leq_{m}^{p}-complete for NP .
Proof We reduce 1-IN-3-SAT to $\operatorname{GEN}(p)$, where $p(x, y) \stackrel{d f}{=} x^{a} y c$. Let H be a 3 - CNF formula with clauses C_{1}, \ldots, C_{m} and variables x_{1}, \ldots, x_{n}. Let p_{1}, p_{2}, \ldots be the prime numbers larger than c. Defi ne $a_{1} \stackrel{\text { df }}{=} p_{m+1}^{a} \prod_{x_{1} \in C_{j}} p_{j}^{a}, b_{1} \stackrel{\text { df }}{=} p_{m+1}^{a} \prod_{\overline{x_{1}} \in C_{j}} p_{j}^{a}$, for $2 \leq i \leq n, a_{i} \stackrel{\text { df }}{=} p_{m+i} \prod_{x_{i} \in C_{j}} p_{j}, b_{i} \stackrel{\text { df }}{=} p_{m+i} \prod_{\overline{x_{i}} \in C_{j}} p_{j}$, $z \stackrel{\text { df }}{=} c^{n-1} \cdot \prod_{i=1}^{m+n} p_{i}^{a}$, and $g(H) \stackrel{\text { df }}{=}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, z\right)$. Note that g is polynomial-time computable.

Assume $H \in 1$-IN-3-SAT. Then there is an assignment $I:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ that satisfi es exactly one literal in each clause. Therefore, we obtain $\prod_{i=1}^{m+n} p_{i}^{a} \cdot c^{n-1}$ by a linear generation tree that has leaf-values c_{n}, \ldots, c_{1} where $c_{i}=a_{i}$ if $I\left(x_{i}\right)=1$ and $c_{i}=b_{i}$ otherwise. Hence $g(H) \in \operatorname{GEN}(p)$.

Assume that $g(H) \in \operatorname{GEN}(p)$, hence $z \in\left[\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\}\right]_{p}$. Every prime p_{i} occurs exactly a times in the factorization of z. Therefore, either a_{i} or b_{i} (and not both) has to be a leaf-value in the generation tree. If $a>1$ then additionally the generation tree has to be linear and the rightmost leaf has value a_{1} or b_{1}. Hence, the assignment I such that $I\left(x_{i}\right)=1$ if and only if a_{i} is a leaf-value in the generation tree satisfi es H in the sense of 1-IN-3-SAT. Therefore $H \in 1$-IN-3-SAT.

Now let us consider $\operatorname{GEN}\left(x^{a} y^{b} c\right)$ for $a, b>1$. In general, the crucial point in proving hardness for generation problems is to cope with the various different trees that generate a number. In our proofs we
force the generation trees to have a specifi c shape such that the generation is possible only in a predefi ned way.

Consider an $x^{a} y^{b} c$-generation tree. Clearly, the generated number is a product that consists of various multiplicities of c and base elements. As a tool to control these multiplicities we introduce (a, b)-weighted trees, where we mark each node with the power its value appears in the root-value. By controlling the marks of the leaves, we can force an $x^{a} y^{b} c$-generation tree into the shape of a complete (a, b)-weighted tree.

Definition 4.7 Let t be a binary tree. $T=(t, g)$ is called (a, b)-weighted tree, $a, b>1$, if g is a markingfunction $g: \operatorname{Node}(t) \rightarrow \mathbb{N}$ such that:

$$
\text { If } x=\operatorname{root}(t), \text { then } g(x)=1
$$

If $x \in \operatorname{Node}(t)$ has a left and a right successor x_{l} and x_{r}, then $g\left(x_{l}\right)=a \cdot g(x)$ and $g\left(x_{r}\right)=b \cdot g(x)$.
T is called balanced, if $\max _{x \in \mathrm{~L}(t)} g(x) \leq \max (a, b) \cdot \min _{x \in \mathrm{~L}(t)} g(x)$.
T is called complete, if $\max _{x \in \mathrm{~L}(t)} g(x)<\max (a, b) \cdot \min _{x \in \mathrm{~L}(t)} g(x)$.
From this defi nition it immediately follows that the marks have the desired properties. We obtain the following connection to $\operatorname{GEN}\left(x^{a} y^{b} c\right)$.

Property 4.8 Let $a, b>1$. If $T=(t, g)$ is an (a, b)-weighted tree, where t is an $x^{a} y^{b} c$-generation tree with values $I(v)$ for all $v \in \mathrm{~L}(t)$, then

$$
I(\operatorname{root}(t))=\prod_{v \in \mathrm{~L}(t)} I(v)^{g(v)} \cdot \prod_{v \in \operatorname{Node}(t)-\mathrm{L}(t)} c^{g(v)}
$$

We want to remark that it is possible to defi ne the notion of (a, b)-weighted trees for $a=1$ and $b=1$. However, if $a=1$ and $b=1$, then complete trees do not exist. In contrast, for all $a, b>1$ complete trees exist. Therefore, we require $a, b>1$.

Proposition 4.9 Let $a, b>1$. For every $n \geq 1$ there exists a balanced (a, b)-weighted tree that has n leaves.

Proof For $n=1$ take the tree that consists only of the root.
For arbitrary $n>1$, let $T=(t, g)$ be a balanced (a, b)-weighted tree with $n-1$ leaves. Let $x_{0} \in \mathrm{~L}(t)$ be a leaf with minimal weight, i.e., $g\left(x_{0}\right)=\min _{x \in \mathrm{~L}(t)} g(x)$. Defi ne the tree t by adding in t successors x_{l} and x_{r} to x_{0}, and defi ne $g: \operatorname{Node}\left(t^{\prime}\right) \rightarrow \mathbb{N}$ by $g^{\prime}(x) \stackrel{d f}{=} g(x)$ for all $x \in \operatorname{Node}(t), g^{\prime}\left(x_{l}\right) \stackrel{d f}{=} a \cdot g\left(x_{0}\right)$, and $g^{\prime}\left(x_{r}\right) \stackrel{d f}{=} b \cdot g\left(x_{0}\right)$. This defi nes an (a, b)-weighted tree $T \stackrel{d f}{=}\left(t^{\prime}, g^{\prime}\right)$ with

$$
\begin{align*}
\max _{x \in \mathrm{~L}\left(t^{\prime}\right)} g^{\prime}(x) & =\max \left(\max _{x \in \mathrm{~L}(t)} g(x), \max \left(g^{\prime}\left(x_{l}\right), g^{\prime}\left(x_{r}\right)\right)\right) \\
& =\max \left(\max _{x \in \mathrm{~L}(t)} g(x), \max (a, b) \cdot g\left(x_{0}\right)\right) \\
& =\max \left(\max _{x \in \mathrm{~L}(t)} g(x), \max (a, b) \cdot \min _{x \in \mathrm{~L}(t)} g(x)\right) \\
& =\max (a, b) \cdot \min _{x \in \mathrm{~L}(t)} g(x) \\
& \leq \max (a, b) \cdot \min _{x \in \mathrm{~L}\left(t^{\prime}\right)} g^{\prime}(x) \tag{2}
\end{align*}
$$

Hence T^{\prime} is balanced.

Now we show that for each $n \geq 1$ there exists a complete (a, b)-weighted tree with nearly n leaves. Note that such a tree is polynomial-time constructible.

Proposition 4.10 Let $a, b>1$. For every $n \geq 1$ there exists a complete (a, b)-weighted tree with at least n and at most $2 n-1$ leaves.

Proof Proposition 4.9 gives a balanced (a, b)-weighted tree T with n leaves. If all leaves have minimal weight, then T is complete. Otherwise, there are $k, 1 \leq k \leq n-1$, leaves of minimal weight. If we add two successors to each of these leaves, then the minimal weight increases. So in inequality (2), \leq changes to $<$. So the resulting tree T^{\prime} is complete. T^{\prime} has $n-k+2 k=n+k$ leaves where $n \leq n+k \leq 2 n-1$.

Now we show that if the generation tree is not the desired complete tree, then at least one leaf-value is taken to a power that is too large.

Proposition 4.11 Let $a, b>1$. Let $T=(t, g)$ be a complete (a, b)-weighted tree with n leaves. If $T^{\prime}=$ $\left(t^{\prime}, g^{\prime}\right)$ is an (a, b)-weighted tree with more than n leaves, then there exists a leaf $y \in \mathrm{~L}\left(t^{\prime}\right)$ such that

$$
g^{\prime}(y)>\max _{x \in \mathrm{~L}(t)} g(x)
$$

Proof Without loss of generality we can assume $a \geq b$. Fix a shortest way in terms of deleting and adding leaves that transforms t to t^{\prime}. We have to change at least one leaf $x_{0} \in \mathrm{~L}(t)$ to an inner node of t^{\prime}. Let x_{l} and x_{r} be the successors of x_{0}. We obtain

$$
g^{\prime}\left(x_{l}\right)=a \cdot g\left(x_{0}\right) \geq \max (a, b) \cdot \min _{x \in \mathrm{~L}(t)} g(x)>\max _{x \in \mathrm{~L}(t)} g(x)
$$

Hence, every $y \in t^{\prime}$ that is reachable from x_{l} fulfi lls $g(y) \geq g^{\prime}\left(x_{l}\right)>\max _{x \in \mathrm{~L}(t)} g(x)$.
Next we show that balanced (a, b)-weighted trees have a height which is bounded logarithmically in the number of leaves.

Proposition 4.12 Let $a \geq b>1$. Let $T=(t, g)$ be a balanced (a, b)-weighted tree with n leaves. If d denotes the maximal depth of a leaf of t, then

$$
d \leq \log _{b}(a) \cdot\left(1+\log _{2}(n)\right)
$$

Proof Let $m \stackrel{d f}{=} \min _{v \in \mathrm{~L}(t)} g(v)$. Hence t contains a complete binary tree of depth $\geq \log _{a}(m)$, hence $\log _{a}(m) \leq \log _{2}(n) . T$ is balanced, so $b^{d} \leq a m$ which is equivalent to $d \leq \log _{b}(a m)$. Therefore,

$$
d \leq \log _{b}(a m)=\log _{b}(a) \cdot \log _{a}(a m) \leq \log _{b}(a) \cdot\left(1+\log _{2}(n)\right)
$$

Theorem 4.13 For $a, b, c \geq 1$ and $p(x, y) \stackrel{d f}{=} x^{a} y^{b} c, \operatorname{GEN}(p)$ is \leq_{m}^{p}-complete for NP.
Proof By Proposition 4.6, we can assume $a, b>1$. Containment in NP follows from Theorem 4.2. We reduce 1 -IN-3-SAT to $\operatorname{GEN}(p)$. Let H be a 3 - CNF formula with clauses C_{1}, \ldots, C_{m} and variables x_{1}, \ldots, x_{n}. Let p_{1}, p_{2}, \ldots be the prime numbers larger than c. Defi ne $a_{i} \stackrel{d f}{=} p_{m+i} \prod_{x_{i} \in C_{j}} p_{j}$ and $b_{i} \stackrel{d f}{=} p_{m+i} \prod_{\overline{x_{i}} \in C_{j}} p_{j}$. Let $T=(t, g)$ be a complete (a, b)-weighted tree with k leaves where $n \leq k \leq 2 n-1$ and $\mathrm{L}(t)=\left\{v_{1}, \ldots, v_{k}\right\}$ (such a tree exists by Proposition 4.10). Furthermore, let d be the maximal depth of a leaf of t. Defi ne $a_{i} \stackrel{d f}{=} p_{m+i}$ for $i=n+1, \ldots, k$,

$$
\begin{aligned}
B & \stackrel{\text { df }}{=}\left\{a_{i}^{\prime} \stackrel{\text { df }}{=} a_{i}^{a^{d} b^{d} / g\left(v_{i}\right)}: 1 \leq i \leq k\right\} \cup\left\{b_{i}^{\prime} \stackrel{d f}{=} b_{i}^{a^{d} b^{d} / g\left(v_{i}\right)}: 1 \leq i \leq n\right\}, \text { and } \\
z & \stackrel{d f}{=} \prod_{i=1}^{m+k} p_{i}^{a^{d} b^{d}} \cdot \prod_{v \in t-\mathrm{L}(t)} c^{g(v)}
\end{aligned}
$$

Proposition 4.12 shows that (B, z) is polynomial-time computable.
If $H \in 1$-IN-3-SAT, then there is an assignment $I_{H}:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ that satisfi es exactly one literal in each clause. We obtain

$$
\prod_{I_{H}\left(x_{i}\right)=1} a_{i} \cdot \prod_{I_{H}\left(x_{i}\right)=0} b_{i} \cdot \prod_{i=n+1}^{k} p_{m+i}=\prod_{i=1}^{m+k} p_{i}
$$

We consider t as an p-generation tree with values

$$
I_{t}\left(v_{i}\right) \stackrel{d f}{=}\left\{\begin{aligned}
a_{i}^{\prime} & , \text { if } i=1, \ldots, n \text { and } I_{H}\left(x_{i}\right)=1 \\
b_{i}^{\prime} & , \text { if } i=1, \ldots, n \text { and } I_{H}\left(x_{i}\right)=0 \\
a_{i}^{\prime} & , \text { if } i=n+1, \ldots, k
\end{aligned}\right.
$$

By Property 4.8, $I_{t}(\operatorname{root}(t))$, the value of the root, can be evaluated as follows.

$$
\begin{aligned}
& I_{t}(\operatorname{root}(t))=\prod_{v \in \mathrm{~L}(t)} I_{t}(v)^{g(v)} \cdot \prod_{v \in \operatorname{Node}(t)-\mathrm{L}(t)} c^{g(v)} \\
& =\prod_{I_{H}\left(x_{i}\right)=1}\left(a_{i}^{\prime}\right)^{g\left(v_{i}\right)} \cdot \prod_{I_{H}\left(x_{i}\right)=0}\left(b_{i}^{\prime}\right)^{g\left(v_{i}\right)} \cdot \prod_{i=n+1}^{k}\left(a_{i}^{\prime}\right)^{g\left(v_{i}\right)} \cdot \prod_{v \in \operatorname{Node}(t)-\mathrm{L}(t)} c^{g(v)} \\
& =\prod_{I_{H}\left(x_{i}\right)=1} a_{i}^{a^{d} b^{d}} \cdot \prod_{I_{H}\left(x_{i}\right)=0} b_{i}^{a^{d} b^{d}} \cdot \prod_{i=n+1}^{k} a_{i}^{a^{d} b^{d}} \cdot \prod_{v \in \operatorname{Node}(t)-\mathrm{L}(t)} c^{g(v)} \\
& =\left(\prod_{I_{H}\left(x_{i}\right)=1} a_{i} \cdot \prod_{I_{H}\left(x_{i}\right)=0} b_{i} \cdot \prod_{i=n+1}^{k} p_{m+i}\right)^{a^{d} b^{d}} \cdot \prod_{v \in \operatorname{Node}(t)-\mathrm{L}(t)} c^{g(v)} \\
& =\prod_{i=1}^{m+k} p_{i}^{a^{d} b^{d}} \cdot \prod_{v \in \operatorname{Node}(t)-\mathrm{L}(t)} c^{g(v)}=z .
\end{aligned}
$$

Hence $(B, z) \in \operatorname{GEN}(p)$.
Assume $(B, z) \in \operatorname{GEN}(p)$. So there exists an (a, b)-weighted tree $T^{\prime}=\left(t^{\prime}, g^{\prime}\right)$, where t^{\prime} is a p generation tree from B for z. For each $v \in \operatorname{Node}\left(t^{\prime}\right)$ defi ne $L_{t^{\prime}}(v)$ as the value of node v. Each element of B has exactly one prime factor from p_{m+1}, \ldots, p_{m+k}. Since z has all these prime factors at least once, t^{\prime} must have at least k leaves. Assume t^{\prime} has more than k leaves. By Proposition 4.11, there exists $v \in \mathrm{~L}\left(t^{\prime}\right)$ such that $g^{\prime}(v)>\max _{x \in \mathrm{~L}(t)} g(x) . I_{t^{\prime}}(v)$ has exactly one prime factor from p_{m+1}, \ldots, p_{m+k}; say p_{m+i} with exponent $a^{d} b^{d} / g\left(v_{i}\right)$. Hence

$$
p_{m+i}^{a^{d} b^{d} / g\left(v_{i}\right) \cdot g^{\prime}(v)}
$$

is a factor of $I_{t^{\prime}}\left(\operatorname{root}\left(t^{\prime}\right)\right)$. From $a^{d} b^{d} / g\left(v_{i}\right) \cdot g^{\prime}(v)>a^{d} b^{d}$ it follows that $I_{t^{\prime}}\left(\operatorname{root}\left(t^{\prime}\right)\right) \neq z$.
So t^{\prime} has exactly k leaves. Each prime p_{m+1}, \ldots, p_{m+k} must appear as factor in a value of some leaf. Therefore, for $i=1, \ldots, n$, either a_{i}^{\prime} or b_{i}^{\prime} is a value of a leaf (but not both). Defi ne $I_{H}:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow$ $\{0,1\}$ such that $I_{H}\left(x_{i}\right)=1 \Leftrightarrow_{\mathrm{df}} a_{i}^{\prime}$ is a leaf-value of t^{\prime}. Observe that I_{H} shows $H \in 1$-IN-3-SAT.

5 The Generation Problem GEN ($x^{c}+k y$)

So far we do not have upper bounds for generation problems of polynomials $p(x, y)=q(x)+k y$, where q is non-linear and $k \geq 2$. The obvious algorithm guesses and verifi es generation trees. How large are these trees? To answer this, observe that the trees are of a special form: When we go from the root to the leaves in y-direction, then in each step, the length of the value decreases by one bit. When we go in x-direction, then in each step, the length is bisected. It follows that the size of such trees grows faster than any polynomial, but not as fast as $2^{\log ^{2} n}$. Therefore, $\operatorname{GEN}(p) \in \operatorname{NTIME}\left(2^{\log ^{2} n}\right)$. We do not have to guess complete generation trees. If a subtree generates some value b, then it suffi ces to store b instead of the whole subtree. We need to store a value b every time we go in x-direction. So we need space $O(n \log n)$.

Proposition 5.1 $\operatorname{GEN}(p) \in \operatorname{NTIME-SPACE}\left(2^{\log ^{2} n}, n \log n\right)$ for all $p(x, y)=q(x)+k y$ where $k \geq 2$ and q is a non-linear polynomial.

Because of the special form of a generation tree for such polynomials, the generation problem can be solved by special alternating machines: Some z can be generated via p from A if and only if there exist $z_{1}, \ldots, z_{n} \leq$ z such that $n \leq|z|, z=z_{1}, z_{n} \in A$, and for all $1 \leq i<n, z_{i}=p\left(z_{i+1}, y_{i}\right)$ where y_{i} can be generated via p from A and $\left|y_{i}\right| \leq \frac{1}{2}\left|z_{i}\right|$. An alternating machine can check this predicate in polynomial time with a logarithmic number of alternations. Furthermore, in existential parts the machine guesses polynomially many bits. In contrast, in universal parts it guesses logarithmically many bits.

This discussion shows that $\operatorname{GEN}(p)$ can be solved with quite restricted resources. However, we do not know whether GEN (p) belongs to NP. Standard diagonalizations show that there exist oracles A and B such that $\mathrm{BPP}^{A} \nsubseteq \mathrm{NTIME}\left(2^{\log ^{2} n}\right)^{A}$ and $\operatorname{coNP}^{B} \nsubseteq \mathrm{NTIME}\left(2^{\log ^{2} n}\right)^{B}$. Therefore, we should not expect $\operatorname{GEN}(p)$ to be hard for any class that contains BPP or coNP. This rules out many reasonable classes above NP to be reducible to $\operatorname{GEN}(p)$. We consider this as a hint that $\operatorname{GEN}(p)$ could be contained in NP, but we do not have a proof for this. We leave this as an open question.

Nevertheless, in this section we prove lower bounds. The main result, Theorem 5.16, shows that if $p(x, y)=x^{c}+k y$ where $c, k \geq 1$, then $\operatorname{GEN}(p)$ is \leq_{m}^{p}-hard for NP. The proof is diffi cult for two reasons which we want to explain for $p(x, y)=x^{2}+2 y$.

1. We have to encode NP-computations into generation problems. For this, we need to construct an instance (B, z) of $\operatorname{GEN}(p)$ that represents information about a given NP-computation. The elements of B must be chosen in a way so that squaring will not destroy this information. This is diffi cult, since squaring a number heavily changes its (binary) representation.
2. We construct (B, z) such that if z can be generated, then x must be chosen always from B (and is not a generated number). So the generation tree is linear. Because of the factor 2, in any step, the number generated so far is shifted to the left. We have to cope with this shifting.

With regard to item 2, our construction makes sure that the size of the linear generation tree is bounded. So the number of shifts is bounded. For B we choose numbers that are much longer than this bound such that each number is provided with a unique stamp. The stamps make sure that there is at most one possible tree that generates z. In particular, this fi xes the sequence of numbers from B that are chosen for x. This keeps the shifting under control.

The problem in item 1 is more complicated and also more interesting. It comes down to prove NPhardness of the following extended sum-of-subset problem.

$$
\mathrm{SOS}_{2} \stackrel{d f}{=}\left\{\left(w_{1}, \ldots, w_{n}, z\right): \exists I \subseteq\{1, \ldots, n\}\left(\sum_{i \in I} w_{i}^{2}=z\right)\right\}
$$

(In the proof we use a promise problem related to SOS_{2}, but for simplicity we argue with SOS_{2} in this sketch.) First we reduce 1 -IN-3-SAT to SOS and obtain an SOS instance $w=\left(w_{1}, \ldots, w_{2 n}, z\right)$. The
reduction is such that either $w \notin \operatorname{SOS}$ or there is a selection of exactly n weights which sum up to z. We choose a base b larger than z and all w_{i}^{2}. So in the system to base b, z and all w_{i}^{2} fit into one digit. For each w_{i}, defi ne the following 6 -digit numbers in the system to base b.

$$
\begin{array}{rll}
a_{i} & \stackrel{d f}{=} & {\left[11000 w_{i}\right]_{b}} \\
r_{i} & \stackrel{d f}{=} & {\left[10001 w_{i}\right]_{b}}
\end{array}
$$

The set of all a_{i} and all r_{i} build the weights for the SOS_{2} instance we want to construct. The intention is to use the weight a_{i} whenever w_{i} is used in the sum that yields z, and to use r_{i} whenever w_{i} is not used. The squares of a_{i} and r_{i} look as follows with respect to base b.

$$
\begin{aligned}
a_{i}^{2} & \stackrel{\text {df}}{=} \\
r_{i}^{2} & \stackrel{d f}{=}
\end{aligned}\left[\begin{array}{ccccccccccc}
1 & 2 & 1 & 0 & 0 & 2 w_{i} & 2 w_{i} & 0 & 0 & 0 & w_{i}^{2}
\end{array}\right]_{b}
$$

Note that a_{i}^{2} and r_{i}^{2} have the same first digit, the same last digit, and the same digit at the middle position. At all other positions, either a_{i}^{2} or r_{i}^{2} has digit 0 . In the sum for SOS_{2}, for every i, either a_{i} or r_{i} is used. Therefore, in system b, the last digit of this sum becomes predictable: It must be $\sum_{i} w_{i}^{2}$. This is the most important point in our argumentation. Also, we choose exactly n weights a_{i} and n weights r_{i}. With $s_{1} \stackrel{d f}{=} \sum_{i} w_{i}, s_{2} \stackrel{d f}{=} \sum_{i} w_{i}^{2}$, and $\bar{z} \stackrel{d f}{=} s_{1}-z$ we can easily describe the destination number for the SOS $_{2}$ instance.

$$
z^{\prime} \quad \stackrel{d f}{=} \quad\left[\begin{array}{lllllllllll}
2 n & 2 n & n & 0 & 2 n & 2 s_{1} & 2 z & 0 & n & 2 \bar{z} & s_{2}
\end{array}\right]_{b}
$$

We obtain the instance $\left(a_{1}, r_{1}, \ldots, a_{2 n}, r_{2 n}, z^{\prime}\right)$ which belongs to SOS_{2} if and only if $\left(w_{1}, \ldots, w_{2 n}, z\right) \in$ SOS. This shows NP-hardness for SOS_{2} and solves the diffic culty mentioned in item 2.

We inductively use this technique to show that for all $c \geq 1$, the following extended sum-of-subset problem is NP-complete.

$$
\operatorname{SOS}_{c} \stackrel{d f}{=}\left\{\left(w_{1}, \ldots, w_{n}, z\right): \exists I \subseteq\{1, \ldots, n\}\left(\sum_{i \in I} w_{i}^{c}=z\right)\right\} .
$$

We need SOS_{c} as a auxiliary problem for generation problems. However, we feel that this new NPcompleteness result is interesting in its own right.

5.1 Notations

In the proofs below we have to construct natural numbers that contain information about NP computations. In addition, these numbers have to contain this information in a way such that exponentiation will not destroy it. For this we need to consider numbers with respect to several bases b. Therefore, we introduce the following notations. For $b \geq 2$ defi ne $A_{b}=\{0, \ldots, b-1\}$ to be the alphabet that contains b digits. As abbreviation we write A instead of A_{2}. For digits $a_{0}, \ldots, a_{n-1} \in A_{b}$, let $\left[a_{n-1} \cdots a_{0}\right]_{b} \stackrel{d f}{=} \sum_{i=0}^{n-1} a_{i} b^{i}$. This means that $\left[a_{n-1} \cdots a_{0}\right]_{b}$ is the number that is represented by $a_{n-1} \cdots a_{0}$ with respect to base b.

We will consider vectors of weights $W=\left(w_{1}, \ldots, w_{2 n}\right)$ such that certain selections of these weights sum up to given destination numbers z_{1}, \ldots, z_{c}. We group W into pairs $\left(w_{1}, w_{2}\right),\left(w_{3}, w_{4}\right)$, and so on. Each pair has a unique stamp u in its binary representation such that the destination number z_{c} shows the same stamp, but all other pairs have 0's at this position. This allows us to argue that if we want to reach z_{c}, then from each pair we have to use at least one weight. Moreover, in view of generation problems, we need the stamps still working if the weights are multiplied by small numbers. Therefore, additionally we demand that the stamp u is embedded in s digits 0 . We make this precise:

Definition 5.2 Let $W=\left(w_{1}, \ldots, w_{2 n}\right)$ and $Z=\left(z_{1}, \ldots, z_{c}\right)$ where $n, c \geq 1$. Define $\bar{z}_{c} \stackrel{\text { df }}{=}\left(\sum_{w \in W} w^{c}\right)-z_{c}$. We call $(W, Z) s$-distinguishable, $s \geq 1$, if all $\operatorname{bin}\left(w_{i}^{c}\right)$ have same length l where $l \equiv 1(c)$, and if for every $j<n$ there exist $t \geq 1$ and $u \in 1 A^{*}$ such that

1. $\operatorname{bin}\left(z_{c}\right), \operatorname{bin}\left(\bar{z}_{c}\right), \operatorname{bin}\left(w_{2 j+1}^{c}\right), \operatorname{bin}\left(w_{2 j+2}^{c}\right) \in A^{*} 0^{s} u 0^{s} A^{t}$ and
2. for all $i \neq j, \operatorname{bin}\left(w_{2 i+1}^{c}\right), \operatorname{bin}\left(w_{2 i+2}^{c}\right) \in A^{*} 0^{s} 0^{|u|} 0^{s} A^{t}$.

5.2 NP-Hardness of Modifi ed Sum-of-Subset Problems

We want to show that for $c, k \geq 1$, the generation problem $\operatorname{GEN}\left(x^{c}+k y\right)$ is \leq_{m}^{p}-hard for NP. The proof is such that the NP-hardness of modifi ed sum-of-subset problems is shown first, and then this is transferred to the generation problems. Our argumentation for the modifi ed sum-of-subset problems is restricted to instances that meet several requirements. Therefore, it is convenient to defi ne these problems as pairs $\left(L_{c, s}, R_{c, s}\right)$ of disjoint sets.

Definition 5.3 Let $c, s \geq 1$.

$$
\begin{aligned}
& L_{c, s} \stackrel{d f}{=}\left\{(W, Z): W=\left(w_{1}, \ldots, w_{2 n}\right), Z=\left(z_{1}, \ldots, z_{c}\right),(W, Z) \text { is } n s\right. \text {-distinguishable, and } \\
&\left.(\exists I \subseteq\{1, \ldots, 2 n\} \text { s.t. for all } i, 2 i+1 \in I \Leftrightarrow 2 i+2 \notin I)(\forall m \in\{1, \ldots, c\})\left[\sum_{i \in I} w_{i}^{m}=z_{m}\right]\right\} \\
& R_{c, s} \stackrel{\text { df }}{=} \quad\left\{(W, Z): W=\left(w_{1}, \ldots, w_{2 n}\right), Z=\left(z_{1}, \ldots, z_{c}\right),(W, Z) \text { is } n s\right. \text {-distinguishable, and } \\
&\left.(\forall I \subseteq\{1, \ldots, 2 n\})(\forall m \in\{1, \ldots, c\})\left[\sum_{i \in I} w_{i}^{m} \neq z_{m}\right]\right\}
\end{aligned}
$$

Observe that for $c, s \geq 1, L_{c, s} \cap R_{c, s}=\emptyset, L_{c, s} \in$ NP, and $R_{c, s} \in$ coNP. We show NP-hardness for $c=1$ first, and then inductively for higher c 's.

Lemma 5.4 For $s \geq 1,\left(L_{1, s}, R_{1, s}\right)$ is $\leq_{m}^{p p}$-hard for NP.
Proof For any word $a_{n-1} \ldots a_{0} \in A^{*}$, let $a[i] \stackrel{\text { df }}{=} a_{i}$.
$1-\mathrm{IN}-3-\mathrm{SAT} \stackrel{d f}{=}\{H: H$ is a 3 -CNF formula having an assignment
that satisfi es exactly one literal in each clause $\}$

1-IN-3-SAT is NP-complete. For $s \geq 1$, we show 1-IN-3-SAT $\leq{ }_{m}^{p p}\left(L_{1, s}, R_{1, s}\right)$ via reduction f. Let H be a 3-CNF formula with clauses C_{1}, \ldots, C_{m} and variables x_{1}, \ldots, x_{n} where $n \geq 2$. For $0 \leq i \leq n-1$ let

$$
\begin{aligned}
a & \stackrel{\text { df }}{=} 0^{s n} 10^{s n}, \\
a_{i} & \stackrel{\text { df }}{=} 0^{i(2 s n+1)} a 0^{(n-i-1)(2 s n+1)}, \\
w_{2 i+1} & \stackrel{\text { df }}{=}\left[1 a_{i} c_{i 1} \ldots c_{i m}\right]_{2}, \text { and } \\
w_{2 i+2} & \stackrel{\text { df }}{=}\left[1 a_{i} \bar{c}_{i 1} \ldots \bar{c}_{i m}\right]_{2}
\end{aligned}
$$

where

$$
c_{i j}= \begin{cases}0^{n-1} 1 & , \text { if } x_{i} \text { is a literal in } C_{j} \\ 0^{n} & , \text { otherwise }\end{cases}
$$

and

$$
\bar{c}_{i j}= \begin{cases}0^{n-1} 1 & , \text { if } \overline{x_{i}} \text { is a literal in } C_{j} \\ 0^{n} & , \text { otherwise } .\end{cases}
$$

Finally, defi ne the reduction as $f(H) \stackrel{\underline{d f}}{=}\left(\left(w_{1}, \ldots, w_{2 n}\right),(z)\right)$ where $d \stackrel{d f}{=} n(2 s n+1)+m n$ and

$$
z \stackrel{d f}{=} n 2^{d}+\left[a^{n}\left(0^{n-1} 1\right)^{m}\right]_{2}
$$

Note that $\left|\operatorname{bin}\left(w_{i}\right)\right|=d+1$. Let $\bar{z} \stackrel{d f}{=} \sum_{i=1}^{2 n} w_{i}-z$ and observe that

$$
\bar{z}=n 2^{d}+\left[a^{n} 0^{n m}\right]_{2}+2 \cdot\left[\left(0^{n-1} 1\right)^{m}\right]_{2}
$$

Therefore, $\left(\left(w_{1}, \ldots, w_{2 n}\right),(z)\right)$ is $n s$-distinguishable.
Let $H \in 1$-IN-3-SAT. So there exists an assignment $\Phi:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ such that each clause is satisfi ed by exactly one literal. Let

$$
I \stackrel{d f}{=}\left\{2 i+1: 0 \leq i<n \text { and } \Phi\left(x_{i}\right)=1\right\} \cup\left\{2 i+2: 0 \leq i<n \text { and } \Phi\left(x_{i}\right)=0\right\}
$$

It follows $\sum_{i \in I} w_{i}=z$ and hence $\left(\left(w_{1}, \ldots, w_{2 n}\right),(z)\right) \in L_{1, s}$.
Let $H \notin 1$-IN-3-SAT and suppose there exists $I \subseteq\{1, \ldots, 2 n\}$ such that $\sum_{i \in I} w_{i}=z$. For all i, $w_{i}>2^{d}$. Also, $z<(n+1) 2^{d}$, since $\left[a^{n}\left(0^{n-1} 1\right)^{m}\right]_{2}<2^{d}$. Therefore, I contains at most n elements. On the other hand, for all $i, w_{i}<2^{d}+2^{d-n}$. Since $(n-1)\left(2^{d}+2^{d-n}\right)<n 2^{d}$ we obtain $|I|=n$.

Since $\left(\left(w_{1}, \ldots, w_{2 n}\right),(z)\right)$ is $n s$-distinguishable, I must contain exactly one element from each pair $\left(w_{2 i+1}, w_{2 i+2}\right)$. For every $k \in\{0, \ldots, m-1\}$ there exists exactly one $j \in I$ such that $w_{j}[k n]=1$: Otherwise, in $\operatorname{bin}\left(\sum_{i \in I} w_{i}\right)$ there is a 1 at position $k n+t$ where $1 \leq t<n$. This is impossible. Therefore, if Φ is defi ned such that $\Phi\left(x_{i}\right)=1 \Leftrightarrow 2 i+1 \in I$, then Φ satisfi es exactly one literal in each clause. This contradicts our assumption. Hence, $\left(\left(w_{1}, \ldots, w_{2 n}\right),(z)\right) \in R_{1, s}$.

So far we know that ($L_{1, s}, R_{1, s}$) is NP-hard. This is the induction base of our argumentation. Now we turn to the induction step and show how to transfer hardness to pairs ($L_{c, s}, R_{c, s}$) where $c>0$.

Lemma 5.5 For $c, s \geq 1,\left(L_{c, 2 s+c}, R_{c, 2 s+c}\right) \leq{ }_{m}^{p p}\left(L_{c+1, s}, R_{c+1, s}\right)$.
Proof We describe the reduction f on input (W, Z) where $W=\left(w_{1}, \ldots, w_{2 n}\right)$ and $Z=\left(z_{1}, \ldots, z_{c}\right)$. Let $w=\max (W)$ and choose $l^{\prime} \equiv 0(c+1)$ such that $b \stackrel{d f}{=} 2^{l^{\prime}}>4 n(c+1)!\cdot w^{c+1}$. All w_{i} belong to A_{b}. For $1 \leq k \leq 2 n$, defi ne the following weights (where a means accepted weight and r means rejected weight).

$$
\begin{array}{rll}
a_{k} & \stackrel{d f}{=} & {\left[110^{c} 0 w_{k}\right]_{b}} \\
r_{k} & \stackrel{d f}{=} & {\left[100^{c} 1 w_{k}\right]_{b}}
\end{array}
$$

Fix any m such that $1 \leq m \leq c+1$. In the following we show how to defi ne the right destination number y_{m}. After that we defi ne $f(W, Z)=\left(W^{\prime}, Z^{\prime}\right)$ where $W^{\prime}=\left(a_{1}, a_{2}, r_{1}, r_{2}, a_{3}, a_{4}, r_{3}, r_{4}, \ldots, r_{2 n-1}, r_{2 n}\right)$ and $Z^{\prime}=\left(y_{1}, \ldots, y_{c+1}\right)$. By binomial theorem,

$$
\begin{align*}
a_{k}^{m} & =\sum_{i=0}^{m} \sum_{j=0}^{i}\binom{m}{i}\binom{i}{j} w_{k}^{m-i} \cdot b^{(c+2) i+j} \tag{3}\\
r_{k}^{m} & =\sum_{i=0}^{m} \sum_{j=0}^{i}\binom{m}{i}\binom{i}{j} w_{k}^{m-i} \cdot b^{(c+2) j+i} \tag{4}
\end{align*}
$$

Observe that in (3) each term $b^{(c+2) i+j}$ appears uniquely: If $(c+2) i+j=(c+2) i^{\prime}+j^{\prime}$, then (since $j<c+2$ and $\left.j^{\prime}<c+2\right) j=j^{\prime}$ and $i=i^{\prime}$. Similarly, in (4) each term $b^{(c+2) j+i}$ appears uniquely. Now the idea is, to let $a_{k}(t)$ denote the coeffi cient of b in equation (3), and to let $r_{k}(t)$ denote the coeffi cient of
b^{t} in equation (4). First, we defi ne $a_{k}(t)$ and $r_{k}(t)$ for $0 \leq t \leq d$, where $d \stackrel{d f}{=}(c+3) m$, and then we show that this defi nition fi ts to our idea.

$$
\begin{align*}
& a_{k}(t) \stackrel{d f}{=}\left\{\begin{aligned}
&\binom{m}{i}\binom{i}{j} w_{k}^{m-i}: \\
& \begin{array}{ll}
\text { if } t=(c+2) i+j \text { for } 0 \leq j<i \leq m \\
0 & : \\
\text { if } t=(c+2) j+i \text { for } 0 \leq j<i \leq m
\end{array} \\
& r_{k}(t) \stackrel{\text { df }}{=}\left\{\begin{aligned}
m \\
i
\end{aligned}\right) w_{k}^{m-i}: \\
&\left\{\begin{aligned}
& 0: \\
& \text { otherwise, i.e., if } t=(c+3) i
\end{aligned}\right. \\
&\binom{m}{i}\binom{i}{j} w_{k}^{m-i}: \\
&\binom{m}{i} w_{k}^{m-i}: \\
& \text { otherwise, i.e., if } t=(c+2) i+j \text { for } 0 \leq j<i \leq m
\end{aligned}\right. \tag{5}\\
& \tag{6}
\end{align*}
$$

Note that $a_{k}(t)$ and $r_{k}(t)$ depend on m. We abstain from taking m as additional index, since m will always be clear from the context. Observe that the three cases in these defi nitions are indeed disjoint. So $a_{k}(t)$ and $r_{k}(t)$ are well-defi ned. It follows that $a_{k}(t)$ and $r_{k}(t)$ are the announced coeffi cients from equations (3) and (4). It follows that

$$
\begin{aligned}
a_{k}^{m} & =\sum_{t=0}^{d} a_{k}(t) \cdot b^{t} \quad \text { and } \\
r_{k}^{m} & =\sum_{t=0}^{d} r_{k}(t) \cdot b^{t}
\end{aligned}
$$

All $a_{k}(t)$ and all $r_{k}(t)$ are less than $b / 4 n$ and therefore belong to A_{b}. Hence,

$$
\begin{align*}
a_{k}^{m} & =\left[a_{k}(d) \cdots a_{k}(1) a_{k}(0)\right]_{b} \quad \text { and } \tag{7}\\
r_{k}^{m} & =\left[r_{k}(d) \cdots r_{k}(1) r_{k}(0)\right]_{b} \tag{8}
\end{align*}
$$

Equations (5) and (6) tell us that these representations to base b differ only at positions $t \not \equiv 0(c+3)$.
In order to defi ne the destination number y_{m}, we show how to transfer a selection of weights w_{k} to a corresponding selection of weights a_{k}^{m} and r_{k}^{m}. Suppose $\sum w_{k}=z_{1}$ where the sum ranges over a suitable collection of n weights. Now choose a_{k}^{m} for every weight w_{k} that is used (i.e., accepted) in the sum $\sum w_{k}$; and choose r_{k}^{m} for every weight w_{k} that is not used (i.e., rejected) in this sum. The choice of whether to take a_{k}^{m} or r_{k}^{m} only matters for positions $t \not \equiv 0(c+3)$. By equations (5) and (6), at these positions, either r_{k}^{m} has digit 0 and a_{k}^{m} has digit $\binom{m}{i}\binom{i}{j} w_{k}^{m-i}$, or a_{k}^{m} has digit 0 and r_{k}^{m} has digit $\binom{m}{i}\binom{i}{j} w_{k}^{m-i}$ (note that $i>0$ since $i \neq j$). So when we consider the sum of all chosen a_{k}^{m} and r_{k}^{m} at such a position, then either we see digit

$$
\binom{m}{i}\binom{i}{j} \sum_{k \text { accepted }} w_{k}^{m-i}=\binom{m}{i}\binom{i}{j} z_{m-i}
$$

or we see digit

$$
\binom{m}{i}\binom{i}{j} \sum_{k \text { rejected }} w_{k}^{m-i}=\binom{m}{i}\binom{i}{j} \bar{z}_{m-i}
$$

where $z_{0} \stackrel{d f}{=} n$ and $\bar{z}_{i}=\sum_{w \in W} w^{i}-z_{i}$ as defi ned above. This motivates the following digits of the destination number y_{m}.

$$
y(t) \stackrel{\text { df }}{=}\left\{\begin{aligned}
&\binom{m}{i}\binom{i}{j} z_{m-i}: \\
& \text { if } t=(c+2) i+j \text { for } 0 \leq j<i \leq m \\
&\binom{m}{i}\binom{i}{j} \bar{z}_{m-i}: \\
& \text { if } t=(c+2) j+i \text { for } 0 \leq j<i \leq m \\
& \sum_{w \in W}\binom{m}{i} w^{m-i}: \\
& \text { otherwise, i.e., if } t=(c+3) i
\end{aligned}\right.
$$

Here again we abstain from taking m as index, since m will be clear from the context. Defi ne the m-th destination number as

$$
y_{m} \stackrel{d f}{=}[y(d) \cdots y(1) y(0)]_{b} .
$$

To finish f 's defi nition, let $f\left(W, Z \stackrel{\text { df }}{=}\left(W^{\prime}, Z^{\prime}\right)\right.$ where $W^{\prime}=\left(a_{1}, a_{2}, r_{1}, r_{2}, a_{3}, a_{4}, r_{3}, r_{4}, \ldots, r_{2 n-1}, r_{2 n}\right)$ and $Z^{\prime}=\left(y_{1}, \ldots, y_{c+1}\right)$.

Claim 5.6 If (W, Z) is $(2 s+c) n$-distinguishable, then $f(W, Z)=\left(W^{\prime}, Z^{\prime}\right)$ is $2 n s$-distinguishable.
Proof Fix $m=c+1$ and let $d=(c+3) m$. Observe that for every $k, a_{k}(d)=r_{k}(d)=1$. By assumption, $b=2^{l^{\prime}}$ for $l^{\prime} \equiv 0(c+1)$. Hence one digit from A_{b} corresponds exactly to l^{\prime} bits. By equations (7) and (8), for every $k,\left|\operatorname{bin}\left(a_{k}^{c+1}\right)\right|=\left|\operatorname{bin}\left(r_{k}^{c+1}\right)\right|=d \cdot l^{\prime}+1$. This number is $\equiv 1(c+1)$.

We need to understand the structure of $\bar{y}_{c+1}=\left(\sum_{w \in W^{\prime}} w^{c+1}\right)-y_{c+1}$, the complement of y_{c+1}. For this end, defi ne

$$
\bar{y}(t) \stackrel{\text { df }}{=}\left\{\begin{aligned}
&\binom{m}{i}\binom{i}{j} \bar{z}_{m-i}: \\
& \text { if } t=(c+2) i+j \text { for } 0 \leq j<i \leq m \\
&\binom{m}{i}\binom{i}{j} z_{m-i}: \\
& \text { if } t=(c+2) j+i \text { for } 0 \leq j<i \leq m \\
& \sum_{w \in W}\binom{m}{i} w^{m-i}: \\
& \text { otherwise, i.e., if } t=(c+3) i
\end{aligned}\right.
$$

Observe that for all $t, y(t)+\bar{y}(t)=\sum_{k=1}^{2 n}\left(a_{k}(t)+r_{k}(t)\right)$. Hence

$$
[y(d) \cdots y(1) y(0)]_{b}+[\bar{y}(d) \cdots \bar{y}(1) \bar{y}(0)]_{b}=\sum_{w \in W^{\prime}} w^{m}
$$

and therefore,

$$
\bar{y}_{c+1}=[\bar{y}(d) \cdots \bar{y}(1) \bar{y}(0)]_{b} .
$$

Choose any $j<n$ and consider $a_{2 j+1}$ and $a_{2 j+2}$. By assumption, (W, Z) is $(2 s+c) n$-distinguishable. So there exist $t \geq 1$ and $u \in 1 A^{*}$ such that

1. $\operatorname{bin}\left(z_{c}\right), \operatorname{bin}\left(\bar{z}_{c}\right), \operatorname{bin}\left(w_{2 j+1}^{c}\right), \operatorname{bin}\left(w_{2 j+2}^{c}\right) \in A^{*} 0^{(2 s+c) n} u 0^{(2 s+c) n} A^{t}$ and
2. for all $i \neq j, \operatorname{bin}\left(w_{2 i+1}^{c}\right), \operatorname{bin}\left(w_{2 i+2}^{c}\right) \in A^{*} 0^{(2 s+c) n} 0^{|u|} 0^{(2 s+c) n} A^{t}$.

If one multiplies a binary number of the form $A^{*} 0^{i^{\prime}} u 0^{i^{\prime}} A^{t}$ by $m=c+1 \leq 2^{c}$, then this yields a number of the form $A^{*} 0^{i^{\prime}-c} u^{\prime} 0^{i^{\prime}-c} A^{t+c}$ where $u^{\prime} \in A^{|u|+c}$. So in our case, there exist $t^{\prime} \geq 1$ and $u^{\prime} \in 1 A^{*}$ such that

1. $\operatorname{bin}\left(m z_{c}\right), \operatorname{bin}\left(m \bar{z}_{c}\right), \operatorname{bin}\left(m w_{2 j+1}^{c}\right), \operatorname{bin}\left(m w_{2 j+2}^{c}\right) \in A^{*} 0^{2 s n} u^{\prime} 0^{2 s n} A^{t^{\prime}}$ and
2. for all $i \neq j, \operatorname{bin}\left(m w_{2 i+1}^{c}\right), \operatorname{bin}\left(m w_{2 i+2}^{c}\right) \in A^{*} 0^{2 s n} 0^{\left|u^{\prime}\right|} 0^{2 s n} A^{t^{\prime}}$.

Let $t_{a}=c+2$. For all $i, a_{i}\left(t_{a}\right)=m w_{i}^{c}, r_{i}\left(t_{a}\right)=0, y\left(t_{a}\right)=m z_{c}$, and $\bar{y}\left(t_{a}\right)=m \bar{z}_{c}$. So for $t^{\prime \prime}=t^{\prime}+l^{\prime} \cdot t_{a}$,

1. $\operatorname{bin}\left(y_{m}\right), \operatorname{bin}\left(\bar{y}_{m}\right), \operatorname{bin}\left(a_{2 j+1}^{m}\right), \operatorname{bin}\left(a_{2 j+2}^{m}\right) \in A^{*} 0^{2 s n} u^{\prime} 0^{2 s n} A^{t^{\prime \prime}}$,
2. for all $i \neq j, \operatorname{bin}\left(a_{2 i+1}^{m}\right), \operatorname{bin}\left(a_{2 i+2}^{m}\right) \in A^{*} 0^{2 s n} 0^{\left|u^{\prime}\right|} 0^{2 s n} A^{t^{\prime \prime}}$, and
3. for all $i, \operatorname{bin}\left(r_{2 i+1}^{m}\right), \operatorname{bin}\left(r_{2 i+2}^{m}\right) \in A^{*} 0^{2 s n} 0^{\left|u^{\prime}\right|} 0^{2 s n} A^{t^{\prime \prime}}$.

We obtain the analogous three statements for $r_{2 j+1}$ and $r_{2 j+2}$ by looking at the position $t_{r}=1$. Here for all $i, a_{i}\left(t_{r}\right)=0, r_{i}\left(t_{r}\right)=m w_{i}^{c}, y\left(t_{r}\right)=m \bar{z}_{c}$, and $\bar{y}\left(t_{r}\right)=m z_{c}$. Hence $\left(W^{\prime}, Z^{\prime}\right)$ is $2 n s$-distinguishable.

Claim 5.7 $\operatorname{If}(W, Z) \in L_{c, 2 s+c}$, then $f(W, Z)=\left(W^{\prime}, Z^{\prime}\right) \in L_{c+1, s}$.
Proof By Claim 5.6, $\left(W^{\prime}, Z^{\prime}\right)$ is $2 n s$-distinguishable. Let I be as in the defi nition of $L_{c, 2 s+c}$, and let $\bar{I} \stackrel{d f}{=}\{1, \ldots, 2 n\}-I$. Note $|I|=|\bar{I}|=n$. We choose all a_{i} such that $i \in I$ and all r_{i} such that $i \in \bar{I}$. Note that this collection of weights from W^{\prime} is suitable to show that $\left(W^{\prime}, Z^{\prime}\right)$ belongs to $L_{c+1, s}$ (i.e., when numbering the weights of W^{\prime} from 1 to $4 n$, then the indices of chosen weights form an I^{\prime} where $2 i+1 \in I^{\prime} \Leftrightarrow 2 i+2 \notin I^{\prime}$). Fix any $m \in\{1, \ldots, c+1\}$. Our selection of weights induces the following sum.

$$
\begin{aligned}
z^{\prime} & \stackrel{d f}{=} \sum_{k \in I} a_{k}^{m}+\sum_{k \in \bar{I}} r_{k}^{m} \\
& =\sum_{k \in I}\left[a_{k}(d) \cdots a_{k}(1) a_{k}(0)\right]_{b}+\sum_{k \in \bar{I}}\left[r_{k}(d) \cdots r_{k}(1) r_{k}(0)\right]_{b}
\end{aligned}
$$

We have seen that all $a_{k}(t)$ and all $r_{k}(t)$ are less than $b / 4 n$. So for every t,

$$
z^{\prime}(t) \stackrel{d f}{=} \sum_{k \in I} a_{k}(t)+\sum_{k \in \bar{I}} r_{k}(t)
$$

is less than b. This means that if we consider the weights to base b and sum up digit by digit, then there is no sum that is carried forward. It follows that

$$
z^{\prime}=\left[z^{\prime}(d) \ldots z^{\prime}(1) z^{\prime}(0)\right]_{b}
$$

From equations (5) and (6) we obtain

$$
z^{\prime}(t)=\left\{\begin{aligned}
&\binom{m}{i}\binom{i}{j} \sum_{k \in I} w_{k}^{m-i}: \\
& \text { if } t=(c+2) i+j \text { for } 0 \leq j<i \leq m \\
&\binom{m}{i}\binom{i}{j} \sum_{k \in \bar{I}} w_{k}^{m-i}: \\
& \text { if } t=(c+2) j+i \text { for } 0 \leq j<i \leq m \\
&\binom{m}{i} \sum_{w \in W} w^{m-i}: \\
& \text { otherwise, i.e., if } t=(c+3) i
\end{aligned}\right.
$$

So for all $t, z^{\prime}(t)=y(t)$ and therefore, $z^{\prime}=y_{m}$. This shows $\left(W^{\prime}, Z^{\prime}\right) \in L_{c+1, s}$.

Claim 5.8 If $(W, Z) \in R_{c, 2 s+c}$, then $f(W, Z)=\left(W^{\prime}, Z^{\prime}\right) \in R_{c+1, s}$.
Proof By Claim 5.6, $\left(W^{\prime}, Z^{\prime}\right)$ is $2 n s$-distinguishable. Assume $\left(W^{\prime}, Z^{\prime}\right) \notin R_{c+1, s}$, i.e., there exists I_{a} and I_{r}, subsets of $\{1, \ldots, 2 n\}$, and there exists some $m \in\{1, \ldots, c+1\}$ such that

$$
\begin{equation*}
\sum_{k \in I_{a}} a_{k}^{m}+\sum_{k \in I_{r}} r_{k}^{m}=y_{m} \tag{9}
\end{equation*}
$$

Let $t_{a}=(c+2)(m-1)$. For all $k, a_{k}\left(t_{a}\right)=m w_{k}, r_{k}\left(t_{a}\right)=0$, and $y\left(t_{a}\right)=m z_{1}$. In Equation (9), we can consider the weights to base b and can sum up digit by digit without obtaining a sum that is carried forward. By looking at position t_{a} we obtain $y\left(t_{a}\right)=\sum_{k \in I_{a}} a_{k}\left(t_{a}\right)$ and hence

$$
z_{1}=\sum_{k \in I_{a}} w_{k}
$$

So we found a collection of weights from W whose sum is z_{1}. This is a contradiction.
This complete the proof of Lemma 5.5.

Lemma 5.9 For $c, s \geq 1,\left(L_{c, s}, R_{c, s}\right)$ is $\leq{ }_{m}^{p p}$-hard for NP.
Proof The proof is by induction on c. The induction base follows from Lemma 5.4 while the induction step follows from Lemma 5.5.

Theorem 5.10 For $c \geq 1$, the following sum-of-subset problem is \leq_{m}^{p}-complete for NP.

$$
\operatorname{SOS}_{c} \stackrel{d f}{=}\left\{\left(a_{1}, \ldots, a_{n}, b\right): \exists I \subseteq\{1, \ldots, n\}\left(\sum_{i \in I} a_{i}^{c}=b\right)\right\}
$$

Proof Clearly, $\mathrm{SOS}_{c} \in \mathrm{NP}$. For given (W, Z) where $W=\left(w_{1}, \ldots, w_{2 n}\right)$ and $Z=\left(z_{1}, \ldots, z_{c}\right)$ let $f(W, Z) \stackrel{d f}{=}\left(w_{1}, \ldots, w_{2 n}, z_{c}\right)$. Observe $\left(L_{c, 1}, R_{c, 1}\right) \leq{ }_{m}^{p p} \mathrm{SOS}_{c}$ via f. So by Lemma 5.9, SOS_{c} is NP-hard.

5.3 NP-Hardness of GEN $\left(x^{c}+k y\right)$

Starting from Lemma 5.9 we transfer NP-hardness to generation problems. First, we show this for $c>1$ and then we treat $\operatorname{GEN}(x+k y)$ in a separate lemma.

Lemma 5.11 For $c \geq 2, k \geq 1$ and $s \stackrel{d f}{=} 5 k^{2}(c+5)$, $\left(L_{c, s}, R_{c, s}\right) \leq{ }_{m}^{p p} \operatorname{GEN}\left(x^{c}+k y\right)$.
Proof We describe the reduction f on input (W, Z) where $W=\left(w_{1}, \ldots, w_{2 n}\right)$ and $Z=\left(z_{1}, \ldots, z_{c}\right)$. We may assume that all w_{i} and z_{j} are divisible by $2^{c n s}$. Otherwise, use $W^{\prime}=\left(2^{c n s} w_{1}, \ldots, 2^{c n s} w_{2 n}\right)$ and $Z^{\prime}=\left(2^{c n s} z_{1}, 2^{2 c n s} z_{2}, \ldots, 2^{c c n s} z_{c}\right)$ instead of W and Z. Let $l \stackrel{d f}{=}\left|\operatorname{bin}\left(w_{1}^{c}\right)\right|$ and note that $l>c n s$. If $k=1$, then we use $a=0$ as auxiliary weight. Otherwise, if $k \geq 2$, then we use $a=2^{(l-1) / c}$.

$$
\begin{align*}
B & \stackrel{d f}{=}\left\{a, 2^{l-1}+1\right\} \cup\left\{w_{1} k, w_{2} k, w_{3} k^{2}, w_{4} k^{2}, \ldots, w_{2 n-1} k^{n}, w_{2 n} k^{n}\right\} \tag{10}\\
d & \stackrel{d f}{=} k^{c n}\left(z_{c}+2^{l-1}+1\right)+a^{c} \cdot \sum_{i=1}^{c-1} k^{i} \cdot \sum_{i=0}^{n-1} k^{i c} \tag{11}
\end{align*}
$$

If $n 2^{l-1} \leq z_{c}<n 2^{l}$, then $f(W, Z) \stackrel{d f}{=}(B, d)$, otherwise $f(W, Z) \stackrel{d f}{=}(\emptyset, 0)$. In the following we show $\left(L_{c, s}, R_{c, s}\right) \leq_{m}^{p p} \operatorname{GEN}\left(x^{c}+k y\right)$ via f.

Case 1: Assume $(W, Z) \in L_{c, s}$. Hence there exist weights $x_{1}, \ldots, x_{n} \in W$ such that $\sum_{i=1}^{n} x_{i}^{c}=z_{c}$ where $x_{1} \in\left\{w_{1}, w_{2}\right\}, x_{2} \in\left\{w_{3}, w_{4}\right\}$, and so on. Therefore, $n 2^{l-1} \leq z_{c}<n 2^{l}$ and so $f(W, Z)=(B, d)$. We describe the generation of d. Clearly, $y_{0} \stackrel{d f}{=} 2^{l-1}+1$ can be generated. For $j \geq 1$, let

$$
\begin{equation*}
y_{j} \stackrel{d f}{=} k^{c} \cdot y_{j-1}+\left(k^{j} x_{j}\right)^{c}+a^{c} \cdot \sum_{i=1}^{c-1} k^{i} \tag{12}
\end{equation*}
$$

If y_{j-1} can be generated, then so can y_{j} : For $k=1$ this is trivial. For $k \geq 2$, start with y_{j-1} and apply the generation $y_{\text {new }}=a^{c}+k \cdot y_{\text {old }}$ for $c-1$ times. Then apply the generation $y_{\text {new }}=\left(k^{j} x_{j}\right)^{c}+k \cdot y_{\text {old }}$ (note that $k^{j} x_{j} \in B$). This yields y_{j}. Hence y_{n} can be generated. From equation (12) we obtain

$$
y_{n}=k^{c n} \sum_{i=1}^{n} x_{j}^{c}+k^{c n}\left(2^{l-1}+1\right)+a^{c} \cdot \sum_{i=1}^{c-1} k^{i} \cdot \sum_{i=0}^{n-1} k^{i c}
$$

It follows that $d=y_{n}$ and therefore, $(B, d) \in \operatorname{GEN}\left(x^{c}+k y\right)$.

Case 2: Assume $(W, Z) \in R_{c, s}$. If $z_{c}<n 2^{l-1}$ or $z_{c} \geq n 2^{l}$, then $f(W, Z)=(\emptyset, 0) \notin \operatorname{GEN}\left(x^{c}+k y\right)$ and we are done. So let us assume $n 2^{l-1} \leq z_{c}<n 2^{l}$ and $f(W, Z)=(B, d) \in \operatorname{GEN}\left(x^{c}+k y\right)$. In the remaining proof we will derive a contradiction which will prove the lemma.
If $k \geq 2$, then from equation (11) and $z_{c}<n 2^{l}$ we obtain $d<(n+1) 2^{l} k^{c n}+a^{c} k^{c n+1}$. Hence

$$
\begin{align*}
& k=1 \quad \Rightarrow \quad d<(n+1) 2^{l}, \tag{13}\\
& k \geq 2 \quad \Rightarrow \quad d<2^{l} k^{n(c+3)} . \tag{14}
\end{align*}
$$

Claim 5.12 There exist $m \geq 1, y_{0} \in B$ and $x_{1}, \ldots, x_{m} \in B-\left\{0,2^{l-1}+1\right\}$ such that

$$
\begin{equation*}
d=k^{m} y_{0}+\sum_{i=1}^{m} k^{m-i} x_{i}^{c} . \tag{15}
\end{equation*}
$$

Proof We have seen that $l>$ cns. From equations (13) and (14) it follows that $d<2^{l+n s-2}<2^{2 l-2}$. For all $x \in B-\{0\},\left|\operatorname{bin}\left(x^{c}\right)\right| \geq l$. So if z can be generated and is not already in B, then $|\operatorname{bin}(z)| \geq l$ and therefore $z \geq 2^{l-1}$. If we apply the generation rule $x^{c}+k y$ for $x=z$ and any y, then, since $c \geq 2$, we obtain $z^{\prime} \geq 2^{2 l-2}>d$ which cannot be used to generate d. Similarly, if we apply the generation rule $x^{c}+k y$ for $x=2^{l-1}+1 \in B$ and any y, then we obtain $z^{\prime} \geq 2^{2 l-2}>d$ which cannot be used to generate d. Hence, there exists a generation of d such that in each step, x is chosen from $B-\left\{0,2^{l-1}+1\right\}$. From $z_{c} \geq 2^{l-1}$ and equation (11) it follows that $d \geq 2^{l} k^{c n}$ and hence $d \notin B$. Therefore, d can be generated in the following linear way: There exist $m \geq 1, y_{0} \in B$, and $x_{1}, \ldots, x_{m} \in B-\left\{0,2^{l-1}+1\right\}$ such that if $y_{i} \stackrel{d f}{ } x_{i}^{c}+k \cdot y_{i-1}$ for $1 \leq i \leq m$, then $y_{m}=d$. This is equivalent to the statement in the claim.

Claim 5.13 1. $y_{0}=2^{l-1}+1$.
2. If $k=1$, then $m \leq 2 n$.
3. If $k \geq 2$, then $m=c n$.

Proof First, we show $m<n s / k^{2}$. Assume $m \geq n s / k^{2}$ and $k=1$. By Claim 5.12, $d>m 2^{l-1}$. From equation (13) it follows that $d>2^{l-1} n s / k^{2} \geq 2^{l+1} \cdot n(c+5)>d$ which is a contradiction. Assume $m \geq n s / k^{2}$ and $k \geq 2$. By Claim 5.12, $d>2^{l-1} k^{m-1}$. From equation (14) it follows that $d>2^{l} k^{\left(n s / k^{2}\right)-2} \geq 2^{l} k^{5 n(c+3)}>d$ which is a contradiction. Therefore,

$$
\begin{equation*}
m<n s / k^{2} . \tag{16}
\end{equation*}
$$

Assume $y_{0} \neq 2^{l-1}+1$, i.e., $y_{0} \in B-\left\{2^{l-1}+1\right\}$. By assumption, all w_{i} and z_{i} are $\equiv 0\left(2^{c n s}\right)$. So all elements in $B-\left\{2^{l-1}+1\right\}$ are $\equiv 0\left(2^{n s}\right)$ (if $k \geq 2$, then $\left.a=2^{(l-1) / c} \geq 2^{n s}\right)$. From Claim 5.12 we obtain $d \equiv 0\left(2^{n s}\right)$. However, equation (11) says that $d \equiv k^{c n}\left(2^{n s}\right)$. Since $0<k^{c n}<2^{k c n}<2^{n s}$ we have $d \not \equiv 0\left(2^{n s}\right)$. This is a contradiction and we obtain $y_{0}=2^{l-1}+1$.

We have seen that all elements in $B-\left\{2^{l-1}+1\right\}$ are $\equiv 0\left(2^{n s}\right)$. By Claim 5.12, $d \equiv k^{m}\left(2^{n s}\right)$. By equation (11), $d \equiv k^{c n}\left(2^{n s}\right)$. By equation (16), $k^{m} \leq 2^{k m}<2^{n s}$ and $k^{c n}<2^{n s}$. Therefore, if $k \geq 2$, then $m=c n$. If $k=1$, then by Claim 5.12, $d \geq(m+1) 2^{l-1}$. So by equation (13), $m \leq 2 n$.

Claim 5.14 For every $j, 1 \leq j \leq n$ there exists exactly one i such that $x_{i} \in\left\{w_{2 j-1} k^{j}, w_{2 j} k^{j}\right\}$. If $k \geq 2$, then this i is determined by $i=j$ c.

Proof Fix j. By assumption, (W, Z) is $n s$-distinguishable. So there exist $t \geq 1$ and $u \in 1 A^{*}$ such that $\operatorname{bin}\left(z_{c}\right), \operatorname{bin}\left(w_{2 j-1}^{c}\right), \operatorname{bin}\left(w_{2 j}^{c}\right) \in A^{*} 0^{n s} u 0^{n s} A^{t}$ and for all $i \neq j, \operatorname{bin}\left(w_{2 i-1}^{c}\right), \operatorname{bin}\left(w_{2 i}^{c}\right) \in A^{*} 0^{n s} 0^{|u|} 0^{n s} A^{t}$. Let $r \stackrel{\text { df }}{=} 2 n s+|u|+t$. In the following calculation we are mainly interested in the lower r bits of all x_{i}^{c}. If $\alpha \stackrel{d f}{=}[u]_{2}$, then

$$
\begin{align*}
\left(w_{2 j-1}^{c} \bmod 2^{r}\right) & =\alpha 2^{n s+t}+\beta_{1} \quad \text { and } \tag{17}\\
\left(w_{2 j}^{c} \bmod 2^{r}\right) & =\alpha 2^{n s+t}+\beta_{2} \tag{18}
\end{align*}
$$

where $\beta_{1}, \beta_{2}<2^{t}$. We partition the set of indices $\{1, \ldots, m\}$.

$$
\begin{array}{rll}
J_{1} & \stackrel{d f}{=} & \left\{i: 1 \leq i \leq m \wedge x_{i}=w_{2 j-1} k^{j}\right\} \\
J_{2} & \stackrel{d f}{=} & \left\{i: 1 \leq i \leq m \wedge x_{i}=w_{2 j} k^{j}\right\} \\
J_{3} & \stackrel{\text { df }}{=} & \{1, \ldots, m\}-\left(J_{1} \cup J_{2}\right)
\end{array}
$$

From equation (15) we obtain

$$
\begin{equation*}
d=\sum_{i \in J_{1}} k^{m-i}\left(w_{2 j-1} k^{j}\right)^{c}+\sum_{i \in J_{2}} k^{m-i}\left(w_{2 j} k^{j}\right)^{c}+\sum_{i \in J_{3}} k^{m-i} x_{i}^{c}+k^{m} y_{0} \tag{19}
\end{equation*}
$$

Now we study equation (19) modulo 2^{r}. We start with the first two sums and consider $u_{2 j-1}$ and $w_{2 j}^{c}$ modulo 2^{r}. By equations (17) and (18), these terms consist of an upper part (i.e., $\alpha 2^{n s+t}$) and of a lower part (i.e., β_{1} or β_{2}). Let e_{1} (resp., e_{2}) denote the sum of the upper (resp., lower) parts:

$$
\begin{align*}
& e_{1} \stackrel{\text { df }}{=} \sum_{i \in J_{1}} k^{m-i} k^{j c} \cdot \alpha 2^{n s+t}+\sum_{i \in J_{2}} k^{m-i} k^{j c} \cdot \alpha 2^{n s+t} \tag{20}\\
& e_{2} \stackrel{\stackrel{d f}{=}}{ } \sum_{i \in J_{1}} k^{m-i} k^{j c} \beta_{1}+\sum_{i \in J_{2}} k^{m-i} k^{j c} \beta_{2} \tag{21}
\end{align*}
$$

Moreover, let e_{3} denote the sum (this time modulo 2^{r}) of the last two terms in equation (19):

$$
\begin{equation*}
e_{3} \stackrel{d f}{=}\left(\left(\sum_{i \in J_{3}} k^{m-i} x_{i}^{c}+k^{m} y_{0}\right) \bmod 2^{r}\right) \tag{22}
\end{equation*}
$$

Clearly, $d \equiv e_{1}+e_{2}+e_{3}\left(2^{r}\right)$. We argue that $\left(d \bmod 2^{r}\right)=e_{1}+e_{2}+e_{3}$.
For all $i \in J_{3}$, either $x_{i}^{c}=a^{c} \neq 0$ or $x_{i}^{c}=x^{\prime} k^{c i^{\prime}}$ where $\operatorname{bin}\left(x^{\prime}\right) \in A^{*} 0^{n s} 0^{|u|} 0^{n s} A^{t}$ and $1 \leq i^{\prime} \leq n$. Therefore, for all $i \in J_{3}$,

$$
\begin{equation*}
\left(x_{i}^{c} \bmod 2^{r}\right)<2^{t} k^{c n} \tag{23}
\end{equation*}
$$

Moreover, $\left(y_{0} \bmod 2^{r}\right)=1$. Equations (22) and (23) allow an estimation of e_{3}.

$$
e_{3} \leq \sum_{i \in J_{3}} k^{m-i} 2^{t} k^{c n}+k^{m}
$$

If $k=1$, then by Claim 5.13, $e_{3} \leq 2 n 2^{t}+1$. If $k \geq 2$, then $e_{3} \leq 2^{t} k^{c n} k^{m}+k^{m}$ and $m=c n$. So for all k,

$$
\begin{equation*}
e_{3}<2^{n s+t-1} \tag{24}
\end{equation*}
$$

Estimate e_{2} with help of equation (21) and Claim 5.13:

$$
\begin{equation*}
e_{2} \leq m k^{m-1} k^{j c} 2^{t} \leq 2^{5 k n c+t}<2^{n s+t-1} \tag{25}
\end{equation*}
$$

Together with (24) this yields

$$
\begin{equation*}
e_{2}+e_{3}<2^{n s+t} \tag{26}
\end{equation*}
$$

Finally we turn to e_{1}. Equation (20) can be written as

$$
\begin{equation*}
e_{1}=\alpha 2^{n s+t} k^{j c+m} \sum_{i \in J_{1} \cup J_{2}} k^{-i} \tag{27}
\end{equation*}
$$

Therefore, $e_{1}<2^{|u|+n s+t+5 k n c} \leq 2^{r-1}$. Together with (26) we obtain $e_{1}+e_{2}+e_{3}<2^{r}$ and hence

$$
\begin{equation*}
\left(d \bmod 2^{r}\right)=e_{1}+e_{2}+e_{3} . \tag{28}
\end{equation*}
$$

By equation (11), $d \equiv k^{c n}\left(z_{c}+1\right)\left(2^{r}\right)$. Recall that $\operatorname{bin}\left(z_{c}\right) \in A^{*} 0^{n s} u 0^{n s} A^{t}$. Therefore, $\left(z_{c} \bmod 2^{r}\right)=$ $\alpha 2^{n s+t}+\gamma$ where $\gamma<2^{t}$. Observe $k^{c n}\left(\alpha 2^{n s+t}+\gamma+1\right)<2^{k c n} 2^{|u|} 2^{n s+t+1} \leq 2^{r}$. This yields

$$
\begin{equation*}
\left(d \bmod 2^{r}\right)=\alpha 2^{n s+t} k^{c n}+k^{c n}(\gamma+1) \tag{29}
\end{equation*}
$$

Compare equations (28) and (29). The terms e_{1} and $\alpha 2^{n s+t} k^{c n}$ are divisible by $2^{n s+t}$, while the terms $e_{2}+e_{3}$ and $k^{c n}(\gamma+1)$ are less than $2^{n s+t}$. It follows that $e_{1}=\alpha 2^{n s+t} k^{c n}$ and therefore, by equation (27),

$$
\begin{equation*}
\sum_{i \in J_{1} \cup J_{2}} k^{m-i}=k^{c(n-j)} \tag{30}
\end{equation*}
$$

For $k=1$ this implies $\left|J_{1} \cup J_{2}\right|=1$, while for $k \geq 2$ this implies $\left|J_{1} \cup J_{2}\right| \geq 1$. Assume $k \geq 2$ and let i^{\prime} be the maximum of $J_{1} \cup J_{2}$. The left hand side of (30) is $\equiv k^{n c-i^{\prime}}\left(k^{n c-i^{\prime}+1}\right)$. So it must be that $k^{c(n-j)}<k^{n c-i^{\prime}+1}$ and therefore, $k^{n c-i^{\prime}}=k^{c(n-j)}$. Hence $J_{1} \cup J_{2}=\{j c\}$. This proves Claim 5.14.

Assume $k=1$. By Claims 5.12, 5.13, and 5.14, there exist $\bar{x}_{i} \in\left\{w_{2 i-1}, w_{2 i}\right\}$ such that

$$
\begin{equation*}
d=\left(2^{l-1}+1\right)+\sum_{i=1}^{n} \bar{x}_{i}^{c} \tag{31}
\end{equation*}
$$

Together with equation (11) this shows $z_{c}=\sum_{i=1}^{n} \bar{x}_{i}^{c}$. So $(W, Z) \notin R_{c, s}$ which contradicts our assumption.
Assume $k \geq 2$. By Claim 5.14, for every $j, x_{j c}=\bar{x}_{j} \cdot k^{j}$ where $\bar{x}_{j} \in\left\{w_{2 j-1}, w_{2 j}\right\}$. Moreover, it follows that for every i, if $i \not \equiv 0(c)$, then $x_{i}=a$. So equation (15) can be written as:

$$
\begin{align*}
d & =k^{m} y_{0}+\sum_{j=1}^{n} k^{m-j c} x_{j c}^{c}+\sum_{\substack{i \in\{1, \ldots, m\}, i \neq 0(c)}} k^{m-i} x_{i}^{c} \tag{32}\\
& =k^{n c}\left(a^{c}+1\right)+k^{n c} \sum_{j=1}^{n} \bar{x}_{j}^{c}+a^{c} \sum_{\substack{i \in\{1, \ldots, n c\}, i \neq 0(c)}} k^{n c-i} \tag{33}
\end{align*}
$$

Observe that the right-most sum in (33) can be written as

$$
\frac{k^{n c}-1}{k-1}-\frac{k^{c n}-1}{k^{c}-1}=\sum_{i=1}^{c-1} k^{i} \cdot \sum_{i=0}^{n-1} k^{i c}
$$

So we can continue to transform d.

$$
d=k^{n c}\left(a^{c}+1\right)+k^{n c} \sum_{j=1}^{n} \bar{x}_{j}^{c}+a^{c} \cdot \sum_{i=1}^{c-1} k^{i} \cdot \sum_{i=0}^{n-1} k^{i c}
$$

Together with equation (11),

$$
\begin{equation*}
z_{c}=\sum_{j=1}^{n} \bar{x}_{j}^{c} . \tag{34}
\end{equation*}
$$

So again $(W, Z) \notin R_{c, s}$ which contradicts our assumption.

Lemma 5.15 If $p(x, y)=x+k y$ where $k \geq 1$ then $\operatorname{GEN}(p)$ is \leq_{m}^{p}-complete for NP.
Proof We have already seen the upper bound (Lemma 4.3) and the lower bound for the case $k=1$ [vEB79], so let us focus on the lower bound for $k \geq 2$. We $\leq{ }_{m}^{p p}$-reduce ($L_{1,2 k}, R_{1,2 k}$) to GEN $(x+k y)$. Let $W \stackrel{d f}{=}\left(w_{1}, \ldots, w_{2 n}\right), Z \stackrel{d f}{=}(z)$ such that $w_{i}, z \in \mathbb{N}(1 \leq i \leq 2 n)$. Let $\ell \stackrel{d f}{=}\left|\operatorname{bin}\left(k \Sigma_{i=1}^{2 n} w_{i}\right)\right|$ and $G \stackrel{d f}{=} 2^{\ell+1}$. Defi ne

$$
\begin{aligned}
& v_{1} \stackrel{d f}{=} \\
& v_{2} \stackrel{d f}{=} \\
& v_{i} \stackrel{d f}{=} \\
& z^{\prime} \stackrel{d f}{=} \\
& z^{\prime} k\left(n G+w_{i}\right), \\
&, \text { for } 3 \leq i \leq 2 n,
\end{aligned}
$$

Now let $(W, Z) \in L_{1,2 k}$. Then there is an $I=\left\{i_{1}, \ldots, i_{n}\right\} \subseteq\{1, \ldots, 2 n\}$ such that for all $i \in$ $\{0, \ldots, n-1\}$ exactly one of $\{2 i+1,2 i+2\}$ is in I and $\sum_{i \in I} w_{i}=z$. Assume that $i_{j}<i_{t}$ if $j<t$. Then $p\left(p\left(\ldots p\left(p\left(v_{i_{1}}, v_{i_{2}}\right), v_{i_{3}}\right), \ldots, v_{i_{n-1}}\right), v_{i_{n}}\right)=k\left(G+w_{i_{1}}\right)+k \sum_{j=2}^{n} G+w_{i_{j}}=k(n G+z)=z^{\prime}$.

Now let $(W, Z) \in R_{1,2 k}$ and assume that $\left(v_{1}, \ldots, v_{2 n}, z^{\prime}\right) \in \operatorname{GEN}(p)$. Observe that $v_{i} \geq G$ for all $i \in\{1, \ldots, 2 n\}$. Let T be a generation tree for z^{\prime} from $\left\{v_{1}, \ldots, v_{2 n}\right\}$ with m leaves. Then obviously $z^{\prime} \geq \sum_{q \in \operatorname{fpath}(T)} k^{r(q)} G$. Since for every leaf in T except one there is a path q with $r(q) \geq 1$ we have $n k G+G>n k G+k z=z^{\prime} \geq(m-1) k G+G$ and therefore $m \leq n$. Suppose there is an $i \in\{0, \ldots, n-1\}$ such that neither $v_{2 i+1}$ nor $v_{2 i+2}$ is a value of a leaf in T. We know that (W, Z) is $2 k n$ distinguishable. Adding G to a $w_{j}(1 \leq j \leq 2 n)$ and $n G$ to z does not interfere with the distinguishing gaps of the values by the choice of G. Multiplying some of the values with k, decreases the size of the distinguishing gaps by at most $\lfloor\log k+1\rfloor$. Hence there is a $u \in 1 A^{*}$ and a $t \geq 1$ such that $\operatorname{bin}\left(z^{\prime}\right) \in A^{*} 0^{k n} u 0^{k n} A^{t}$ and for all $j \neq i$, both $\operatorname{bin}\left(v_{2 j+1}\right)$ and $\operatorname{bin}\left(v_{2 j+2}\right)$ are in $A^{*} 0^{k n} 0^{|u|} 0^{k n} A^{t}$. Since in every step of the generation the size of the distinguishing gap is reduced by at most $\lfloor\log k+1\rfloor$ and since there are at most $n-1$ steps in the whole generation process, z^{\prime} can not be generated. Hence for all $i \in\{0, \ldots, n-1\}$ exactly one element of $\left\{v_{2 i+1}, v_{2 i+2}\right\}$ is a value of a leaf in T and $m=n$. If there were a path q in T with $r(q)>1$ then $n k G+G>z^{\prime} \geq k^{2} G+(n-2) k G+G \geq n k G+G(*)$ would hold. Therefore $\operatorname{fpath}(T)=\left\{l^{n-1}\right\} \cup\left\{l^{i} r: 0 \leq i \leq n-2\right\}$. Since $v_{1}, v_{2} \geq k G$ the value of the leaf with the path l^{n-1} has to be one of $\left\{v_{1}, v_{2}\right\}$ otherwise again $(*)$ would hold. So there are $\left\{i_{1}, \ldots, i_{n}\right\}$ such that $i_{1} \in\{1,2\}$ and

$$
\begin{aligned}
z^{\prime} & =p\left(p\left(\ldots p\left(p\left(v_{i_{1}}, v_{i_{2}}\right), v_{i_{3}}\right), \ldots, v_{i_{n-1}}\right), v_{i_{n}}\right) \\
& =k\left(G+w_{i_{1}}\right)+k \sum_{j=2}^{n} G+w_{i_{j}} \\
& =k\left(n G+\sum_{j=1}^{n} w_{i_{j}}\right) \\
& =k(n G+z)
\end{aligned}
$$

and therefore $\sum_{j=1}^{n} w_{i_{j}}=z$ which is a contradiction. Hence $\left(v_{1}, \ldots, v_{2 n}, z^{\prime}\right) \notin \operatorname{GEN}(p)$.
We combine the auxiliary results proved so far and formulate the main result of this section.
Theorem 5.16 For $c, k \geq 1, \operatorname{GEN}\left(x^{c}+k y\right)$ is \leq_{m}^{p}-hard for NP.
Proof Follows from Lemmas 5.9, 5.11, and 5.15.

6 Conclusion

We summarize our results on the complexity of $\operatorname{GEN}(f)$ in the following table. Every lower bound is given by the fact that there exists an f from the considered class of operations whose generation problem is complete for the respective class. All operations are polynomial-time computable.

The gap between NP and $\operatorname{NTIME}\left(2^{\log ^{2} n}\right)$ in the last rows of the table below calls the attention to an interesting open question: Does GEN $(q(x)+k y)$ belong to NP if q is non-linear and $k \geq 2$? Since the generation trees for these polynomials may be of superpolynomial size, the obvious algorithm of guessing and verifying the tree is not applicable. Also, we could not fi nd more compact representations as in Theorem 4.2. There are generation trees where almost all nodes take different values. Therefore it may be possible that we really have to calculate all of them. Perhaps there are special polynomials of the form $q(x)+k y$ for which the closure is very regular, as in Theorem 4.2, case (1)? Another possibility to solve the problem could be to have a closer look at the restricted alternating machines we describe in Section 5. What are the exact capabilities of these machines?

operation	lower bound	Theorem	upper bound	Theorem
arbitrary	recursively enumerable	3.2	recursively enumerable	3.1
length-monotonic	EXPTIME	3.5	EXPTIME	3.3
length-monotonic and commutative	EXPTIME	3.5	EXPTIME	3.3
length-monotonic and associative	PSPACE	3.7	PSPACE	3.6
length-mon., assoc., and commutative	NP	3.9	NP	3.8
all Polynomials $\neq q(x)+k y$	NP	3.9	NP	4.2
$x+y$	NP	3.9	NP	3.8
$x \cdot y$	NP	4.6	NP	3.8
$x^{a} y^{b} c$	4.13	NP	4.2	
all Polynomials $=q(x)+k y$ NP 5.16 NTIME $\left(2^{\log ^{2} n}\right)$ $x^{c}+k y$ NP 5.16 NTIME $\left(2^{\log ^{2} n}\right)$5.1				

References

[CF91] J.-Y. Cai and M. Furst. PSPACE survives constant-width bottlenecks. International Journal of Foundations of Computer Science, 2:67-76, 1991.
[CKS81] A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. Journal of the ACM, 28:114-133, 1981.
[Coo71] S.A. Cook. Characterizations of pushdown machines in terms of time bounded computers. Journal of the ACM, 18:4-18, 1971.
[Mat70] Y. V. Matiyasevich. Enumerable sets are diophantine. Doklady Akad. Nauk SSSR, 191:279-282, 1970. Translation in Soviet Math. Doklady, 11:354-357, 1970.
[vEB79] P. van Emde Boas. Complexity of linear problems. In Proceedings of the Fundamentals of Computation Theory Conference, pages 117-120, 1979.

[^0]: *EMail: [boehler,glasser,schwarzb,wagner]@informatik.uni-wuerzburg.de
 ${ }^{1}$ Regardless of the different ages of the authors.

