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Abstract
Given a fixed computable binary operation f, we study the complexity of the following generation
problem: The input consists of strings ai,...,an,b. The question is whether b is in the closure of
{ay,...,a,} under operation f.

For several subclasses of operations we prove tight upper and lower bounds for the generation prob-
lems. For example, we prove exponential-time upper and lower bounds for generation problems of
length-monotonic polynomial-time computable operations. Other bounds involve classes like NP and
PSPACE.

Here the class of bivariate polynomials with positive coefficients turns out to be the most interest-
ing class of operations. We show that many of the corresponding generation problems belong to NP.
However, we do not know this for all of them, e.g., for 2 + 2y this is an open question. We prove
NP-completeness for polynomials z%y®c where a, b, ¢ > 1. Also, we show NP-hardness for polynomi-
als like 22 + 2y. As a by-product we obtain NP-completeness of the extended sum-of-subset problem
SOSe = {(w1,...,wn,2) : 3T C{1,...,n}(3 ;c;wi = z)} forany ¢ > 1.

1 Introduction

No, this paper is not about problems between generations.> However, genealogy presents an example that
explains the matter we areinterested in. Thereishardly any other prehistoric question where scientists grope
in the dark asin the following: Are Neanderthals completely extinct or are there traces of them left in some
of us? To examine whether a person, e.g., one of the authors, is not a descendant of a Neanderthal, one
would usualy build the whole family tree of the author and check whether every leaf of the tree is labeled
with a homo sapiens. This becomes a generation problem in the following way. We go back to the time
where Neanderthals and homo sapiens still lived segregated from each other. It is well-known that it is the
operation of marriage (in a very natural sense) that produces children. We start with this fi rst generation of
homo sapiens and apply this operation to obtain their children. Then we apply the marriage operation again
and again, until we reach today’s people. Now we see whether our author has been generated.
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Similar generation problems are for example:

e Does b belong to the closure of {as,...,a,} under pairwise addition? Thisis equivalent to a modi-
fi cation of the sum-of-subset problem where factors other than 0 and 1 are allowed. It can be shown
that thisis NP-complete [VEB79].

¢ Does the empty clause belong to the closure of the clauses {¢1, .. ., ¢, } under the rule of the resolu-
tion proof system. This problem is coNP-complete.

e Does agiven dement of amonoid belong to the submonoid that is generated by a given set?

In this paper we investigate sets that are generated by arbitrary computable binary operations. For a fi xed
such operation we study the complexity of the question:

Does a given string b belong to the set that is generated from strings {a1,...,a,}?

To make this precise, let ¥ = {0, 1} be the aphabet and let f be acomputable binary operation on *, i.e.,
f:¥* x¥* = ¥* For B C ¥* let [B]; bethe f-closure of B, i.e., the smallest set that contains B and
that is closed under f. For fi xed f we defi ne the generation problem.

Generation problem GEN( f)
INPUT: a1,...,an,b € X*
QUESTION: Isbin [{a1,...,an}]f?

Equivalently we can use this defi nition in the context of natural numbers, since these can be identifi ed in the
standard way with 2*. For convenience we write operations like addition in infi x form.

In Section 3, we observe that generation problems for computable operations are recursively enumer-
able, and there exist associative, commutative, polynomial-time computable operations whose generation
problems are many-one complete for recursively enumerable sets. There remain undecidable problems even
if we further restrict the operation’s resources like time and space. However, we achieve decidability when
we demand the operation to be length-monotonic which means that in the generation tree of some z, the
lengths of all intermediate results are bounded by the length of z. If the operations are length-monotonic
and polynomial-time computable, al generation problems are solvable in exponential time and there are
also such operations for which the generation problem is hard for EXPTIME. We study the complexity of
various restrictions of these operations. If additionally the operation is associative, then the corresponding
generation problem belongs to PSPACE, and is even PSPACE-complete for suitable operations. If we
further restrict the operations to be commutative, then we obtain generation problems that belong to NP,
and some of them are even NP-complete (e.g., the usual integer addition).

The most interesting operations we consider in this paper are bivariate polynomials with positive coeffi -
cients which are studied in Section 4. Such polynomials are length-monotonic and hence, the corresponding
generation problems are decidable. However, in genera these polynomials are neither associative nor com-
mutative, and hence the generation problems for such polynomials turn out to be non-trivial and exciting.
For example, does GEN(z2 + 2y) or GEN(z2%4?) belong to NP? If so, are they NP-complete?

There are two main results in this section: For one, we show that if p isnot of the form ¢(z) + ky where
g isnon-linear and k& > 2, then the generation problem belongs to NP. Besides that, we present a proof of
NP-completeness for polynomials of the form z%y°c where a, b, ¢ > 1. Proving hardness is diffi cult already
for such smple polynomials, since we have to cope with the various different treesthat generate one number.
Asatool to control the shape of generation trees we introduce (a, b)-weighted trees which are special trees
with additional information. In the proof we force the generation trees into the shape of so-called complete
(a, b)-weighted trees.



We do not know whether the generation problem belongs to NP, if the generating polynomiad is
of the form ¢(z) + ky where ¢ is non-linear and £k > 2. In this regard, as an upper bound we
can easily show that al bivariate polynomials with positive coeffi cients have generation problems in
NTIME—SPACE(QIOg2 " nlogn). Our discussion in Section 5 suggests that this class appears to be aclass
not far from NP. Asa specia case of these polynomials, we consider p(z,y) = z¢ + ky wherec,k > 1.
The main result of Section 5 shows that GEN(p) is NP-hard. Here the operation z¢ brings the main dif-
fi culty for the proof. We have to fi nd a way to encode information to numbers such that this information
is not destroyed by taking the numbers to a high power. Thisis not easy to solve, since already squaring a
number heavily changes its (binary) representation. To overcome this, for ¢ > 1 we introduce generalized
sum-of-subset problems

SOSe L{ (w1, ..., wp,2) : AT C{1,...,n} (e wf = 2)}.

We show that for all ¢ > 1, SOS,. is NP-complete and then reduce these problemsto GEN(p). Although all
SOS, are just auxiliary problems in our proof, we fedl that this new NP-completeness result is interesting
initsown right.

Finally, in Section 6 we summarize our results and give atable that shows a convenient overview of the
upper and lower bounds of generation problems.

2 Préliminaries

For a > 0 let bin(a) be a’s binary representation (without leading zeros, if a > 0). For convenience we use
the operation mod intwo ways: Ina = b(mod m) (or a = b(m) for short) it isused in the usua way, while
the expression (n mod m) denotes the remainder of n divided by m.

We work with pairs (A, B) of digoint languages (where for example A € NP and B € coNP). Say
that pair (A, B) reduces to pair (C, D), in notation (A, B)<}P(C, D), if there exist a polynomial-time
computable function f such that for all z,

zeA = f(r)eC,
r€B = f(x)€D.
A<I?(C,D) and (A, B)<}¥ C are abbreviations for (A4, A)<}?(C, D) and (A, B)<i (C,C).

A fi nite treeis called binary tree, if every node is either aleaf or has exactly two successors. Let L(T')
be the set of leaves, root(7") be the root and Node(T") be the set of nodes of atree T'. We characterize a
path from the root to a node by aword w € {I,7}* where [ defi nes a left turn and r defi nes a right turn.
Let path(T) £{w : wisapath of T'}. Every v € path(T’) that does not lead to a leaf node is called initial
path of T'. In contrast, every path in path(T") that is not an initial path is a full path. Let ipath(7") be the

set of initial paths of 7" and fpath(7") be the set of full pathsin T'. For ¢ € path(T), let i(¢) and (g) be
the number of |eft steps and right steps, resp., in ¢. For anode z of T with path v, let I(z) £1(v) (resp.,

r(z) £r(v)).

The process of generating elements by an iterated application of a binary operation can be visualized
by a generation tree. Let B C ¥* be the base set. If f is abinary operation, then a binary tree is called
f-generation tree from B for z if

e every leaf hasavaue from B,
¢ every node that has successors with vaues z and y has value f(z, y),

e theroot of the tree hasvaue z.

Notethat z € [B]y, if and only if there exists an f-generation tree from B for z.
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3 Generation Problemsfor General Operations

Since we are mostly interested in complexity issues, we restrict ourselves to computable operations. All of
the corresponding generation problems are recursively enumerable and we show that there are polynomial-
time computable operations whose generation problems are undecidable. There remain undecidable prob-
lems even if we further restrict the operation’s resources like time and space. The reason is that even with
restricted resources it is possible to let a generation problem simulate grammatica derivation trees of ar-
bitrary formal languages. We achieve decidability when we demand the operation to be length-monotonic.
Hence we study the complexity of various restrictions of length-monotonic operations.

Theorem 3.1 GEN(o) is recursively enumerable for every computable operation o : £* x ¥* — ¥*,

Proof Consider the following algorithm working on o-formulag, i.e., formulae built up from words in X *

using the operation o. Given such aformula F(z1,...,z,) withz1,...,z, € ¥*, the dgorithm evaluates
the formula and outputs (z1, ..., z,, 2) where z is the value of F(xz1,...,z,). Obvioudy, the algorithm
just enumerates GEN (o). O

We observe that polynomia-time computable operations are still too diffi cult for a complexity-oriented
examination of generation problems. For example, with such an operation we can simulate single steps of
arbitrary Turing machines.

Theorem 3.2 There is an associative, commutative, polynomial-time computable operation o : ¥* x ¥* —
3* such that GEN(o) is m-complete for recursively enumerable sets.

Proof Let ¢ : * — %* bearecursive function such that D, £{z : () is defi ned} isthe halting problem,
and let M be amachine that computes . We defi ne o asfollows: For n, my, ms > 0 let

grtiym o gl yma 4 ortiyimitme - jf M on n does not stop withinm + m; steps
1, otherwise,

and for al other z,y € X* letz oy £ 1.

Observe, that o is commutative and o € FP. For associativity let z,y,z € %*. In case that there are
n,mi, mg, m3 > 0 suchthat z = 0"T11™ ¢y = O"+11™2, z = 0"*11™2 and M on n does not stop within
mi + mg + m3 Weobtain z o (yo 2) = (zoy)oz = QF1mitm2tms |n | other cases we obtain
zo(yoz) = (zoy)oz =1,

Now, if M onn stops within m steps, then [{0"F111}], = {on+11t 0712 . ontiim— L 1} If M
on n does not stop, then [{0"T111}], = {0"*111,07T112,...}. Hence,

n € Dy, < Monnsops < 1 € [{0"'1'}], & (0"*'1,1) € GEN(o).

3.1 Length-Monotonic Polynomial-Time Oper ations

We have seen that in order to get decidable generation problems we have to restrict the class of operations.
Therefore, we demand that in the generation tree of some z, the lengths of all intermediate results are
bounded by |z|, thelength of . Thisisequivalent to say that we restrict to operations o that satisfy |z oy| >
max(|z,|y|). Call such operations length-monotonic. If |z o y| = max(|z|,|y|), then the operation is
called minimal length-monotonic. Generation trees of such operations can be exhaustively searched by an
alternating polynomial-space machine.



Theorem 3.3 GEN(o) € EXPTIME for every length-monotonic, polynomial-space computable operation
o: X* x ¥* —» ¥,

Proof Let o be alength-monotonic, polynomial-space computable operation. GEN(c) can be decided by
the following aternating algorithm that uses at most polynomial space:

function GEN(x1,...,xm z)

r epeat
if z € {x1,...,xm; then accept;
if |z] = 0 then reject;

exi stentially choose z1 and z2 such that (z1 o z2) = z;
uni versal ly choose z from {z1, z2}
forever

Every polynomial-space-bounded aternating algorithm can be simulated by a deterministic exponential-
time-bounded algorithm [CKS81]. So GEN(c) € EXPTIME. O

This exponential-time upper bound for length-monotonic, polynomial-space computable operations is
tight, even for polynomial-time computable operations. To see this we start with atechnical lemma which
simplifi esthe argumentation. It showsthat for certain sets A, we can trandate operationsx : A x A — A to
operations o : X* x X* — ¥* such that the complexity of the generation problem and other properties are
preserved. Thisis done by an appropriate encoding of elements from A.

Lemma 3.4 Let Ay,..., Ak be finite sets, A%A}‘x. XA X Ap X X A, and etk AxA— A
be a polynomial-time computable operation. Then there exists a polynomial-time computable operation
o: X* x ¥* — ¥* such that:

1. GEN(x) <!% GEN(o).
2. If x is commutative then o is commutative.
3. If % is associative then o is associative.

4. If * is minimal length-monotonic then o is minimal length-monotonic.

Proof Let m > 2 be such that |A;] < 2™ fori = 1,2,...,k + I, let h; : A; — X™ be
a block encoding with block length m for 4+ = 1,2,...,k + [, let d : ¥* — 3* be the homo-
morphism defi ned by d(0)2£00 and d(1) £11, and let code : A — ¥* be an encoding given by
code(z1,Zo, . .. Tpiy) Ld(hi(21))01d(he(22))01 ... 01d(hyri(zk4)). Note that [code(u)| = 2m|u| +
2(k+1—1). Forw;,ws € ¥*, o can be defi ned as

wr 0w, & ] code(ur xu) if wy = code(ur) and wy = code(us)
10 ws omax(jwillw2])  otherwise.

Obvioudly, if * is commutative then so is o, and if x is associative then so is o. Now let x be minimal
length-monotonic. If wy = code(uy), we = code(us), and u; * ug = v then we conclude:

|lwy owg| = |code(uy * ug)| = |code(v)| = 2m|v| + 2(k + 1 — 1)
2m-max(|u1|, |ue|) +2(k +1—1)

max(2m|ui| + 2(k + 1 —1),2m|ug| + 2(k + 1 = 1))
max(|code(uq)], |code(usz)|) = max(|w:], |ws]).
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Otherwise, |wy o wo| = |0max(wilw2)| = max(|w: |, |ws|). Hence, o is minimal length-monotonic.
Finally, by defi nition of o, v € [{w, ..., un}]. if and only if code(v) € [{code(u1),. .., code(uy)}Ho.
This compl etes the proof. O

Theorem 3.5 There is a commutative, minimal length-monotonic, polynomial-time computable operation
o:¥* x T* — ¥* such that GEN(o) is <i%8-complete for EXPTIME.

Proof Wefollow the idea of Cook [Coo071] to simulate deterministic exponential-time computations. With-
out loss of generality, a deterministic exponential-time one-tape Turing machine M deciding aset A C ¥*
can be normalized in such away that on input z = a1as . . . a,, it makes 2P(2)) sweeps, wherep is a suitable
polynomial. For 0 < 2i < 2P(2]), the (2i 4+ 1)-st sweep is a right move from tape cell 1 (with the fi rst
symbol of z) to tape cell 4 + 2 within 7 + 1 steps, and the (27 + 2)-nd sweep is a left move from tape cell
i+ 2 totape cdl 1 within i + 1 steps. Each of the turning points belongs to two sweeps.

Turing tape \ \ \ \ \ ‘ ‘ ‘ ‘
12 34 i 12

sweep 1
sweep 2
sweep 3
sweep 4
sweep 5
sweep 6

sweep 2i—1 ) ree e
sweep 2i s ; ‘
sweep 2i+1 N oo e

sweep 242 e ‘

Furthermore, let M have the tape alphabet A, the set of states S, the initia state sg, and the accepting state
s1. Inthe case of acceptance the tape of M isempty. If M isin state s and reads a, then the next state is
o(s,a), and the symbol printed is A(s, a).

We say that the quintuple («, 4, 7, s, a) iscorrect if during thei-th sweep on input x the machine M prints
the symbol @ intape cell j and leaves that cell with state s. One can compute a correct (z, ¢, , s, a) by know-
ing only two other correct quintuples, namely the correct (z,: — 1, j, s, a’) and the correct (z, 1, k, s”, a")
where k € {j — 1,7 + 1}. The idea of our operation is as follows: multiply (z,i — 1,7,s’,a’) with
(z,1,k,s",a") and obtain (z, 7, 7, s,a). In an accepting computation of M on z (and only in this case) one
generates fi nally the correct (z, 22D, 2, s,, 0).

To make this precise, let a; 40 for adl j > n. Furthermore we assume that, in aquintuple (z, i, §, s, a)
where i,j € {0,1,...,27(0®)}, the numbers i and j are given in binary presentation of length exactly
p(|z|) + 1. Now defi ne the operation * as follows.

Right sweep, for 1 < 2; < 2?00 and j = 1,2,...,i:
(z,2i,5 +1,8,a) % (2,20 +1,5,5,0) L(x,2i + 1,5 + 1,0(s',a), A\(s, a))
Left sweep, for1 < 2i+1 < 2°(#Dandj =1,2,...,i + 1:
(2,2 + 1,5,8,0) * (2,20 + 2,5 + 1,5',b) L(z,2i + 2,j,0(s', a), \(', a))
New tape cell right, for 1 < 2; + 1 < 2(lz]):
('Ta 2i+1,0+ 1,5, a’) * ('Ta 0,0, so, D) %(.77, 21 +1,042, U(Sa ai-l-?), A(S, ai+2))
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Turning point left, for 1 < 24 < 2°(z)):

(z,2i,1,s,a) * (,0,0,s0,0) L(x,2i + 1,1, s,a)
Turning point right, for 1 < 25 + 1 < 22(2D):

(z,2i +1,i4+2,s,a) * (£,0,0, 50, 0) L(z,2i +2,i + 2,5, 0)

If u * v is defi ned in this way then v * u is defi ned in the same way. For all other products not yet defi ned,
we defi ne (z, u, v, s, a) * (£, u', v, ', a’) L(omax(z[Hul ol [+ [+1']) ¢ ¢ 50, 0).

Obvioudly, * is polynomial-time computable, minimal length-monotonic and commutative. By our def-
inition, starting with (z,1,1,0(sg,a1), A(so,a1)) and (z, 0,0, sg, O) one can generate exactly the correct
quintuples of the form (z, ... ) together with (z,0,0, so, 0) and (0#1+2(2)+2 ¢ ¢ 50 O). Hence, M ac-
cepts z if and only if ((z,1,1,0(s0,a1), A(s0,a1)), (,0,0,s0,0), (z,2°(2) 2 s, 0)) € GEN(%), and
consequently A <log GEN(*). By Lemma 3.4, we fi nally obtain a polynomial-time computable, minimal
length-monotonic and commutative operation o : $3* x $* — %* such that A <198 GEN(o). O

3.2 Length-Monotonic Associative Polynomial-Time Operations

We have seen that in general, commutativity does not lower the complexity of the generation problem for
length-monotonic, polynomial-time computable operations. In this subsection we show that associativity
does. Here we exploit that for associative operations o we do not need to know the exact structure of an
o-generation treefor z: Associativity makes all generation trees with the same sequence of leaves equivalent
with respect to the generated element. We show that PSPACE is upper bound for all generation problems
with associative, polynomial-space computable operations and that it is lower bound even for associative,
polynomial-time computable operations.

Theorem 3.6 GEN(o) € PSPACE for every length-monotonic and associative polynomial-space com-
putable operation o : ¥* x ¥* — ¥,

Proof The following algorithm decides GEN(o) in polynomial space:

function GEN(z, x1, ..., xn);
choose an i € {1,...,n} nondeterm nistically;
z1 = Xi;
while (z1 # z) and (|z1] < |z|) do begin
choose an i € {1,...,n} nondeterm nistically;
z1 :=z1 o xi
end;
if (z = z1) then accept el se reject O

The polynomial-space bound is tight even for polynomial-time operations o.

Theorem 3.7 There is a minimal length-monotonic and associative polynomial-time computable operation
o: ¥* x ©* — %* such that GEN(o) is <.%8-complete for PSPACE.

Proof Let L C ¥* beaset whichis giﬁg-complete for PSPACE. By Lemma 3.4, it suffi ces to prove ex-
istence of afi nite aphabet A and aminimal length-monactonic and associative polynomial-time computable
operation x : (X% x A*) x (I* x A*) — (Z* x A*) such that L <i¢ GEN(x).

Since L € PSPACE, it follows [CF91] that there exists a polynomial-time computable function
f:2%* x N — Aj and apolynomia p such that for all z € ¥*,

.TGL(—)f(.’II,O)'f(.’L‘,l) """ f("L‘an('wD_l):aO



where (As, -) isthe group of even permutations on fi ve elements with identity permutation ay. Fix anz € X*
and let K £p(|z|) and M £4K + 3. Further, fori = 0,1,...,2% — 1, let b(i) be that length K binary
representation of 1.

We consider the set

ELZ{(z,b(i)ab(j) :0<i<j<25 acAs}C{z} x (2K A5.25)
with multiplication * whose essentia part is given by
(z,b(i) ab(j)) * (z,b(j+1) bb(m)) £(z,b(i) a- f (z, ) -bb(m)).

We obtain
x € L < (2,0%a01%) € [{(z,b(i) f(z,i)b(i+1)) : 0 < i < 2K-1}],.

This cannot be used as reduction function for L <198 GEN(x), since {(z, b(i) f (z,9)b(i+1)) : i < 2K-1}
has exponentially many elements (in the length of z). So we have to generate this set from a few basic
pairs. For thiswe modify E” and * as follows. We use a new separation symbol # and, to achieve minimal
length-monoatonicity, anew padding symbol 2. For u € {0, 1, #}*, let (u) £u2M -l € {0,1,2,#}M, and
forw € {0,1,2, #}*, letw € {0, 1, #}* bethe word w without symbols 2. Now consider the following set
E, C{z} x ({0,1,2,#} U A5)M:

Ey L{(z, (u) 1 u € DK UDSKYRSK Y gk g nKynsK g nskynk . Ay nKyn<k}y

We defi ne the operation « : E;, x E, — E,. The defi nition of the product (z,v) * (z,w) splitsinto three
Cases:

1 If 7w € BSK Y nSE#n<K y n<KunKun<K then (z,v) * (z,w) L(z, (7w)).

2. 1f 5w = u#b(i1)erb(ig)cy . .. cs_1b(is)#u’ suchthat s > 2, u,u’ € B=K,0 <4y < --- < iy < 2K,
C1,C2y...,C5_1 eA;,U{#},and(cj:#:>z'j+1:z'j+1)forj:1,...,3—1then

(2,) * (2, ) L(x, (uftb(ir)ab(i,) #u')),
Whereag—fbl-bg-. . -‘bs—l such that bj =¢j if Cj S A5 and b]' = f(x,z'j) otherwise.
3. If zw is different from both of the above cases then let (z, v) * (z, w) L(z, (¢)).

The operation * inherits associativity from the concatination of words.
Furthermore, we observe (z, (u#b(i)ab(j)#v)) isin [{(z, (0)), (z, (1)), (z, (#))}]« if and only if 7 < j
and f(z,i) - f(z,i4+1)----- f(z,7 — 1) = a. Consequently, we obtain

2 € L (a, (#0% f(2,25-1)115#)) € [{(z,(0)), (2, (1)), (z, (#))}].-

So far the operation * has been defi ned separately on every single set E,. Without loss of gen-
erdity assume that ¢ ¢ L. |If thereisno z € X* such that (y,v), (z,w) € E,, then we defi ne
(y,) * (2, w) L (e, 2max(lyI+12:1z1+wD) In such away we obtain an associative, minimal length-monotonic
operation % on the entire set ©* x ({0,1,2, #} U As)* such that L <lg GEN(x). O

Now let us additionally assume o to be commutative. Again, if we want to know whether or not z €
[{z1,-..,z,}]o, asSociativity enables us to ignore the o-generation tree and instead search for aword over
{z1,...,z,}. Together with commutativity, we just have to guess exponents k1, ..., k, and test whether
m’fl o-.--ozkn = 2 |If the operation is computable in polynomial-time, then the exponentiations are
computable in polynomial-time, too (by squaring and multiplying), which yields the following theorem.
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Theorem 3.8 GEN(o) € NP for all length-monotonic, associative, and commutative polynomial-time
computable operations o : ¥* x ¥* — ¥*,

Again, this upper bound is tight, i.e., there exist associative, commutative, and length-monotonic
polynomial-time computable operations whose generation problems are NP-complete. Even the usual ad-
dition on natural numbers has this property.

Theorem 3.9 GEN(+) is glﬁg-complete for NP, where + is the addition on N.

Proof It isknown that GEN(+) is NP-complete for the addition on integers [VEB79]. This proof exclu-
sively uses natural numbers. O

4 Generation Problemsfor Polynomials

The previous section gave an overview over the complexity of generation problems for polynomial-time
computable operations. Now we want to have a look at the more restricted class of generation problems
whose operations are polynomials. The Davis-Putnam-Robinson-Matiyasevich theorem [Mat70] states that
every recursively enumerable set isrange of apolynomia with integer coeffi cients. Based on this, there are
such polynomials where the generation problem is undecidable. To give an idea of this, take a polynomial p
with undecidable positive range and replace every variable z by z2 + 23+ 2 +22. Take another polynomial ¢
that is capable to generate all negative numbers and negative numbers only. Build a new polynomial out of
p and ¢ with an additional variable y such that for y = 0 the value of ¢ is calculated, and for y # 0 the
value of p is calculated. In this way it is possible to generate all negative numbers which in turn alow
the generation of the positive range of p. However, to abtain this undecidability result, the polynomials
must have negative coeffi cients and they usually contain a rather large number of variables. Therefore, we
concentrate on bivariate polynomials with positive coeffi cients. These are aways length-monotonic and
hence, the corresponding generation problem is decidable. We show that many of them are evenin NP and
all of them belong to NTIME—SPACE(210g2 " nlogn). Sofar we have no evidence against the conjecture
that all these generation problems belong to NP (see also the discussion in Section 5). However, we cannot
prove this.

This section has two main results: First, we show that if p is not of the form ¢(y) + ky where g is
non-linear and k£ > 2, then the corresponding generation problem belongs to NP. Second, we prove NP-
completeness for polynomials of the form z%ybc where a, b, ¢ > 1.

41 TheMain Case

Let us start our investigation with univariate polynomials p, i.e., p(z,y) = g(x) for asuitable polynomia q.
Theorem 4.1 If p is a univariate polynomial, then GEN(p) is in P.

Proof If p(z,y) = q(z) = ¢, thenwehave [{a1,...,an}]p = {a1,...,an,c}. 1T p(z,y) = q(z) =z +¢,
then [{a1,...,an}lp = {ai+ke:i=1,...,n,k > 0}. Inal other caseswe have ¢(z) > 2z or g(z) > 2.
It follows that e € [{ai1,...,an}lp © € € {pr(a;) : i = 1,...,n,k = 0,1,...,|bin(e)| + 1} where
po(z) £z and pry1(z) L p(pi(x)) for k > 0.

Soinall cases the membership to [{a1, ..., ay}], can be easily verifi ed in polynomial time. O

A univariate polynomial p(zx) islinear, if there are a, ¢ € N such that p(z) = ax + c.



Theorem 4.2 If p is a bivariate polynomial that is not of the form p(z,y) = kz+q(y) or p(z,vy) = q(x)+ky
where ¢ is non-linear and k£ > 2, then GEN(p) € NP.

Proof We show that p must have one of the following properties:
(1) p(z,y) =z + q(y) or p(z,y) = q(z) + y for some univariate polynomial g,

(2 p(z,y) = ax + by + c for somea, b, c € N such that a,b > 2, and

(3) p(xay) >zy for all T,Yy.

After this, the proof of the theorem is completed by the following three l[emmas.

Assume that the polynomia p has non of the properties (1), (2), and (3). Since p does not fulfi Il (3) there
are univariate polynomials ¢ and r such that p(z,y) = q(z) + r(y). Since z? + y> > z - y at least one of
the polynomials ¢ and r islinear. Consequently there exist a univariate polynomia ¢ and an k& > 0 such that
p(z,y) = kx + q(y) or p(z,y) = q(z) + ky. Since p does not fulfi Il (2), the polynomial ¢ is not linear.
Since p does not fulfi I (1), we obtain £ > 2. O

Lemma 4.3 If p(z,y) = = + q(y) for some univariate polynomial ¢, then GEN(p) € NP.
Proof It is suffi cient to prove:

Hat,- o yartlp ={a; + > jai-qla;) 1 j€{l,...,r}anday,...,a, € N}

Theinclusion from right to |eft is obvious. For the other direction, we observethat {a1,...,a,} isincluded
in the right hand side (which is obvious) and that the right hand side is closed under p. For the latter let
a;,p;i e Nforl <i<randjke{l,...,r}. Thenfor somec > 0,

plaj + Y (ci-qlai),ar + Y (Bi- q(ai)) = a; + Z (i - g(a;)) + qlax, + Z (Bi - 9(a:)))
i=1 i=1

=1

:a]‘l‘zaz az +qa'k +CZ/8'L az (1)

=1

= a; + Z((ai +cBi) - a(ai) + qlax)-

=1

To see equality (1), observe that by binomia theorem, for al a,b > 0, ¢(a,b) = g(a) + ¢b for somec € N.
O

Lemmad.4 If p(z,y) = ax + by + cfor a,b,c € Nand a,b > 2, then GEN(p) € NP.

Proof LetT beap-generation tree for e. Without loss of generality we can assume that value 0 occurs only
in the leaves of thistree T'. Since a, b > 2, the depth of T is bounded by |bin(e)| + 1.

Let 7" be an arbitrary binary tree whose leaves have values from {a1,...,a,}. For afull path ¢ in T,
choose i(g) € {1,...,n} such that the leaf of ¢ has value a;(4). We obtain that e € [{a1,...,an}], if and
only if there exists abinary tree T whose |eaves have values from {a1, . . . , a, } such that

e = Z ai(g) - @ . pr@ 4 Z c-ad@ . prla)
q € fpath(T) q € ipath(T)
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For abinary tree T' of depth bounded by d and for i, 5 € {0,...,d} we defi ne the characteristics

S;, L #{q:q € ipath(T),l(q) = i andr(¢) = j} and
ri; £ #{q:q € fpath(T),l(q) = iand r(q) = j}.

Note that the rT can be computed from the s s by

T
- roo=1- 300a

- ﬁm ngﬂ sjq,j+1 forj € {0,....d}, "
_ ?1 0= Z’OT 5i+1,0Tf°” € {;), ey d}, and
— Titlj+1 = Sij41 T Sit1j — Sit1j41 1006, J € {0,...,d}.
Using these characteristics we obtain thet e € [{a1,...,an}]p if and only if there exist a binary tree T" of

depth d < |bin(e)| + 1 and a set of natural numbers {r; ;1 : 3,7 € {0,...,d},k € {1,...,n}} such that
> k=1 ik = 17, and

fjfj(zﬂ ak> R S SR

=0 =0 =0 7=0

Observe that the characteristics sT have the following properties.

— sgo <1,

— sho < sEiforjedo,....d—1},

— 8;2_1,0 < 83:0 fori e {O, Ce ,d— 1}, (**)
— sl Sshy sy, forije{0,...,d -1}, and

— sig=sy;=0fori,je{0,...,d}.

On the other hand, we can prove the following.

Claim. Consider arbitrary natural numbers s; ; where i, j € {0,...,d}. If these s; ; fulfi Il (xx), then there
exists abinary tree T such that s ; = s; ; for i,j € {0,...,d}.

Proof of the claim. By induction onw(M) £ 3¢ (327 s; ;.

If w(M) = 0, then the tree with only one node fulfi Ils the statement.

If w(M) > 0, then we have soo > 0. Sinces; g = sq; = 0fori,j € {0,...,d} there exists a pair
(i,j) € {0,...,d}? such that s;; > 0 and szﬂj = s;j41 = 0. Let (49, jo) be such a pair. Define
M'L{s! i 1.3 €40,...,d}} such'[haIsZOJ0 Sio,jo — 1 and s} ; = s; ; for al other (i, 5) € {0,...,d}*.

Obvioudly, M’ fulfl IIs (**) and w(M') = w(M) — 1. By the induction hypothesis, there exists ablnary
tree T' such that s = s;; fori,j € {0,...,d}. Toknow that there exists a full path g in 7" such that

l(q) =ipandr(q) = ]0 we have to prove rZO jo > 0. Wedo this by considering four cases.

If ig = jo = 0 then s7y = sy < s0,0 < 1 and hence s7, = 0.
. . T 1 ) . o Y
If io = 0 and 5o > 0 then 30 o = 80,50 < S0,40 < 80,5o—1 = S0 jo—1 = 50/,;‘071-
I | _ T
If’l()>0and]0—0thmsz()0 Z00<Si00<$i0 10—320 10 ZO 1,0

Ifig > 0andjo > Othens’ < Siggo < Sig—1,jFSiojo—1 = +s! +sT

s
i0.Jo Zo]o = Sio—1,j0 "Si0,50—1 = 'to 1,50 "Zi0,j0—1"

Now choose a full path g in 7" such that I(q) = ig and r(g) = jo and attach two succrs to it. For the
binary tree T' defi ned in such away, wehave &, = sI' . +1 =3 . +1=s;,j, ands’; =sT =

s;,; for all other (i, 5) € {0,...,d}?. Thiscompletes the proof of the claim.

g
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Consequently, weobtainthat e € [{ay, ... ,a,}], if andonly if for d £ |bin(e)|+1 and i, j € {0,...,d}
there exist natural numbers s; ; and there exists a set of natural numbers {r; ;1 : 4,5 € {0,...,d},k €
{1,...,n}} such that

1. thes; ; fulfi Il (xx),
2. 3 k=1 Tijik = 7ij ford, j € {0,..., d} (wherether; ; are computed from the s;,; asin (+)), and
3. e =010 Xjo (Choy rigk - ak) @ b + o 305 g sij-coat b,
This shows GEN(p) € NP. -

Lemma 4.5 If the polynomial p fulfills p(z,y) > x - y for all z,y, then GEN(p) € NP.

Proof Let A C N befinite. Let A £ AU {p(c,c) : ¢ € {0} N A}. Obviously we have [A], = [A'], and for
every z € [A'], thereis ap-generation tree that has no node v that has only child nodes with value 0. If for
every z € N (resp., y € N), (*)

> 2z (resp., p(0,y) > 2y) or

p(z,0) (0,9) >

(x,0) > z* (resp., p(0,y) > y?) or
p(z,1) > 2z (resp,, p(1,y) > 2y) or
(z,1) (1) >

p(z,1) > 22 (resp., p

p(z,0

then there is a p-generation tree for z from A’ such that there are at most |z| nodes with Ieft (resp., right)
child that has avalue > 2 (x). Let D be ap-generation tree from A’ for z. We can assume that there are at
most |z| leaves v in D that have avalue greater than 1 and there can at most be | z| nodes having two children
with values greater than 1. Furthermore, we can assume that there are at most |z| nodes v in D such that
both children of v are leaves with values from {0, 1}. That means that if D has exponentially many nodes,
then nearly every node (except polynomially many ones) (%)

e has one child with value < 1 and another one that is no leaf, or
e isaledaf withvalue < 1, and its parent’s other child is no leaf.
We consider four cases:

e Lettherebey,...,73 € N suchthat (p(z1,0) # 2x1 and p(z2,0) # z3 and p(z3,1) # 2z3 and
p(as,1) # 23) and (p(0, 25) # 25 and p(0, ) # 2 and p(1,7) # 227 and p(1, z5) # 22). Then
p(z,y) = zy + ¢, where ¢ € N. Note that p(z,0) = p(0,y) = ¢. Sincec € A’ if 0 € A’, wecan
assume that there are no leaves with value 0. Furthermore, ¢(z) £z + ¢ = p(1,z) = p(z, 1) for al
z € N. Note that

q(q(...q(z)...)) =z + ke,

so k applications of ¢ can be guessed in one step. Using property (x*), we can guess a polynomialy
sized generation tree, where each node either represents a normal generation step or k£ < z steps of
the above form.

12



e Let there be zy1,...,z4 € N such that for al z € N we have (p(z,0) > 2z or p(z,0) > z?
or p(z,1) > 2z or p(z,1) > z?) and (p(0,z1) # 221 and p(0,z2) # z3 and p(1,z3) # 223 and
p(1,z4) # 23). Thenp(z,y) = z*y+ Y.+ | biz*+dwherek > 1,n,b;,d € N (1 < i < n). Because
of (x) there can only be polynomially many nodes in D with aleft child that has a value greater than
1. Soif there are exponentially many nodes in D, then al of them except polynomially many ones
have a left child with value < 1 and aright child that is not aleaf. Observe that p(0,y) = d for al
1, SO we can assume that there is no left child labeled with 0 since if 0 € A’, soisd. Furthermore,

p(Ly) =y+>." b +dad
p(l,p(l,. : 'p(lay) )) =y +k(2?:1 b; + d)

——— —/
k

Therefore we can guess a polynomial-sized generation tree for z where each node is either a normal
generation step or & < z subsumed steps of the form p(1, y).

o Lettherebe zy,...,z4 € N such that for dl z € N we have (p(z1,0) # 2z; and p(z2,0) # z2
and p(z3,1) # 2z3 and p(z4,1) ¥ ?) and (p(0,z) > 2z or p(0,z) > z2 or p(1,z) > 2z or
p(1,z) > z?). Here asymmetrical argumentation holds.

e Let for al z € N hold (p(x,0) > 2z or p(x,0) > z2 or p(x,1) > 2z or p(z,1) > z?) and
(p(0,z) > 2z or p(0,z) > z2 or p(1,z) > 2z or p(1,z) > z?2). By () there is a polynomial sized
p-generation tree from A’ for b that can be guessed and checked in P.

4.2 GEN(z%ybc) isNP-complete

By Theorem 4.2, if we consider apolynomia of the form Za’b z%Pc,, Where a, b > 1, then the generation
problem belongs to NP. Here we pick out those polynomials that consist of only one term of the sum. For
this special case we can show that GEN(z%y°c) isNP-completeif ¢ > 1. Fora = 1 or b = 1 thisiseasy to
prove.

Proposition 4.6 For a,c > 1, GEN(z%c) is <§,-complete for NP.

Proof We reduce 1-IN-3-SAT to GEN(p), where p(z,y) £ z%c. Let H be a 3-CNF formula with
clauses C1,...,Cy, and variables z1, ..., z,. Let p1,po,... bethe prime numbers larger than ¢. Defi ne
ay %p;ln_pl HmECj p?’ by %p;ln_pl Hﬂecj p?’ for2 <i < n,a %pm—ki Hziecj pj, b; %pm—ki HEECJ- Dy,
2L LTI p2, and g(H) £(a, . . . yan, b1, - - -, by, 2). Notethat g is polynomial-time computable.

Assume H € 1-IN-3-SAT. Then there is an assignment I : {zi,...,z,} — {0,1} that satisfi es
exactly oneliteral in each clause. Therefore, we obtain H;’Q{" p% - ¢! by alinear generation tree that has
leaf-values ¢y, . .., c1 where¢; = a; if I(z;) = 1 and ¢; = b; otherwise. Hence g(H) € GEN(p).

Assume that g(H) € GEN(p), hence z € [{a1,...,an,b1,-..,by}]p. Every prime p; occurs exactly a
timesin thefactorization of z. Therefore, either a; or b; (and not both) hasto be aleaf-value in the generation
tree. If @ > 1 then additionally the generation tree has to be linear and the rightmost leaf hasvalue a1 or b;.
Hence, the assignment I such that I(z;) = 1 if and only if a; is aleaf-value in the generation tree satisfi es
H inthe sense of 1-IN-3-SAT. Therefore H € 1-IN-3-SAT. m|

Now let us consider GEN(z%y"c) for a,b > 1. In general, the crucia point in proving hardness for
generation problems is to cope with the various different trees that generate a number. In our proofs we
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force the generation trees to have a specifi ¢ shape such that the generation is possible only in a predefi ned
way.

Consider an z%yc-generation tree. Clearly, the generated number is a product that consists of various
multiplicities of ¢ and base elements. Asatool to control these multiplicities we introduce (a, b)-weighted
trees, where we mark each node with the power its value appears in the root-value. By controlling the marks
of the leaves, we can force an z%y®c-generation tree into the shape of acomplete (a, b)-weighted tree.

Definition 4.7 Let ¢ be a binary tree. T' = (t, g) is called (a, b)-weighted tree, a,b > 1, if g is a marking-
function g : Node(t) — N such that:

If z = root(t), then g(z) = 1.
If z € Node(t) has a left and a right successor z; and z,, then g(z;) = a - g(z) and g(z,) = b- g(z).

T is called balanced, if max,¢r,;) g(z) < max(a,b) - mingep,) g(z).
T is called complete, if max,er,y) 9(z) < max(a,b) - minger, ) 9(z).

From this defi nition it immediately follows that the marks have the desired properties. We obtain the fol-
lowing connection to GEN (z%y°¢).

Property 4.8 Leta,b > 1. If T = (t,g) is an (a, b)-weighted tree, where ¢ is an z%y°c-generation tree with
values I(v) for all v € L(¢), then

B 9(v) . 9(v)
I(root(t)) = HvEL(t) I(v) HveNode(t)—L(t) o

We want to remark that it is possible to defi ne the notion of (a, b)-weighted treesfora = 1 and b = 1.
However, if a = 1 and b = 1, then complete trees do not exist. In contrast, for al a,b > 1 complete trees
exist. Therefore, we require a, b > 1.

Proposition 4.9 Let a,b > 1. For every n > 1 there exists a balanced (a, b)-weighted tree that has n
leaves.

Proof Forn = 1 takethe tree that consists only of the root.

For arbitrary n > 1, let T' = (¢, g) be abalanced (a, b)-weighted tree withn — 1 leaves. Let 2y € L(t) be
aleaf with minimal weight, i.e,, g(zg) = mlnweL(t) ( ). Define the tree ¢ by adding in ¢ successors z;
and z, to g, and defi ne ¢ : Node(#') — N by ¢'(z) £ g(x) for al z € Node(t), ¢'(z;) L a - g(zo), and
g (z;)£b- g(zo). Thisdefi nesan (a, b)-weighted tree T £ (¢, ¢') with

maxgery) g (z) = max(maxgery g9(z), max(g'(z), g (zr)))
= max(maxger () 9(), max(a,b) - g(zo))
ax(maxzer(t) (%),
(
ax(

- m max (a, b) - minger,;) g(z))
= max(a,b) - minger,y) 9(z)
< max(a,b) - minweL(t/)g'(x). 2
Hence T" is balanced. .

Now we show that for each n > 1 there exists a complete (a, b)-weighted tree with nearly n leaves.
Note that such atree is polynomial-time constructible.
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Proposition 4.10 Leta,b > 1. For every n > 1 there exists a complete (a, b)-weighted tree with at least n
and at most 2n — 1 leaves.

Proof Proposition 4.9 gives a baanced (a, b)-weighted tree 7' with n leaves. If al leaves have minimal
weight, then 7" is complete. Otherwise, thereare k, 1 < k < n — 1, leaves of minimal weight. If we add
two successors to each of these leaves, then the minimal weight increases. So in inequality (2), < changes
to <. Sotheresulting tree 7" iscomplete. 7! hasn — k + 2k = n+ k leaveswheren < n+k < 2n—1. O

Now we show that if the generation tree is not the desired complete tree, then at least one leaf-value is
taken to a power that istoo large.

Proposition 4.11 Let a,b > 1. Let T = (t,g) be a complete (a, b)-weighted tree with n leaves. If ' =
(t',¢') is an (a, b)-weighted tree with more than n leaves, then there exists a leaf y € L(t') such that

9'(y) > maxgep ) g(x).

Proof Without loss of generality we can assume a > b. Fix a shortest way in terms of deleting and adding
leaves that transforms ¢ to ¢'. We have to change at least one leaf zo € L(t) to an inner node of . Let z;
and z,. be the successors of 3. We abtain

g'(z1) = a- g(zo) > max(a,b) - minger () 9(z) > maxger ) 9(2)-
Hence, every y € t' that isreachable from z; fulfills d(y) > ¢'(x;) > max,er, ) g()- O

Next we show that balanced (a, b)-weighted trees have a height which is bounded logarithmically in the
number of |leaves.

Proposition 4.12 Leta > b > 1. Let T = (¢, g) be a balanced (a, b)-weighted tree with n leaves. If d
denotes the maximal depth of a leaf of ¢, then

d < logy(a) - (1 + logy(n))

Proof Let m é_ﬁminveL(t) g(v). Hence ¢ contains a complete binary tree of depth > log,(m), hence
log, (m) < logy(n). T is balanced, so b < am which is equivalent to d < logy(am). Therefore,

d < logy(am) = logy(a) - log,(am) < logy(a) - (1 + logy(n)).

Theorem 4.13 For a,b,c > 1 and p(z,y) £ z%ybc, GEN(p) is <h,-complete for NP.

Proof By Proposition 4.6, we can assume a,b > 1. Containment in NP follows from Theorem 4.2.
We reduce 1-IN-3-SAT to GEN(p). Let H be a 3-CNF formula with clauses C1,...,Cy, and vari-
ables x1,...,z,. Lét py,py,... be the prime numbers larger than c. Defi ne ¢ £ p,.; Hxiecj pj and
bi L ppnyi Hz—iecj p;. Let T = (t, g) beacomplete (a, b)-weighted treewith k leaveswheren < k < 2n—1
and L(t) = {v1,..., v} (such atree exists by Proposition 4.10). Furthermore, let d be the maximal depth
of aleaf of t. Defineq L py,pifori =n+1,...,k,
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B 4 {a;é_tafldbd/-q(“i) i<i<kuly & a9 1 < < n}, and

2

df mAk adpd 9(v)
z = ;. .
Hi:1 P Hvet—L(t)

Proposition 4.12 shows that (B, z) is polynomial-time computable.

If H € 1-IN-3-SAT, then thereis an assignment Iy : {z1,...,z,} — {0, 1} that satisfi es exactly one
literal in each clause. We obtain
m—+k

k
IT e II b I pmsi=]] »
i=1

IH(Ii):l IH(IZ'):O t=n+1
We consider ¢ as an p-generation tree with values
{ aé ,ifi:l,...,nandIH(xi)

1
!

a, Lifi=n+1,...,k.

K3

By Property 4.8, I;(root(t)), the value of the root, can be evaluated as follows.

Ii(root(t)) = H I (v)9®) . H IW)
vEL(t) vENode(t)—L(t)
k

— H (a})9@0) . H (b)9(@0) . H (a})9@) . H 9

In(z;)=1 I (w:)=0 i=n+1 veNode(t)—L(t)

k
dpd dpd dpd
S0 I UL | N GG
Ig(z;)=1 Ig(z;)=0 i=n+1 vENode(t)—L(t)
dpd

& a
- ( H a; - H b; - Hperi) : H I
Ig(zi)=1 Iy (z;)=0 i=n+1
m+k

= H p?‘dbd . H cg(v) = z.
i=1

vENode(t)—L(t)
Hence (B, z) € GEN(p).

Assume (B,z) € GEN(p). So there exists an (a, b)-weighted tree 77 = (t',4’), where ¢’ is a p-
generation tree from B for z. For each v € Node(t') defi ne L/ (v) as the vaue of node v. Each element of
B has exactly one prime factor from p,, 11, ..., Pmik- Since z has al these prime factors at least once, ¢’
must have at least k leaves. Assume ¢’ has more than & leaves. By Proposition 4.11, there exists v € L(t')
such that ¢'(v) > max,er,(y) g(). Iy (v) hasexactly one prime factor from py, 11, - - -, Pmyks SY Pt With
exponent a®b?/g(v;). Hence

a®b?/g(vi)-g' (v)
m-+1

isafactor of I (root(t')). From a%b?/g(v;) - ¢'(v) > ab® it follows that I (root(t')) # 2.

So t' has exactly k leaves. Each prime py,i1, .- ., Pmir Must appear as factor in a value of some ledf.
Therefore, for i = 1,...,n, either a} or b, isavalue of aleaf (but not both). Define Iy : {z1,...,z,} —
{0,1} such that I (z;) = 1 <4¢ af isaleaf-vaue of ¢'. Observe that Iy shows H € 1-IN-3-SAT. O
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5 The Generation Problem GEN(z°¢ + ky)

So far we do not have upper bounds for generation problems of polynomias p(z,vy) = g(z) + ky, whereg
isnon-linear and £ > 2. The obvious algorithm guesses and verifi es generation trees. How large are these
trees? To answer this, observe that the trees are of a special form: When we go from the root to the leavesin
y-direction, then in each step, the length of the value decreases by one bit. When we go in z-direction, then
in each step, the length is bisected. It followsthat the size of such trees grows faster than any polynomial, but
not as fast as 21°8° . Therefore, GEN(p) € NTIME(210g2 ). We do not have to guess complete generation
trees. If a subtree generates some value b, then it suffi ces to store b instead of the whole subtree. We need to
store avalue b every time we go in z-direction. So we need space O(nlogn).

Proposition 5.1 GEN(p) € NTIME-SPACE(21°g2”,nlogn) for all p(z,y) = q(z) + ky where k > 2
and ¢ is a non-linear polynomial.

Because of the special form of a generation tree for such polynomials, the generation problem can be solved
by special alternating machines: Some z can be generated viap from A if and only if thereexist z1, ..., 2z, <
zsuchthatn < |z|, z = 21, 2z, € A, andfordl 1 < i < m, z; = p(zi+1,y;) Where y; can be generated
viap from A and |y;| < %\zi|. An dternating machine can check this predicate in polynomia time with
alogarithmic number of aternations. Furthermore, in existential parts the machine guesses polynomially
many bits. In contrast, in universal parts it guesses logarithmically many bits.

This discussion shows that GEN(p) can be solved with quite restricted resources. However, we do not
know whether GEN(p) belongs to NP. Standard diagonalizations show that there exist oracles A and B
such that BPP# ¢ NTIME(2!°8’ )4 and coNP? ¢ NTIME(2!%¢” ")B_ Therefore, we should not expect
GEN(p) to be hard for any classthat contains BPP or coNP. This rules out many reasonable classes above
NP to be reducible to GEN(p). We consider this as a hint that GEN(p) could be contained in NP, but we
do not have a proof for this. We leave this as an open question.

Nevertheless, in this section we prove lower bounds. The main result, Theorem 5.16, shows that if
p(z,y) = z¢ + ky where ¢, k > 1, then GEN(p) is <F,-hard for NP. The proof is diffi cult for two reasons
which we want to explain for p(z,y) = 22 + 2y.

1. We have to encode NP-computations into generation problems. For this, we need to construct an
instance (B, z) of GEN(p) that represents information about a given NP-computation. The elements
of B must be chosen in away so that squaring will not destroy thisinformation. Thisisdiffi cult, since
squaring anumber heavily changes its (binary) representation.

2. We construct (B, z) such that if z can be generated, then = must be chosen aways from B (and is not
agenerated number). So the generation tree islinear. Because of the factor 2, in any step, the number
generated so far is shifted to the left. We have to cope with this shifting.

With regard to item 2, our construction makes sure that the size of the linear generation tree is bounded. So
the number of shiftsis bounded. For B we choose numbers that are much longer than this bound such that
each number is provided with a unique stamp. The stamps make sure that there is at most one possible tree
that generates z. In particular, this fi xes the sequence of humbers from B that are chosen for z. This keeps
the shifting under control.

The problem in item 1 is more complicated and also more interesting. It comes down to prove NP-
hardness of the following extended sum-of-subset problem.

SOSo £{(wr, ..., wn,2) : I C{1,...,n} (e w? = 2)}
(In the proof we use a promise problem related to SOS,, but for simplicity we argue with SOSs in this
sketch.) First we reduce 1-IN-3-SAT to SOS and obtain an SOS instance w = (w1,...,wsy,,2). The
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reduction is such that either w ¢ SOS or there is a selection of exactly n weights which sum up to z. We
choose a base b larger than z and all w?. So in the system to base b, z and all w? fi t into one digit. For each
w;, defi ne the following 6-digit numbers in the system to base b.

[11000w;]5
[10001wi]b

a;

IS

T

The set of al a; and all r; build the weights for the SOS- instance we want to construct. The intention isto
use the weight a; whenever w; is used in the sum that yields z, and to use r; whenever w; is not used. The
squares of a; and r; look as follows with respect to base b.

2
a;

[1 2100 2w 2w; 00 0 wlp

1

[1 000220 0 012w wl

1

SIS

2
Note that a? and r? have the same fi rst digit, the same last digit, and the same digit at the middle position.
At al other positions, either a? or 72 has digit 0. In the sum for SOS,, for every i, either a; or r; is
used. Therefore, in system b, the last digit of this sum becomes predictable: It must be >°, w?. Thisis
the most important point in our argumentation. Also, we choose exactly n weights a; and n weights r;.
With s1 £ 3 w;, so L3, w?, and Z< s; — 2z we can easily describe the destination number for the SOS,
instance.

Z L 2n2nn02n2s 22 0n 22 sl

We obtain the instance (a1,71, - - - , aon, Ton, 2’) Which belongs to SOS, if and only if (w1, ..., wp,2) €
SOS. This shows NP-hardness for SOS, and solves the diffi culty mentioned in item 2.

We inductively use this technique to show that for all ¢ > 1, the following extended sum-of-subset
problem is NP-complete.

SOS. L{(w1, ..., wp,2) : I C{1,... . n}(,erw§ = 2)}-

We need SOS,. as a auxiliary problem for generation problems. However, we fedl that this new NP-
completeness result isinteresting in its own right.

5.1 Notations

In the proofs below we have to construct natural numbers that contain information about NP computations.
In addition, these numbers have to contain this information in a way such that exponentiation will not
destroy it. For this we need to consider numbers with respect to several bases b. Therefore, we introduce
the following notations. For b > 2 defi ne 4 = {0,...,b — 1} to be the alphabet that contains b digits. As
abbreviation we write A instead of Ay. For digits ag, . ..,a,_1 € Ap, l€t [an_1 - agly £ Z?;OI a;bt. This
meansthat [a,_1 - - - aglp 1S the number that is represented by a,,—1 - - - ag with respect to base b.

We will consider vectors of weights W = (wn, ..., ws,) such that certain selections of these weights
sum up to given destination numbers z4, . . . , z.. We group W into pairs (w1, ws), (w3, w4), and soon. Each
pair has a unique stamp u in its binary representation such that the destination number z,. shows the same
stamp, but al other pairs have 0's at this position. This allows us to argue that if we want to reach z, then
from each pair we have to use at least one weight. Moreover, in view of generation problems, we need the
stamps still working if the weights are multiplied by small numbers. Therefore, additionally we demand that
the stamp « is embedded in s digits 0. We make this precise:
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Definition 5.2 LetW = (w1, ...,woy) and Z = (z1, ..., 2.) Where n,c > 1. Define z,. %(Zwewwc)—zc.
We call (W, Z) s-distinguishable, s > 1, if all bin(w¢) have same length [ where [ = 1(c), and if for every
j < nthereexist ¢ > 1 and u € 1A* such that

1. bin(z), bin(z,), bin(ws; ), bin(w§; ) € A*0%u0% A? and

2. for all i # j, bin(w§; ), bin(ws;, ,) € A*0°0l0s A,

5.2 NP-Hardness of M odifi ed Sum-of-Subset Problems

We want to show that for ¢,k > 1, the generation problen GEN(z¢ + ky) is <},-hard for NP. The
proof is such that the NP-hardness of modifi ed sum-of-subset problems is shown fi rst, and then this is
transferred to the generation problems. Our argumentation for the modifi ed sum-of-subset problems is
restricted to instances that meet severa requirements. Therefore, it is convenient to defi ne these problems
aspairs (L, R, ) of digoint sets.

Definition 5.3 Letc,s > 1.

Les £ {W,2): W = (w1,...,wa), Z=(21,-..,2), (W, Z) is ns-distinguishable, and

(31 C{1,...,2n}stforalli, 2i+1€T & 2i+2¢1)(Vm € {1,...,c})[D>_ wj" = 2]}
icl

{W,Z): W = (wr,...,wa), Z=(21,...,2), (W, Z) is ns-distinguishable, and

(VI C{1,...,2n})(¥m € {1,...,c})[D_ wi # zm]}

i€l

IS

RCS

)

Observethat forc,s > 1, Les N Ry s = 0, L.s € NP, and R, ; € coNP. We show NP-hardness for ¢ = 1
fi rst, and then inductively for higher ¢’s.

Lemmab.4 For s > 1, (L1 s, R1,s) is <HP-hard for NP.
Proof Forany word a,_i ...aq € A*, let a[i] £ a;.

1-IN-3-SAT £ {H : H isa3-CNF formula having an assignment
that satisfi es exactly one literal in each clause}

1-IN-3-SAT is NP-complete. For s > 1, we show 1-IN-3-SAT§’,’,{’(L1,S,R1,S) viareduction f. Let H be

a3-CNF formulawith clauses C4, ..., C,, and variables z1,...,z, wheren > 2. For0 < i <n — 1 let
a £ 0710°",
a; L isnt1) gon—i—1)(2sn+1)
W41 & [1aici1 ... Cim]g, and
woire L [1a;iGi .. Cim)2
where
o1 ifzyisalitera inC;
“Gi=9 on , otherwise
and

__ f o1 ifzzisalitera inC;
G on , Otherwise.
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Finally, defi ne the reduction as f(H)%((wy, ..., way), (z)) whered £ n(2sn + 1) + mn and
2L n2¢ 4 [a™ (0" 11)™],.
Note that [bin(w;)| = d + 1. Let7<£ 37" w; — z and observe that
Z = n2% + [a"0"™]y 4 2 - [(0"11)™],.

Therefore, ((w1, ... ,wsy,), (2)) isns-distinguishable.
Let H € 1-IN-3-SAT. So there exists an assignment @ : {z1,...,z,} — {0,1} such that each clause
is satisfi ed by exactly one literal. Let

TL£{2i+1:0<i<nand®(z;) =1} U{2i +2:0 <i < nand d(z;) = 0}.

Itfollows } . ; w; = z and hence ((w1, . . ., w2n), (2)) € L.

Let H ¢ 1-IN-3-SAT and suppose there exists I C {1,...,2n} such that ;. , w; = z. For al 4,
w; > 24, Also, z < (n + 1)2¢, since [a®(0"~11)™]y < 2¢. Therefore, I contains at most » elements. On
the other hand, for all 4, w; < 24 4 29-". Since (n — 1)(2¢ + 24") < n2? we obtain |I| = n.

Since ((w1, - .., wan), (2)) is ns-distinguishable, I must contain exactly one element from each pair
(w2it1,wa2i42). For every k € {0,...,m — 1} there exists exactly one j € I such that w;[kn] = 1:
Otherwise, inbin(} ;. ; w;) thereisal at position kn 4t where 1 < ¢ < n. Thisisimpossible. Therefore,
if @ isdefi ned such that ®(%;) = 1 < 2i + 1 € I, then & satisfi es exactly one litera in each clause. This
contradicts our assumption. Hence, ((w1,...,wan), (2)) € Ris. O

So far we know that (L ,, R1 ) isNP-hard. Thisisthe induction base of our argumentation. Now we
turn to the induction step and show how to transfer hardness to pairs (L. s, R.,s) where ¢ > 0.

Lemmas.5 For S Z L (Lc,Zs—l—c, Rc,23+c) S%) (Lc—|—1,37 Rc—l—l,s)-

Proof We describe the reduction f on input (W, Z) where W = (w,...,we,) and Z = (z1,...,2). Let
w = max(W) and choose I’ = 0(c + 1) such that b<£ 2" > 4n(c + 1)! - wetL. All w; belong to A,. For
1 < k < 2n, defi nethe following weights (where a means accepted weight and » means rejected weight).

ap L [110°0wy],
Tk 4 [10061wk]b
Fix any m suchthat 1 < m < ¢+ 1. Inthe following we show how to defi ne the right destination number

Ym- After that we defi ne f(VV, Z) = (W, ZI) where W' = (al,ag,rl,rg,ag,a4,r3,r4, . ,TQn_l,'rQn)
and Z' = (y1,---,Yc+1). By binomia theorem,

L (m) (i —i _p(c+2)ity
= 2 (1) (e ©
1 j=
(m) (’L) wlrcn—i . plet2)i+i (4)
— £ i) \J

Observe that in (3) each term b(ct2)i+7 appears uniquely: If (¢ + 2)i 4+ j = (¢ + 2)i’ + 4, then (since
j<c+2andj <c+2)j=j andi=1i. Similarly, in (4) each term b(c+2)i+i gppears uniquely. Now
the idea s, to let a;(t) denote the coeffi cient of # in equation (3), and to let 74 (¢) denote the coeffi cient of

i

DY

m
=0
m

=0

0
0

J=
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b* in equation (4). First, we defi ne g, (t) and () for 0 < t < d, where d £(c + 3)m, and then we show
that this defi nition fi tsto our idea

¢

(M Qwy™ + ift=(c+2)i+jfor0<j<i<m
ap(t) £ ¢ 0 ift=(c+2)j+ifor0<j<i<m )
| (Dwp" : otherwise i, if ¢ = (c+ 3)i
' 0 : ift=(c+2)i+jfor0<j<i<m
() £ 4 (MOwp : ift=(c+2)j+ifor0<j<i<m (6)
(Mwy™ : otherwise i.e, ift = (c+ 3)i
\

Note that ax(t) and r(¢) depend on m. We abstain from taking m as additional index, since m will always
be clear from the context. Observe that the three cases in these defi nitions are indeed digoint. So g (¢) and
r(t) are well-defi ned. It follows that a; (¢) and 7 (¢) are the announced coeffi cients from equations (3) and
(4). It follows that

d
af' = ) ax(t)-b" and
t=0

d
TRt = Zrk(t) - bt
t=0
All ax(t) and all r(t) are lessthan b/4n and therefore belong to A,. Hence,
ap’ = lag(d)---ax(1)ar(0)], and (7
ri = [re(d) - re(1)re(0)]e. (8)

Equations (5) and (6) tell usthat these representations to base b differ only at positions ¢ # 0(c + 3).

In order to defi ne the destination number 1,,, we show how to transfer a selection of weights wy, to a
corresponding selection of weights a}” and r*. Suppose ) | wy = z; where the sum ranges over a suitable
collection of n weights. Now choose a}" for every weight w;, that is used (i.e., accepted) in the sum 3 wy;
and choose 7} for every weight w, that is not used (i.e., rejected) in this sum. The choice of whether to take
al* or ri* only matters for positions ¢ # 0(c + 3). By equations (5) and (6), at these positions, either r}* has
digit 0 and a}f* has digit (") (7)wy' ™", or aj" hesdigit 0 and 7y hes digit ("7) (&) wj ™" (notethat i > 0 since
i # 7). So when we consider the sum of al chosen a}* and r;7* at such a position, then either we see digit

(DG X ™ =(7)()zms

k accepted
or we see digit

(DG X wp™=(7)()7m

J k rejected
where zo £ nand z; = 3 w' — 2 asdefi ned above. This motivates the following digits of the destination

weW
number y,,, .
(M) () om—i : ift=(c+2)i+jfor0<j<i<m
y(t) < (M) Zmai : ift=(c+2)j+ifor0<j<i<m
> (Mw™ ™t . otherwise, i.e, if ¢t = (c+ 3)i
weW
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Here again we abstain from taking m as index, since m will be clear from the context. Defi ne the m-th
destination humber as

Ym Zly(d) - - y(1)y(0)]s-
To fi nish f’s defi nition, let f(W, Z£ (W', Z') where W' = (a1,a2,71,79,a3, 04,73, T4 - - - T2n1,T20)
and Z' = (Y1, -+ s Yet1)-

Claim 5.6 If (W, Z) is (2s + c)n-distinguishable, then f(W, Z) = (W', Z') is 2ns-distinguishable.

Proof Fixm = c+ 1 andletd = (¢ + 3)m. Observethat for every k, ay(d) = r(d) = 1. By assumption,
b= 2" for !’ = 0(c + 1). Hence one digit from A, corresponds exactly to I’ hits. By equations (7) and (8),
for every k, [bin(a{™)| = |bin(r{™")| = d - I + 1. Thisnumber is= 1(c + 1).

We need to understand the structure of 7,1 = (3w W) — yes1, the complement of y.1. For
this end, defi ne

(M )zZmi : ift=(c+2)i+jfor0<j<i<m
gt 4L (M) (ami = ift=(c+2)j+ifor0<j<i<m
> (Mw™* : otherwise, i.e, if ¢ = (c+ 3)i.

and therefore,

Yer1 = [9(d) - 5(1)7(0)]s-
Choose any j < n and consider asj+1 and agj12. By assumption, (W, Z) is (2s + ¢)n-distinguishable. So
thereexistt > 1 and u € 1A4* such that

1. bin(z), bin(z.), bin(w§; , ), bin(ws, ) € A*0ZsTInyRsten At and
2. fordl i # 7, bin(ws;,,), bin(w,,,) € A*0ZsFenglulpst+ein A,

If one multiplies a binary number of the form A*0% w0% A* by i = ¢+ 1 < 2¢, then this yields a number of
the form A*0% —¢u/0¥ —¢ At+c where w’ € Alvl*+¢. Soinour case, there exist #' > 1 and u' € 1A* such that

1. bin(mz), bin(mz.), bin(mws; ), bin(mws; . ,) € A*0%/0%5" A and
2. fordl i # j, bin(mws;, ), bin(mws,;, ,) € A*0*"0/¥ 02" A",
Lett, = c+2. Foral i, a;(ts) = mw§, ri(te) = 0, y(ts) = mze, andy(t,) = mz.. Sofort” =t' +1'- ¢,
1. bin(ym), bin(yy,), bin(aj; ), bin(af} ») € A*0257y/ (25 AL
2. foral i # j, bin(aZ, ), bin(afl, ,) € A*0270%' 102" A", and
3. foral i, bin(rf, ), bin(rjt,,) € A*0?m0lvIo2sm 4*"

We obtain the analogous three statements for ro;.; and ro;1.2 by looking at the position ¢, = 1. Here for all
i, ai(t;) = 0, ri(t,) = mw, y(t,) = mz,, and y(t,) = mz.. Hence (W', Z') is 2ns-distinguishable. O
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Claim5.7 If (W, Z) € Leasyc then f(W,Z) = (W', Z") € Leti s

Proof By Claim 5.6, (W', Z') is 2ns-distinguishable. Let I be as in the defi nition of L. o44., and let
T%£{1,...,2n} — I. Note |I| = |I| = n. We choose al a; such that i € I and al r; such that i € T.
Note that this collection of weights from W' is suitable to show that (W', Z’) belongs to L.;1 (i.e,
when numbering the weights of W’ from 1 to 4n, then the indices of chosen weights form an I’ where
2+1el'©2+2¢1TI'). Fixanym € {1,...,c+ 1}. Our selection of weights induces the following

sum.
7 4L Za}c”-l-Zr,T

kel kel
= > lax(d) - ap(D)ag(0)]o + > _[re(d) - - re(1)re(0)]y
kel kel

We have seen that all ax(t) and all 4 (t) are lessthan b/4n. So for every t,
LY ap(t) + > ()
kel kel

isless than b. This means that if we consider the weights to base b and sum up digit by digit, then there is
no sum that is carried forward. It follows that

From equations (5) and (6) we obtain

(MG Sperwp + ift=(c+2)i+jforo<j<i<m
2 =9 (M) Spegwp™ : ift=(c+2)j+ifor0<j<i<m
(") Spew w™ ¢ otherwise, i.e, if t = (c + 3)i.

3

Soforal ¢, 2/ (t) = y(t) and therefore, 2’ = y,. Thisshows (W', Z') € Lei1. O

Claim5.8 If (W, Z) € Rcastc, then f(W, Z) = (W', Z") € Ry .

Proof By Clam 5.6, (W', Z') is 2ns-distinguishable. Assume (W', Z') ¢ Rci1, i.€, thereexists I, and
I, subsets of {1,...,2n}, and there exists somem € {1,...,c+ 1} such that

DA+ = Ym. )
kel, kel,

Lett, = (¢ +2)(m —1). Foral k, ax(ts) = mwg, ri(ts) = 0, and y(t,) = mz1. In Equation (9), we can
consider the weights to base b and can sum up digit by digit without abtaining asum that is carried forward.
By looking at position ¢, weobtain y(t.) = .7, ax(ta) and hence

21 = E Weg.

k€I,

So we found a collection of weights from W whose sum is z;. Thisis a contradiction. O

This complete the proof of Lemma5.5. |
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Lemmab.9 Forc,s > 1, (L, Re,s) is <it -hard for NP.

Proof The proof isby induction on ¢. The induction base follows from Lemma 5.4 while the induction step
follows from Lemma5.5. O

Theorem 5.10 For ¢ > 1, the following sum-of-subset problem is <%,-complete for NP.
SOS. £{(a1,...,an,b) : 3T C {1,... s} ieras = b)}

Proof CIearIy, SOS. € NP. For given (W, Z) where W = (w1,...,wa,) and Z = (z1,...,2.) let
FW, Z) L(wy,. .., won, 2c). Observe (L1, Re1)<h'SOS,. via f. So by Lemma5.9, SOS, is NP-hard. O

53 NP-Hardnessof GEN(z° + ky)

Starting from Lemma 5.9 we transfer NP-hardness to generation problems. First, we show thisfor ¢ > 1
and then we treat GEN(z + ky) in aseparate lemma.

Lemma5.11 Forc> 2,k > 1and s £5k2(c+5), (Le,s, Re,s) <t GEN(z¢ + ky).

Proof We describe the reduction f on input (W, Z) where W = (w1,...,wa,) and Z = (z1,...,2c).

We may assume that all w; and z; are divisible by 2. Otherwise, use W' = (2w, ..., 2wy, ) and
Z! = (2075 2,225 55, ..., 2¢M5 ) instead of W and Z. Let [ £ |bin(w¢)| and notethat I > ens. If k =1,
thenweusea = 0 asauxmary weight. Otherwise, if k£ > 2, thenweuseq = 2(-1)/¢,
B 4 {a,2li1 + 1} U {wnr k, wak, w3k2 w4k2 -y Wop 1K™, won k™ } (20
d % kcn(z _|_2l 1 + 1 Zkz Zkzc (11)

If n2!=1 < 2z, < n2!, then f(W,Z)£(B,d), otherwise f(W,Z)%((,0). In the following we show
(Lc,sa RC,S)S%)GEN(.T + k’y) Vlaf.

Case 1: Assume (W, Z) € L. Hence there exist weights z1,...,z, € W suchthat ) 7" | ¢ = z

'L
where z; € {w1,ws}, T2 € {w3, w4}, and so on. Therefore, n2! 1 g z. < n2'and so f(W, Z) = (B, d).
We describe the generation of d. Clearly, yo £ 2!~ + 1 can be generated. For j > 1, let

y; LKy + (K 3)° Zkl (12)

If y;_1 can be generated, then so can y;: For k = 1 thisistrivial. For k > 2, start with y;_; and apply the
generation ynew = a¢ + k - yo1a for ¢ — 1 times. Then apply the generation ynew = (k7)€ + k - Yoia (Note
that ijj € B). Thisyields ;. Hence y,, can be generated. From equation (12) we obtain

n c—1 n—1
Un = kcnzx;: + kcn(Ql—l + 1) +ac- Zkz . Zkzc
i=1 1=0

=1

It followsthat d = y,, and therefore, (B,d) € GEN(z¢ + ky).
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Case 2: Assume (W, Z) € Re. If z. < n2!71 or 2z, > n2!, then f(W, Z) = (0,0) ¢ GEN(z¢ + ky)
and we are done. So let us assume n2! ! < 2, < n2' and f(W, Z) = (B,d) € GEN(z€ + ky). Inthe
remaining proof we will derive a contradiction which will prove the lemma.

If £ > 2, then from equation (11) and z. < n2! weobtaind < (n 4 1)2'k" + a°k"+1. Hence

k=1 = d<(n+1)2, (13)
E>2 = d<2gmetd) (14)

Claim 5.12 There exist m > 1,y € Band z1,...,z,, € B — {0,2"1 + 1} such that
m .
d=kmyo+ > k™ 'af. (15)
i=1

Proof We have seen that | > cns. From equations (13) and (14) it follows that d < 2H475=2 < 22-2,
For al z € B — {0}, |bin(z¢)| > I. Soif z can be generated and is not aready in B, then |bin(z)| > I
and therefore z > 2!=1. If we apply the generation rule z¢ + ky for z = z and any vy, then, since ¢ > 2,
we obtain 2’ > 2%-2 > d which cannot be used to generate d. Similarly, if we apply the generation rule
z¢ + ky forz = 2= 41 € B and any y, then we obtain 2’ > 2%~2 > d which cannot be used to generate
d. Hence, there exists a generation of d such that in each step, z is chosen from B — {0,2!"! + 1}. From
z. > 2!=1 and equation (11) it follows that d > 2!k and hence d ¢ B. Therefore, d can be generated in
the following linear way: There exist m > 1,y € B, and z1,...,z,, € B — {0,214 1} such that if
yi Lat + k-y; 1 for 1 <i < m,theny,, = d. Thisis equivalent to the statement in the claim. O

Claim5.13 1. yp=2"1+1.
2. Ifk=1,thenm < 2n.

3. If £ > 2, then m = cn.

Proof First, we show m < ns/k%. Assumem > ns/k? and k = 1. By Clam 5.12, d > m2'~!
From equation (13) it follows that d > 2'~'ns/k? > 2!*!.n(c +5) > d which is a contradiction.
Assume m > ns/k? and k > 2. By Claim 512, d > 2/='k™~1. From equation (14) it follows that
d > 2 k(ns/k*)=2 > 9lgp5n(c+3) 5 g which isa contradiction. Therefore,

m < ns/k%. (26)

Assumeyg # 281 4 1,ie,y0 € B — {2171 4+ 1}. By assumption, al w; and z; are = 0(2°**). So
al eementsin B — {2!=' 4 1} are = 0(2") (if & > 2, then @ = 2(=D/¢ > 27%). From Claim 5.12 we
obtain d = 0(2"*). However, equation (11) saysthat d = k°*(2"*). Since 0 < k" < 2k < 275 we have
d # 0(2™%). Thisisacontradiction and we obtain 3 = 2/=1 + 1.

We have seen that al eementsin B — {2!=! + 1} are = 0(2"*). By Claim 5.12, d = k™(2"*). By
equation (11), d = k°*(2"). By equation (16), k™ < 2F™ < 27 and k" < 2", Therefore, if k& > 2, then
m = cn. If k =1, then by Claim 5.12, d > (m + 1)2!~1. So by equation (13), m < 2n. 0

Claim 5.14 For every j, 1 < j < n there exists exactly one i such that z; € {wa;_1k7, we;k’}. If k > 2,
then this 7 is determined by 7 = jc.
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Proof Fix j. By assumption, (W, Z) is ns-distinguishable. So there exist¢ > 1 and u € 1A* such that

bin(z.), bin(wg;_, ), bin(ws;) € A*0"*u0" A and for all i # j, bin(ws;_; ), bin(ws;) € A*Ons0Ion* A",

Let 7 £ 2ns + |u| + t. In the following calculation we are mainly interested in the lower r bits of al z¢. If
df

a =[ula, then

(w§;_ mod 2") = 2™t 4+ B and 17)
(w3; mod 2") = a2t 4 By (18)

where 31, 82 < 2. We partition the set of indices {1,...,m}.

J L {i:1<i<mAz =wy_1k'}
Jo L {i:1<i<mAm = wok}
Js L {1,...,m}— (J1UJ)

From equation (15) we obtain

d="> K™ H(wy 1k + K™ (wyk? ) + > K™ i 4 K ™yo. (19)
i€J1 1€J i€J3

Now we study equation (19) modulo 2. We start with the fi rst two sums and consider uf;_; and ws;
modulo 2". By equations (17) and (18), these terms consist of an upper part (i.e., a2™5**) and of a lower
part (i.e., 81 or B2). Let ey (resp., es) denote the sum of the upper (resp., lower) parts:

el df Z EmTigIc | gonstt + Z Emigic . ggnstt (20)
i€y 1€J2

e2 L N KRB+ YK, (21)
t€J1 1€J2

Moreover, let e3 denote the sum (this time modulo 27) of the last two terms in equation (19):

es L((D k™ x§ + k™yo) mod 27) (22)
1€J3

Clearly,d = e; + e2 + e3 (27). Weargue that (d mod 2") = e; + e2 + e3.
For al i € Js, either z¢ = a® # 0 or 2§ = z'k where bin(z') € A*0™0/*0" A and 1 < ' < 7.
Therefore, for al 7 € Js,
(2§ mod 27) < 2'k°". (23)

Moreover, (yo mod 2") = 1. Equations (22) and (23) allow an estimation of es.

e3 < Z k,mfith,cn + k™
1€J3

If £k =1, thenby Claim 5.13, e3 < 2n2! + 1. If k£ > 2, then eg < 2 k"k™ + k™ and m = cn. Sofor dl k&,
ez < 2sHtTL (24)
Estimate e; with help of equation (21) and Claim 5.13:

ey < mkm—lkjc2t < 25Imc+t < 2ns+t—1 (25)
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Together with (24) thisyidlds
eg +e3 < 2 (26)

Finally weturn to e;. Equation (20) can be written as

el — 2nsttpictm Z kb (27)
t€J1UJ2

Therefore, e; < 2lultnstt+dkne < 9r=1 Together with (26) we obtain e; + es + e3 < 2" and hence
(d mod 2") = e1 + e9 + e3. (28)

By equation (11), d = k“*(z. + 1) (27). Recal that bin(z.) € A*0"*u0™ At. Therefore, (2, mod 27) =
a2t 4~ wherey < 2¢. Observe k< (a2t 4 4 + 1) < 2kenglulgns+i+l < or Thisyields

(d mod 27) = a2™THE™ 4 k" (y +1). (29)

Compare equations (28) and (29). The terms e; and 2™tk are divisible by 275t while the terms
e + ez and k(y + 1) arelessthan 2751, It followsthat e; = 2™tk and therefore, by equation (27),

> kT =g, (30)
1€J1UJ2

For k = 1 thisimplies |J; U J| = 1, while for k& > 2 thisimplies |J; U Jo| > 1. Assume & > 2 and
let i’ be the maximum of J; U J,. The left hand side of (30) is= k"% (k"°~%*1!). So it must be that
ke(n—3) < gre—i'+1 and therefore, k"¢~% = k<»~9), Hence J; U Jo = {jc}. ThisprovesClaim 5.14. O

Assume k = 1. By Claims 5.12, 5.13, and 5.14, there exist T; € {wo;_1, ws; } such that
n
d= (27 +1)+ > = (31)

Together with equation (11) thisshows z. = > ; T¢. So (W, Z) ¢ R, s which contradicts our assumption.

zlz

Assume k > 2. By Claim 5.14, for every j, zj. = T; - k¥ wherez; € {wg;_1,ws;}. Moreover, it
follows that for every 4, if i # 0(c), then z; = a. So equation (15) can be written as:

d = y0+2km e+ Y km—ixg (32)
J 1 i€{1,..., m}
1Z0(c)
= k"(a°+1 k"CZEC+a > ke (33)
i€{l,..., nc},
1Z0(c)

Observe that the right-most sum in (33) can be written as

knc _ 1 kcn _ 1 c—1 ] n—1 )
k—1 k-1 POLED DL
=1

1=0

27



So we can continue to transform d.

n—1
d=k"(a°+1)+ k”ch +af Zkl > K
=0
Together with equation (11),
n
=> 7. (34)
j=1
So again (W, Z) ¢ R, s which contradicts our assumption. O

Lemma 5.15 If p(z,y) = = + ky where k > 1 then GEN(p) is <,-complete for NP.

Proof We have already seen the upper bound (Lemma4.3) and the lower bound for the case k = 1 [VEB79],
so let us focus on the lower bound for & > 2. We <?P-reduce (L ok, R19x) 10 GEN(z + ky). Let
W L(wy, ..., we), Z%(2) such that w;,z € N (1 < i < 2n). Let £Z |bin(kX7% w;)| and G £ 26+,
Defi ne

k(G+w1),
k‘(G-I—’WQ),
G+ w;, for3 <4 < 2n,and
kE(nG + z).

U1

& i

V2
Vg

ZI

SIS

Now let (W,Z) € Lig,. Thenthereisan I = {i1,...,i,} C {1,...,2n} such that for al ¢ €
{0,...,n -1} exactly oneof {2i 4 1,2i + 2} isinTand ), ; w; = z. Assumethat i; < 4; if j < ¢. Then
p(p(- - - p(p(viy, viy)s Vig)s - - iy 1) 0i,) = k(G +wiy) + k370 5 G+ wiy = k(nG +2) = 2.

Now let (W, Z) € R 9 and assume that (vy,...,v2,,2') € GEN(p). Observe that v; > G for all
i € {1,...,2n}. Let T be a generation tree for z’ from {v1,...,v2,} with m leaves. Then obviously
7 > Y, ¢ ppatn(r) K9G Since for every leaf in T’ except one there is a path ¢ with r(g) > 1 we have
nkG+G > nkG+kz =2 > (m—1)kG+ G and therefore m < n. Supposethereisani € {0,...,n—1}
such that neither vg; 11 nor ve;42 is avaue of aleaf in T. We know that (W, Z) is 2kn distinguishable.
Adding G toaw; (1 < j < 2n) and nG to z does not interfere with the distinguishing gaps of the values
by the choice of G. Multiplying some of the values with &, decreases the size of the distinguishing gaps
by at most [logk + 1]. Hencethereisau € 14* and at > 1 such that bin(z') € A*0¥"u0*"A? and for
al j # 4, both bin(vaj;1) and bin(vaj42) are in A*0F20 0k A, Since in every step of the generation
the size of the distinguishing gap is reduced by a most |logk + 1] and since there are at most n — 1
steps in the whole generation process, z’ can not be generated. Hence for al ¢ € {0,...,n — 1} exactly
one element of {vg;y1,v9i+2} isavalue of aleaf in T and m = n. If there were a path ¢ in T with
r(g) > 1then nkG + G > 2’ > kG + (n — 2)kG + G > nkG + G (x) would hold. Therefore
fpath(T) = {I" '} U {I’r : 0 < i < n—2}. Sincevy,vo > kG the value of the leaf with the path I~ has
to be one of {v;, v} otherwise again (x) would hold. So there are {71, ...,%,} suchthati; € {1,2} and
7 = p(p( ( (Uiu'uiz) U'is) U’in—l)’vin)

= k(G+w“) +kZJ 2G+wzj

= k(nG+ 3%, wij)

= k(nG+z2)
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and therefore 37, w;; = z which isacontradiction. Hence (v1, ..., van, 2') ¢ GEN(p). O

We combine the auxiliary results proved so far and formulate the main result of this section.
Theorem 5.16 For ¢,k > 1, GEN(z¢ + ky) is <},-hard for NP.

Proof Followsfrom Lemmasb5.9, 5.11, and 5.15. O

6 Conclusion

We summarize our results on the complexity of GEN(f) in the following table. Every lower bound is
given by the fact that there exists an f from the considered class of operations whose generation problem is
complete for the respective class. All operations are polynomial-time computable.

The gap between NP and NTIME(21082”) in the last rows of the table below calls the attention to an
interesting open question: Does GEN(¢(z) + ky) belong to NP if g isnon-linear and k£ > 27 Since the gen-
eration trees for these polynomials may be of superpolynomial size, the obvious algorithm of guessing and
verifying thetreeis not applicable. Also, we could not fi nd more compact representations asin Theorem 4.2.
There are generation trees where almost all nodes take different values. Therefore it may be possible that we
really have to calculate all of them. Perhaps there are specia polynomials of the form ¢(x) + ky for which
the closure is very regular, as in Theorem 4.2, case (1)? Another possibility to solve the problem could be
to have a closer look at the restricted aternating machines we describe in Section 5. What are the exact
capabilities of these machines?

operation lower bound Theorem upper bound Theorem

arbitrary recursively 3.2 recursively 31
enumerable enumerable

length-monotonic EXPTIME 35 EXPTIME 3.3

length-monotonic EXPTIME 35 EXPTIME 3.3

and commutative

length-monotonic PSPACE 37 PSPACE 3.6

and associative

length-mon., assoc., NP 39 NP 3.8

and commutative

al Polynomias NP 39 NP 4.2

#4q(z) + ky

T+y NP 3.9 NP 3.8

Ty NP 4.6 NP 3.8

z%ybec NP 413 NP 42

all Polynomials NP 5.16 NTIME(ZIOgQ”) 51

= q(z) + ky

¢+ ky NP 5.16 NTIME(2°s°") 51
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