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Abstract

Given a fixed computable binary operation
�

, we study the complexity of the following generation
problem: The input consists of strings �������	�	�	�
���
��� . The question is whether � is in the closure of� � � �	���	���
� ��� under operation

�
.

For several subclasses of operations we prove tight upper and lower bounds for the generation prob-
lems. For example, we prove exponential-time upper and lower bounds for generation problems of
length-monotonic polynomial-time computable operations. Other bounds involve classes like ��� and����������� .

Here the class of bivariate polynomials with positive coefficients turns out to be the most interest-
ing class of operations. We show that many of the corresponding generation problems belong to ��� .
However, we do not know this for all of them, e.g., for �����! #" this is an open question. We prove�$� -completeness for polynomials ��%&"('
) where �*������)�+-, . Also, we show ��� -hardness for polynomi-
als like � � �. /" . As a by-product we obtain ��� -completeness of the extended sum-of-subset problem��0��(132 �5476 �#�	���	�	� 6 �
�
8�9�:<;�=?> � ,<�	�	���@�BA � 4DCFE7GIHJ6 1E 2K8<9 � for any )L+K, .

1 Introduction

No, this paper is not about problems between generations.1 However, genealogy presents an example that
explains the matter we are interested in. There is hardly any other prehistoric question where scientists grope
in the dark as in the following: Are Neanderthals completely extinct or are there traces of them left in some
of us? To examine whether a person, e.g., one of the authors, is not a descendant of a Neanderthal, one
would usually build the whole family tree of the author and check whether every leaf of the tree is labeled
with a homo sapiens. This becomes a generation problem in the following way. We go back to the time
where Neanderthals and homo sapiens still lived segregated from each other. It is well-known that it is the
operation of marriage (in a very natural sense) that produces children. We start with this first generation of
homo sapiens and apply this operation to obtain their children. Then we apply the marriage operation again
and again, until we reach today’s people. Now we see whether our author has been generated.

M
EMail: [boehler,glasser,schwarzb,wagner]@informatik.uni-wuerzburg.de

1Regardless of the different ages of the authors.
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Similar generation problems are for example:

� Does
�

belong to the closure of �������
	
	
	����
��� under pairwise addition? This is equivalent to a modi-
fication of the sum-of-subset problem where factors other than � and � are allowed. It can be shown
that this is ��� -complete [vEB79].

� Does the empty clause belong to the closure of the clauses �������
	
	
	�������� under the rule of the resolu-
tion proof system. This problem is ������� -complete.

� Does a given element of a monoid belong to the submonoid that is generated by a given set?

In this paper we investigate sets that are generated by arbitrary computable binary operations. For a fixed
such operation we study the complexity of the question:

Does a given string
�

belong to the set that is generated from strings �������
	
	
	����
��� ?
To make this precise, let  "!#���$����� be the alphabet and let % be a computable binary operation on  � , i.e.,
%'&( �*)  �*+  � . For ,.-/ � , let 0 ,2143 be the % -closure of , , i.e., the smallest set that contains , and
that is closed under % . For fixed % we define the generation problem.

Generation problem 5768�:9;%=<
INPUT: �����
	
	
	����>��� ��?  �
QUESTION: Is

�
in 0@���(���
	
	
	����
���
1A3 ?

Equivalently we can use this definition in the context of natural numbers, since these can be identified in the
standard way with  � . For convenience we write operations like addition in infix form.

In Section 3, we observe that generation problems for computable operations are recursively enumer-
able, and there exist associative, commutative, polynomial-time computable operations whose generation
problems are many-one complete for recursively enumerable sets. There remain undecidable problems even
if we further restrict the operation’s resources like time and space. However, we achieve decidability when
we demand the operation to be length-monotonic which means that in the generation tree of some B , the
lengths of all intermediate results are bounded by the length of B . If the operations are length-monotonic
and polynomial-time computable, all generation problems are solvable in exponential time and there are
also such operations for which the generation problem is hard for 6DC��8EGFIHJ6 . We study the complexity of
various restrictions of these operations. If additionally the operation is associative, then the corresponding
generation problem belongs to �LK$�NMPOQ6 , and is even �LK$�NMPOQ6 -complete for suitable operations. If we
further restrict the operations to be commutative, then we obtain generation problems that belong to ��� ,
and some of them are even ��� -complete (e.g., the usual integer addition).

The most interesting operations we consider in this paper are bivariate polynomials with positive coeffi-
cients which are studied in Section 4. Such polynomials are length-monotonic and hence, the corresponding
generation problems are decidable. However, in general these polynomials are neither associative nor com-
mutative, and hence the generation problems for such polynomials turn out to be non-trivial and exciting.
For example, does 5768�:94BNRDSUT�VW< or 5*6D�X94B(RYV$Z�< belong to ��� ? If so, are they ��� -complete?

There are two main results in this section: For one, we show that if [ is not of the form \$94B]<WS_^`V where
\ is non-linear and ^bacT , then the generation problem belongs to ��� . Besides that, we present a proof of
��� -completeness for polynomials of the form B=d�V`eIf where �(� � ��f*ac� . Proving hardness is difficult already
for such simple polynomials, since we have to cope with the various different trees that generate one number.
As a tool to control the shape of generation trees we introduce 9g�(� � < -weighted trees which are special trees
with additional information. In the proof we force the generation trees into the shape of so-called complete
9g�(� � < -weighted trees.
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We do not know whether the generation problem belongs to ��� , if the generating polynomial is
of the form \$94B]< S ^`V where \ is non-linear and ^ a T . In this regard, as an upper bound we
can easily show that all bivariate polynomials with positive coefficients have generation problems in
��EGFIHJ6 - K$�NMPOQ6�9;T ������� � ��� 	 ��
�� < . Our discussion in Section 5 suggests that this class appears to be a class
not far from ��� . As a special case of these polynomials, we consider [ 94B � VW<�! B�
 S ^`V where f�� ^ a � .
The main result of Section 5 shows that 5768� 9@[]< is ��� -hard. Here the operation B 
 brings the main dif-
ficulty for the proof. We have to find a way to encode information to numbers such that this information
is not destroyed by taking the numbers to a high power. This is not easy to solve, since already squaring a
number heavily changes its (binary) representation. To overcome this, for f a � we introduce generalized
sum-of-subset problems

K�� K 

���!2�
9��7���
	
	
	����G�(���
<Q&���� - �>� �
	
	
	���� �
9����� "!#� 
� !$�
< ��	

We show that for all f*ac� , K�� K 
 is ��� -complete and then reduce these problems to 5768� 9@[]< . Although all
K�� K 
 are just auxiliary problems in our proof, we feel that this new ��� -completeness result is interesting
in its own right.

Finally, in Section 6 we summarize our results and give a table that shows a convenient overview of the
upper and lower bounds of generation problems.

2 Preliminaries

For � aU� let %'&)(=9g�W< be � ’s binary representation (without leading zeros, if �+*U� ). For convenience we use
the operation ,X�.- in two ways: In �0/ � 91,X�.-32J< (or �4/ � 9�2J< for short) it is used in the usual way, while
the expression 9��5, �6-72J< denotes the remainder of � divided by 2 .

We work with pairs 9182��,X< of disjoint languages (where for example 8 ? ��� and , ? ������� ). Say
that pair 918 ��, < reduces to pair 9�9���: < , in notation 918 ��, <�;=<�<> 9�9���: < , if there exist a polynomial-time
computable function % such that for all B ,

B ? 8 ? %�94BN< ? 9��
B ? , ? %�94BN< ? : 	

8@; <�<> 9�9���: < and 9182��,X<�; <�<> 9 are abbreviations for 918 � 8 <�; <A<> 9�9���: < and 918 ��, <�; <�<> 9�9�� 92< .
A finite tree is called binary tree, if every node is either a leaf or has exactly two successors. Let BL9DC7<

be the set of leaves, E��
��F�9DC7< be the root and ���.-�G>9DC7< be the set of nodes of a tree C . We characterize a
path from the root to a node by a word � ? �IH ��J`� � where H defines a left turn and J defines a right turn.
Let K'LMF�N�9DC7< �O�! �P� &6� is a path of C � . Every Q ? K'LMF�N�9DC7< that does not lead to a leaf node is called initial
path of C . In contrast, every path in KRLMF�N�9DC7< that is not an initial path is a full path. Let &SKRLMF�N=9DC7< be the
set of initial paths of C and TDKRLMF�N�9DC7< be the set of full paths in C . For \ ? K'LMF�N�9DC7< , let HI9g\�< and J�9g\ < be
the number of left steps and right steps, resp., in \ . For a node B of C with path Q , let H 94BN< �O�!UH 9�QW< (resp.,
J�94BN< �O�!VJ�9�QW< ).

The process of generating elements by an iterated application of a binary operation can be visualized
by a generation tree. Let , -  � be the base set. If % is a binary operation, then a binary tree is called
% -generation tree from , for � if

� every leaf has a value from , ,

� every node that has successors with values B and V has value %�94B�� V�< ,
� the root of the tree has value � .

Note that � ? 0 ,2143 , if and only if there exists an % -generation tree from , for � .
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3 Generation Problems for General Operations

Since we are mostly interested in complexity issues, we restrict ourselves to computable operations. All of
the corresponding generation problems are recursively enumerable and we show that there are polynomial-
time computable operations whose generation problems are undecidable. There remain undecidable prob-
lems even if we further restrict the operation’s resources like time and space. The reason is that even with
restricted resources it is possible to let a generation problem simulate grammatical derivation trees of ar-
bitrary formal languages. We achieve decidability when we demand the operation to be length-monotonic.
Hence we study the complexity of various restrictions of length-monotonic operations.

Theorem 3.1 576D� 9�� < is recursively enumerable for every computable operation �:&
 � )  � +  � .
Proof Consider the following algorithm working on � -formulae, i.e., formulae built up from words in  �
using the operation � . Given such a formula

� 94B � �
	
	
	�� B � < with B � �
	
	
	�� B � ?  � , the algorithm evaluates
the formula and outputs 94B ���
	
	
	�� B(�(���`< where � is the value of

� 94B ���
	
	
	�� B(�$< . Obviously, the algorithm
just enumerates 576D� 9�� < . �

We observe that polynomial-time computable operations are still too difficult for a complexity-oriented
examination of generation problems. For example, with such an operation we can simulate single steps of
arbitrary Turing machines.

Theorem 3.2 There is an associative, commutative, polynomial-time computable operation �2&` � )  � +
 � such that 5768�:9�� < is m-complete for recursively enumerable sets.

Proof Let �'&$ �Q+  � be a recursive function such that :�� ���!2��BJ&��L94BN< is defined � is the halting problem,
and let � be a machine that computes � . We define � as follows: For ����2*�
��2 R aU� let

� �
	 � ����
��Q� �
	 � ��� � �O�!
� � �
	 � � ��
 	 � � � if � on � does not stop within 2 � S 2 R steps
� � otherwise,

and for all other B�� V ?  � let B��8V ���! � .
Observe, that � is commutative and � ?�� � . For associativity let B � V(��� ?  � . In case that there are

����2 � ��2 R ��2 Z a � such that B ! � ��	 � � ��
 , V ! � ��	 � � � � , �X! � �
	 � � ��� and � on � does not stop within
2 �QS�2 R S$2 Z we obtain B�� 94V�� �`< ! 94B��7V�<�� � ! � �
	 � � � 
 	 � � 	 � � . In all other cases we obtain
B�� 94V�� �`< ! 94B��QVW<�� �:! � .

Now, if � on � stops within 2 steps, then 0@��� ��	 � � � �
1 � ! ��� ��	 � � � ��� �
	 � �
R �
	
	
	���� ��	 � � ��! � ����� . If �
on � does not stop, then 0@��� ��	 � � � �
1 � !#��� ��	 � � � ��� �
	 � � R �
	
	
	
� . Hence,

� ? :"��#$� on � stops # � ? 0@��� ��	 � � � �
1 �%# 9g� ��	 � � ����< ? 5*6D�X9�� <�	
�

3.1 Length-Monotonic Polynomial-Time Operations

We have seen that in order to get decidable generation problems we have to restrict the class of operations.
Therefore, we demand that in the generation tree of some B , the lengths of all intermediate results are
bounded by & B'& , the length of B . This is equivalent to say that we restrict to operations � that satisfy & B��NV(&`a
, L*)=9+& B'&@�,& V(& < . Call such operations length-monotonic. If & B-� V(&G! , L*)]9+& B.&@�,& V�& < , then the operation is
called minimal length-monotonic. Generation trees of such operations can be exhaustively searched by an
alternating polynomial-space machine.

4



Theorem 3.3 576D� 9�� < ? 6DC��8EGF H 6 for every length-monotonic, polynomial-space computable operation
�:&
 � )  � +  � .
Proof Let � be a length-monotonic, polynomial-space computable operation. 5768�X9�� < can be decided by
the following alternating algorithm that uses at most polynomial space:

function GEN(x1, 	
	
	 ,xm,z)
repeat
if z

? � x1, 	
	
	 ,xm � then accept;
if |z| = 0 then reject;
existentially choose z1 and z2 such that (z1 � z2) = z;
universally choose z from � z1,z2 �

forever

Every polynomial-space-bounded alternating algorithm can be simulated by a deterministic exponential-
time-bounded algorithm [CKS81]. So 5768�:9�� < ? 6 C7�DEGF HJ6 . �

This exponential-time upper bound for length-monotonic, polynomial-space computable operations is
tight, even for polynomial-time computable operations. To see this we start with a technical lemma which
simplifies the argumentation. It shows that for certain sets 8 , we can translate operations � & 8 ) 8 + 8 to
operations � &� � )  � +  � such that the complexity of the generation problem and other properties are
preserved. This is done by an appropriate encoding of elements from 8 .

Lemma 3.4 Let 82���
	
	
	���8�� 	�� be finite sets, 8 ���!U8 � � ) 	
	
	 ) 8 �� ) 8�� 	 � ) 	
	
	 ) 8�� 	�� , and let � & 8 ) 8 + 8
be a polynomial-time computable operation. Then there exists a polynomial-time computable operation
�:&
 �7)  � +  � such that:

1. 5768�X9���< ;
������ 5768�X9�� < .

2. If � is commutative then � is commutative.

3. If � is associative then � is associative.

4. If � is minimal length-monotonic then � is minimal length-monotonic.

Proof Let 2 a T be such that & 8 � &�; T � for
� ! � � T`�
	
	
	�� ^ S H , let 	 � & 8 � +  � be

a block encoding with block length 2 for
� ! � � T`�
	
	
	�� ^'S H , let 
 &' � +  � be the homo-

morphism defined by 
�9g�>< ���! � � and 
(9I��< ���! � � , and let ���.-�G & 8 +  � be an encoding given by
���.-�G>94B=��� B R �
	
	
	�B�� 	�� <

�O�!�
�9
	N��94B���< < �W��
(9
	 R 94B R < < �W� 	
	
	��W��
(9
	�� 	�� 94B�� 	�� < < . Note that & ���6-�G>9��]< &P! T"2 & �'&$S
TW9;^ S H��U��< . For � � ��� R

?  � , � can be defined as

�7����� R
���!

� ���.-�G
9�������� R < if �7�8! ���.-�G
9�����< and � R ! ���.-�G
9�� R <� ��������� � 
 � ��� � � � � otherwise.

Obviously, if � is commutative then so is � , and if � is associative then so is � . Now let � be minimal
length-monotonic. If � �8! ���.-�G
9���� < , � R ! ���6-�G>9�� R < , and �=����� R !�Q then we conclude:

& � � � � R & ! & ���.-�G>9�� � ��� R < &�! & ���.-�G
9�Q$< &>! T"2 & Q &�SUTW9;^2S H��U��<
! T"2! ), L*)=9+& �=�
&@�,& � R & <=S TW9;^ S H"� ��<
! , L*)=9;T"2 & �=�*&�SUTW9;^ S H��U��<�� T"2 & � R &
S TW9;^ S H��U��< <
! , L*)=9+& ���6-�G
9��=�Y< &@�,& ���.-�G
9�� R < & < !$, L*)=9+& �7�*&@�,& � R & <�	
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Otherwise, & �*��� � R &�! & � ��������� � 
 � ��� � � � � &�!$, L*)]9+& �7�*&@�,& � R & < . Hence, � is minimal length-monotonic.
Finally, by definition of � , Q ? 0@� �
���
	
	
	�� � � �
1 � if and only if ���.-�G>9�Q$< ? 0@�����6-�G`9����Y<��
	
	
	 �����6-�G`9�� � < �
1 � .

This completes the proof. �

Theorem 3.5 There is a commutative, minimal length-monotonic, polynomial-time computable operation
�:&
 � )  � +  � such that 5768�:9�� < is ;

������ -complete for 6DC��8EGF H 6 .

Proof We follow the idea of Cook [Coo71] to simulate deterministic exponential-time computations. With-
out loss of generality, a deterministic exponential-time one-tape Turing machine � deciding a set 8 -c �
can be normalized in such a way that on input B ! �]� � R 	
	
	 �
� it makes T � � � � � � sweeps, where [ is a suitable
polynomial. For � ; T ��� T � � � � � � , the 9;T � S ��< -st sweep is a right move from tape cell � (with the first
symbol of B ) to tape cell

� S"T within
� S/� steps, and the 9;T � S"T�< -nd sweep is a left move from tape cell� S T to tape cell � within

� S � steps. Each of the turning points belongs to two sweeps.

sweep  ���� ,
sweep  ��
sweep  �� ��,
sweep  �� �  

sweep 6
sweep 5
sweep 4
sweep 3
sweep 2
sweep 1

Turing tape
1 � � �  � ��,2 3 4

Furthermore, let � have the tape alphabet 	 , the set of states 
 , the initial state �
� , and the accepting state
� � . In the case of acceptance the tape of � is empty. If � is in state � and reads � , then the next state is� 9��>���$< , and the symbol printed is � 9��>���$< .

We say that the quintuple 94B � � ��� ���>���W< is correct if during the
�
-th sweep on input B the machine � prints

the symbol � in tape cell � and leaves that cell with state � . One can compute a correct 94B�� � ��� ���>���$< by know-
ing only two other correct quintuples, namely the correct 94B�� � �"� ��� �����;���
� < and the correct 94B � � � ^������ �;����� � <
where ^ ? ��� � � ��� S ��� . The idea of our operation is as follows: multiply 94B � � � � ��� �����;���
� < with
94B�� � � ^���� � � ��� � � < and obtain 94B � � ��� ���>���$< . In an accepting computation of � on B (and only in this case) one
generates finally the correct 94B�� T � ��� � � � � T`������� �G< .

To make this precise, let ��� �O�! � for all � * � . Furthermore we assume that, in a quintuple 94B�� � �����������W<
where

� ��� ? ���$��� �
	
	
	�� T � � � � � � , the numbers
�

and � are given in binary presentation of length exactly
[ 9+& B.& <=S � . Now define the operation � as follows.
Right sweep, for � ; T ��� T � � � � � � and �:! � � T`�
	
	
	 � � :

94B � T � ��� S � �������W< �794B�� T � S � ��� �����;� � < �O�!X94B�� T � S � ���*S � � � 9����g���W<�����9����;���W< <
Left sweep, for � ; T � S � � T � ��� � � � and � ! � � T`�
	
	
	 � � S � :

94B � T � S � �����������W< �794B�� T � SUT`���7S � �����g� � < ���!X94B�� T � S T`����� � 9����;���W<�����9����;���W< <
New tape cell right, for � ; T � S � � T � ��� � � � :

94B � T � S � � � S � ���>���$< �794B����$���$����� � �Q< �O�!X94B�� T � S � � � SUT`� � 9������ � 	 R <�����9��>��� � 	 R < <
6



Turning point left, for � ; T � � T � � � � � � :
94B � T � ��� �������W<���94B����$���$����� � �G< ���!X94B�� T � S � ��� ���>���$<

Turning point right, for � ;"T � S � � T � ��� � � � :
94B � T � S � � � S T`���>���$< �794B����$���$����� � �Q< �O�!X94B�� T � S T`� � SUT`�������W<

If � ��Q is defined in this way then Q � � is defined in the same way. For all other products not yet defined,
we define 94B�� � ��Q����>���$< ��94B � � � � ��Q � ��� � ��� � < ���! 9g� ����� ��� � � 	 � � � 	 � � � ��� ��� � 	 � ��� � 	 � ����� � � � � � ����� � �G< .

Obviously, � is polynomial-time computable, minimal length-monotonic and commutative. By our def-
inition, starting with 94B���� ��� � � 9�� �>�����Y<���� 9���� �����Y< < and 94B ���$���$������� �G< one can generate exactly the correct
quintuples of the form 94B �
	
	
	�< together with 94B����$���$��� � � �G< and 9g� � � � 	 � ��� � � � 	 R � � � � ����� � �G< . Hence, � ac-
cepts B if and only if 9 94B ��� ��� � � 9�� � ��� � <���� 9�� � ��� � < <���94B ���$���$��� � � �Q<���94B � T � ��� � � � � T`��� � � �G< < ? 5768�:9���< , and
consequently 8 ;

������ 576D� 9���< . By Lemma 3.4, we finally obtain a polynomial-time computable, minimal
length-monotonic and commutative operation � &
 � )  � +  � such that 8 ;

������ 576D� 9�� < . �

3.2 Length-Monotonic Associative Polynomial-Time Operations

We have seen that in general, commutativity does not lower the complexity of the generation problem for
length-monotonic, polynomial-time computable operations. In this subsection we show that associativity
does. Here we exploit that for associative operations � we do not need to know the exact structure of an
� -generation tree for � : Associativity makes all generation trees with the same sequence of leaves equivalent
with respect to the generated element. We show that �QK$�NMPOQ6 is upper bound for all generation problems
with associative, polynomial-space computable operations and that it is lower bound even for associative,
polynomial-time computable operations.

Theorem 3.6 576D� 9�� < ? �LK$�NMPOQ6 for every length-monotonic and associative polynomial-space com-
putable operation �:&$ � )  � +  � .
Proof The following algorithm decides 576D� 9�� < in polynomial space:

function GEN(z,x1, 	
	
	 ,xn);
choose an i

? � 1, 	
	
	 ,n � nondeterministically;
z1 := xi;
while (z1

�! z) and (|z1| ; |z|) do begin
choose an i

? � 1, 	
	
	 ,n � nondeterministically;
z1 := z1 � xi

end;
if (z = z1) then accept else reject �

The polynomial-space bound is tight even for polynomial-time operations � .

Theorem 3.7 There is a minimal length-monotonic and associative polynomial-time computable operation
�:&
 � )  � +  � such that 5768�:9�� < is ;

������ -complete for �QK$�NMPOQ6 .

Proof Let 	/-  � be a set which is ;
������ -complete for �QK$�NMPOQ6 . By Lemma 3.4, it suffices to prove ex-

istence of a finite alphabet 	 and a minimal length-monotonic and associative polynomial-time computable
operation � &�9  � ) 	 � < ) 9  � ) 	 � < + 9  � ) 	 � < such that 	�;

������ 5768�:9���< .
Since 	

? �QK$�NMPOQ6 , it follows [CF91] that there exists a polynomial-time computable function
%b&
 � )�
 + M
� and a polynomial [ such that for all B ?  � ,

B ? 	�� %�94B����><  %�94B ����<   � �  %�94B � T � ��� � � � �U��< ! � �
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where 9gM � �� @< is the group of even permutations on five elements with identity permutation � � . Fix an B ?  �
and let

� �O�! [ 9+& B'& < and � �O�!�� � S�� . Further, for
� ! �$��� �
	
	
	 � T�� � � , let % 9 � < be that length

�
binary

representation of
�
.

We consider the set

� ��
�O�!:�
94B���% 9 � <`��% 9��`< < &�� ; � � � � T � ��� ? M
���2- ��B=� ) 9  �  M �  A � <

with multiplication � whose essential part is given by

94B���% 9 � <`��% 9��`< < ��94B ��% 9��(S ��< � % 9�2J< < ���!X94B ��% 9 � <`�  %�94B����`<� � % 9�2J< <�	
We obtain

B ? 	 � 94B���� � � � � � < ? 0@�
94B���% 9 � <I%�94B � � < % 9 � S ��< < &
� ; ��� T � � ���
1 � 	
This cannot be used as reduction function for 	 ;

������ 576D�X9���< , since �
94B ��% 9 � <I%�94B � � < % 9 � S ��< <�& ��� T	� �X���
has exponentially many elements (in the length of B ). So we have to generate this set from a few basic
pairs. For this we modify

� �� and � as follows. We use a new separation symbol 
 and, to achieve minimal
length-monotonicity, a new padding symbol T . For � ? ���$��� ��
 � � , let ����


�O�! �NT	� ! � � �$? ���$��� � T`��
 ��� , and
for � ? ���$��� � T`��
 � � , let � ? ���$��� ��
 � � be the word � without symbols T . Now consider the following set� � - ��B�� ) 9 ���$��� � T`��
 ��� M ��<�� :

� � �O�!:�
94B�������
 < & � ?  ������  �����
  ������  �����
  ���
  ������  �����
  ��  �M �  � ���
  ����*�
We define the operation � & � � ) � � + � � . The definition of the product 94B ��Q$<��*94B ���7< splits into three
cases:

1. If Q � ?  ��� �  ��� 
  ��� �  ��� 
  � 
  ��� then 94B���QW< ��94B ���7< �O�!X94B���� Q���
 < .
2. If Q�� ! ��
@% 9 � ��< f ��% 9 � R < f R 	
	
	�f�� ! � % 9

� ��< 
 � � such that � a"T , � � � � ?  ���� , � ; � � �  � � �!� � � T	� ,
f ����f R �
	
	
	���f�� ! �

? M �!�b�"
 � , and 9gf ��!#
 ? � �8S ��! � � 	 ��< for � ! � �
	
	
	 ����� � then

94B���QW< ��94B����*< ���! 94B ������
@% 9 � ��< � % 9 � ��< 
 � � 
 <��
where � ���! � �  � R  ;	
	
	  

� � ! � such that
� ��! f � if f � ? M
� and

� ��! %�94B�� � ��< otherwise.

3. If Q � is different from both of the above cases then let 94B ��Q$< ��94B ���7< �O�! 94B���� � 
 < .
The operation � inherits associativity from the concatination of words.
Furthermore, we observe 94B�������
4% 9 � < ��% 9��
< 
@Q$
 < is in 0@�
94B����g��
 <���94B ���I��
 <���9gB����%
&
 <Y�
1 � if and only if

� � �
and %�94B � � <  �%�94B � � S ��<   � �  %�94B���� �U��< ! � . Consequently, we obtain

B ? 	 � 94B����%
X� � %�94B�� T � � ��< ! � � � 
&
 < ? 0@�
94B ���g��
 <���94B����I��
 <���94B��"�%
&
 <��
1 � 	
So far the operation � has been defined separately on every single set

� � . Without loss of gen-
erality assume that �

�?
	 . If there is no B ?  � such that 94V���Q$<���91�W���*< ? � � , then we define

94V���Q$< �G91�W���*< ���! 9 � � T ������� � '�� 	 � ( � ��� ( � 	 � � � � < . In such a way we obtain an associative, minimal length-monotonic
operation � on the entire set  ��) 9 ���$��� � T`��
 ��� M ��< � such that 	 ;

������ 576D� 9���< . �
Now let us additionally assume � to be commutative. Again, if we want to know whether or not � ?

0@��B=���
	
	
	 � B����
1 � , associativity enables us to ignore the � -generation tree and instead search for a word over
��B=���
	
	
	�� B��(� . Together with commutativity, we just have to guess exponents ^]���
	
	
	�� ^ � and test whether
B � 
� �  � � �2B ��)� ! � . If the operation is computable in polynomial-time, then the exponentiations are
computable in polynomial-time, too (by squaring and multiplying), which yields the following theorem.
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Theorem 3.8 576D� 9�� < ? ��� for all length-monotonic, associative, and commutative polynomial-time
computable operations �:&
 � )  � +  � .
Again, this upper bound is tight, i.e., there exist associative, commutative, and length-monotonic
polynomial-time computable operations whose generation problems are ��� -complete. Even the usual ad-
dition on natural numbers has this property.

Theorem 3.9 576D� 9 S < is ;
������ -complete for ��� , where S is the addition on



.

Proof It is known that 5768�X9 S < is ��� -complete for the addition on integers [vEB79]. This proof exclu-
sively uses natural numbers. �

4 Generation Problems for Polynomials

The previous section gave an overview over the complexity of generation problems for polynomial-time
computable operations. Now we want to have a look at the more restricted class of generation problems
whose operations are polynomials. The Davis-Putnam-Robinson-Matiyasevich theorem [Mat70] states that
every recursively enumerable set is range of a polynomial with integer coefficients. Based on this, there are
such polynomials where the generation problem is undecidable. To give an idea of this, take a polynomial [
with undecidable positive range and replace every variable B by B R � S B RR S B RZ S B R� . Take another polynomial \
that is capable to generate all negative numbers and negative numbers only. Build a new polynomial out of
[ and \ with an additional variable V such that for V'! � the value of \ is calculated, and for V �! � the
value of [ is calculated. In this way it is possible to generate all negative numbers which in turn allow
the generation of the positive range of [ . However, to obtain this undecidability result, the polynomials
must have negative coefficients and they usually contain a rather large number of variables. Therefore, we
concentrate on bivariate polynomials with positive coefficients. These are always length-monotonic and
hence, the corresponding generation problem is decidable. We show that many of them are even in ��� and
all of them belong to ��EGF HJ6 - K$�NMPOQ6�9;T ����� � � ��� 	 ��
 � < . So far we have no evidence against the conjecture
that all these generation problems belong to ��� (see also the discussion in Section 5). However, we cannot
prove this.

This section has two main results: First, we show that if [ is not of the form \$94V�<LS/^`V where \ is
non-linear and ^ a T , then the corresponding generation problem belongs to ��� . Second, we prove ��� -
completeness for polynomials of the form B d V e f where �(� � ��f*a/� .

4.1 The Main Case

Let us start our investigation with univariate polynomials [ , i.e., [ 94B � VW< ! \$94B]< for a suitable polynomial \ .
Theorem 4.1 If [ is a univariate polynomial, then 5768� 9@[]< is in � .

Proof If [ 94B�� V�<L!c\W94BN<Q!/f , then we have 0@�������
	
	
	����
���
1 � ! �������
	
	
	����>����f � . If [ 94B � VW<L!#\W94BN<L! B S f ,
then 0@�������
	
	
	����
���
1 � !#��� � S ^$f�& � ! � �
	
	
	������ ^ aU�`� . In all other cases we have \W94BN<Qa T�B or \W94BN<QaUB R .
It follows that �

? 0@���(���
	
	
	����
�(�
1 � # �
? � [��`9g� � < & � ! � �
	
	
	������ ^ ! �$��� �
	
	
	 �,& %'&)(=9���< &`S ��� where

[ � 94BN< �O�!bB and ["� 	 � 94B]< �O�! [ 9@[��`94BN< < for ^ a � .
So in all cases the membership to 0@���N���
	
	
	����
���
1 � can be easily verified in polynomial time. �
A univariate polynomial [ 94B]< is linear, if there are ����f ? 
 such that [ 94B]< ! �
B S f .
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Theorem 4.2 If [ is a bivariate polynomial that is not of the form [ 94B � VW< !c^`BNS7\W94V�< or [ 94B�� V�< ! \W94BN< S*^`V
where \ is non-linear and ^ a"T , then 5768�:9@[N< ? ��� .

Proof We show that [ must have one of the following properties:

(1) [ 94B � VW< ! B S \W94V�< or [ 94B�� V�< ! \W94B]<]S V for some univariate polynomial \ ,
(2) [ 94B � VW< ! �>BXS � V*S f for some �(� � ��f ? 
 such that �(� � aUT , and

(3) [ 94B � VW<QaUB  �V for all B � V .

After this, the proof of the theorem is completed by the following three lemmas.
Assume that the polynomial [ has non of the properties (1), (2), and (3). Since [ does not fulfill (3) there

are univariate polynomials \ and J such that [ 94B � VW<P! \W94BN< S J�94V�< . Since B R SUV R a B  V at least one of
the polynomials \ and J is linear. Consequently there exist a univariate polynomial \ and an ^ aU� such that
[ 94B � VW< ! ^`B S \$94V�< or [ 94B � VW< ! \$94B]<�S ^`V . Since [ does not fulfill (2), the polynomial \ is not linear.
Since [ does not fulfill (1), we obtain ^ a T . �

Lemma 4.3 If [ 94B�� V�< ! BXS \W94VW< for some univariate polynomial \ , then 5768�X9@[N< ? ��� .

Proof It is sufficient to prove:

0@�������
	
	
	 ����� �
1 � !#��� �8S � ���� � � �  �\W9g� � <8&�� ? �>� �
	
	
	 ��J`� and � ���
	
	
	�� � � ?�
 ��	
The inclusion from right to left is obvious. For the other direction, we observe that ��� ���
	
	
	������ � is included
in the right hand side (which is obvious) and that the right hand side is closed under [ . For the latter let
� � � � � ? 
 for � ; � ; J and ��� ^ ? �>� �
	
	
	���J
� . Then for some f*aU� ,

[ 9g� �LS
��

��� �
9 � �  �\W9g� � < <���� � S

��

��� �
9 � �  �\W9g� � < < < ! � �8S

��

��� �
9 � �  �\W9g� � < <=S \$9g� �GS

��

��� �
9 � �  �\W9g� � < < <

! � �8S
��

��� �
9 � �  �\W9g� � < <=S \$9g� � <]S f

��

��� �
9 � �  �\W9g� � < < (1)

! � �8S
��

��� �
9 9 � � S f � � <  �\W9g� � < <�S \W9g� � <�	

To see equality (1), observe that by binomial theorem, for all �(� � a � , \W9g�(� � <D! \W9g�W<=S f � for some f ? 
 .
�

Lemma 4.4 If [ 94B�� V�< ! �
B S � V S f for ��� � ��f ?�
 and ��� � a T , then 576D�X9@[N< ? ��� .

Proof Let C be a [ -generation tree for � . Without loss of generality we can assume that value � occurs only
in the leaves of this tree C . Since �(� � a T , the depth of C is bounded by & %'&)(]9�� < & S � .

Let C be an arbitrary binary tree whose leaves have values from ��� � �
	
	
	 ��� � � . For a full path \ in C ,
choose

� 9g\�< ? �>� �
	
	
	���� � such that the leaf of \ has value � � �	� � . We obtain that �
? 0@���(���
	
	
	����
���
1 � if and

only if there exists a binary tree C whose leaves have values from �������
	
	
	����
��� such that

��! �

�  �

� ����� �
�"�
� � �	� �  �� � �	� �  � � �	� � S �

�  ���� ����� �
�"�
f  �� � ��� �  � � �	� � 	
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For a binary tree C of depth bounded by 
 and for
� ��� ? ���$�
	
	
	 � 
�� we define the characteristics

� � � � �
�O�! 
 ��\ &�\ ? &)K'LMF�N=9DC7<���H 9g\�<D! �

and J�9g\�<�! �W� and
J �� � �

�O�! 
 ��\ &�\ ? T�K'LMF�N�9DC*<���HI9g\�< ! �
and J�9g\ <D! �$��	

Note that the J �� � � can be computed from the � � � � � by

� J �� � � ! � � � � � � � �
� J �� � � 	 � ! � � � � � � � � � � � 	 � for � ? ���$�
	
	
	 � 
����
� J �� 	 � � � ! � � � � � � � � � 	 � � � for

� ? ���$�
	
	
	 � 
W��� and
� J �� 	 � � � 	 � ! � � � � � 	 � S � � � 	 � � � � � � � 	 � � � 	 � for

� ��� ? ���$�
	
	
	 � 
W��	

�������� 9���<

Using these characteristics we obtain that �
? 0@��� � �
	
	
	 ��� � �
1 � if and only if there exist a binary tree C of

depth 
U; & %R&)(]9�� < & S#� and a set of natural numbers �PJ � � � � � & � ��� ? ���$�
	
	
	�� 
W��� ^ ? �>� �
	
	
	���� � � such that
� � � � � J � � � � ��!�J �� � � and

��! �� ��� � ��
� � �

� ��
� � �

J � � � � �  �� ���  �� �  � � S �� ��� � ��
� � �

�
	� � �  �f  �� �  � � 	
Observe that the characteristics � � � � � have the following properties.

� � � � � � ;c� �
� � � � � � 	 � ; � � � � � for � ? ���$�
	
	
	�� 
 �U�����
� � � � 	 � � � ; � � � � � for

� ? ���$�
	
	
	 � 
 � �����
� � � � 	 � � � 	 � ; � � � 	 � � � S � � � � � 	 � � for

� ��� ? ���$�
	
	
	�� 
 �U����� and
� � � � � � ! � � � � � ! � for

� ��� ? ���$�
	
	
	 � 
W��	

� ������������ 9�� ��<

On the other hand, we can prove the following.

Claim. Consider arbitrary natural numbers � � � � where
� ��� ? ���$�
	
	
	 � 
W� . If these � � � � fulfill ( � � ), then there

exists a binary tree C such that � � � � � ! � � � � for
� ��� ? ���$�
	
	
	 � 
�� .

Proof of the claim. By induction on �:9 � < ���! � �� � � � �� � � � � � � .If � 9 � <8! � , then the tree with only one node fulfills the statement.
If � 9 � < *.� , then we have � � � � *.� . Since � � � � ! � � � � ! � for

� ��� ? ���$�
	
	
	�� 
�� there exists a pair
9 � ���`< ? ���$�
	
	
	�� 
�� R such that � � � � * � and � � 	 � � � ! � � � � 	 � ! � . Let 9 � � ��� � < be such a pair. Define
� �

�O�! ��� �� � � & � ��� ? ���$�
	
	
	 � 
�� � such that � ���� � � � �O�! � ��� � � � �U� and � �� � � ! � � � � for all other 9 � ���`< ? ���$�
	
	
	�� 
W� R .
Obviously, � � fulfills ( � � ) and � 9 � � <2! �:9 � < �c� . By the induction hypothesis, there exists a binary
tree C � such that � � �� � � ! � �� � � for

� ��� ? ���$�
	
	
	�� 
W� . To know that there exists a full path \ in C � such that

H 9g\�< ! � � and J�9g\�< ! � � we have to prove J � �� � � � � *U� . We do this by considering four cases.

If
� �P! ���P! � then � � �� � � ! � � � � � � ��� � � ;c� and hence � � �� � � ! � .

If
� �P! � and ��� *U� then � � �� � � � ! � � � � � � � ��� � � � ; ��� � � � ! �8! � � � � � � ! � ! � � �� � � � ! � .

If
� � *U� and � � ! � then � � �� � � � ! ���� � � � � � ��� � � ; � ��� ! � � � ! ���� � ! � � � ! � � �� � ! � � � .

If
� � *U� and � � *U� then � � ���� � � � ! ����
� � � � � � ��� � � � ; � ��� ! � � � � S � ��� � � � ! � ! ������ ! � � � � S ������ � � � ! � ! � 	 ��
� ! � � � � S � � ���� � � � ! � .

Now choose a full path \ in C � such that HI9g\�<�! � � and J�9g\ <�! ��� and attach two successors to it. For the
binary tree C defined in such a way, we have � � � � � � � ! � � �� � � � � S �P! ���� � � � � S �P! � ��� � � � and � � � � � ! � � �� � � ! ���� � � !
� � � � for all other 9 � ���`< ? ���$�
	
	
	�� 
W� R . This completes the proof of the claim.
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Consequently, we obtain that �
? 0@�������
	
	
	 ���>���
1 � if and only if for 


�O�! & %'&)(=9�� < &AS � and
� ��� ? ���$�
	
	
	�� 
W�

there exist natural numbers � � � � and there exists a set of natural numbers �PJ � � � � �_& � ��� ? ���$�
	
	
	 � 
���� ^ ?
�>� �
	
	
	���� � � such that

1. the � � � � fulfill ( � � ),
2. � � � � � J � � � � ��!$J � � � for

� ��� ? ���$�
	
	
	�� 
�� (where the J � � � are computed from the � � � � as in ( � )), and

3. �7! � ���� � � �� � � 9�� � � � � J � � � � �  �� � <  �� �  � � S � ���� � � �� � � � � � �  �f  �� �  � � .
This shows 5*6D� 9@[N< ? ��� . �

Lemma 4.5 If the polynomial [ fulfills [ 94B � VW<Ga B  �V for all B � V , then 576D� 9@[N< ? ��� .

Proof Let 8 - 

be finite. Let 8 � �O�!U8�� � [ 9gf���f�<Q&�f ? ���`���+8 � . Obviously we have 0 8 1 � ! 0 8 � 1 � and for

every � ? 0 8 � 1 � there is a [ -generation tree that has no node Q that has only child nodes with value � . If for
every B ?�
 (resp., V ?�
 ), ( � )

� [ 94B����><Ga"T�B (resp., [ 9g�$� V�<Qa T�V ) or

� [ 94B����><GaUB R (resp., [ 9g�$� VW<Ga V R ) or

� [ 94B�����<Ga"T�B (resp., [ 9I� � V�<Qa T�V ) or

� [ 94B�����<GaUB R (resp., [ 9I� � VW<Ga V R ),
then there is a [ -generation tree for � from 8 � such that there are at most & � & nodes with left (resp., right)
child that has a value a T ( � ). Let : be a [ -generation tree from 8 � for � . We can assume that there are at
most & � & leaves Q in : that have a value greater than � and there can at most be & � & nodes having two children
with values greater than � . Furthermore, we can assume that there are at most & � & nodes Q in : such that
both children of Q are leaves with values from ���$����� . That means that if : has exponentially many nodes,
then nearly every node (except polynomially many ones) ( � � )

� has one child with value ;c� and another one that is no leaf, or

� is a leaf with value ;c� , and its parent’s other child is no leaf.

We consider four cases:

� Let there be B��
�
	
	
	 � B�� ? 

such that ([ 94B������>< �a T�B�� and [ 94B R ���><

�a B�RR and [ 94B Z ����<
�a T�B Z and

[ 94B � ����< �a B R� ) and ([ 9g�$� B � < �a T�B � and [ 9g�$� B���< �aUB R� and [ 9I� � B���< �a T�B�� and [ 9I� � B�� < �a B R� ). Then
[ 94B�� V�<�! B(V:S"f , where f ?�


. Note that [ 94B ���><7!/[ 9g�$� VW<7! f . Since f ? 8 � if � ? 8 � , we can
assume that there are no leaves with value � . Furthermore, \W94BN< �O�!JB SUf !"[ 9I� � BN<P! [ 94B�����< for all
B ?�
 . Note that

\$9g\W9 	
	
	 \� 	�
 �
�

94B]<(	
	
	�< < ! BXS ^$f��

so ^ applications of \ can be guessed in one step. Using property ( � � ), we can guess a polynomially
sized generation tree, where each node either represents a normal generation step or ^ ; � steps of
the above form.
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� Let there be B��
�
	
	
	 � B � ? 

such that for all B ? 


we have ([ 94B ���>< a T�B or [ 94B ���>< a B]R
or [ 94B ����<Xa T�B or [ 94B ����<Xa B R ) and ([ 9g�$� B��Y< �a T�B=� and [ 9g�$� B R <

�a B RR and [ 9I� � B Z <
�a T�B Z and

[ 9I� � B � < �a B�R� ). Then [ 94B�� V�< ! B � V�S5� ���� � � � B � S 
 where ^ ac� , ��� � � � 
 ?�
 ( �3; � ; � ). Because
of ( � ) there can only be polynomially many nodes in : with a left child that has a value greater than
� . So if there are exponentially many nodes in : , then all of them except polynomially many ones
have a left child with value ; � and a right child that is not a leaf. Observe that [ 9g�$� VW<7! 
 for all
V , so we can assume that there is no left child labeled with � since if � ? 8 � , so is 
 . Furthermore,
[ 9I� � VW<8! V*S � ���� � � � S 
 and

[ 9I� �g[ 9I� �
	
	
	 [� 	 
 �
�

9I� � VW<(	
	
	
< < ! V S ^]9�� ���� � � � S!
`<�	

Therefore we can guess a polynomial-sized generation tree for � where each node is either a normal
generation step or ^5; � subsumed steps of the form [ 9I� � VW< .

� Let there be B ���
	
	
	�� B � ? 

such that for all B ? 


we have ([ 94B �����>< �a T�B=� and [ 94B R ���><
�a B RR

and [ 94B Z ����<
�a T�B Z and [ 94B � ����< �a B�R ) and ([ 9g�$� BN<ba T�B or [ 9g�$� B]<ba B�R or [ 9I� � BN<_a T�B or

[ 9I� � BN<GaUB R ). Here a symmetrical argumentation holds.

� Let for all B ? 

hold ([ 94B����>< a T�B or [ 94B ���>< a B R or [ 94B ����< a T�B or [ 94B ����< a B R ) and

([ 9g�$� B]<*a T�B or [ 9g�$� B]<*a B R or [ 9I� � BN<7a T�B or [ 9I� � B]<*a B R ). By ( � ) there is a polynomial sized
[ -generation tree from 8 � for

�
that can be guessed and checked in � .

�

4.2
�������	��

�������

is
���

-complete

By Theorem 4.2, if we consider a polynomial of the form � d � e B(d�V`eIf d e where �(� � ac� , then the generation
problem belongs to ��� . Here we pick out those polynomials that consist of only one term of the sum. For
this special case we can show that 5768�:94B d V e f�< is ��� -complete if f*ac� . For � ! � or

� ! � this is easy to
prove.

Proposition 4.6 For �(��f*ac� , 576D�X94B d V$f
< is ; < > -complete for ��� .

Proof We reduce � - F � - � - K$M�E to 576D� 9@[N< , where [ 94B � VW< ���!bB(d�V`f . Let � be a ��� OQ� �
formula with

clauses 9 � �
	
	
	�� 9 � and variables B � �
	
	
	�� B � . Let [ � �g[ R �
	
	
	 be the prime numbers larger than f . Define
��� �O�! [ d� 	 ��� � 
  ����$[ d� ,

� � �O�! [ d� 	 ��� � 
  ����$[ d� , for T ; � ; � , � � �O�! [ � 	 � � ���  ����$[ � , � � �O�! [ � 	 � � ���  ����$[ � ,
� �O�! f � ! �  � � 	����� � [(d� , and ��9 �_< �O�! 9g� � �
	
	
	���� � � � � �
	
	
	 � � � ���
< . Note that � is polynomial-time computable.

Assume � ? � - F � - � - K$M�E . Then there is an assignment � & ��B ���
	
	
	�� B��(� + ���$����� that satisfies
exactly one literal in each clause. Therefore, we obtain � � 	����� � [ d�  �f � ! � by a linear generation tree that has
leaf-values f��(�
	
	
	���f � where f � ! � � if �(94B � <D! � and f � ! � � otherwise. Hence ��9 �_< ? 576D� 9@[N< .

Assume that ��9 �_< ? 5*6D� 9@[N< , hence � ? 0@���(���
	
	
	����
�(� � ���
	
	
	�� � �(�
1 � . Every prime [ � occurs exactly �
times in the factorization of � . Therefore, either � � or

� � (and not both) has to be a leaf-value in the generation
tree. If �+*c� then additionally the generation tree has to be linear and the rightmost leaf has value � � or

� � .
Hence, the assignment � such that �(94B � <Q! � if and only if � � is a leaf-value in the generation tree satisfies
� in the sense of � - FI� - � - K$M�E . Therefore � ? � - F � - � - K$M�E . �

Now let us consider 576D� 94B d V e f�< for ��� � * � . In general, the crucial point in proving hardness for
generation problems is to cope with the various different trees that generate a number. In our proofs we
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force the generation trees to have a specific shape such that the generation is possible only in a predefined
way.

Consider an B d V e f -generation tree. Clearly, the generated number is a product that consists of various
multiplicities of f and base elements. As a tool to control these multiplicities we introduce 9g�(� � < -weighted
trees, where we mark each node with the power its value appears in the root-value. By controlling the marks
of the leaves, we can force an B d V e f -generation tree into the shape of a complete 9g�(� � < -weighted tree.

Definition 4.7 Let � be a binary tree. C ! 9��Y� �$< is called 9g�(� � < -weighted tree, �(� � * � , if � is a marking-
function � &��P�.-�G>9���< + 


such that:

If B !$E��
��F�9���< , then �N94BN<D! � .
If B ? ���6-�G>9�� < has a left and a right successor B � and B � , then ��94B � <D! �  �N94BN< and ��94B ��<D! �  ��94BN< .

C is called balanced, if , L*) �  �� � 	 � ��94BN< ; , L*)=9g��� � <  P, &)( �  �� � 	 � ��94BN< .C is called complete, if , L*) �  �� � 	 � �N94BN< � , L*)]9g�(� � <  P, & ( �  �� � 	 � ��94BN< .
From this definition it immediately follows that the marks have the desired properties. We obtain the fol-
lowing connection to 576D� 94BNd�V`e f�< .
Property 4.8 Let ��� � *c� . If C ! 9��Y� �$< is an 9g��� � < -weighted tree, where � is an B d�V$e f -generation tree with
values ��9�Q$< for all Q ? BL9�� < , then

�(9�E �
��F 9���< < ! �
�  �� � 	 � ��9�Q$<�� � � �  � �  	� ��

� � 	 � ! � � 	 � f�� � � � 	

We want to remark that it is possible to define the notion of 9g��� � < -weighted trees for � ! � and
� ! � .

However, if � ! � and
� ! � , then complete trees do not exist. In contrast, for all �(� � * � complete trees

exist. Therefore, we require �(� � *c� .
Proposition 4.9 Let ��� � * � . For every � a � there exists a balanced 9g��� � < -weighted tree that has �
leaves.

Proof For � ! � take the tree that consists only of the root.
For arbitrary � * � , let C ! 9���� �$< be a balanced 9g�(� � < -weighted tree with � �"� leaves. Let B � ? B89���< be
a leaf with minimal weight, i.e., ��94B � < ! , &)( �  �� � 	 � ��94BN< . Define the tree � � by adding in � successors B �
and B � to B � , and define ���D&]���6-�G>9�� � < + 


by �
�;94B]< ���! ��94B]< for all B ? ���6-�G>9���< , �
� 94B � < �O�! �  ��94B ��< , and
��� 94B � < ���! �  ��94B � < . This defines an 9g�(� � < -weighted tree C � �O�! 9�� �g� ��� < with

, L*) �  �� � 	 � � � � 94BN< ! , L*)=91, L*) �  �� � 	 � ��94BN<���, L*) 9 � � 94B � <�� � � 94B ��< < <
! , L*)=91, L*) �  �� � 	 � ��94BN<���, L*) 9g�(� � <  ��94B ��< <
! , L*)=91, L*) �  �� � 	 � ��94BN<���, L*) 9g�(� � <  I, & ( �  �� � 	 � ��94BN< <! , L*)=9g��� � <  I, &)( �  �� � 	 � ��94BN<; , L*)=9g��� � <  I, &)( �  �� � 	 � � � � 94B]<�	 (2)

Hence C � is balanced. �
Now we show that for each � a � there exists a complete 9g��� � < -weighted tree with nearly � leaves.

Note that such a tree is polynomial-time constructible.

14



Proposition 4.10 Let �(� � *#� . For every � a � there exists a complete 9g��� � < -weighted tree with at least �
and at most T"� � � leaves.

Proof Proposition 4.9 gives a balanced 9g�(� � < -weighted tree C with � leaves. If all leaves have minimal
weight, then C is complete. Otherwise, there are ^ , � ; ^ ; � � � , leaves of minimal weight. If we add
two successors to each of these leaves, then the minimal weight increases. So in inequality (2), ; changes
to

�
. So the resulting tree C � is complete. C � has � � ^PS_T ^ !$�2S_^ leaves where � ; �2S_^ ; T"� � � . �
Now we show that if the generation tree is not the desired complete tree, then at least one leaf-value is

taken to a power that is too large.

Proposition 4.11 Let ��� � * � . Let C ! 9��Y� �$< be a complete 9g��� � < -weighted tree with � leaves. If C � !
9�� � � � � < is an 9g�(� � < -weighted tree with more than � leaves, then there exists a leaf V ? B89�� � < such that

� � 94VW< * , L*) �  �� � 	 � �N94BN<�	
Proof Without loss of generality we can assume � a �

. Fix a shortest way in terms of deleting and adding
leaves that transforms � to � � . We have to change at least one leaf B � ? B89���< to an inner node of � � . Let B �
and B � be the successors of B � . We obtain

� � 94B � <�! �  �N94B � <Qa , L*)]9g�(� � <  I, &)( �  �� � 	 � �N94BN< * , L*) �  �� � 	 � �N94BN<�	
Hence, every V ? � � that is reachable from B � fulfills � � 94V�<Qa � � 94B � < * , L*) �  �� � 	 � ��94BN< . �

Next we show that balanced 9g��� � < -weighted trees have a height which is bounded logarithmically in the
number of leaves.

Proposition 4.12 Let � a � * � . Let C ! 9��Y� �$< be a balanced 9g��� � < -weighted tree with � leaves. If 

denotes the maximal depth of a leaf of � , then


 ; 	 ��
 e 9g�$<  `9I�8S
	 ��
 R 9�� < <

Proof Let 2 �O�!V, &)( �  �� � 	 � ��9�Q$< . Hence � contains a complete binary tree of depth a 	 ��
 d 9�2J< , hence	 ��
 d 9�2J< ;
	 ��
 R 9�� < . C is balanced, so

� � ; � 2 which is equivalent to 
 ; 	 ��
 e 9g� 2J< . Therefore,


+; 	 ��
 e 9g��2J< !
	 ��
 e 9g�$<  

	 ��
 d 9g��2J< ;
	 ��
 e 9g�$<  >9I�8S

	 ��
 R 9�� < <�	
�

Theorem 4.13 For �(� � ��f*ac� and [ 94B � VW< �O�!bB�d�V$eIf , 5*6D� 9@[N< is ; < > -complete for ��� .

Proof By Proposition 4.6, we can assume �(� � * � . Containment in ��� follows from Theorem 4.2.
We reduce � - F � - � - K$M�E to 576D�X9@[N< . Let � be a ��� OG� �

formula with clauses 9*�
�
	
	
	�� 9 � and vari-
ables B��
�
	
	
	�� B(� . Let [����g[ R �
	
	
	 be the prime numbers larger than f . Define � � �O�! [ � 	 � � ���  ����$[ � and� � �O�! [ � 	 � � ���  ���� [ � . Let C ! 9��Y� �$< be a complete 9g�(� � < -weighted tree with ^ leaves where � ; ^ ; T"� � �
and B89���<G! �PQ � �
	
	
	���Q �>� (such a tree exists by Proposition 4.10). Furthermore, let 
 be the maximal depth
of a leaf of � . Define � � ���! [ � 	 � for

� !$� S � �
	
	
	�� ^ ,
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, ���! �(� �� ���! � d � e ��� � � � ���� &�� ; � ; ^�� ��� � �� ���! � d � e ��� � � � � �� &��3; � ; ��� � and

� ���! � � 	 �
��� � [ d

�
e
�

�  
�
�  	 ! � � 	 � f
� � � � 	

Proposition 4.12 shows that 9g, ���`< is polynomial-time computable.

If � ? � - F � - � - K$M�E , then there is an assignment �	� &���B=�
�
	
	
	 � B���� + ���$����� that satisfies exactly one
literal in each clause. We obtain

�
!�
 � ��� � � � � �  �

!�
 � ��� � � � � �  ��
��� ��	 � [ � 	 � ! � 	 ��

��� �
[ � 	

We consider � as an [ -generation tree with values

� 	 9�Q � < �O�!
���� � �� , if
� ! � �
	
	
	���� and ���294B � < ! �� �� , if
� ! � �
	
	
	���� and ���294B � < ! �

� �� , if
� !$� S � �
	
	
	�� ^ .

By Property 4.8, � 	 9�E��
��F�9�� < < , the value of the root, can be evaluated as follows.

� 	 9�E��`��F�9�� < < ! �
�  �� � 	 � � 	 9�QW<�� � � �  �

�  �� � 
 � � 	 � ! � � 	 � f
� � � �
! �

!�
 � ��� � � � 9g� �� <�� � � ���  �
!�
 � ����� � � 9 � �� <�� � � ���  ��

��� �
	 � 9g� �� <��
� � ���  �

�  	� ��
 � � 	 � ! � � 	 � f
� � � �
! �

!�
 � ��� � � � � d � e ��  
�

!�
 � ��� � � � � d � e ��  
��

��� �
	 � � d
�
e
�

�  
�

�  	� ��

� � 	 � ! � � 	 � f � � � �
! �� �

!�
 � ��� � � � � �  �
!�
 � ��� � � � � �  ��

��� ��	 � [ � 	 ���� d � e �  �
�  	� ��

� � 	 � ! � � 	 � f
� � � �

! � 	 ��
��� �

[ d
�
e
�

�  
�

�  	� ��

� � 	 � ! � � 	 � f � � � � !$��	

Hence 9g, ���
< ? 576D� 9@[N< .
Assume 9g, ���
< ? 5768�:9@[]< . So there exists an 9g�(� � < -weighted tree C �X! 9�� �g� ��� < , where � � is a [ -

generation tree from , for � . For each Q ? ���6-�G`9�� � < define � 	 � 9�Q$< as the value of node Q . Each element of
, has exactly one prime factor from [ � 	 �
�
	
	
	��g[ � 	 � . Since � has all these prime factors at least once, ���
must have at least ^ leaves. Assume � � has more than ^ leaves. By Proposition 4.11, there exists Q ? B89���� <
such that � � 9�QW< * , L*) �  �� � 	 � ��94B]< . � 	 � 9�QW< has exactly one prime factor from [ � 	 �
�
	
	
	��g[ � 	 � ; say [ � 	 � with
exponent � � � �	� ��9�Q � < . Hence

[ d
�
e
���
� � � � ��� � � � � �� 	 �

is a factor of � 	 � 9�E��`��F�9�� � < < . From � � � ��� ��9�Q � <  �
�;9�QW< *U� � � � it follows that � 	 � 9�E��`��F 9�� � < < �!$� .
So � � has exactly ^ leaves. Each prime [ � 	 ���
	
	
	��g[ � 	 � must appear as factor in a value of some leaf.
Therefore, for

� ! � �
	
	
	���� , either � �� or
� �� is a value of a leaf (but not both). Define ��� &N��B����
	
	
	�� B���� +

���$����� such that � � 94B � < ! � # 
 
 �
�� is a leaf-value of � � . Observe that � � shows � ? � - FI� - � - K$M�E . �
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5 The Generation Problem ���������
	�� 
��
�
So far we do not have upper bounds for generation problems of polynomials [ 94B�� V�<8!c\W94BN<�SU^`V , where \
is non-linear and ^ a/T . The obvious algorithm guesses and verifies generation trees. How large are these
trees? To answer this, observe that the trees are of a special form: When we go from the root to the leaves in
V -direction, then in each step, the length of the value decreases by one bit. When we go in B -direction, then
in each step, the length is bisected. It follows that the size of such trees grows faster than any polynomial, but
not as fast as T ����� � � . Therefore, 576D� 9@[N< ? ��EGF HJ6�9;T ����� � � < . We do not have to guess complete generation
trees. If a subtree generates some value

�
, then it suffices to store

�
instead of the whole subtree. We need to

store a value
�

every time we go in B -direction. So we need space � 9�� 	 ��
 � < .
Proposition 5.1 5*6D� 9@[N< ? ��EGF H 6 - K$�NMPOQ6�9;T ����� � � ��� 	 ��
 � < for all [ 94B � VW<2! \W94BN<�S ^`V where ^ a T
and \ is a non-linear polynomial.

Because of the special form of a generation tree for such polynomials, the generation problem can be solved
by special alternating machines: Some � can be generated via [ from 8 if and only if there exist �(���
	
	
	������ ;
� such that �$; & � & , � ! ��� , ��� ? 8 , and for all � ; � � � , � � !/[ 91� � 	 ��� V � < where V � can be generated
via [ from 8 and & V � & ; �

R & � � & . An alternating machine can check this predicate in polynomial time with
a logarithmic number of alternations. Furthermore, in existential parts the machine guesses polynomially
many bits. In contrast, in universal parts it guesses logarithmically many bits.

This discussion shows that 5768�:9@[N< can be solved with quite restricted resources. However, we do not
know whether 5768�:9@[N< belongs to ��� . Standard diagonalizations show that there exist oracles 8 and ,
such that �Q�D��� �- ��EGF HJ6�9;T ����� � � < � and ��������� �- ��EGF H 6�9;T ����� � � < � . Therefore, we should not expect
5768�:9@[N< to be hard for any class that contains �Q�8� or ������� . This rules out many reasonable classes above
��� to be reducible to 5*6D�X9@[N< . We consider this as a hint that 5768�:9@[N< could be contained in ��� , but we
do not have a proof for this. We leave this as an open question.

Nevertheless, in this section we prove lower bounds. The main result, Theorem 5.16, shows that if
[ 94B � VW<8! BR
�S ^`V where f � ^ a/� , then 5768� 9@[]< is ; < > -hard for ��� . The proof is difficult for two reasons
which we want to explain for [ 94B � VW< ! B R S T�V .

1. We have to encode ��� -computations into generation problems. For this, we need to construct an
instance 9g, ���`< of 576D� 9@[N< that represents information about a given ��� -computation. The elements
of , must be chosen in a way so that squaring will not destroy this information. This is difficult, since
squaring a number heavily changes its (binary) representation.

2. We construct 9g, ���
< such that if � can be generated, then B must be chosen always from , (and is not
a generated number). So the generation tree is linear. Because of the factor T , in any step, the number
generated so far is shifted to the left. We have to cope with this shifting.

With regard to item T , our construction makes sure that the size of the linear generation tree is bounded. So
the number of shifts is bounded. For , we choose numbers that are much longer than this bound such that
each number is provided with a unique stamp. The stamps make sure that there is at most one possible tree
that generates � . In particular, this fixes the sequence of numbers from , that are chosen for B . This keeps
the shifting under control.

The problem in item � is more complicated and also more interesting. It comes down to prove ��� -
hardness of the following extended sum-of-subset problem.

K�� K R
�O�!:�
9��7���
	
	
	����G�����`<L&6�.� - �>� �
	
	
	���� �
9�� �D M!#��R� !$�$< �

(In the proof we use a promise problem related to K�� K R , but for simplicity we argue with K�� K R in this
sketch.) First we reduce � - FI� - � - K$M�E to K�� K and obtain an K�� K instance � ! 9��:���
	
	
	���� R �����
< . The

17



reduction is such that either � �? K�� K or there is a selection of exactly � weights which sum up to � . We
choose a base

�
larger than � and all � R� . So in the system to base

�
, � and all � R� fit into one digit. For each

� � , define the following � -digit numbers in the system to base
�
.

� � ���! 0 � �
� � �M� � 1 e
J � ���! 0 �
� � �W� � � 1 e

The set of all � � and all J � build the weights for the K'� K R instance we want to construct. The intention is to
use the weight � � whenever � � is used in the sum that yields � , and to use J � whenever � � is not used. The
squares of � � and J � look as follows with respect to base

�
.

� R� �O�! 0 � T �U�c�#T"� � T"� � � � � � R� 1 e
J R� �O�! 0 � � �c�/T/T"� � � � � T"� � � R� 1 e

Note that �`R� and J R� have the same first digit, the same last digit, and the same digit at the middle position.
At all other positions, either � R� or J R� has digit � . In the sum for K�� K R , for every

�
, either � � or J � is

used. Therefore, in system
�
, the last digit of this sum becomes predictable: It must be ���"��R� . This is

the most important point in our argumentation. Also, we choose exactly � weights � � and � weights J � .
With ��� ���! ���"� � , � R

�O�! ���"��R� , and � �O�! ��� � � we can easily describe the destination number for the K�� K R
instance.

� � �O�! 0 T"� T"� � �#T"�#T � � TM� � � T � � R 1 e
We obtain the instance 9g���
��J ���
	
	
	���� R ����J R ����� � < which belongs to K�� K R if and only if 9�� ���
	
	
	���� R �����
<

?
K�� K . This shows ��� -hardness for K�� K R and solves the difficulty mentioned in item T .

We inductively use this technique to show that for all f a � , the following extended sum-of-subset
problem is ��� -complete.

K�� K 

���!2�
9��7���
	
	
	����G�(���
<Q&���� - �>� �
	
	
	���� �
9 ���� "! � 
� !$�
< ��	

We need K�� K 
 as a auxiliary problem for generation problems. However, we feel that this new ��� -
completeness result is interesting in its own right.

5.1 Notations

In the proofs below we have to construct natural numbers that contain information about ��� computations.
In addition, these numbers have to contain this information in a way such that exponentiation will not
destroy it. For this we need to consider numbers with respect to several bases

�
. Therefore, we introduce

the following notations. For
� a T define 8 e ! ���$�
	
	
	�� � �"��� to be the alphabet that contains

�
digits. As

abbreviation we write 8 instead of 8 R . For digits � ���
	
	
	����
� ! �
? 8 e , let 0 �
� ! �  � � � ��1 e

�O�! � � ! ���� � � � � � . This
means that 0 �
� ! �  � � � ��1 e is the number that is represented by �W� ! �  � � Y�
� with respect to base

�
.

We will consider vectors of weights � ! 9�� ���
	
	
	���� R ��< such that certain selections of these weights
sum up to given destination numbers �`���
	
	
	���� 
 . We group � into pairs 9�� ����� R < , 9�� Z ��� � < , and so on. Each
pair has a unique stamp � in its binary representation such that the destination number � 
 shows the same
stamp, but all other pairs have � ’s at this position. This allows us to argue that if we want to reach � 
 , then
from each pair we have to use at least one weight. Moreover, in view of generation problems, we need the
stamps still working if the weights are multiplied by small numbers. Therefore, additionally we demand that
the stamp � is embedded in � digits � . We make this precise:
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Definition 5.2 Let � ! 9�� ���
	
	
	���� R �W< and � ! 91� ���
	
	
	 ��� 
 < where ����f�a/� . Define � 

�O�! 9�� �  ���� 
 < �=� 
 .

We call 9 �_���7< � -distinguishable, � a � , if all %'&)(=9�� 
� < have same length H where H / ��9gf�< , and if for every
� � � there exist �Qac� and � ? � 8 � such that

1. %'& (=91� 
 <���%'& (=9 � 
 <���%'&)(=9�� 
R � 	 � <���%'&)(=9�� 
R � 	 R <
? 8 � � � �(� � 8 	 and

2. for all
� �! � , %'&)(=9�� 
R � 	 � <���%'& (=9��=
R � 	 R <

? 8 � � � � � � � � � 8 	 .
5.2 NP-Hardness of Modified Sum-of-Subset Problems

We want to show that for f�� ^ a � , the generation problem 576D� 94B 
PS ^`VW< is ; < > -hard for ��� . The
proof is such that the ��� -hardness of modified sum-of-subset problems is shown first, and then this is
transferred to the generation problems. Our argumentation for the modified sum-of-subset problems is
restricted to instances that meet several requirements. Therefore, it is convenient to define these problems
as pairs 9 	 
 � ����� 
 � ��< of disjoint sets.

Definition 5.3 Let f����2ac� .
	 
 � �

�O�! �(9 �_���7<L& � ! 9�� � �
	
	
	 ��� R � <���� ! 91� � �
	
	
	���� 
 <���9 �_���7< is � � -distinguishable, and

9��.� - �>� �
	
	
	�� T"� � s.t. for all
� �8T � S � ? � # T � SXT �? �`<�9	� 2 ? �>� �
	
	
	���f ��<�0 � �D M! ���� !$� � 1�


� 
 � �
�O�! �(9 �_���7<L& � ! 9�� � �
	
	
	 ��� R � <���� ! 91� � �
	
	
	���� 
 <���9 �_���7< is � � -distinguishable, and

9	� � - �>� �
	
	
	�� T"� ��<�9	� 2 ? �>� �
	
	
	���f���<�0 � �� "! ���� �!�� � 1�


Observe that for f���� a/� , 	 
 � � ��� 
 � �Q!�
 , 	 
 � �
? ��� , and � 
 � �

? ������� . We show ��� -hardness for fP! �
first, and then inductively for higher f ’s.

Lemma 5.4 For � ac� , 9 	 � � � ��� � � � < is ; <�<> -hard for ��� .

Proof For any word �$� ! �]	
	
	 � �
? 8 � , let �N0 � 1 �O�!_� � .

� - F � - � - K$M�E �O�! � � & � is a ��� OQ� �
formula having an assignment

that satisfies exactly one literal in each clause �
� - FI� - � - K$M�E is ��� -complete. For � a � , we show � - F � - � - K$M�E ; <�<> 9 	G� � ����� � � �Y< via reduction % . Let � be
a ��� OG� �

formula with clauses 9��
�
	
	
	�� 9 � and variables B ���
	
	
	�� B(� where � a T . For � ; � ; � � � let

� �O�! � � � �
� � � �
� � �O�! � � � R � ��	 � � �`� � � ! � ! � � � R � ��	 � � �

� R � 	 �
�O�! 0 �
� � f � �=	
	
	 f � � 1 R � and

� R � 	 R
�O�! 0 �
� ���f � �=	
	
	 �f � � 1 R

where

f � � !
� � � ! � � , if B � is a literal in 9 �
� � , otherwise

and

�f � ��!
� � � ! � � , if B � is a literal in 9 �
� � , otherwise.
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Finally, define the reduction as %�9 � < �O�! 9 9��7���
	
	
	���� R ��<���91�
< < where 

�O�!U�D9;T �P� S ��<=S 2 � and

� ���!V��T � S 0 � � 9g� � ! � ��< � 1 R 	
Note that & %'&)(]9�� � < &�! 
*S � . Let � ���! � R ���� � � � � � and observe that

�:!���T � Sc0 � � � � � 1 R S T  >0 9g� � ! � ��< �P1 R 	
Therefore, 9 9��*���
	
	
	���� R �W<���91�
< < is � � -distinguishable.

Let � ? � - FI� - � - KWM�E . So there exists an assignment �/&���B ���
	
	
	�� B��(� + ���$����� such that each clause
is satisfied by exactly one literal. Let

� �O�!2� T � S �*&�� ; � � � and �*94B � <�! ����� � T � SUT:&>� ; � � � and � 94B � <�! �`��	
It follows ���� M! � � ! � and hence 9 9��*���
	
	
	 ��� R �$<���91�
< <

?
	G� � � .

Let � �? � - FI� - � - K$M�E and suppose there exists � - �>� �
	
	
	�� T"� � such that ���� "! � � ! � . For all
�
,

� � */T � . Also, � � 9�� S/��<IT � , since 0 � � 9g� � ! � ��< � 1 R � T � . Therefore, � contains at most � elements. On
the other hand, for all

�
, � � � T � S T � ! � . Since 9�� � ��<�9;T � S T � ! � < � ��T � we obtain & � &�!�� .

Since 9 9�� � �
	
	
	���� R � <���91�
< < is � � -distinguishable, � must contain exactly one element from each pair
9�� R � 	 ����� R � 	 R < . For every ^ ? ���$�
	
	
	���2 � ��� there exists exactly one � ? � such that � �>0 ^6�N1X! � :
Otherwise, in %'&)(]9 �$�� "! � � < there is a � at position ^6� S � where � ; � � � . This is impossible. Therefore,
if � is defined such that � 94B � <G! � # T � S/� ? � , then � satisfies exactly one literal in each clause. This
contradicts our assumption. Hence, 9 9��2���
	
	
	���� R ��<���91�
< <

? �2� � � . �
So far we know that 9 	P� � �����2� � ��< is ��� -hard. This is the induction base of our argumentation. Now we

turn to the induction step and show how to transfer hardness to pairs 9 	 
 � ����� 
 � ��< where f *U� .
Lemma 5.5 For f ���:ac� , 9 	 
 � R � 	 
 ��� 
 � R � 	 
 <�; <A<> 9 	 
 	 � � ����� 
 	 � � �Y< .
Proof We describe the reduction % on input 9 � ����< where � ! 9��2���
	
	
	���� R ��< and �/! 91�����
	
	
	���� 
 < . Let
� ! , L*)]9 � < and choose H ��/ ��9gfQS#��< such that

� �O�! T � � *#���D9gfGS#��<��  "�=
 	 � . All � � belong to 8 e . For
� ; ^ ;"T"� , define the following weights (where � means accepted weight and J means rejected weight).

� � ���! 0 � �
� 
 �M� ��1 e
J � ���! 0 �
� � 
 � � ��1 e

Fix any 2 such that �@;�2 ; f8S � . In the following we show how to define the right destination number
V � . After that we define %�9 � ���7< ! 9 � �4��� � < where � �L! 9g���
��� R ��J ����J R ��� Z ��� � ��J Z ��J � �
	
	
	���J R � ! ����J R ��<
and � �W! 94V � �
	
	
	 � V 
 	 � < . By binomial theorem,

� � � ! ��
� � �

��
� � �

� 2 ��� � �
� � ����! ��  � � 
 	 R � � 	 � � (3)

J*�� ! ��
� � �

��
� � �

� 2 ��� � �
� � ����! ��  � � 
 	 R � � 	 � 	 (4)

Observe that in (3) each term
� � 
 	 R � � 	 � appears uniquely: If 9gf�S/T�< � S � ! 9gf�S/T�< � ��S � � , then (since

� � fLS"T and � � � fLS T ) � ! � � and
� ! � � . Similarly, in (4) each term

� � 
 	 R � � 	 � appears uniquely. Now
the idea is, to let � �
9���< denote the coefficient of

� 	 in equation (3), and to let J �$9�� < denote the coefficient of
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� 	 in equation (4). First, we define ���$9�� < and J �$9�� < for �5; � ; 
 , where 

�O�! 9gfLS ��< 2 , and then we show

that this definition fits to our idea.

� �`9�� < ���! ����� ������ � ��� �
�
� � � ��! �� & if � ! 9gfDS T�< � S � for � ; � �!� ; 2

� & if � ! 9gfDS T�< �7S �
for � ; � �!� ; 2

� � ��� � ��! �� & otherwise, i.e., if � ! 9gfDS ��< �
(5)

J �`9�� < ���! ����� ���� � & if � ! 9gfDS T�< � S � for � ; � �!� ; 2

� � ��� �
�
� � � ��! �� & if � ! 9gfDS T�< �7S �

for � ; � �!� ; 2

� � ��� � ��! �� & otherwise, i.e., if � ! 9gfDS ��< �
(6)

Note that � �$9�� < and J��$9�� < depend on 2 . We abstain from taking 2 as additional index, since 2 will always
be clear from the context. Observe that the three cases in these definitions are indeed disjoint. So � �`9���< and
J �$9�� < are well-defined. It follows that � �$9���< and J��`9���< are the announced coefficients from equations (3) and
(4). It follows that

� � � ! �� 	 � � � �`9�� <  � 	 and

J
�� ! �� 	 � � J �
9���<  � 	 	
All � �$9���< and all J��
9���< are less than

� � ��� and therefore belong to 8 e . Hence,

� � � ! 0 � �$9 
`<� � � Y� �$9I��< � �W9g�>< 1 e and (7)

J �� ! 0 J �`9 
$<� � � AJ �$9I��< J �W9g�>< 1 e 	 (8)

Equations (5) and (6) tell us that these representations to base
�

differ only at positions � �/ ��9gfDS ��< .
In order to define the destination number V � , we show how to transfer a selection of weights � � to a

corresponding selection of weights � � � and J �� . Suppose � � �2! ��� where the sum ranges over a suitable
collection of � weights. Now choose � � � for every weight ��� that is used (i.e., accepted) in the sum � � � ;
and choose J �� for every weight ��� that is not used (i.e., rejected) in this sum. The choice of whether to take
� � � or J �� only matters for positions � �/ ��9gf�S ��< . By equations (5) and (6), at these positions, either J �� has
digit � and � � � has digit � � ��� �

�
� � � ��! �� , or � � � has digit � and J �� has digit � � ��� �

�
� � � ��! �� (note that

� *U� since� �! � ). So when we consider the sum of all chosen � � � and J �� at such a position, then either we see digit

� � ��� �
�
� � �� ����� � � � � 
 � ��! �� ! � � ��� �

�
� � � ��! � �

or we see digit

� � ��� �
�
� � ��	� ��
 � � � � 
 � ��! �� ! � � ��� �

�
� � � ��! �

where ��� ���!V� and � � ! ��  � � � �V� � as defined above. This motivates the following digits of the destination

number V � .

V]9�� < ���!
������ ����� � � ��� �

�
� � � ��! � & if � ! 9gfDS T�< � S � for � ; � �!� ; 2

� � ��� �
�
� � � ��! � & if � ! 9gfDS T�< �*S �

for � ; � �!� ; 2
��  � � � ��� � ��! � & otherwise, i.e., if � ! 9gf�S ��< �
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Here again we abstain from taking 2 as index, since 2 will be clear from the context. Define the 2 -th
destination number as

V �
�O�! 0 VN9 
$<� � � �V]9I��< VN9g�>< 1 e 	

To finish % ’s definition, let %�9 � ���7< �O�!X9 � � ��� � < where � � ! 9g���
��� R ��J ����J R ��� Z ��� � ��J Z ��J � �
	
	
	���J R � ! ����J R ��<
and � �W! 94V$�
�
	
	
	 � V 
 	 ��< .
Claim 5.6 If 9 � ���7< is 9;T �QS f�< � -distinguishable, then %�9 � ���7< ! 9 � �A��� � < is T"� � -distinguishable.

Proof Fix 2 ! f S � and let 
 ! 9gfDS ��< 2 . Observe that for every ^ , ���`9 
$< !�J �$9 
`< ! � . By assumption,� !#T � � for H � / ��9gfLS ��< . Hence one digit from 8 e corresponds exactly to H � bits. By equations (7) and (8),
for every ^ , & %'&)(=9g� 
 	 �� < &�! & %R&)(=9�J 
 	 �� < &>! 
  PH ��S � . This number is / ��9gfDS ��< .

We need to understand the structure of V 
 	 � !.9�� �  �� � � 
 	 � < �'V 
 	 � , the complement of V 
 	 � . For
this end, define

V]9�� < ���!
������ ����� � � ��� �

�
� � � ��! � & if � ! 9gfDS T�< � S � for � ; � �!� ; 2

� � ��� �
�
� � � ��! � & if � ! 9gfDS T�< �*S �

for � ; � �!� ; 2
��  � � � ��� � ��! � & otherwise, i.e., if � ! 9gf�S ��< � .

Observe that for all � , VN9���<=S V]9�� <D! � R �� � � 9g� �$9�� <�S J �
9���< < . Hence

0 V]9 
`<� � � YVN9I��< V]9g�>< 1 e S 0 V]9 
`<� � � VN9I��< V=9g�>< 1 e !
�

�  � � � �
and therefore,

V 
 	 � ! 0 V]9 
`<� � � VN9I��< V=9g�>< 1 e 	
Choose any � � � and consider � R � 	 � and � R � 	 R . By assumption, 9 �_���7< is 9;T �GS f�< � -distinguishable. So
there exist �Lac� and � ? � 8 � such that

1. %'& (=91� 
 <���%'& (=9 � 
 <���%'&)(=9�� 
R � 	 � <���%'&)(=9�� 
R � 	 R <
? 8 � � � R � 	 
 � � �(� � R � 	 
 � � 8 	 and

2. for all
� �! � , %'&)(=9�� 
R � 	 � <���%'& (=9�� 
R � 	 R <

? 8 � � � R � 	 
 � � � � � � � � R � 	 
 � � 8 	 .
If one multiplies a binary number of the form 8 � � � � ��� � � 8 	 by 2.! f S � ; T 
 , then this yields a number of
the form 8 � � � � ! 
�� � � � � ! 
 8 	 	 
 where � � ? 8 � � � 	 
 . So in our case, there exist � ��a/� and � � ? � 8 � such that

1. %'& (=9�25� 
 <���%'& (=9�2 � 
 <���%'&)(=9�2 � 
R � 	 � <���%'&)(=9�2 �=
R � 	 R <
? 8 � � R � � � � � R � � 8 	 � and

2. for all
� �! � , %'&)(=9�2 � 
R � 	 � <���%'&)(=9�2 � 
R � 	 R <

? 8 � � R � � � � ����� � R � � 8 	 � .
Let � d ! f�S_T . For all

�
, � � 9�� d <�!�2 � 
� , J � 9�� d <�! � , V]9�� d <�!�25� 
 , and VN9�� d <�!�2 � 
 . So for � � � ! � � SUH �  � d ,

1. %'& (=94V � <���%'&)(=9 V � <���%R&)(=9g� � R � 	 � <���%'&)(=9g� � R � 	 R <
? 8 � � R � � � � � R � � 8 	 � � ,

2. for all
� �! � , %'&)(=9g� � R � 	 � <���%'&)(=9g� � R � 	 R <

? 8 � � R � � � � � � � � R � � 8 	 � � , and

3. for all
�
, %'& (=9�J �R � 	 � <���%'&)(=9�J �R � 	 R <

? 8 � � R � � � � � � � � R � � 8 	 � � .
We obtain the analogous three statements for J R � 	 � and J R � 	 R by looking at the position � �G! � . Here for all�
, � � 9�� ��< ! � , J � 9����
<D!�2 �=
� , V]9�� ��< !�2 � 
 , and V]9����
<�!�25� 
 . Hence 9 � �A��� � < is T"� � -distinguishable. �
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Claim 5.7 If 9 � ���7< ? 	 
 � R � 	 
 , then %�9 �_���7<�! 9 � � ��� � < ? 	 
 	 � � � .
Proof By Claim 5.6, 9 � � ��� � < is T"� � -distinguishable. Let � be as in the definition of 	 
 � R � 	 
 , and let
� �O�!:�>� �
	
	
	�� T"� � � � . Note & � &�! & � &�! � . We choose all � � such that

� ? � and all J � such that
� ? � .

Note that this collection of weights from � � is suitable to show that 9 � �4��� � < belongs to 	 
 	 � � � (i.e.,
when numbering the weights of � � from � to ��� , then the indices of chosen weights form an � � where
T � S � ? ��� # T � S"T �? ��� ). Fix any 2 ? �>� �
	
	
	 ��f8S/��� . Our selection of weights induces the following
sum.

� � ���! �

�  M!
� � � S �

�  !
J ��

! �

�  M!
0 � �$9 
`<� � � �� �`9I��< � �`9g�>< 1 e S

�

�  !
0 J �$9 
`<� � � J �$9I��< J �`9g�>< 1 e

We have seen that all � �`9���< and all J��$9�� < are less than
� � ��� . So for every � ,

� � 9���< �O�! �

�  "!
� �
9���<=S �

�  !
J �
9���<

is less than
�
. This means that if we consider the weights to base

�
and sum up digit by digit, then there is

no sum that is carried forward. It follows that

� � ! 0 � � 9 
$<(	
	
	�� � 9I��< � � 9g�>< 1 e 	
From equations (5) and (6) we obtain

� � 9���<�! ����� ���� � � ��� �
�
� � � �  "! � ��! �� & if � ! 9gfDS T�< � S � for �0; � � � ; 2

� � ��� �
�
� � � �  ! � ��! �� & if � ! 9gfDS T�< �*S �

for �0; � � � ; 2

� � ��� � �  � � ��! � & otherwise, i.e., if � ! 9gfDS ��< � .
So for all � , � � 9�� <D! VN9���< and therefore, � � ! V � . This shows 9 � � ��� � < ? 	 
 	 � � � . �

Claim 5.8 If 9 � ���7< ? � 
 � R � 	 
 , then %�9 � ����<D! 9 � � ��� � < ? � 
 	 � � � .
Proof By Claim 5.6, 9 � � ��� � < is T"� � -distinguishable. Assume 9 � � ��� � < �? � 
 	 � � � , i.e., there exists � d and
� � , subsets of �>� �
	
	
	�� T"� � , and there exists some 2 ? �>� �
	
	
	���fDS ��� such that

�

�  "! �
� � � S �

�  "!��
J
�� ! V � 	 (9)

Let � d ! 9gfDS T�<�9�2 �U��< . For all ^ , � �
9�� d < ! 2 � � , J��`9�� d < ! � , and V]9�� d <D!�25� � . In Equation (9), we can
consider the weights to base

�
and can sum up digit by digit without obtaining a sum that is carried forward.

By looking at position � d we obtain V]9�� d <D! � �  "! � � �`9�� d < and hence

���L! �

�  "! �
� ��	

So we found a collection of weights from � whose sum is � � . This is a contradiction. �
This complete the proof of Lemma 5.5. �
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Lemma 5.9 For f ���:ac� , 9 	 
 � �
��� 
 � � < is ; <A<> -hard for ��� .

Proof The proof is by induction on f . The induction base follows from Lemma 5.4 while the induction step
follows from Lemma 5.5. �

Theorem 5.10 For f7ac� , the following sum-of-subset problem is ; < > -complete for ��� .

K'� K 

�O�!2�
9g� � �
	
	
	 ��� � � � <L&6�.� - �>� �
	
	
	���� �
9 � �D M! ��
� ! � < ��	

Proof Clearly, K�� K 

? ��� . For given 9 � ���7< where � ! 9��*���
	
	
	 ��� R �W< and � ! 91�����
	
	
	���� 
 < let

%�9 � ����< �O�! 9��7���
	
	
	���� R ����� 
 < . Observe 9 	 
 � �
��� 
 � ��<�; <�<> K'� K 
 via % . So by Lemma 5.9, K�� K 
 is ��� -hard. �

5.3 NP-Hardness of
�������	������� � �

Starting from Lemma 5.9 we transfer ��� -hardness to generation problems. First, we show this for f * �
and then we treat 576D�X94B SU^`VW< in a separate lemma.

Lemma 5.11 For f�a"T , ^ ac� and �
�O�!�� ^$R>9gf S���< , 9 	 
 � ����� 
 � � <�; <A<> 576D�X94B 
 SU^`VW< .

Proof We describe the reduction % on input 9 � ���7< where � ! 9��2�
�
	
	
	���� R ��< and � ! 91�����
	
	
	���� 
 < .
We may assume that all � � and � � are divisible by T 
 �	� . Otherwise, use � ��! 9;TM
 � � � � �
	
	
	�� TM
 �	� � R � < and
� � ! 9;T 
 � � � ��� T R 
 �	� � R �
	
	
	�� T 
�


� � � 
 < instead of � and � . Let H ���! & %'& (N9�� 
 � < & and note that H * f � � . If ^ ! � ,
then we use �X! � as auxiliary weight. Otherwise, if ^ a T , then we use �X! T � � ! � � � 
 .

, �O�! ���(� T � ! � S �����J�P� � ^���� R ^���� Z ^ R ��� � ^ R �
	
	
	���� R � ! � ^ � ��� R � ^ � � (10)



�O�! ^ 
 � 91� 
 S T � ! � S ��<=S � 
  
 !

��

� � �
^ �  

� ! ��

��� �
^ � 
 (11)

If ��T � ! � ; � 

� ��T � , then %�9 �_���7< �O�!X9g, � 
`< , otherwise %�9 � ���7< �O�! 9 
`���>< . In the following we show

9 	 
 � ����� 
 � ��<�; <A<> 576D� 94BR
�S ^`V�< via % .

Case 1: Assume 9 � ���7< ? 	 
 � � . Hence there exist weights B �
�
	
	
	�� B�� ? � such that � ���� � B 
� ! � 

where B�� ? �P�7����� R � , B R

? �P� Z ��� � � , and so on. Therefore, ��T � ! � ;�� 

� ��T � and so %�9 �_���7<L! 9g, � 
$< .

We describe the generation of 
 . Clearly, V � ���! T � ! � S � can be generated. For � ac� , let

V�� �O�! ^ 
  
V�� ! �=S 9;^ � B ��< 
 S � 
  
 !
��

��� �
^ � 	 (12)

If V � ! � can be generated, then so can V � : For ^ ! � this is trivial. For ^ a T , start with V � ! � and apply the
generation V
	 ��� ! � 
 S ^  �V ��� 
 for f � � times. Then apply the generation V
	 ��� ! 9;^ � B ��< 
 S ^  �V ��� 
 (note
that ^ � B � ? , ). This yields V � . Hence V � can be generated. From equation (12) we obtain

V �:! ^ 
 �
��
��� �

B 
� S ^ 
 � 9;T � ! � S ��<�S � 
  
 !
��

��� �
^ �  

� ! ��

��� �
^ � 
 	

It follows that 
:! V>� and therefore, 9g, � 
`< ? 5*6D� 94B 
 S ^`VW< .
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Case 2: Assume 9 � ���7< ? � 
 � � . If � 

� ��T � ! � or � 
 a ��T � , then %�9 �_���7<8! 9 
`���>< �? 576D� 94B 
 SU^`V�<

and we are done. So let us assume ��T � ! � ; � 

� ��T � and %�9 � ���7< ! 9g, � 
`< ? 576D� 94B 
DS ^`VW< . In the

remaining proof we will derive a contradiction which will prove the lemma.

If ^ a T , then from equation (11) and � 

� ��T � we obtain 
 � 9�� S ��<IT � ^.
 � S �6
I^.
 �
	 � . Hence

^ ! � ? 
 � 9�� S ��<IT � � (13)

^ a"T ? 
 � T � ^ � � 
 	 Z � 	 (14)

Claim 5.12 There exist 2 ac� , V
� ? , and B����
	
	
	 � B �
? , � ���$� T � ! � S ��� such that


:! ^���V � S ��
��� �

^���! � B 
� 	 (15)

Proof We have seen that H@* f � � . From equations (13) and (14) it follows that 
 � T � 	��	� ! R � T R � ! R .
For all B ? , � ���`� , & %R&)(=94B 
 < & a H . So if � can be generated and is not already in , , then & %'&)(=91�
< &�a H
and therefore �_a T � ! � . If we apply the generation rule B 
 S ^`V for B ! � and any V , then, since f a T ,
we obtain � � a T R � ! R+* 
 which cannot be used to generate 
 . Similarly, if we apply the generation rule
BR
�SU^`V for B ! T � ! � S � ? , and any V , then we obtain ���]a T R � ! R * 
 which cannot be used to generate

 . Hence, there exists a generation of 
 such that in each step, B is chosen from , �U���$� T � ! � S/��� . From
� 
 a/T � ! � and equation (11) it follows that 
Ja T � ^ 
 � and hence 
 �? , . Therefore, 
 can be generated in
the following linear way: There exist 2 a � , V � ? , , and B����
	
	
	�� B �

? , �"���$� T � ! � S ��� such that if
V � �O�!bB 
� S ^  
V � ! � for � ; � ; 2 , then V � ! 
 . This is equivalent to the statement in the claim. �

Claim 5.13 1. V�� ! T � ! � S � .
2. If ^ ! � , then 2 ;"T"� .

3. If ^ a T , then 2 ! f � .

Proof First, we show 2 � � � � ^�R . Assume 2 a � � � ^WR and ^ ! � . By Claim 5.12, 
 * 2 T � ! � .
From equation (13) it follows that 
 * T � ! � � � � ^ R a T � 	 �  ��D9gf S ��< * 
 which is a contradiction.
Assume 2 a � � � ^$R and ^ a T . By Claim 5.12, 
 * T � ! � ^ ��! � . From equation (14) it follows that

+* T � ^ � �	�

� � � � ! R a T � ^ �I� � 
 	 Z � * 
 which is a contradiction. Therefore,

2 � � � � ^ R 	 (16)

Assume V�� �! T � ! � S � , i.e., V�� ? , � � T � ! � S ��� . By assumption, all � � and � � are / ��9;TM
 �	� < . So
all elements in , � � T � ! � S#��� are / ��9;T � � < (if ^ a T , then �b! T � � ! � � � 
 a T �	� ). From Claim 5.12 we
obtain 
 /#��9;T �	� < . However, equation (11) says that 
 / ^'
 � 9;T � � < . Since � � ^.
 � � T � 
 � � T �	� we have

 �/ ��9;T � � < . This is a contradiction and we obtain V � ! T � ! � S � .

We have seen that all elements in , � � T � ! � S ��� are / ��9;T �	� < . By Claim 5.12, 
 / ^ � 9;T � � < . By
equation (11), 
 /#^�
 � 9;T � � < . By equation (16), ^ � ; T � � � T �	� and ^�
 � � T �	� . Therefore, if ^ a T , then
2 ! f�� . If ^ ! � , then by Claim 5.12, 
 a/9�2 S ��<IT � ! � . So by equation (13), 2 ;"T"� . �

Claim 5.14 For every � , �0; �5; � there exists exactly one
�

such that B � ? �P� R � ! � ^ � ��� R � ^ � � . If ^ a/T ,
then this

�
is determined by

� ! �>f .
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Proof Fix � . By assumption, 9 � ���7< is � � -distinguishable. So there exist �Xa � and � ? � 8 � such that
%'&)(]91� 
 <���%'&)(=9�� 
R � ! � <���%'&)(=9��=
R � <

? 8 � � � � �(� �	� 8 	 and for all
� �! � , %R&)(=9�� 
R � ! � <���%'&)(=9��=
R � <

? 8 � � �	� � � � � � � � 8 	 .
Let J �O�!_T"� �GS & �.&�S � . In the following calculation we are mainly interested in the lower J bits of all B 
� . If
� �O�! 0 ��1 R , then

9�� 
R � ! � ,X�.-:T
� < ! � T � � 	 	(S � � and (17)

9�� 
R � ,X�.-:T
� < ! � T � � 	 	 S �

R � (18)

where
� ��� � R

� T 	 . We partition the set of indices �>� �
	
	
	���2 � .
� � �O�! � � &�� ; � ; 2�� B � !�� R � ! � ^ � ��
R

�O�! � � &�� ; � ; 2�� B � !�� R � ^
� �

�
Z

�O�! �>� �
	
	
	 ��2 ��� 9 � � � � R <
From equation (15) we obtain


X! �

�� �� 

^���! � 9�� R � ! ��^ � < 
 S

�

�� �� �
^���! � 9�� R ��^ � < 
 S

�

�� �� �
^���! � B 
� SU^��PV���	 (19)

Now we study equation (19) modulo T � . We start with the first two sums and consider � 
R � ! � and � 
R �
modulo T � . By equations (17) and (18), these terms consist of an upper part (i.e., � T �	� 	 	 ) and of a lower
part (i.e.,

� � or
�
R ). Let � � (resp., � R ) denote the sum of the upper (resp., lower) parts:

� � �O�! �

�� �� 

^ ��! � ^ � 
  � T � � 	 	 S �

�� �� �
^ ��! � ^ � 
  � T �	� 	 	 (20)

� R
�O�! �

�� �� 

^ ��! � ^ � 
 � � S �

�� �� �
^ ��! � ^ � 
 � R (21)

Moreover, let � Z denote the sum (this time modulo T � ) of the last two terms in equation (19):

� Z
�O�! 9 9 ��D �� �

^���! � B 
� S ^���V � < ,X�6- T � < (22)

Clearly, 
4/ ��� S � R S � Z 9;T
� < . We argue that 9 
@,X�6- T � <�! � � S � R S � Z .

For all
� ? �

Z , either B#
� ! �6
 �! � or B 
� ! B � ^.
 � � where %R&)(=94B � < ? 8 � � � � � � � � � � � 8 	 and � ; � � ; � .
Therefore, for all

� ? �
Z , 94B 
� ,X�.- T � < � T 	 ^ 
 � 	 (23)

Moreover, 94V�� , �6- T � <�! � . Equations (22) and (23) allow an estimation of � Z .
� Z ;

�

�� �� �
^���! � T 	 ^ 
 � SU^��

If ^ ! � , then by Claim 5.13, � Z ; T"��T 	 S � . If ^ a T , then � Z ;"T 	 ^ 
 � ^ � SU^ � and 2 ! f�� . So for all ^ ,

� Z
� T �	� 	 	 ! � 	 (24)

Estimate � R with help of equation (21) and Claim 5.13:

� R ; 2 ^���! � ^ � 
 T 	 ; T � � � 
 	 	 � T � � 	 	 ! � (25)
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Together with (24) this yields
� R S � Z

� T � � 	 	I	 (26)

Finally we turn to ��� . Equation (20) can be written as

� �L! � T � � 	 	 ^ � 
 	 � �

�� �� 
�� � �
^ ! � 	 (27)

Therefore, � � � T � � � 	�� � 	 	 	 � � � 
 ; T � ! � . Together with (26) we obtain �
� S � R S � Z
� T � and hence

9 
@,X�.-:T � < ! � � S � R S � Z 	 (28)

By equation (11), 
5/ ^ 
 � 91� 
 S/��< 9;T � < . Recall that %'&)(=91� 
 <
? 8 � � �	� ��� � � 8 	 . Therefore, 91� 
 , �6- T

� <�!
� T � � 	 	 S�� where � � T 	 . Observe ^�
 � 9 � T � � 	 	 S�� S ��< � T � 
 � T � � � T � � 	 	 	 � ; T � . This yields

9 
@,X�6- T � < ! � T � � 	 	 ^ 
 � SU^ 
 � 9�� S ��<�	 (29)

Compare equations (28) and (29). The terms �
� and � T �	� 	 	 ^ 
 � are divisible by T �	� 	 	 , while the terms
� R S � Z and ^�
 � 9�� S ��< are less than T �	� 	 	 . It follows that ���L! � T � � 	 	 ^.
 � and therefore, by equation (27),

�

�� �� 
 � � �
^ ��! � ! ^ 
 � � ! � � 	 (30)

For ^ ! � this implies & � � � � R & ! � , while for ^ a T this implies & � � � � R &Da � . Assume ^ a T and
let

� � be the maximum of
� � � � R . The left hand side of (30) is / ^ � 
 ! � � 9;^ � 
 ! � � 	 � < . So it must be that

^.
 � � ! � � � ^ � 
 ! � � 	 � and therefore, ^ � 
 ! � � ! ^.
 � � ! � � . Hence
� � � � R ! ����f � . This proves Claim 5.14. �

Assume ^ ! � . By Claims 5.12, 5.13, and 5.14, there exist B � ? �P� R � ! ����� R � � such that


 ! 9;T � ! � S ��<=S
��
��� �

B 
� 	 (31)

Together with equation (11) this shows � 
 ! � ���� � BR
� . So 9 � ���7< �? � 
 � � which contradicts our assumption.

Assume ^ a T . By Claim 5.14, for every � , B � 
 ! B �  `^ � where B � ? �P� R � ! ����� R � � . Moreover, it
follows that for every

�
, if

� �/ ��9gf
< , then B � ! � . So equation (15) can be written as:


 ! ^�� V � S
��

� � �
^���! � 
 B 
� 
 S

�
����� 

	 � � � 	 ��
�	���� �����
� ^���! � B 
� (32)

! ^ � 
 9g� 
 S ��<�S ^ � 

��

� � �
B 
� S � 
 �

����� 

	 � � � 	 ) � 
�	���� �����
� ^ � 
 ! � (33)

Observe that the right-most sum in (33) can be written as

^ � 
��U�
^ � � � ^.
 � �U�

^ 
 � � ! 
 ! ��

� � �
^ �  

� ! ��

��� �
^ � 
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So we can continue to transform 
 .


:! ^ � 
 9g� 
 S ��<=S ^ � 

��
� � �

B 
� S � 
  
 !
��

��� �
^ �  

� ! ��

� � �
^ � 


Together with equation (11),

� 
 !
��

� � �
B 
� 	 (34)

So again 9 �_���7< �? � 
 � � which contradicts our assumption. �

Lemma 5.15 If [ 94B�� V�< ! B SU^`V where ^ ac� then 5768�:9@[N< is ; < > -complete for ��� .

Proof We have already seen the upper bound (Lemma 4.3) and the lower bound for the case ^ ! � [vEB79],
so let us focus on the lower bound for ^ a T . We ; <�<> -reduce 9 	 � � R �
��� � � R � < to 576D�X94B_S ^`VW< . Let

�
�O�! 9��7���
	
	
	���� R ��< , �

�O�!X91�
< such that � � ��� ? 

( � ; � ; T"� ). Let � �O�! & %R&)(=9;^� QR ���� � � � < & and � �O�!_T�� 	 � .

Define

Q`� �O�! ^]9��"S �7�Y<��
Q R

�O�! ^]9��"S � R <��
Q � �O�! �"S � � , for �0; � ; T"� , and

� � �O�! ^]9����"S �
<�	
Now let 9 � ���7< ?

	 � � R � . Then there is an � ! � � � �
	
	
	�� � �(� - �>� �
	
	
	 � T"� � such that for all
� ?

���$�
	
	
	���� � ��� exactly one of � T � S � � T � S T
� is in � and ���� M! � � ! � . Assume that
� � �!� 	 if � � � . Then

[ 9@[ 9 	
	
	 [ 9@[ 9�Q � 
 ��Q � � <���Q � � <��
	
	
	 ��Q � )�� 
 <���Q � )$< ! ^]9�� S � � 
 <]S ^=� �� � R � S � � � ! ^]9���� S �
< !$� � .
Now let 9 �_���7< ? � � � R � and assume that 9�Q$���
	
	
	���Q R ����� � <

? 576D�X9@[N< . Observe that Q � a�� for all� ? �>� �
	
	
	 � T"� � . Let C be a generation tree for �
� from �PQ � �
	
	
	���Q R � � with 2 leaves. Then obviously
� � a � �  �

� ����� �
�"� ^ � �	� � � . Since for every leaf in C except one there is a path \ with J�9g\ <:a � we have
��^�� S	� * ��^�� S ^.�:! � �]a/9�2 � ��<I^�� S	� and therefore 2 ; � . Suppose there is an

� ? ���$�
	
	
	���� � ���
such that neither Q R � 	 � nor Q R � 	 R is a value of a leaf in C . We know that 9 �_���7< is T ^6� distinguishable.
Adding � to a ��� ( � ; �V;#T"� ) and ��� to � does not interfere with the distinguishing gaps of the values
by the choice of � . Multiplying some of the values with ^ , decreases the size of the distinguishing gaps
by at most 
 	 ��
L^ S#��� . Hence there is a � ? � 8 � and a � a � such that %R&)(]91��� < ? 8 � � � � �(� � � 8 	 and for
all � �! �

, both %R&)(]9�Q R � 	 ��< and %'&)(]9�Q R � 	 R < are in 8 � � � � � � � � � � � 8 	 . Since in every step of the generation
the size of the distinguishing gap is reduced by at most 
 	 ��
L^ S ��� and since there are at most � � �
steps in the whole generation process, � � can not be generated. Hence for all

� ? ���$�
	
	
	 ��� � ��� exactly
one element of �PQ R � 	 ����Q R � 	 R � is a value of a leaf in C and 2 ! � . If there were a path \ in C with
J�9g\�< * � then ��^�� S
� * � � a ^ R � S 9�� �cT�<I^�� S
� a ��^�� S
� 9���< would hold. Therefore
T�K'LMF�N�9DC7<�!#�IH � ! � �!� �IH � J &�� ; � ; � � T
� . Since Q$����Q R a ^�� the value of the leaf with the path H � ! � has
to be one of �PQ$����Q R � otherwise again 9���< would hold. So there are � � ���
	
	
	�� � �(� such that

� � ? �>� � T
� and

� � ! [ 9@[ 9 	
	
	;[ 9@[ 9�Q � 
 ��Q � � <���Q � � <��
	
	
	 ��Q � )�� 
 <���Q � ) <! ^]9�� S � � 
 <]S ^�� �� � R � S � � �
! ^]9���� S � �� � � � � � <
! ^]9���� S �`<
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and therefore � �� � � � � � !$� which is a contradiction. Hence 9�Q��
�
	
	
	���Q R ����� � < �? 576D�X9@[N< . �
We combine the auxiliary results proved so far and formulate the main result of this section.

Theorem 5.16 For f�� ^ ac� , 576D� 94B 
 S ^`V�< is ; < > -hard for ��� .

Proof Follows from Lemmas 5.9, 5.11, and 5.15. �

6 Conclusion

We summarize our results on the complexity of 5*6D�X9;%=< in the following table. Every lower bound is
given by the fact that there exists an % from the considered class of operations whose generation problem is
complete for the respective class. All operations are polynomial-time computable.

The gap between ��� and ��EGFIHJ6�9;T ����� � � < in the last rows of the table below calls the attention to an
interesting open question: Does 5768�:9g\W94BN<
S ^`V�< belong to ��� if \ is non-linear and ^ a T ? Since the gen-
eration trees for these polynomials may be of superpolynomial size, the obvious algorithm of guessing and
verifying the tree is not applicable. Also, we could not find more compact representations as in Theorem 4.2.
There are generation trees where almost all nodes take different values. Therefore it may be possible that we
really have to calculate all of them. Perhaps there are special polynomials of the form \$94B]<=SU^`V for which
the closure is very regular, as in Theorem 4.2, case (1)? Another possibility to solve the problem could be
to have a closer look at the restricted alternating machines we describe in Section 5. What are the exact
capabilities of these machines?

operation lower bound Theorem upper bound Theorem

arbitrary recursively 3.2 recursively 3.1
enumerable enumerable

length-monotonic 6 C7�DE FIHJ6 3.5 6 C7�DE FIHJ6 3.3

length-monotonic 6 C7�DE FIHJ6 3.5 6 C7�DE FIHJ6 3.3
and commutative

length-monotonic �LKW��MPOG6 3.7 �LKW��MPOG6 3.6
and associative

length-mon., assoc., ��� 3.9 ��� 3.8
and commutative

all Polynomials ��� 3.9 ��� 4.2�! \W94BN<=SU^`V
B S V ��� 3.9 ��� 3.8

B  �V ��� 4.6 ��� 3.8

B d V e f ��� 4.13 ��� 4.2

all Polynomials ��� 5.16 ��EGFIHJ6�9;T ����� � � < 5.1
! \W94BN<=SU^`V
BR
�S ^`V ��� 5.16 ��EGF HJ6�9;T ����� � � < 5.1
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