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Abstract

Presented is an algorithm (for learning a subclass of erasing regular pat-
tern languages) which can be made to run with arbitrarily high probability of
success on extended regular languages generated by patterns π of the form
x0α1x1...αmxm for unknown m but known c , from number of examples poly-
nomial in m (and exponential in c ), where x0, . . . , xm are variables and where
α1, ..., αm are each strings of terminals of length c . This assumes that the al-
gorithm randomly draws samples with natural and plausible assumptions on
the distribution. With the aim of finding a better algorithm, we also explore
computer simulations of a heuristic.
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1 Introduction

The pattern languages were formally introduced by Angluin [1]. A pattern language

is (by definition) one generated by all the positive length substitution instances in a
pattern, such as, for example, 01xy211zx0 — where the variables (for substitutions)
are letters and the terminals are digits.

Since then, much work has been done on pattern languages and extended pattern

languages which also allow empty substitutions as well as on various special cases of
the above, see, for example, [1, 5, 6, 7, 10, 12, 19, 21, 23, 24, 25, 28, 31] and the
references therein. Furthermore, several authors have also studied finite unions of
pattern languages (or extended pattern languages), unbounded unions thereof and
also of important subclasses of (extended) pattern languages, see, for example, [4, 11,
29, 32, 35].

Nix [18] as well as Shinohara and Arikawa [30, 31] outline interesting applications
of pattern inference algorithms. For example, pattern language learning algorithms
have been successfully applied toward some problems in molecular biology, see [27, 31].
Pattern languages and finite unions of pattern languages turn out to be subclasses of
Smullyan’s [33] Elementary Formal Systems (EFSs), and Arikawa, Shinohara and Ya-
mamoto [2] show that the EFSs can also be treated as a logic programming language
over strings. The investigations of the learnability of subclasses of EFSs are interesting
because they yield corresponding results about the learnability of subclasses of logic
programs. Hence, these results are also of relevance for Inductive Logic Program-
ming (ILP) [3, 13, 15, 17]. Miyano et al. [16] intensively studied the polynomial-time
learnability of EFSs.

In the following we explain the main philosophy behind our research as well as the
ideas by which it emerged. As far as learning theory is concerned, pattern languages
are a prominent example of non-regular languages that can be learned in the limit from
positive data (cf. Angluin [1]). Gold [8] has introduced the corresponding learning
model. Let L be any language; then a text for L is any infinite sequence of strings
containing eventually all members of L and nothing else. The information given
to the learner are successively growing initial segments of a text. Processing these
segments, the learner has to output hypotheses about L . The hypotheses are chosen
from a prespecified set called hypothesis space. The sequence of hypotheses has to
converge to a correct description of the target language.

Angluin [1] provides a learner for the class of all pattern languages that is based on
the notion of descriptive patterns. Here a pattern π is said to be descriptive (for the
set S of strings contained in the input provided so far) if π can generate all strings
contained in S and no other pattern having this property generates a proper subset
of the language generated by π . But no efficient algorithm is known for computing
descriptive patterns. Thus, unless such an algorithm is found, it is even infeasible to
compute a single hypothesis in practice by using this approach.

Therefore, one has considered restricted versions of pattern language learning in
which the number k of different variables is fixed, in particular the case of a single
variable. Angluin [1] gives a learner for one-variable pattern languages with update
time O(`4 log `) , where ` is the sum of the length of all examples seen so far. Note
that this algorithm is also based on computing descriptive patterns even of maximum
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length. Giving up the idea to find descriptive patterns of maximum length but still
computing descriptive patterns, Erlebach et al. [7] arrived at a one variable pattern
language learner having update time O(`2 log `) , where ` is as above. Moreover, they
also studied the expected total learning time of a variant of their learner and showed
an O(|π|2 log |π|) upper bound for it, where π is the target pattern. Subsequently,
Reischuk and Zeugmann [21] designed a one-variable pattern language learner achiev-
ing the optimal expected total learning time of O(|π|) for every target pattern π
and for almost all meaningful distributions. Note that the latter algorithm does not

compute descriptive patterns.

Another important special case extensively studied are the regular pattern lan-

guages introduced by Shinohara [28]. These are generated by the regular patterns,
i.e., patterns in which each variable that appears, appears only once. The learners
designed by Shinohara [28] for regular pattern languages and extended regular pat-
tern languages are also computing descriptive patterns for the data seen so far. These
descriptive patterns are computable in time polynomial in the length of all examples
seen so far.

But when applying these algorithms in practice, another problem comes into play,
i.e., all the learners mentioned above are only known to converge in the limit to
a correct hypothesis for the target language. But the stage of convergence is not
decidable. Thus, a user never knows whether or not the learning process is already
finished. Such an uncertainty may not be tolerable in practice.

Consequently, one has tried to learn the pattern languages within Valiant’s [34]
PAC model. Shapire [26] could show that the whole class of pattern languages is
not learnable within the PAC model unless P/poly = NP/poly for any hypothesis
space that allows a polynomially decidable membership problem. Since membership is
NP -complete for the pattern languages, his result does not exclude the learnability of
all pattern languages in an extended PAC model, i.e., a model in which one is allowed
to use the set of all patterns as hypothesis space.

However, Kearns and Pitt [10] have established a PAC learning algorithm for the
class of all k -variable pattern languages, i.e., languages generated by patterns in which
at most k different variables occur. Positive examples are generated with respect to
arbitrary product distributions while negative examples are allowed to be generated
with respect to any distribution. Additionally, the length of substitution strings has
been required to be polynomially related to the length of the target pattern. Finally,
their algorithm uses as hypothesis space all unions of polynomially many patterns
that have k or fewer variables – more precisely, the number of allowed unions is at
most poly(|π|, s, 1/ε, 1/δ, |Σ|) , where π is the target pattern, s the bound on the
length on substitution strings, ε and δ are the usual error and confidence parameter,
respectively, and Σ is the alphabet of terminals over which the patterns are defined.
The overall learning time of their PAC learning algorithm is polynomial in the length
of the target pattern, the bound for the maximum length of substitution strings, 1/ε ,
1/δ and |Σ| . The constant in the running time achieved depends doubly exponential

on k and thus, their algorithm becomes rapidly impractical when k increases.

As far as the class of extended regular pattern languages is concerned, Miyano
et al. [16] showed the consistency problem to be NP -complete. Thus, the class of
all extended regular pattern languages is not polynomial-time PAC learnable unless
RP = NP for any learner that uses the regular patterns as hypothesis space.
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This is even true for REGPAT1 , i.e., the set of all extended regular pattern
languages where the length of terminal strings is 1 , see below for a formal definition.
The latter result follows from [16] via an equivalence proof to the common subsequence
languages studied in [14].

In the present paper we also study the special cases of learning the extended regular

pattern languages. On the one hand, they already allow non-trivial applications. On
the other hand, it is by no means easy to design an efficient learner for these classes
of languages as noted above. Therefore, we aim to design an efficient learner for an
interesting subclass of the extended regular pattern languages which we define next.

Let Lang(π) be the extended pattern language generated by pattern π . For
c > 0 , let REGPATc be the set of all Lang(π) such that π is a pattern of the
form x0α1x1α2x2 . . . αmxm , where each αi is a string of terminals of length c and
x0, x1, x2, . . . , xm are distinct variables.

We consider polynomial time learning of REGPATc for various data presentations
and for natural and plausible probability distributions on the input data. As noted
above, even REGPAT1 is not polynomial-time PAC learnable unless RP = NP .
Thus, one has to restrict the class of all probability distributions. Then, the concep-
tional idea is as follows (cf. [21, 22, 23]).

We explain it here for the case mainly studied in this paper, learning from text
(in our above notation). One looks again at the whole learning process as learning
in the limit. So, the data presented to the learner are growing initial segments of a
text. But now, we do not allow arbitrary text. Instead every text is drawn according
to some fixed probability distribution. Next, one determines the expected number of
examples needed by the learner until convergence. Let E denote this expectation.
Assuming prior knowledge about the underlying probability distribution, E can be
expressed in terms the learner may use conceptually to calculate E . Using Markov’s
inequality, one easily sees that the probability to exceed this expectation by a factor
of t is bounded by 1/t . Thus, we introduce, as in the PAC model, a confidence
parameter δ . Given δ , one needs roughly E/δ examples to converge with probability
at least 1− δ . Knowing this, there is of course no need to compute any intermediate
hypotheses. Instead, now the learner firstly draws as many examples as needed and
then it computes just one hypothesis from it. This hypothesis is output, and by
construction we know it to be correct with probability at least 1 − δ . Thus, we arrive
at a learning model which we call probabilistically exact learning1, cf. Definition 7
below. Clearly, in order to have an efficient learner, one also has to ensure that
this hypothesis can be computed in time polynomial in the length of all strings seen.
For arriving at an overall polynomial-time learner, it must be also ensured that E
is polynomially bounded in a suitable parameter. We use the number of variables
occurring in the regular target pattern, the maximal length of a terminal string in the
pattern and a term describing knowledge about the probability distribution as such a
parameter.

We shall provide a learner which succeeds with high probability in polynomial
time on every text which is drawn to any admissible probability distribution prob .
An admissible distribution prob has to satisfy, besides some normality conditions,

1This model has also been called stochastic finite learning (cf. [21, 22, 23]).
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also the condition

prob(σ) ≥
|Σ|−|σ|

pol(|σ|)
for σ ∈ L where

∞
∑

n=0

1

pol(n)
≤ 1 .

Here, pol is a {2, 3, . . .} -valued increasing polynomial and the pause-symbol # has
the probability 1−

∑

σ∈L prob(σ) . This condition guarantees that long examples are
still sufficiently frequent. The more precise requirements for prob and its texts are
given in Definition 5.

Furthermore, probabilistically exact learnability from text for non-empty lan-
guages implies probabilistically exact learnability from pause-free texts and infor-
mants where pause-free texts are those generated by probability distributions satisfy-
ing

∑

σ∈L prob(σ) = 1 .

Our algorithm is presented in detail in Section 3 below and runs with all three
models of data presentation in a uniform way. The complexity bounds are described
more exactly there, but, basically, the algorithm can be made to run with arbitrarily
high probability of success on extended regular languages generated by patterns π
of the form x0α1x1...αmxm for unknown m but known c , from number of examples
polynomial in m (and exponential in c ), where α1, ..., αm ∈ Σc . Here Σc denotes
the set of all strings over Σ of length c .

Note that having our patterns defined as starting and ending with variables is
not crucial. One can just handle patterns starting or ending with terminals easily by
looking at the data and seeing if they have a common suffix or prefix. Our results more
generally hold for patterns alternating variables and fixed length terminal strings,
where the variables are not repeated. Our statements above and in Section 3 below
involving variables at the front and end is more for ease of presentation of proof.

While the main goal of the paper is to establish some polynomial bound for the
learning algorithm, Section 4 is dedicated to giving more explicit bounds for the basic
case that Σ = {0, 1} and c = 1 . The probability distribution satisfies

prob(σ) =
|Σ|−|σ|

(|σ| + 1)(|σ| + 2)

for σ ∈ L and prob(#) is chosen accordingly. Although the bounds for this basic case
are much better than in the general case, it seems that the current implementation
of the algorithm is even more efficient than the improved theoretical bounds suggest.
Experiments have also been run for alphabets of size 3, 4, 5 and the pattern languages
REGPAT2 and REGPAT3 .

2 Preliminaries

Let N = {0, 1, 2, . . .} denote the set of natural numbers, and let N
+ = N \ {0} . For

any set S , we write |S| to denote the cardinality of S . Furthermore, for all real
numbers s, t with s < t we use (s, t) to denote the open intervall generated by s
and t , i.e., (s, t) = {r | r is real and s < r < t} .

Let Σ be any finite alphabet such that |Σ| ≥ 2 and let V be a countably infinite
set of variables such that Σ∩V = ∅ . Following a tradition in formal language theory,
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the elements of Σ are called terminals. By Σ∗ we denote the free monoid over Σ ,
and we set Σ+ = Σ∗ \ {λ} , where λ is the empty string. As above, Σc denotes the
set of strings over Σ with length c . We let a, b, . . . range over terminal symbols
from Σ and α, σ, τ, η over terminal strings from Σ∗ . x, y, z, x1, x2, . . . range over
variables. Following Angluin [1], we define patterns and pattern languages as follows.

Definition 1. A term is an element of (Σ∪V )∗ . A ground term ( or a word

or a string ) is an element of Σ∗ . A pattern is a non-empty term.

A substitution is a homomorphism from terms to terms that maps each symbol
a ∈ Σ to itself. The image of a term π under a substitution θ is denoted πθ . We
next define the language generated by a pattern.

Definition 2. The language generated by a pattern π is defined as Lang(π)
= {πθ ∈ Σ∗ | θ is a substitution } . We set PAT = {Lang(π) | π is a pattern} .

Note that we consider extended (or erasing) pattern languages, i.e., a variable may
be substituted with the empty string λ . Though allowing empty substitutions may
seem a minor generalization, it is not. Learning erasing pattern languages is more
difficult for the case studied within this paper than learning non-erasing ones. For the
general case of arbitrary pattern languages, already Angluin [1] showed the non-erasing
pattern languages to be learnable from positive data. However, Reidenbach [19] proved
that even the terminal-free erasing pattern languages are not learnable from positive
data if |Σ| = 2 . On the other hand, the terminal-free erasing pattern languages are
learnable from positive data if |Σ| ≥ 3 (cf. Reidenbach [20]).

Definition 3 [Shinohara[28]]. A pattern π is said to be regular if it is of the

form x0α1x1α2x2 . . . αmxm , where αi ∈ Σ∗ and xi is the i -th variable. We set

REGPAT = {Lang(π) | π is a regular pattern} .

Definition 4. Suppose c ∈ N
+ . We define

(a) regm
c = {π | π = x0α1x1α2x2 . . . αmxm, where each αi ∈ Σc} .

(b) regc =
⋃

m regm
c .

(c) REGPATc = {Lang(π) | π ∈ regc} .

Next, we define the learning model considered in this paper. As already explained
in the Introduction, our model differs to a certain extent from the PAC model in-
troduced by Valiant [34] which is distribution independent. In our model, a bit of
background knowledge concerning the class of allowed probability distributions is al-
lowed. So, we have a stronger assumption, but also a stronger requirement, i.e.,
instead of learning an approximation for the target concept, our learner is required
to learn it exactly. Moreover, the class of erasing regular pattern languages is known
not to be PAC learnable, cf. [16] and the discussion within the Introduction.

Definition 5. Let # , # /∈ Σ , denote a pause-symbol and D ⊆ Σ∗∪{#} . Given

a polynomial pol , a probability distribution prob on D is called pol -regular if

(a) prob(σ) ∗ |Σ||σ| ≥ 1/pol(|σ|) for all σ ∈ D \ {#} and

(b) prob(σ) ∗ |Σ||σ| ≤ prob(τ) ∗ |Σ||τ | for all σ, τ ∈ D \ {#} with |σ| ≥ |τ | .
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Note that a distribution prob on D generates only elements from D . The second
item in the definition of the pol -regular probability distribution enforces that in D
strings of the same length have the same probability.

Next, we define the different sources of information for the learners considered in
this paper.

Definition 6. Let L ⊆ Σ∗ be a language.

(a) A probabilistic text for L with parameter pol is an infinite sequence

drawn with respect to any pol -regular distribution prob on the domain D =
L ∪ {#} .

(b) If L 6= ∅ then a probabilistic pause-free text for L with parameter pol

is a probabilistic text for L with parameter pol with respect to any pol -regular
distribution prob on the domain D = L .

(c) A probabilistic informant for L with parameter pol is an infinite se-

quence of pairs (σ, L(σ)) where σ is drawn according to a pol -regular distri-

bution prob on D = Σ∗ .

In the following, we shall frequently omit the words “probabilistic” and “with
parameter pol ” when referring to these types of text, pause-free text and informant,
since it is clear from the context what is meant.

Definition 7. A learner M is said to probabilistically exactly learn a class

L of pattern languages if for every increasing {2, 3, . . .} -valued polynomial pol with

∞
∑

n=0

1

pol(n)
≤ 1

there is a polynomial q such that for all δ and every language L ∈ L , with probability

at least 1 − δ , M halts and outputs a pattern generating L after reading at most

q(|π|, 1
δ
) examples from a probabilistic text for L with parameter pol . That is, for

all δ and every pattern π generating a language L ∈ L and for every pol -regular
distribution prob on L ∪ {#} , with probability 1 − δ , M draws at most q(|π|, 1

δ
)

examples according to prob and then outputs a pattern π such that L = Lang(π) .

It should be noted that learning from pause-free text can be much easier than
learning from text. For example, the class of all singletons {σ} with σ ∈ Σ∗ is
learnable from pause-free text: the learner conjectures {σ} for the first example σ
in the text and is correct. But it is not learnable from informant since for each
length n , the strings σ ∈ Σn satisfy that prob(σ) ≤ |Σ|−n and the learner sees with
high probability exponentially many negative examples of low information content
before (σ, 1) comes up. Furthermore, every informant can be translated into a text
as follows: one replaces (σ, 1) by σ and (σ, 0) by # . Thus the class of all singletons
is not probabilistically exactly learnable from text. So permitting pauses satisfies two
goals: (a) there is a text for the empty set; (b) it is enforced that learnability from
text implies learnability from informant. The latter also holds in standard inductive
inference.

Lange and Wiehagen [12, 36] presented an algorithm which learns all non-erasing
pattern languages by just analyzing all strings of shortest length generated by the
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target pattern. From these strings, the pattern can be reconstructed. Similarly, in
the case of erasing pattern languages in REGPATc , the shortest string is just the
concatenation of all terminals. Knowing c , one can reconstruct the whole pattern
from this string. But this algorithm does not succeed for learning REGPATc , even
if one is learning from pause-free texts. The distributions probL given as

probL(σ) =
|Σ|−|σ|/pol(|σ|)

1 −
∑

τ∈L |Σ|−|τ |/pol(|τ |)
for all σ ∈ L

witness this fact where L ranges over REGPATc . Let m ∗ c be the number of
terminals in the pattern generating L . By Proposition 1 there is a polynomial f
such that at least half of the words of length f(m) are in L . So the denominator
is at least 0.5/pol(f(m)) . On the other hand, the numerator for the shortest word
in L is exactly |Σ|−m/pol(m) . So the probability of this word is at most |Σ|−m ∗
pol(f(m))/pol(m) and goes down exponentially in m .

3 Main Result

In this section we show that REGPATc is probabilistically exactly learnable. First
we need some well-known facts which hold for arbitrary distributions, later we only
consider pol -regular distributions. The following lemma is based on Chernoff Bounds
(cf., e.g., [9]). Here, we use e to denote the base of the natural logarithm.

Lemma 1. Let X, Y ⊆ Σ∗ , let δ, ε ∈ (0, 1/2) , and let prob(X) ≥ prob(Y ) + ε .

If one draws at least
2

ε2
∗
− log δ

log e

many examples from Σ∗ according to the probability distribution prob , then with

probability at least 1 − δ , elements of X show up more frequently than elements

of Y .

Note that the number 2
ε2∗δ

is an upper bound for 2
ε2 ∗

− log δ

log e
. More generally, the

following holds.

Lemma 2. One can define a function r: (0, 1/2) × (0, 1/2) × N −→ N such

that r(ε, δ, k) is polynomial in k, 1
ε
, 1

δ
and for all sets X, Z, Y1, Y2, . . . , Yk ⊆ Σ∗ , the

following holds.

If prob(X) − prob(Yi) ≥ ε , for i = 1, 2, . . . , k , prob(Z) ≥ ε and one draws at

least r(ε, δ, k) many examples from Σ∗ according to the distribution prob , then with

probability at least 1 − δ

(a) there is at least one example from Z ;

(b) there are strictly more examples in X than in any of the sets Y1, ..., Yk .

Since any regular pattern π has a variable at the end, the following lemma holds.

Lemma 3. For every regular pattern π and all m ∈ N , |Lang(π) ∩ Σm+1| ≥
|Σ| ∗ |Lang(π) ∩ Σm| .
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Proposition 1. For every fixed constant c ∈ N
+ and every finite alphabet Σ ,

|Σ| ≥ 2 , there is a polynomial f such that for every π ∈ regm
c , at least half of the

strings of length f(m) are generated by π .

Proof. Suppose that π = x0α1x1α2x2 . . . αmxm and α1, α2, ..., αm ∈ Σc .

Clearly, there is a length d ≥ c such that for every τ ∈ Σc , at least half of the
strings in Σd contain τ as a substring, that is, are in the set

⋃d−c

k=0 ΣkτΣd−k−c .

Now let f(m) = d ∗ m2 . We show that given π as above, at least half of the
strings of length f(m) are generated by π .

In order to see this, draw a string σ ∈ Σd∗m2

according to a fair |Σ| -sided coin
such that all symbols are equally likely. Divide σ into m equal parts of length d∗m .
The i -th part contains αi with probability at least 1 − 2−m as a substring. Thus
the whole string is generated by π with probability at least 1− m ∗ 2−m . Note that
1 − m ∗ 2−m ≥ 1/2 for all m and thus f(m) meets the specification.

Next we present our algorithm LRP 2 for learning REGPATc . The algorithm
has prior knowledge about the function r from Lemma 2 and the function f from
Proposition 1. It takes as input c , δ and knowledge about the probability distribution
by getting pol .

Algorithm LRP : The learner has parameters (Σ, c, δ, pol) and works as follows.
The variables A, A0, A1, . . . range over multisets.

(1) Read examples until an n is found such that the shortest non-pause exam-
ple is strictly shorter than c ∗ n and the total number of examples (including
repetitions and pause-symbols) is at least

n ∗ r

(

1

2 ∗ |Σ|c ∗ f(n) ∗ pol(f(n))
,
n

δ
, |Σ|c

)

.

Let A be the multiset of all positive examples (including pause-symbols) and Aj

(j ∈ {1, 2, . . . , n}) be the multiset of examples in A whose index is j modulo
n ; so the (k ∗n+ j) -th example from A goes to Aj where k is an integer and
j ∈ {1, 2, ..., n} .

Let i = 1 , π0 = x0 , X0 = {λ} and go to Step (2).

(2) For β ∈ Σc , let Yi,β = Xi−1βΣ∗ .

If some string in Xi−1 is also in the multiset A , then let m = i − 1 and go to
Step (3).

Choose αi as the lexicographically first β ∈ Σc , such that the strings from Yi,β

occur in Ai at least as often as the strings from Yi,β′ for any β ′ ∈ Σc \ {β} .

Let Xi be the set of all strings σ such that σ is in Σ∗α1Σ
∗α2Σ

∗ . . .Σ∗αi , but
no proper prefix τ of σ is in Σ∗α1Σ

∗α2Σ
∗ . . .Σ∗αi .

Let πi = πi−1αixi , let i = i + 1 and go to Step (2).

(3) Output the pattern πm = x0α1x1α2x2 . . . αmxm and halt.

End

2LRP stands for Learner for Regular Patterns.
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Note that since the shortest example is strictly shorter than c ∗ n it holds that
n ≥ 1 . Furthermore, if π = x0 , then the probability that a string drawn is λ is at
least 1/pol(0) . A lower bound for this is 1/(2 ∗ |Σ|c ∗ f(n) ∗ pol(f(n))) , whatever
n is, due to the fact that pol is monotonically increasing. Thus λ appears with
probability 1− δ/n in the set An and thus in the set A . So the algorithm is correct
for the case that π = x0 .

It remains to consider the case where π is of the form x0α1x1α2x2 . . . amxm for
some m ≥ 1 where all αi are in Σc .

Claim 1 Suppose any pattern π = x0α1x1α2x2...αmxm ∈ regm
c . Furthermore, let

πi−1 = x0α1x1...αi−1xi−1 . Let the sets Yi,β, Xi be defined as in the algorithm and

let C(i, β, h) be the cardinality of Yi,β ∩ Lang(π) ∩ Σh . Then we have C(i, β, h) ≤
|Σ| ∗ C(i, αi, h − 1) ≤ C(i, αi, h) for all h > 0 and all β ∈ Σc \ {αi} .

Proof. Let σ ∈ Yi,β ∩ Lang(π) . Note that σ has a unique prefix σi ∈ Xi . Further-
more, there exist s ∈ Σ , η, τ ∈ Σ∗ such that

(I) σ = σiβsητ and

(II) βsη is the shortest possible string such that βsη ∈ Σ∗αi .

The existence of s is due to the fact that β 6= αi and |β| = |αi| = c . So the position
of αi in σ must be at least one symbol behind the one of β . If the difference is more
than a symbol, η is used to take these additional symbols.

Now consider the mapping t: Lang(π) ∩ Yi,β −→ Lang(π) ∩ Yi,αi
replacing βs in

the above representation (I) of σ by αi – thus t(σ) = σiαiητ . The mapping t is
|Σ| -to- 1 since it replaces the terminal string β by αi and erases s (the information
is lost about which element from Σ the value s is).

Clearly, σi but no proper prefix of σi is in Xi . So σiαi is in Xiαi . The
position of αi+1, . . . , αm in σ are in the part covered by τ , since σiβsη is the
shortest prefix of σ generated by πiαi . Since πi generates σi and xiαi+1xi+1...αmxm

generates ητ , it follows that π generates t(σ) . Hence, t(σ) ∈ Lang(π) . Furthermore,
t(σ) ∈ Σh−1 since the mapping t omits one element. Also, clearly t(σ) ∈ XiαiΣ

∗

= Yi,αi
. Therefore, C(i, β, h) ≤ |Σ| ∗C(i, αi, h− 1) for β ∈ Σc \ {αi} . By combining

with Lemma 3, C(i, αi, h) ≥ |Σ| ∗ C(i, αi, h − 1) ≥ C(i, β, h) .

Claim 2 If m > i then there is a length h ≤ f(m) such that

C(i, αi, h) ≥ C(i, β, h) +
|Σ|h

2 ∗ |Σ|c ∗ f(m)

for all β ∈ Σc \ {αi} . In particular, for every pol -regular distribution with domain

Lang(π) or domain Lang(π) ∪ {#} ,

prob(Yi,β) +
1

2 ∗ |Σ|c ∗ pol(f(m)) ∗ f(m)
≤ prob(Yi,αi

).
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Proof. Let D(i, β, h) = C(i,β,h)
|Σ|h

, for all h and β ∈ Σc . Lemma 3 and Claim 1 imply
that

D(i, β, h) ≤ D(i, αi, h − 1) ≤ D(i, αi, h) .

Since every string in Lang(π) is in some set Yi,β , we conclude that

D(i, αi, f(m)) ≥
1

2 ∗ |Σ|c
.

Furthermore, D(i, αi, h) = 0 for all h < c , since m > 0 and π does not generate
the empty string. Thus there is an h ∈ {1, 2, ..., f(m)} with

D(i, αi, h) − D(i, αi, h − 1) ≥
1

2 ∗ |Σ|c ∗ f(m)
.

For this h , it holds that

D(i, αi, h) ≥ D(i, β, h) +
1

2 ∗ |Σ|c ∗ f(m)
.

The second part of the claim follows, by taking into account that h ≤ f(m) implies
pol(h) ≤ pol(f(m)) , since pol is monotonically increasing. Thus,

prob(σ) ≥
|Σ|−h

pol(h)
≥

|Σ|−h

pol(f(m))

for all σ ∈ Σh ∩ Lang(π) .

We now show that the learner presented above indeed probabilistically exactly
learns Lang(π) , for π ∈ regc .

Theorem 1. Let c ∈ N
+ and let Σ be any finite alphabet with |Σ| ≥ 2 . Al-

gorithm LRP probabilistically exactly learns the class of all Lang(π) with π ∈ regc

from text, from pause-free text and from informant.

Proof. Since an informant can be translated into a text, the result is only shown for
learning from text. The proof also covers the case of learning from pause-free text,
it is almost identical for both versions. Let prob be a pol -regular distribution on
Lang(π) or Lang(π) ∪ {#} .

A loop invariant (in Step (2)) is that with probability at least 1 − δ∗(i−1)
n

, the
pattern πi−1 is a prefix of the desired pattern π . This certainly holds before entering
Step (2) for the first time.

Case 1. i ∈ {1, 2, ..., m} .

By assumption, i ≤ m and πi−1 is with probability 1 − δ∗(i−1)
n

a prefix
of π , that is, α1, ..., αi−1 are selected correctly.

Since αi exists and every string generated by π is in XiΣ
∗αiΣ

∗ , no ele-
ment of Lang(π) and thus no element of A is in Xi−1 and the algorithm
does not stop too early.
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If β = αi and β ′ 6= αi , then

prob(Yi,β ∩ Lang(π)) ≥

prob(Yi,β′ ∩ Lang(π)) +
1

2 ∗ |Σ|c ∗ f(m) ∗ pol(f(m))

by Claim 2. By Lemma 2, αi is identified correctly with probability at
least 1− δ/n from the data in Ai . It follows that the body of the loop in
Step (2) is executed correctly with probability at least 1 − δ/n and the
loop-invariant is preserved.

Case 2. i = m + 1 .

By Step (1) of the algorithm, the shortest example is strictly shorter than
c ∗ n and at least c ∗m by construction. Thus, we already know m < n .

With probability 1 − δ∗(n−1)
n

the previous loops in Step (2) have gone
through successfully and πm = π . Consider the mapping t which omits
from every string the last symbol. Now, σ ∈ Xm iff σ ∈ Lang(π) and
t(σ) /∈ Lang(π) . Let D(π, h) be the weighted number of strings generated

by π of length h , that is, D(π, h) = |Σh∩Lang(π)|
|Σ|h

. Since D(π, f(m)) ≥ 1
2

and D(π, 0) = 0 , there is an h ∈ {1, 2, . . . , f(m)} such that

D(π, h) − D(π, h − 1) ≥
1

2 ∗ f(m)
≥

1

2 ∗ |Σ|c ∗ f(n)
.

Note that h ≤ f(n) since f is increasing. It follows that

prob(Xm) ≥
1

2 ∗ |Σ|c ∗ (f(n) ∗ pol(f(n)))

and thus with probability at least 1− δ
n

a string from Xm is in Am and in
particular in A (by Lemma 2). Therefore, the algorithm terminates after
going through Step (2) m times with the correct output with probability
at least 1 − δ .

To get a polynomial time bound for the learner, note the following. It is easy
to show that there is a polynomial q(m, 1

δ′
) which with sufficiently high probability

( 1 − δ′ , for any fixed δ′ ) bounds the parameter n of algorithm LRP. Thus, with
probability at least 1−δ′−δ algorithm LRP is successful in time and example-number
polynomial in m, 1/δ, 1/δ′ . Hence, for any given δ′′ , by choosing δ′ = δ = δ′′/2 , one
can get the desired polynomial time algorithm.

If one permits the pattern to start or end with some terminal parts and these
parts are not too long, then one can learn also this derived class by reading polyno-
mially more data-items and skipping off the common prefixes and suffixes of all data.
Consequently, we have the following result.

Theorem 2. Let c ∈ N
+ and let Σ be any finite alphabet with |Σ| ≥ 2 . Then,

the class {αLang(π)β | α, β ∈ Σ∗, |α| ≤ d, |β| ≤ d, π ∈ regc} is probabilistically

exactly learnable from text where the polynomial bound for the number of examples

has the parameters pol and c, d .
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4 Experimental Results

Looking at the results proved so far, we see that the theoretical bounds are very large.
Therefore, we are interested in finding possible improvements.

First, we fix the polynomial pol . Linear functions cannot be used, since the sum
of their reciprocals diverges, thus pol is taken to be quadratic. More precisely, pol
is taken such that, for all n ∈ N ,

pol(n) = (n + 1) ∗ (n + 2) and
1

n + 1
=

∞
∑

m=n

1

pol(m)
.

Second, we study the special case that Σ = {0, 1} and REGPAT1 is being learned.
For this particular setting, we improve the theoretical bounds, see Theorem 3 below.

Then, we provide some evidence, that even these bounds are not optimal, since
experiments run for small alphabets Σ and small values of m, c give much better
results. These experiments use Algorithm HLRP 3 which does not compute the
number of examples in advance but monitors its intermediate results and halts if a
hypothesis looks sufficiently reasonable with respect to the data seen so far. More
details will be given below.

Theorem 3. For Σ = {0, 1} and considering only (n + 1)(n + 2) -regular dis-

tributions, Algorithm LRP can be adapted such that it probabilistically exactly learns

REGPAT1 and needs for any L ∈ REGPATm
1 and confidence 1 − δ at most

8 ∗ (4m − 1)2 ∗ (4m + 1)2 ∗ (4m + 2)2 ∗ (2m + 2) ∗
log(2m + 2) − log(δ)

log(e)

positive examples including pauses.

Proof. We can improve the bounds on the number of examples needed by using
Lemma 1 instead of Lemma 2. We need enough examples to guarantee with proba-
bility 1 − (δ/(m + 2)) :

(1) A data-item of length 2m or less is drawn in Step (1);

(2) For i = 1, 2, . . . , m , the right αi ∈ {0, 1}∗ is selected in Step (2);

(3) For i = m + 1 a data-item in A ∩ Xi−1 is found.

In the first case, one has to draw an example of length 2m which is generated
by the pattern. Since at least half of the strings of this length are generated by the
pattern, the probability that a randomly drawn datum has this property is at least

1
2(2m+1)(2m+2)

.

For the second case, one counts the number of strings of length 2m which are in
one of the following three regular expressions.

• (1 − a0)
∗a0 . . . (1 − ai−1)

∗ai−10{0, 1}∗ai(1 − ai)
∗ai+1(1 − ai+1)

∗ . . . am(1 − am)∗ ;

• (1 − a0)
∗a0 . . . (1 − ai−1)

∗ai−11{0, 1}
∗ai(1 − ai)

∗ai+1(1 − ai+1)
∗ . . . am(1 − am)∗ ;

• (1 − a0)
∗a0 . . . (1 − ai−1)

∗ai−1ai(1 − ai)
∗ai+1(1 − ai+1)

∗ . . . am(1 − am)∗ .

3HLRP stands for Heuristic Learner for Regular Patterns.
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The number of strings of length 2m generated by the first and generated by the second
expression is the same. But the one generated by the third expression is exactly as
large as the number of strings of length 2m− 1 which consist of m zeros and m− 1
ones. This number has the lower bound 1

2m−1
22m−1 . This permits to conclude that

the value ai is favored over the value 1 − ai at least with probability

ε =
1

2(2m − 1)(2m + 1)(2m + 2)
.

The last event for leaving the loop has the same probability ε , one just obtains
it by i = m + 1 in the above regular expressions where of course then the part
ai(1− ai)

∗ . . . am(1− am)∗ has to be omitted from the expression. Furthermore, ε is
a lower bound for the first probability.

Using Lemma 1, it suffices to draw (m+2) times 2 ∗ ε−2 ∗ log(m+2)−log δ

log e
examples.

Note that the algorithm uses the parameter n as a bound for m , i.e., n = 2m .

So with probability at least 1−δ , the algorithm uses at most the following quantity
of data:

8 ∗ (2n − 1)2 ∗ (2n + 1)2 ∗ (2n + 2)2 ∗ (n + 2) ∗
log(n + 2) − log δ

log e
.

The entry “upper bound” in Figure 1 has the specific values obtained for m =
2, 3, . . . , 20 and δ = 1/3 .

We have tried to find further improvements for these bounds. These improvements
have no longer been verified theoretically, but only be looked up experimentally. For
that, we applied the following experimental setting.

Experimental Setting 1 The heuristic used is Algorithm HLRP which ignores

pause-symbols. This algorithm reads data and tries in parallel to find the pattern.

It stops reading data when the process has given a pattern with sufficiently high esti-

mated confidence.

Learning L , the experiments were run for the following two distributions which

are the extreme (n + 1)(n + 2) -regular distributions with respect to having as many

pauses as possible and no pauses at all where σ ∈ L :

probL,#(σ) =
|Σ|−|σ|

(|σ| + 1) ∗ (|σ + 2|)
;

probL,#(#) = 1 −
∑

τ∈L

probL,#(τ);

probL(σ) =
probL,#(σ)

1 − probL,#(#)
.

The probabilities can be obtained from probΣ∗,# as follows: In the case of probL,# , one

draws an example string σ and then provides σ to the learner in the case that σ ∈ L
and provides # to the learner otherwise. In the case of probL , one draws examples

according to probΣ∗,# until an example in L is found which one then provides to the

learner.
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Since Algorithm HLRP ignores pause-symbols, the experiments were run with

examples drawn according to probL,# . While the algorithm runs, one can count the

number a of non-pause examples drawn and the number b of pauses drawn. The

example complexities with respect to probL and probL,# are a and a+b , respectively.

So the experiments cover both cases at once where only the way to count the number

of drawn examples are different for probL and probL,# .

The used heuristic is Algorithm HLRP. The two main modifications to the the-
oretical model are the following: The algorithm alternately draws a data item and
tries to learn from the data seen so far until it thinks that the result of the learning-
trial gives a sufficiently reasonable hypothesis. Furthermore, only sufficiently short
data-items are considered.

Algorithm HLRP (for learning regular patterns):

Repeat

Initialize bound by a default constant, g a function determined below and let A
be the empty multiset.

Repeat

Draw example σ ;

Put σ into A if

• σ is not the pause symbol;

• |σ| ≤ bound ;

• |σ| ≤ 1.4 ∗ |τ | for all τ already in A ;

Until Either there are m and ρ = x0a1x1a2x2 . . . amxm such that

• ρ generates all data in A ;

• for all i ≤ m , the number of data-items in A generated by the regular expres-
sion

(Σ \ {a0})
∗a0 . . . (Σ \ {ai−1})

∗ai−1aiΣ
∗

minus the number of the data-items in A generated by

(Σ \ {a0})
∗a0 . . . (Σ \ {ai−1})

∗ai−1bΣ
∗

is at least g(m) for any b ∈ Σ \ {ai} ;

• the number of data-items in A generated by the regular expression

(Σ \ {a0})
∗a0 . . . (Σ \ {am})

∗am

is at least g(m) .
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Or default bounds on memory usage and number of examples are exceeded.

Until The previous loop ended in the “either-case” or has been run for ten times.

If no such pattern ρ has been found Then Halt with error message
Else consider this unique ρ .

If |Σ| ≥ 3 Then For k = 1 to m − 1 Remove the variable xk from the pattern
whenever it can be removed without becoming inconsistent with the data stored in A .
(ITF)

Output the resulting pattern ρ and Halt.
End

Note that in the second condition on ρ , the regular expressions for i = 0 are
a0Σ

∗ and bΣ∗ ; for i = 1 the corresponding expressions are (Σ \ {a0})∗a0a1Σ
∗ and

(Σ \ {a0})∗a0bΣ
∗ .

The For-Loop labeled (ITF) removes variables not needed to generate the data.
It is included for the later considered case where the above algorithm is adapted to
learn regular patterns outside REGPAT1 . Surprisingly, for all experiments done with
the alphabet {0, 1, 2} , there were no errors caused by removing superfluous variables
in an otherwise correct pattern. Thus this routine was actually always activated
when |Σ| ≥ 3 , even when learning languages from REGPAT1 where this routine is
superfluous. The routine is not used for Σ = {0, 1} since there the patterns are not
unique: Lang(x00x11x2) = Lang(x001x2) .

Algorithm HLRP has been implemented such that at every learning trial it is
permitted to store up to 106 digits belonging to 50000 examples and draw up to 107

examples. The algorithm tries up to 10 times to learn a pattern without violating the
resource-bounds and then gives up. The parameter bound is initialized to 2000 at
each learning trial which is 0.2% of the available memory to store the data-items in
A and g(m) being the constant 10 . The existence of the pattern ρ can be checked
effectively by constructing it inductively as in Algorithm LRP.

m correct without pause with pause % used upper bound
10 1000 4064.909 81633.997 4.42 3 ∗ 1012

20 999 4184.943 167777.073 5.42 447 ∗ 1012

30 993 4909.675 294712.912 7.37 7999 ∗ 1012

40 970 6439.009 515298.445 9.05 62110 ∗ 1012

50 967 8895.355 889807.785 9.79 304901 ∗ 1012

60 946 11980.308 1438119.953 10.53 1119325 ∗ 1012

70 933 15777.699 2209051.668 11.44 3361797 ∗ 1012

80 927 20792.314 3325566.018 12.03 8716312 ∗ 1012

90 917 27871.036 5017601.075 12.63 20197744 ∗ 1012

100 897 48742.807 9749833.913 13.24 42832613 ∗ 1012

Figure 1: Learning REGPATm
1 where Σ = {0, 1} .

Figure 1 gives a table on the outcome of running Algorithm HLRP in order
to learn for each m ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} exactly 1000 patterns
having m terminals. These patterns have been chosen according to the uniform
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distribution over REGPATm
1 . The algorithm itself does not know m . The first

column gives the number m of terminals of the pattern x0a1x1a2x2 . . . amxm to be
learned. For each m , 1000 patterns were randomly drawn with the parameters
a1, a2, . . . , am being chosen according to the uniform distribution. The second column
gives how many of these pattern have been learned correctly and the third and fourth
column state the average number of examples needed. The third column counts
the examples drawn excluding the pause-symbols and the fourth column counts the
examples drawn including the pause-symbols. That is, the third column refers to the
distribution probL and the fourth column refers to the distribution probL,# discussed
in the Experimental Setting 1. The fifth column states the percentage of the examples
from the third column which were actually used by the algorithm and not skipped.
The other examples were too long and not processed by the learner. The upper
bound is the theoretically sufficient number of examples with respect to confidence
1 − δ = 2/3 . Only trials for patterns in REGPAT80

1 , REGPAT90
1 , REGPAT100

1 were
aborted and rerun, but each of these patterns was learned within the first 10 trials.
So the incorrect learning processes are due to incorrect hypotheses and not due to
violating memory or example bounds in each of the 10 trials.

Algorithm HLRP does not use all data different from the pause-symbol but only
the sufficiently short ones. This can be justified as follows: The underlying probability
distribution produces with probability 1

n+1
a string which has at least the length n

and the longer the string, the more likely it is in the language to be learned. Thus
if the length is very high, the data reveals almost nothing about the language and
might confuse the learner more by being random. Skipping long examples has been
justified experimentally: Algorithm HLRP was correct on all 1000 random patterns
when learning REGPAT10

1 for the alphabet {0, 1} . The algorithm was run for the
same class with the factor in the third condition for the selection of data, namely that
|σ| ≤ 1.4 ∗ |τ | for all previously seen data τ , being relaxed to 1.6 , 1.8 and 2.0 . The
number of correct patterns was 998 , 998 and 994 respectively. Larger factors give
even worse results. Relaxing the third condition and permitting more long strings
reduces the confidence of the algorithm.

The parameter bound itself should not be there if sufficient resources are available
since it makes it definitely impossible to learn patterns having more than bound
terminals. But if one has a memory limit of length ` , then, in average, every ` -th
learning experiment has a first example of length ` or more. Therefore one cannot
avoid having such a bound in an environment with a memory limitation. The choice
bound = `/500 looks a bit arbitrary, but this choice is not severe for the learning
problems investigated. For learning much longer patterns, one would of course have
to revise this decision.

Choosing the parameter g(m) = 10 is debatable. If one wants to learn large pat-
terns with sufficient high confidence, then g has to be a growing function. Otherwise,
as indicated by the experimental data, the confidence is going down for large m .
More precisely, the larger the parameter m , the less likely the learner succeeds to
learn any given pattern from REGPATm

c . Repairing this by having larger values for
g(m) has the obvious disadvantage that Algorithm HLRP draws more examples in
the learning process. That is, learning is slowed down by increasing g(m) .

Figure 2 shows the result for learning patterns having 50 terminals in dependence
of the alphabet size. The larger the alphabet, the more restrictive is the length bound



18 J. Case, S. Jain, R. Reischuk, F. Stephan and T. Zeugmann

|Σ| correct repetitions without pause with pause % used
2 967 0 8895.355 889807.785 9.79
3 980 0 22604.453 3366611.336 4.60
4 993 8 44111.067 8735098.330 2.78
5 995 82 80512.278 19891099.233 1.90

Figure 2: Learning REGPAT50
1 in dependence of the alphabet size.

|Σ| c m∗c correct rptts. without pause with pause % used
2 1 12 1000 0 5130.285 123529.904 3.58
2 2 12 920 9 23256.913 738004.683 1.08
2 3 12 890 17 37152.843 1542162.670 0.71
3 1 12 1000 15 98571.932 3460717.043 0.36
3 2 12 957 159 268867.961 14615063.504 0.11
3 3 12 922 1034 611210.432 58396686.666 0.06
4 1 12 1000 294 436565.410 20142491.835 0.12
4 2 12 711 3677 1905036.705 171744393.587 0.04
4 3 12 23 8922 1924946.265 396696831.533 0.03

Figure 3: Learning REGPAT12
1 , REGPAT6

2 and REGPAT4
3 .

on the choice of data considered. So, on one hand the number of incorrect hypotheses
went down from 33 to 5 . On the other hand, the amount of data needed goes up.
Furthermore, for alphabets of size 4 and 5 , some repetitions on the inner repeat loop
take place and the learning algorithm is rerun on the same pattern. For the alphabet
{0, 1, 2, 3, 4} , it was four times needed to repeat the learning process twice.

An attempt was made to adapt the algorithm for c = 2, 3 and to run it for
larger alphabet sizes. Since the provenly correct algorithm needs a large quantity
of data exceeding any practical bound, the heuristic approach already implemented
in Algorithm HLRP was chosen: One uses the learner for REGPAT1 in order to
figure out the terminals in the pattern. For the alphabet {0, 1} , one then interprets
this sequence of terminals as being the one for REGPATc where c = 2, 3 . For the
alphabets {0, 1, 2} and {0, 1, 2, 3} , the last three lines of Algorithm HLRP were
run and taken into account at the check for correctness.

Figure 3 gives a summary of these results obtained from the following experiments:
For each of the alphabets {0, 1}, {0, 1, 2}, {0, 1, 2, 3} and each c ∈ {1, 2, 3} , 1000 pat-
terns containing 12 terminals were tried to learn where the terminals a1, a2, . . . , a12

were chosen independently from the alphabet under the uniform distribution. Since
the distributions of the correct data for patterns from REGPAT1 and REGPATc

with c > 1 are not the same, the performance of the algorithm goes down and the
patterns to be learned in the data for Figure 3 had always 12 terminal symbols. It
turned out that the data for the experiments in Figure 3 are much more sensitive to
the alphabet size than those for the experiments in Figure 2. Algorithm HLRP had
its best performance for the alphabet {0, 1, 2} . For the alphabet {0, 1} , the main
problem was errors due to figuring out the sequence of terminals incorrectly.
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For the alphabet {0, 1, 2, 3} , the main problem are too excessive usage of memory
and time, so that many trials were aborted or rerun. For only 23 out of the 1000
languages from REGPAT4

3 , Algorithm HLRP terminated in any of the ten trials.
But in that case, it always gave the correct pattern. Note that for REGPAT4

3 , the
average number of examples drawn heavily depends on the choice of parameters:
every trial reads at most 4 ∗ 107 examples (with pauses) and the overall number of
examples drawn is at most 4 ∗ 108 since there are at most 10 trials per pattern. The
measured average complexity is 3.96696831533 ∗ 108 , that is, it is only slightly below
the maximal upper bound imposed by running-time constraints. Therefore, the main
message of these entries in the table is just the following one: Learning REGPAT6

2

and REGPAT4
3 for alphabet with four or more symbols is clearly beyond what the

current implementation is capable to handle; maybe that on a faster computer with
less severe running time constraints, Algorithm HLRP has a similar performance for
the alphabet {0, 1, 2, 3} as the current implementation has for the alphabet {0, 1, 2} .
The next experiments deal with the case where not only the terminals but also the
exact form of the pattern is selected randomly. Based on the reasons just outlined,
the alphabet {0, 1, 2} was chosen for these experiments.

Experimental Setting 2 Figure 4 shows experiments to learn patterns over the al-

phabet {0, 1, 2} where the pattern π is chosen by iteratively executing always the first

of the following cases which applies.

• When generating the first symbol of π , this is taken to be a variable.

• If the currently generated part of π contains less than m terminals and ends

with a variable, then the next symbol is a terminal where each digit has the

probability 1/3 .

• If the currently generated part of π contains less than m terminals and ends

with one, two or three terminals following the last variable, then one adds with

probability 1/2 a further variable and with probability 1/6 the digit a for a =
1, 2, 3 .

• If the currently generated part of π contains less than m terminals and its last

four symbols are all terminals then one adds a variable.

• If the currently generated part contains m terminals, then one adds a variable

at the end and terminates the procedure since the pattern is complete.

The first entry in the table of Figure 4 is the parameter m of the above procedure.

For m = 5, 6, . . . , 15 , this protocol was used to generate 1000 patterns and run the

learning algorithm on these pattern-languages.

The experiments shown in Figure 4 gave that for m ≤ 13 most errors were due
to conjecturing false terminals. Furthermore, for m = 12, 13, 14, 15 , the number of
learning processes which failed in all 10 trials to give a hypothesis, was 1, 12, 97, 109 ,
respectively, compared to 16, 33, 66, 96 errors due to incorrectly conjectured patterns.

Note that the probability to draw the smallest string generated by the pattern is
3−15 ∗16−1 ∗17−1 = 1/3902902704 for m = 15 . So the expected value for the number
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m correct repetitions without pause with pause % used
5 1000 0 13666.581 303467.013 2.95
6 1000 0 30471.300 854851.633 1.30
7 1000 0 69797.807 2504307.913 0.59
8 999 1 78186.534 3526912.510 0.47
9 997 13 134352.582 7190948.532 0.25

10 997 71 177112.452 11066283.854 0.19
11 992 244 259912.841 19128675.970 0.13
12 983 351 284064.711 24450019.647 0.11
13 955 568 365624.652 35745664.161 0.10
14 898 974 511091.000 54322939.087 0.09
15 795 1850 779662.091 94019439.240 0.08

Figure 4: Learning regular patterns with Σ = {0, 1, 2} following Setting 2.

of example to be drawn until one has seen this string is approximately 3902902704
which is by a factor of approximately 41.51 above the average number 94019439.240
of examples drawn by the algorithm. This shows that the current algorithm is better
than the trivial heuristic to draw sufficiently many examples such that the shortest
example has shown up with sufficiently high probability and then to run the part of
Algorithm HLRP which figures out the positions of the variables in the pattern.

5 Conclusion

In Theorem 1, it is shown that the class of c -regular pattern languages is probabilis-
tically exactly learnable from any text drawn from a probability distribution prob
satisfying

prob(σ) =
|Σ|−|σ|

pol(|σ|)
where

∞
∑

n=0

1

pol(n)
= 1,

pol is a {2, 3, . . .} -valued increasing polynomial and prob(#) is chosen accordingly.
Actually, Algorithm LRP also works for distributions which are sufficiently near to
the just mentioned ones and succeeds on texts as defined in Definition 5. Proposi-
tion 2 extends the learning algorithm to the case where patterns starting or ending
with a constantly bounded number of terminals is permitted. Algorithm HLRP

is a heuristic based on Algorithm LRP, which has been implemented to learn the
class REGPAT1 . Its parameters have been determined experimentally. This permits
to learn the classes REGPATm

1 faster for small m but these improved bounds are
not theoretically generalized for all m . Furthermore, only small alphabets Σ have
been considered, all experiments were run for alphabets of sizes 2, 3, 4, 5 only. An
interesting observation is that by skipping long examples, Algorithm HLRP has an
experimentally improved performance compared to the version where all non-pause
examples are taken into account. The intuitive reason is that long examples reflect less
about the pattern to be learned and have more random components which might lead
the learner to wrong conclusions. While Algorithm HLRP gave very good results for
REGPAT1 , its performance for REGPATc with c > 1 was not so convincing. The
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difficult part is to figure out the order of the terminals in the string of the pattern
while, for alphabet size 3, 4, 5 , it was easy to figure out between which terminals is
a variable and between which not. On one hand, for alphabets having a finite size
of 3 or more, future work should more focus on improving the method determining
the sequence of terminals in a regular pattern than on determining the position of the
variables. On the other hand, this second part needs attention for the special case of
the alphabet {0, 1} since there the solution is not unique.
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