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Abstract. We consider the “minor” and “homeomorphic” analogues
of the maximum clique problem, i.e., the problems of determining the
largest h such that the input graph has a minor isomorphic to Kj or
a subgraph homeomorphic to K}, respectively. We show the former to
be approximable within O(y/nlog'-®n) by exploiting the minor sepa-
rator theorem of Plotkin et al. Next, we show an 2(n!/27C(1/(ogn)7))
lower bound (for some constant +, unless NP C ZPTIME(2(1°8 ")O(l))),
and an O(nloglogn/log'®n) upper bound on the approximation fac-
tor for maximum homeomorphic clique. Finally, we study the problem
of subgraph homeomorphism where the guest graph has maximum de-
gree not exceeding three and low treewidth. In particular, we show that
for any graph G on n vertices and a positive integer ¢ not exceeding n,
one can produce either n/q approximation to the longest cycle problem
and (n — 1)/(¢ — 1) approximation to the longest path problem, both
in polynomial time, or a longest cycle and a longest path of G in time
90(gvnlog®®n)

1 Introduction

Considered as an injective mapping, the subgraph isomorphism of P into G con-
sists of a mapping of vertices of P into vertices of G so that edges of P map
to corresponding edges of G. Generalizations of this mapping include subgraph
homeomorphism, or equivalently, topological embedding, where vertices of P map
to vertices of G and edges of P map to vertex-disjoint paths in G, and minor
containment, where vertices of P map to disjoint connected subgraphs of G and
edges of G map to edges of G.

All these problems are inherently NP-complete when the pattern or guest
graph P are not fixed [12]. For fixed P, all are solvable in polynomial time, which
in case of subgraph homeomorphism and minor containment is highly non-trivial
to show [23]. They remain to be NP-complete for several special graph classes,
e.g., for graphs of bounded treewidth [14, 20]. Restricting the pattern graph P to
complete graphs or simple cycles or paths does not help in the case of subgraph
isomorphism. The maximum clique, Hamiltonian cycle and Hamiltonian path
problems are well known as basic NP-complete problems [12]. Their optimiza-
tion versions are also known to be very difficult to approximate. For instance,
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it is known that unless NP C ZPTIME(2(°8 ")o(l)), no polynomial-time algo-
rithm for maximum clique (or, equivalently, for maximum independent set) can
achieve the approximation factor of n'~©(1/(°87)") for some constant y [19] (see
also [7,15]). On the other hand, the best known polynomial-time approximation
algorithm for maximum clique achieves solely an nlog®logn/log® n factor [10].
The situation is not better in case of the optimization versions of the Hamilto-
nian cycle and path problems, called the longest cycle and longest path problems
[9]. For example, the best known polynomial-time approximation algorithm for
the longest path problem achieves only n loglogn/log® n factor [3,11] *. The
longest path problem cannot be approximated within any constant factor in
polynomial time unless P = NP or within any 20(log' = n) factor, where € > 0,
in polynomial time, unless NP C DTIM E(Z“’gl/e ™) [18]. Generally, the directed
versions of the longest cycle and longest path problems seem to be even harder
(see [3]). Nevertheless, on the positive side, in graphs of maximum degree not
exceeding three it is possible to approximate the longest cycle problem within
O(n'~0°83:2)/2) in polynomial time [9]. Furthermore, it is shown in [11] that a
path of length k (if it exists) can be found in time 29*)n?(1) which implies that
the longest path problem is fixed-parameter tractable.

In the first part of this paper, we consider the “minor” analogue of the
maximum clique problem, i.e., the problem of determining the largest h such
that the input graph has a minor isomorphic to K. We show that the minor
separator theorem of Plotkin et al. [21] yields an approximation algorithm which
for a graph on n vertices and m edges produces a minor isomorphic to K, where
q = 2(h/(y/nlog"® n)), in time O(mnlog'® n).

In the second part, we consider the maximum homeomorphic clique prob-
lem, i.e., the problem of determining the largest h such that the input graph
has a subgraph homeomorphic to K. We show that the aforementioned re-
sults on the approximability of the standard maximum clique problem yield an
2(nt/2-0(/(ogm)")) Jower bound for some constant +, unless
NP C ZPTIME(2°¢™°™) "and an O(n(loglogn)/log"® n) upper bound on
the approximation factor for maximum homeomorphic clique.

Our results give evidence that the maximum clique minor containment prob-
lem might be somewhat easier than the subgraph isomorphism and homeomor-
phism problems. The spectacular result of Robertson and Seymour [23] showing
that for any fixed guest graph the minor containment problem is solvable in
cubic time implies that it is so called fized-parameter tractable [6]. The maxi-
mum clique problem is complete for the so called class W1] (see [6]). Hence,
the maximum clique problem as well as its generalization, the subgraph iso-
morphism problem, are likely to be fixed-parameter intractable. (On the other
hand, the subgraph isomorphism and homeomorphism problems restricted to
k-connected partial k-trees are solvable in polynomial time [20,13] whereas the
minor containment problem is still NP-complete under such restriction [20].)

1 In the forthcoming STOC 2004 paper, Gabow derives an

n/ exp(£2(4/logn/loglogn)) approximation factor for the longest path prob-
lem by iterating the method of Bjérklund and Husfeldt from [3].



In the third part, we study the subgraph homeomorphism (equivalently, topo-

logical embedding) problem for guest graphs of maximum degree not exceeding
three and low treewidth. Note that a path or a cycle belongs to the aforemen-
tioned class of graphs. Again relying on the minor separator theorem of Plotkin
et al. [21], we obtain among other things the following partial result on the
approximability and time complexity of the longest cycle and path problems:
For a graph G on n vertices, and a positive integer ¢ smaller than n, one can
produce either a simple cycle in G of length not less than ¢ in polynomial time,
thus yielding n/q polynomial-time approximation to the longest cycle problem
and (n—1)/(¢—1) polynomial-time approximation to the longest path problem,
or a longest cycle and a longest path of G in time 20(avn108*° 1) For instance,
if we set g to |n'/*log™"?® n| then we obtain either about n3/*log"*® n approx-
imation guarantee in polynomial time or optimal solutions in subexponential
time 20(n**108"** 1) for hoth problems.
Of course, the practical usefulness of our partial result is limited since the po-
tential user cannot choose between these two possibilities. However, this result
suggests that perhaps at least one of these possibilities may hold in general.
Presently no subexponential algorithms for the longest cycle or path problems
are known, e.g., the fastest known algorithm for Hamiltonian cycle in cubic
graphs runs in time O(2"/3) [8]. Hence, both proving the existence of an n'~¢
polynomial-time approximation to the longest cycle and path problems as well
as proving the existence of subexponential algorithm for these problems would
be surprising and spectacular results (see [17]).

log

2 Preliminaries

We begin with a formal definition of a (balanced) separator of a graph.

Definition 1. A b-separator of a graph on n vertices and m edges is a subset
X of the vertex set of G whose removal from the graph splits it into connected
components, none of which has more than b fraction of the sum the weights of
the vertices and edges. The size of the separator is |X|. If not otherwise stated
we shall assume the vertices to have weight 1 and the edges to have weight 0.

Let k be a positive integer. A graph G on n vertices is said to be k-separable
if either it has at most k + 1 vertices or it has a %—sepamtor of size at most k
whose removal splits G into two k-separable subgraphs.

We shall denote the complete graph on g vertices by K, and if a graph G has a
minor isomorphic to a graph P, say that G has a P-minor.

The minor separator theorem due to Alon et al. [1] can be formulated as
follows.

Fact 1 [1]. There is an algorithm that for a graph on n vertices and m edges,
and an integer g, either produces its Kq,-minor or finds its %—sepamtor of size

O(¢*/%y/n) in time O(,/qn(n + m)).
Fact 1 has been improved by Plotkin et al. in [21] as follows.



Fact 2 [21]. There is an algorithm that for a graph on n vertices and m edges,
and an integer q, either produces its Kq,-minor or finds its %—sepamtor of size

O(gv/nlogn) in time O(m+/nlogn).

The notion of treewidth of a graph was originally introduced by Robertson and
Seymour [22] as one of the main contributions in their seminal graph minor
project. It has turned out to be equivalent to several other interesting graph
theoretic notions, e.g., the so called partial k-trees (e.g., see [2,4]).

Definition 2. A tree decomposition of a graph G = (V, E) is a pair ({X; | i €
I}, T =(I,F)), where {X; | i € I} is a collection of subsets of V, and T = (I, F)
is a tree, such that the following conditions hold:

L Ui, Xi =V,

2. for all edges (v,w) € E, there exists a node i € I, with v,w € X;, and

3. for every vertex v € V, the subgraph of T, induced by the nodes {i € I | v €
X} is connected.

Each set X;, i € I, is called the bag associated with the ith node of the decom-
position tree T. The width of a tree decomposition ({X; | i € I},T = (I, F))
is max;ey | X;| — 1. The treewidth of a graph is the minimum width of its tree
decomposition taken over all possible tree-decompositions of the graph. A path
decomposition of a graph, the width of a path decomposition and the pathwidth
of a graph are defined analogously by constraining T to be just a path.

The following fact follows from the proof of Theorem 20 in [4].

Fact 3 Let G be a graph on n wvertices. If a sequence of sets on at most |
vertices in G satisfying the requirements for the %—sepamtors in the definition of
l-separability of G (see Def. 1) is given then a path decomposition of G of width
O(llogn) can be computed in time O(nllogn).

Proof. Sketch. Let S be the indicated splitting set, and let G; and G» be the two
subgraphs resulting from removing S. Recursively construct path decompositions
(X1,...,X,) and (Y3,...,Y;) for G1 and G, respectively. Then, form the path
decomposition (X7 US,...,X,US,Y1US,....Y,US) for G.

Lemma 16 in [4] yields the next fact.

Fact 4 If H is a minor of G then the treewidth of H does not exceed the treewidth
of G and the pathwidth of H does not exceed the pathwidth of G.

Theorem 5.2 in [13] yields the following fact.

Fact 5 Let P and G be graphs of treewidth |, on n vertices totally, and let the
mazimum degree in P be O(1). One can determine whether or not P can be

topologically embedded in G, and if so, produce a topological embedding of P in
G in time O(n!+?).



3 Approximation of maximum K,-minor

It is well known that given a tree decomposition T of a graph G, for any clique
in G there is a bag of T' wholly including it (see Lemma 4 in [4] and [5]). Hence,
the treewidth of K, is not smaller than ¢ — 1. Combing this with Fact 4, we
obtain immediately the following useful lemma.

Lemma 1. If a graph G has a tree decomposition or a path decomposition of
width 1 then the largest integer h such that G has a Kp-minor does not exceed
l+1.

By Lemma 1, we obtain the following key lemma.

Lemma 2. There is an algorithm that for a graph G on n vertices either pro-

duces its path decomposition of width O(qy/nlog"®n) or its minor isomorphic
to K, in time O(mn'-5\/logn).

Proof. Run the algorithm of Plotkin et al. from Fact 2 for K; and G or K, and a
subgraph of G to produce a %—separator of G, or of a subgraph of G, respectively,
having O(qv/nlogn) vertices, in order to obtain a path decomposition of G hav-
ing width O(gq/nlog'® n) by Fact 3. We may assume w.l.o.g that the algorithm
never fails to produce the aforementioned separator since otherwise we obtain a
minor of G isomorphic to K,. More exactly, given such a separator, we remove
it from the current subgraph of G in order to compute the resulting connected
components and group them in two sub-subgraphs, none containing more than
two thirds of the vertices of the current subgraph, and then run the algorithm of
Plotkin et al. on these two sub-subgraphs and so on. By Fact 3, such a sequence
of separators yields a path decomposition of width O(gy/nlog'®n). To obtain
the time bound it is sufficient to observe that the algorithm of Plotkin et al. is
run at most n — 1 times on G and its subgraphs and that we may assume w.l.o.g
m>n-—1.

We show our first main result on maximum clique minor containment by
forcing the algorithm of Plotkin et al. from Fact 2 to produce Kg-minors for
sufficiently small q.

Theorem 1. Let G be a graph on n vertices and m edges, and let h be the
largest integer h such that G has a Ky-minor. There is an O(mn'®log"® n)-
time algorithm which determines a minor of G isomorphic to K, where ¢ =

Q(h/+/rlog'® n).

Proof. Let | be the minimum width of a path decomposition of G. By Lemma
2 there is a constant ¢; such that if ¢ was a positive integer smaller than
al/ \/ﬁlogl'5 n and G had no K, minor then G would have a path decompo-
sition smaller than I. Let g be a positive integer smaller than ¢,1/+/nlog'® n.
Since G cannot have a path decomposition of width smaller than [, the algo-
rithm from Lemma 2 has to produce a minor of G isomorphic to K,. Let [1,7]
be the maximal interval such that for any integer ¢ € [1,r], the algorithm from



Lemma 2 applied to G' produces a minor of G isomorphic to K,. It follows that
r > cal/vn log'®n — 1. We can find a positive integer p not smaller than r
such that the algorithm from Lemma 2 applied to G produces a minor of G
isomorphic to K, by performing binary search, running logarithmic number of
times this algorithm. It takes O(mn'®log'®n) time totally by Lemma 2. We
have p > ¢;1/y/nlog"® n — 1. On the other hand, we have h = O(I) by Lemma
1. Thus, there is a constant ¢ such that p > CQh/\/ﬁlogl'5 n.

4 Approximability of maximum homeomorphic clique

The following lemma will be useful in proving our lower and upper bounds on
approximability of maximum homeomorphic clique.

Lemma 3. There is an algorithm which for a homeomorphic clique of size h
in a graph on n vertices determines a clique of size 2(h?/n), contained in the
homeomorphic clique, in time polynomial in n.

Proof. Let h be the number of clique vertices, i.e., endpoints of paths modeling
clique edges, in a homeomorphic clique H. Note that H can include at most n—h
paths having more than one edge directly connecting its clique vertices. Form
an auxiliary graph A on the clique vertices of H such that two vertices u and v
are connected by an edge if and only if the shortest path in H connecting them
has length at least two. Note that A has at most n — h edges and consequently
average degree (n — h)/2h. Hence, by [16], one can determine an independent
set of size 2(h?/n) in A and consequently a clique of size 22(h?/n) in H, in
polynomial time.

Our lower bound on polynomial-time approximability of maximum homeo-
morphic clique follows from that for maximum clique [19] (see also [7,15]) by
Lemma 3.

Theorem 2. Unless NP C ZPTIME(2(°8 ")0(1)), mazximum homeomorphic clique
cannot be approzimated within a factor n'/>~C00/(18 ™)) for some constant .

Proof. By [19], no polynomial-time algorithm for maximum clique can achieve
the approximation factor of n'=91/(0en)”) for some constant v unless NP C
ZPTIME(2(lo8 ")O(U). Let z € O(1/(logn)”). It follows that there is no correct
polynomial-time approximation algorithm for maximum clique that in case the
input graph has a clique of size > n'~% would return a clique of size 2(n®).

Suppose that there is a polynomial-time O(n'/2~3%/2)-approximation algo-
rithm for maximum homeomorphic clique. Let G be the input graph on n ver-
tices. Suppose that G contains a clique of size at least n!~?. Then, the aforemen-
tioned algorithm would find a homeomorphic clique H in G having 2(n'/2+%/2)
clique vertices. It follows by Lemma 3 that one could determine a clique of size
2(n®) in H, in polynomial time. We obtain a contradiction.



Similarly, our upper bound on polynomial-time approximability of maximum
homeomorphic clique follows from that best for maximum clique [10] by Lemma
3.

Theorem 3. Mazimum homeomorphic clique can be approrimated within
O(nloglogn/ log®2 n) in polynomial time.

Proof. The aforementioned best known polynomial-time approximation algo-
rithm for maximum clique achieves the ratio O(n log® logn/ log® n) [10]. Let h be
the maximum size of homeomorphic clique in the input graph. By Lemma 3, the
graph has a clique of size 2(h?/n). By applying the approximation algorithm for
maximum clique to the graph, we obtain a clique of size 2(h? log® n/(nloglogn)?).
Thus, in particular for h = 2(n/z) where z < log®/? n/loglogn, we obtain a
clique of size R2(log®n/(zloglogn)?) and consequently the approximation fac-
tor O(nz log® log n/log® n) for maximum homeomorphic clique in this case. The
factor achieves the minimum for z = log®/? n/loglogn. Hence we obtain the
theorem.

5 Subgraph homeomorphism for special guest graphs

We begin from noting that we can use a minor embedding of K, in a graph to
construct a topological embedding of any subgraph of K, having vertex degrees
not exceeding three in the graph.

Theorem 4. Given a graph G, its minor isomorphic to K, and a subgraph H of
K, whose mazimum degree is at most three, one can find a topological embedding
of G in H in time linear in the size of G.

Proof. Let ¢ be the mapping from the vertices of K, to the subsets of the vertex
set of G and from the edges of K, to edges of G that defines the Ky -minor of
G. For each vertex v of H, find a spanning tree T, of the subgraph induced by
¢(v). For each edge (v, w) of H, where (v',w') = ¢(v,w), mark v' in T, and w’
in T,,. Next, for each vertex v of H prune T, to the union U, of the paths in T},
interconnecting at most three marked vertices. It is clear that U, has the form of
either three simple paths meeting at a joint endpoint or just a simple path. By
taking the union of the pruned trees U, over the vertices of H and the ¢-images
of the edges of H, we obtain a subgraph of G homeomorphic with H.

By combining Lemma 2 with Theorem 4, we obtain the next theorem.

Theorem 5. Let 1 < g <n and let H be a subgraph of K, of mazimum degree
not exceeding three. There is a polynomial-time algorithm which for any graph
G on n vertices produces either a topological embedding of H in G or a path
decomposition of G having width O(g/nlog'® n).

Fact 5 immediately yields the following lemma.



Lemma 4. Given a graph G on n vertices whose treewidth does not exceed ,
and a family F' of k graphs of maximum degree O(1) and treewidth not exceeding
l, each having at most n vertices, one can find a maximum vertex cardinality
member of F that can be topologically embedded in G as well as its topological
embedding in G in time O(n!T2k).

By combining Theorem 5 with Lemma 4, we obtain our next main result.

Theorem 6. Let G be a graph on n wvertices, let 1 < q < n, and let F be a
sequence of graphs H;, i = 1,...,n, where H; has i vertices, mazimum degree
at most three and treewidth O(q\/ﬁlogl'5 n). One can produce either a topologi-
cal embedding of Hy in G in polynomial time or a mazimum vertex cardinality
member of F' that can be topologically embedded in G together with its topological
embedding in G in time 20(aVnlog”*n)_

Note that in particular simple cycles and simple paths, having treewidth 2
and 1, respectively, satisfy the requirements on the members in the sequence F.
Hence, we obtain the following spectacular corollary.

Corollary 1. Let G be a graph on n wvertices, and let 1 < q¢ < n. One can
produce either a simple cycle in G of length not less than q in polynomial time,
thus yielding n/q polynomial-time approzimation to the longest cycle problem
and (n —1)/(q — 1) polynomial-time approzimation to the longest path problem,

or a longest cycle and a longest path of G in time 20(avnlog** n)

Final remark

Our result on approximability of the clique minor containment can be easily
extended to include non necessarily complete guest graphs which are hard to
split.
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