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Abstract

An arithmetic circuit or formula is multilinear if the polynomial computed at each of
its wires is multilinear. We give an explicit example for a polynomial f(x1, ..., xn), with
coefficients in {0, 1}, such that over any field:

1. f can be computed by a polynomial-size multilinear circuit of depth O(log2 n).

2. Any multilinear formula for f is of size nΩ(logn).

This gives a super-polynomial gap between multilinear circuit and formula size, and
separates multilinear NC1 circuits from multilinear NC2 circuits.

1 Introduction

An outstanding open problem in arithmetic circuit complexity is to understand the relative
power of circuits and formulas. Surprisingly, any arithmetic circuit of size s for a polynomial
of degree d can be translated into an arithmetic formula of size quasi-polynomial in s and d [H,
VSBR].1 Can such a circuit be translated into a formula of size polynomial in s and d ?

In this paper, we answer this question for multilinear circuits and formulas. An arithmetic
circuit (or formula) is multilinear if the polynomial computed at each of its wires is multilinear
(as a formal polynomial), that is, in each of its monomials the power of every input variable
is at most one.

1.1 Multilinear Circuits

Let F be a field, and let {x1, ..., xn} be a set of input variables. An arithmetic circuit is a
directed acyclic graph with nodes of in-degree 0 or 2. Every leaf of the graph (i.e., a node
of in-degree 0) is labelled with either an input variable or a field element. Every other node

∗Research supported by Israel Science Foundation (ISF) grant.
1Moreover, if s, d are both polynomial in the number of input variables n, then the circuit can be translated

into a polynomial-size circuit of depth O(log2 n), that is, an NC2 circuit [VSBR].
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of the graph is labelled with either + or × (in the first case the node is a plus gate and in
the second case a product gate). We assume that there is only one node of out-degree zero,
called the root. The circuit is a formula if its underlying graph is a (binary) tree (with edges
directed from the leaves to the root).

An arithmetic circuit computes a polynomial in the ring F[x1, ..., xn] in the following way.
A leaf just computes the input variable or field element that labels it. A plus gate computes
the sum of the two polynomials computed by its sons. A product gate computes the product
of the two polynomials computed by its sons. The output of the circuit is the polynomial
computed by the root. For a circuit Φ, we denote by Φ̂ the output of the circuit, that is, the
polynomial computed by the circuit. The size of a circuit Φ is defined to be the number of
nodes in the graph, and is denoted by |Φ|. The depth of a circuit is defined to be the maximal
distance between the root and a leaf in the graph.

A polynomial in the ring F[x1, ..., xn] is multilinear if in each of its monomials the power
of every input variable is at most one. An arithmetic circuit (or formula) is multilinear if the
polynomial computed by each gate of the circuit is multilinear.

1.2 Background

Multilinear circuits (and formulas) were formally defined by Nisan and Wigderson in [NW].
Obviously, multilinear circuits can only compute multilinear functions. Moreover, multilinear
circuits are restricted, as they do not allow the intermediate use of higher powers of variables
in order to finally compute a certain multilinear function. Note, however, that for many
multilinear functions, circuits that are not multilinear are very counter-intuitive, as they
require a ”magical” cancellation of all high powers of variables. For many multilinear functions,
it seems ”obvious” that the smallest circuits and formulas should be multilinear. Moreover,
for many multilinear functions, all (or almost all) known circuits are multilinear.

Super-polynomial lower bounds for the size of multilinear formulas were recently proved [R].
In particular, it was proved that over any field, any multilinear formula for the permanent
or the determinant of an n × n matrix is of size nΩ(logn). Note, however, that all known
multilinear circuits for the permanent or the determinant are of exponential size, and hence
these bounds don’t give any separation between multilinear circuit and formula size.

For more background and motivation for the study of multilinear circuits and formulas
see [NW, R, A]. For general background on algebraic complexity theory see [G, BCS].

1.3 Our Results

We give an explicit example for a (multilinear) polynomial f(x1, ..., xn), with coefficients in
{0, 1}, such that over any field:

1. f can be computed by a polynomial-size multilinear circuit of depth O(log2 n), that is,
a multilinear NC2 circuit.
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2. Any multilinear formula for f is of size nΩ(logn). In particular, f cannot be computed
by a polynomial-size multilinear circuit of depth O(log n), that is, a multilinear NC1
circuit.2

This gives a super-polynomial gap between multilinear circuit and formula size, and separates
multilinear NC1 circuits from multilinear NC2 circuits.

For the proof of our lower bound on the multilinear formula size of f , we use methods
from [R]. The main contribution of this paper is the construction of a polynomial f that can
be computed by small multilinear circuits, and for which these methods can be applied.

2 Syntactic Multilinear Circuits

Let Φ be an arithmetic circuit over the set of variables {x1, ..., xn}. For every node v in the
circuit, denote by Φv the sub-circuit with root v, and denote by Xv the set of variables that
appear in the circuit Φv. We say that an arithmetic circuit Φ is syntactic multilinear if for
every product gate v of Φ, with sons v1, v2, the sets of variables Xv1

and Xv2
are disjoint.

Note that any syntactic multilinear circuit is clearly multilinear. At the other hand, a mul-
tilinear circuit is not necessarily syntactic multilinear. Nevertheless, the following proposition
shows that without loss of generality we can assume that a multilinear formula is syntactic
multilinear.

Proposition 2.1 [R] For any multilinear formula, there exists a syntactic multilinear formula
of the same size that computes the same polynomial.

Proof:
Let Φ be a multilinear formula. Let v be a product gate in Φ, with sons v1, v2, and assume
that Xv1

and Xv2
both contain the same variable xi. Since Φ is multilinear, Φ̂v is a multilinear

polynomial and hence in at least one of the polynomials Φ̂v1
, Φ̂v2

the variable xi doesn’t ap-
pear. W.l.o.g. assume that in the polynomial Φ̂v1

the variable xi doesn’t appear. Then every
appearance of xi in Φv1

can be replaced by the constant 0. By repeating this for every product
gate in the formula, as many times as needed, we obtain a syntactic multilinear formula that
computes the same polynomial. 2

3 Lower Bounds for Multilinear Formulas

In this section, we prove general lower bounds for the size of multiliear formulas. To prove
these bounds we use techniques from [R]. As in [R], our starting point is the partial derivatives
method of [N, NW]. As in [R], to handle sets of partial derivatives, we make use of the partial
derivatives matrix (first used in [N]).

2Note that any (multilinear) circuit of depth O(log n) can trivially be translated into a polynomial size
(multilinear) formula (of depth O(log n)).
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3.1 The Partial-Derivatives Matrix

Let f be a multilinear polynomial over the set of variables {y1, ..., ym} ∪ {z1, ..., zm}. For a
multilinear monomial p in the set of variables {y1, ..., ym} and a multilinear monomial q in
the set of variables {z1, ..., zm}, denote by Mf (p, q) the coefficient of the monomial pq in the
polynomial f . Since the number of multilinear monomials in a set of m variables3 is 2m, we
can think of Mf as a 2

m × 2m matrix, with entries in the field F. We will be interested in the
rank of the matrix Mf over the field F.

The following two propositions give some basic facts about the partial derivatives matrix.

Proposition 3.1 Let f, f1, f2 be three multilinear polynomials over the set of variables
{y1, ..., ym} ∪ {z1, ..., zm}, such that f = f1 + f2. Then Mf =Mf1

+Mf2
.

Proof:
Immediate from the definition of the partial derivatives matrix. 2

Proposition 3.2 Let f, f1, f2 be three multilinear polynomials over the set of variables
{y1, ..., ym} ∪ {z1, ..., zm}, such that f = f1 · f2, and such that the set of variables that f1
depends on and the set of variables that f2 depends on are disjoint. Then, Rank(Mf ) =
Rank(Mf1

) ·Rank(Mf2
).

Proof:
Note that the matrix Mf is the tensor product of Mf1

and Mf2
(where all matrices are re-

stricted to rows and columns that are non-zero). Hence, the rank of Mf is the product of the
rank of Mf1

and the rank of Mf2
. 2

Let Φ be a multilinear formula over the set of variables {y1, ..., ym} ∪ {z1, ..., zm}. Recall
that the output Φ̂ of the formula Φ is a multilinear polynomial over {y1, ..., ym}∪ {z1, ..., zm}.
For simplicity, we denote the matrix MΦ̂ also by MΦ. We will be interested in bounding the
rank of the matrix MΦ over the field F. (Note, however, that the rank of MΦ may be as large
as 2m (i.e., full rank), even if the formula Φ is of linear size).

3.2 Unbalanced Nodes

Let Φ be a syntactic multilinear formula over the set of variables {y1, ..., ym} ∪ {z1, ..., zm}.
For every node v in the formula, denote by Yv the set of variables in {y1, ..., ym} that appear
in the formula Φv, and denote by Zv the set of variables in {z1, ..., zm} that appear in the
formula Φv.

Denote by b(v) the average of |Yv| and |Zv| and denote by a(v) their minimum. Denote,
d(v) = b(v)− a(v). We say that a node v is k-unbalanced if d(v) ≥ k.

Let γ be a simple path from a leaf w to a node v of the formula Φ. We say that γ is
k-unbalanced if it contains at least one k-unbalanced node. We say that γ is central if for

3We only consider monomials with coefficient 1.
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every u, u1 on the path γ, such that u1 is a direct son of u (i.e., there is an edge from u1 to u),
we have b(u) ≤ 2b(u1). Note that for every node u in the formula, with sons u1, u2, we have
b(u) ≤ b(u1) + b(u2). Hence, by induction, for every node u in the formula, there exists at
least one central path that reaches u. In particular, at least one central path reaches the root.

We say that the formula Φ is k-weak if every central path that reaches the root of the
formula contains at least one k-unbalanced node. The following lemma from [R] shows that
if the formula Φ is k-weak then the rank of the matrix MΦ can be bounded.

Lemma 3.3 [R] Let Φ be a syntactic multilinear formula over the set of variables {y1, ..., ym}∪
{z1, ..., zm}, and assume that Φ is k-weak. Then,

Rank(MΦ) ≤ |Φ| · 2
m−k/2.

3.3 Random Partition

Let n = 2m. Let Φ be a syntactic multilinear formula over the set of variablesX = {x1, ..., xn}.
Let A be a random partition of the variables in X into {y1, ..., ym} ∪ {z1, ..., zm}. Formally, A
is a (randomly chosen) one to one function from the set of variables X to the set of variables
{y1, ..., ym} ∪ {z1, ..., zm}.

Denote by ΦA the formula Φ after replacing every variable of X by the variable assigned to
it by A. Obviously, ΦA is a syntactic multilinear formula over the set of variables {y1, ..., ym}∪
{z1, ..., zm}.

The following lemma shows that if |Φ| is small then with high probability ΦA is k-weak
for k = n1/8. We will give the proof of the lemma in the next section.

Lemma 3.4 Let n = 2m. Let Φ be a syntactic multilinear formula over the set of variables
X = {x1, ..., xn}, such that every variable in X appears in Φ, and such that |Φ| ≤ nε logn,
where ε is a small enough universal constant (e.g., ε = 10−6). Let A be a random partition of
the variables in X into {y1, ..., ym}∪{z1, ..., zm}. Then, with probability of at least 1−n

−Ω(logn)

the formula ΦA is k-weak, for k = n1/8.

3.4 The Lower Bounds

Lower bounds for the size of multilinear formulas can be proved as a corollary of Lemma 3.3
and Lemma 3.4. We will prove lower bounds for functions that satisfy the following high rank
property.4

Definition 3.5 (High Rank) Let n = 2m. Let f be a multilinear polynomial (over a field F)
over the set of variables X = {x1, ..., xn}. We say that f is of high rank over F if the following
is satisfied: Let A be a random partition of the variables in X into {y1, ..., ym} ∪ {z1, ..., zm}.
Then, with probability of at least n−o(logn),

4Note that the functions f used in this paper will actually satisfy a much stronger property. Namely, for
any partition A, we will have Rank(MfA

) = 2m (where all notations are as in Definition 3.5).
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Rank(MfA
) ≥ 2m−m1/8/2,

where the rank is over F, and fA denotes the polynomial f after replacing every variable in X
by the variable assigned to it by A.

The following corollary is our basic lower bound.

Corollary 3.6 Let n = 2m. Let f be a multilinear polynomial (over a field F) over the set
of variables X = {x1, ..., xn}. If f is of high rank over F (see Definition 3.5) then for any
multilinear formula Φ for f ,

|Φ| ≥ nΩ(logn).

Proof:
By Proposition 2.1, we can assume w.l.o.g. that Φ is syntactic multilinear. Note also that we
can assume w.l.o.g. that all the variables in X appear in Φ, as we can always add variables
multiplied by 0. Assume for a contradiction that |Φ| ≤ nε logn, where ε is the universal constant
from Lemma 3.4. Let A be a random partition of the variables in X into {y1, ..., ym} ∪
{z1, ..., zm}. Then, by Lemma 3.4, with probability of at least 1− n−Ω(logn) the formula ΦA is
k-weak, for k = n1/8.

Hence, by Lemma 3.3, with probability of at least 1− n−Ω(logn),

Rank(MΦA
) < 2m−m1/8/2.

Thus Φ cannot be a formula for the high rank function f . 2

We will now consider multilinear polynomials f (over a field F) over two sets of variables:
X = {x1, ..., xn} and X

′ = {x′
1, ..., x

′
l}. We think of the variables in X

′ as auxiliary variables.
Let A′ : X ′ → F be an assignment of values in F to all the variables in X ′. We denote by
fA′ the polynomial f , after substituting in every variable in X

′ the value assigned to it by A′.
Note that fA′ is a multilinear polynomial over the set of variables X.

Corollary 3.7 Let n = 2m. Let f be a multilinear polynomial (over a field F) over the sets
of variables X = {x1, ..., xn} and X

′ = {x′
1, ..., x

′
l}. If for some assignment A′ : X ′ → F the

polynomial fA′ is of high rank over F (see Definition 3.5) then for any multilinear formula Φ
for f ,

|Φ| ≥ nΩ(logn).

Proof:
Denote by ΦA′ the formula Φ after replacing every variable of X

′ by the value assigned
to it by A′. Then, ΦA′ is a formula for fA′ , and |ΦA′ | = |Φ|. Hence, by Corollary 3.6,
|Φ| = |ΦA′ | ≥ nΩ(logn). 2

In some cases, in order to find an assignment A′ such that the polynomial fA′ is of high
rank, we will need to consider extensions G of the field F. Note that any polynomial f over
F is also a polynomial over any field extending F.
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Corollary 3.8 Let n = 2m. Let f be a multilinear polynomial (over a field F) over the
sets of variables X = {x1, ..., xn} and X ′ = {x′

1, ..., x
′
l}. If for some field G ⊃ F there

exists an assignment A′ : X ′ → G, such that the polynomial fA′ is of high rank over G (see
Definition 3.5) then for any multilinear formula Φ for f (over the field F),

|Φ| ≥ nΩ(logn).

Proof:
Any multilinear formula for f over the field F is also a multilinear formula for f over the
field G. The proof hence follows by Corollary 3.7. 2

4 Proof of Lemma 3.4

Let us first give a brief sketch of the proof. Note that the intuition and the basic structure of
the proof are the same as in [R], but the details here are much simpler.

Intuitively, since A is random, every node v with large enough Xv will be k-unbalanced
with high probability. The probability that such v is not k-unbalanced is smaller than O(n−δ),
for some constant δ. This may not be enough since the number of central paths is possibly
as large as nε logn. Nevertheless, each central path contains Ω(log n) nodes so we can hope to
prove that the probability that none of them is k-unbalanced is as small as n−Ω(logn).

This, however, is not trivial since there are dependencies between the different nodes. We
will identify Ω(log n) nodes, v1, ..., vl, on the path (that will be ”far enough” from each other).
We will show that for every vi, the probability that vi is not k-unbalanced is smaller than
O(n−δ), even when conditioning on the event that v1, ..., vi−1 are not k-unbalanced.

4.1 Notations

For any integer n, denote [n] = {1, ..., n}.

To simplify notations, we denote in this section the formula ΦA by Ψ. There is a one to
one correspondence between the nodes of Φ and the nodes of Ψ. For every node v in Φ, there
is a corresponding node in Ψ and vice versa. For simplicity, we denote both these nodes by v,
and we think of them as the same node. Hence, Xv denotes the set of variables in X that
appear in the formula Φv, while Yv denotes the set of variables in {y1, ..., ym} that appear in
the formula Ψv, and Zv denotes the set of variables in {z1, ..., zm} that appear in Ψv. Denote,

α(v) = |Xv|/n.

For three integers M1,M2 ≤ N , denote by H(N,M1,M2) the hypergeometric distribution
with parameters N,M1,M2, that is, the distribution of the size of the intersection of a random
set of size M2 and a set of size M1 in a universe of size N .
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Proposition 4.1 Let χ be a random variable that has the hypergeometric distribution
H(N,M1,M2), such that, N/4 ≤ M2 ≤ 3N/4, and N 1/2 ≤ M1 ≤ N/2. Then, χ gets any
specific value with probability of at most O(N−1/4).

Proof:
Follows by the definition of the hypergeometric distribution and standard bounds on binomial
coefficients. 2

4.2 Central Paths are Unbalanced

Let γ be a simple path from a leaf to a node in Φ. Note that γ is central in Ψ iff for every u, u1
on the path γ, such that u1 is a direct son of u, we have α(u) ≤ 2α(u1). Since this property
doesn’t depend on the partition A, we say in this case that γ is central in Φ. We will show
that if γ is central then with high probability γ is unbalanced in the formula Ψ.

Claim 4.2 Let γ be a central path from a leaf to the root of Φ. Then,

Pr[γ is not k-unbalanced in Ψ ] ≤ n−Ω(logn).

Proof:
Recall that the first node of γ is a leaf and hence α(v) for that node is at most 1/n, and the
last node of γ is the root and hence α(v) for that node is 1. Note that α(v) is monotonously
increasing along γ. Let v1, ..., vl be nodes on γ, chosen by the following process: Let v1 be the
first node on γ, such that α(v1) ≥ n−1/2. For every i, let vi+1 be the first node on γ, such that
α(vi+1) ≥ 2 · α(vi). Stop when α(vi+1) > 1/4. Denote by l the index i of the last vi in this
process.

Since γ is central, for every u, u′ on γ, such that u′ is a direct son of u, we have α(u) ≤
2α(u′). Hence, for every i ∈ [l − 1], we have α(vi+1) < 4 · α(vi). Hence, the process above
continues for Ω(log n) steps. To summarize, we have l = Ω(log n) and nodes v1, ..., vl on γ,
such that for every i ∈ {2, ..., l},

1/4 ≥ α(vi) ≥ 2 · α(vi−1) ≥ n−1/2.

Denote by E the event that γ is not k-unbalanced in the formula Ψ. For every i ∈ [l], denote
by Ei the event that the node vi is not k-unbalanced in the formula Ψ. Since E ⊂ ∩i∈[l]Ei,

Pr[E ] ≤ Pr





⋂

i∈[l]

Ei



 =
∏

i∈[l]

Pr



Ei

∣

∣

∣

∣

∣

∣

⋂

i′∈[i−1]

Ei′





We will bound for every i > 1 the conditional probability Pr[Ei | ∩i′∈[i−1] Ei′ ].

Fix i ∈ {2, ..., l}. Note that Xvi−1
⊂ Xvi

. Given the set Yvi−1
, we can write,

|Yvi
| = |Yvi−1

|+ χ,
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where χ has the distribution H(N,M1,M2), with N = n − |Xvi−1
|, M1 = |Xvi

| − |Xvi−1
|,

M2 = m− |Yvi−1
|.

Hence, by Proposition 4.1, |Yvi
| does not get any specific value with probability larger than

O(n−1/4), even when conditioning on (the content of) the set Yvi−1
.

Note that the event ∩i′∈[i−1]Ei′ depends only on the content of the set Yvi−1
. Therefore, |Yvi

|,
and hence also d(vi), do not get any specific value with probability larger than O(n

−1/4), even
when conditioning on the event ∩i′∈[i−1]Ei′ . Recall that vi is not k-unbalanced iff d(vi) < k.
Since d(vi) is integer, the probability for that is at most O(k · n

−1/4) = O(n−1/8), even when
conditioning on the event ∩i′∈[i−1]Ei′ . That is,

Pr



Ei

∣

∣

∣

∣

∣

∣

⋂

i′∈[i−1]

Ei′



 ≤ O(n−1/8)

We can now bound

Pr[E ] ≤
∏

i∈[l]

Pr



Ei

∣

∣

∣

∣

∣

∣

⋂

i′∈[i−1]

Ei′



 = n−Ω(logn)

2

We can now complete the proof of Lemma 3.4. By Claim 4.2, if γ is a central path from a
leaf to the root of Φ, then γ is not k-unbalanced (in Ψ) with probability of at most n−Ω(logn).
The number of paths from a leaf to the root of Φ is the same as the number of leaves in Φ,
which is smaller than nε logn (and we assumed that ε is small enough). Hence, by the union
bound, with probability of at least 1− n−Ω(logn) all central paths from a leaf to the root of Ψ
are k-unbalanced, that is, the formula Ψ is k-weak. 2

5 Multilinear-NC1 6= Multilinear-NC2

In this section, we present our construction for a multilinear polynomial f that has polynomial-
size multilinear circuits and doesn’t have polynomial-size multilinear formulas. Let us start
with some notations.

Denote, [n] = {1, ..., n}. For every i, j ∈ [n] such that i ≤ j, denote by [i, j] the interval
of [n] starting at i and ending at j, that is, [i, j] = {i, i+ 1, ..., j}. Denote by S the set of all
such intervals, including the empty interval (which is denoted by ∅). For s1, s2 ∈ S, such that
s1, s2 are disjoint and s2 is consecutive

5 to s1, denote by s1 ◦ s2 their concatenation, that is,
if s1 = [i, j], and s2 = [j + 1, j

′] then s1 ◦ s2 = [i, j
′].

Denote by T the set of (ordered) pairs of disjoint intervals in S, that is,

T = {(s1, s2) ∈ S × S : s1 ∩ s2 = ∅}.

5We think of the empty interval as consecutive to every interval, and every interval is consecutive to it.
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For t1, t2 ∈ T , such that, t1 = (s1,1, s1,2), t2 = (s2,1, s2,2), and such that s1,1, s1,2, s2,1, s2,2 are
all disjoint and s2,1 is consecutive to s1,1 and s2,2 is consecutive to s1,2, denote by t1 ◦ t2 their
pairwise concatenation, that is, t1 ◦ t2 = (s1,1 ◦ s2,1, s1,2 ◦ s2,2) ∈ T .

For every s ∈ S, denote by l(s) its length (i.e., the number of elements in it). For
t = (s1, s2) ∈ T , denote l(t) = l(s1) + l(s2). For t = (s1, s2) ∈ T , define L(t) = l(t) if both
s1, s2 are non-empty, and L(t) = 0.75 · l(t) if either s1 or s2 is empty.

For t1, t2, t3, t ∈ T , such that, t1 = (s1,1, s1,2), t2 = (s2,1, s2,2), t3 = (s3,1, s3,2), t = (s1, s2),
we say that {t1, t2} is a partition of t if {s1,1, s1,2, s2,1, s2,2} is a partition of s1 ∪ s2 as sets. We
say that the partition is proper if t = t1 ◦ t2, and l(t1), l(t2) > 0. In the same way, {t1, t2, t3}
is a partition of t if {s1,1, s1,2, s2,1, s2,2, s3,1, s3,2} is a partition of s1 ∪ s2 as sets. The partition
is proper if t = t1 ◦ t2 ◦ t3, and l(t1), l(t2), l(t3) > 0.

For a function A : [n] → {1,−1} and for s ∈ S, denote by A(s) the sum of A on the
elements in s. In the same way, for t ∈ T , denote by A(t) the sum of A on the elements in
the union of the two intervals in t. We say that A is balanced on s ∈ S if A(s) = 0, and in
the same way, A is balanced on t ∈ T if A(t) = 0. Denote by BA the set of all t ∈ T on which
A is balanced, that is,

BA = {t ∈ T : A(t) = 0}.

Obviously, the length l(t) of every t ∈ BA is even.

Lemma 5.1 Let A be a function A : [n]→ {1,−1}. Let t ∈ BA be such that l(t) > 2. Then,
there exist t1, t2, t3 ∈ BA, such that {t1, t2, t3} is a partition of t, and L(t1), L(t2), L(t3) ≤
0.75 · L(t).

For any t ∈ T , denote by P(t) the set of all {t1, t2, t3}, such that, t1, t2, t3 ∈ T , and
{t1, t2, t3} is a partition of t, and L(t1), L(t2), L(t3) ≤ 0.75 · L(t).

5.1 Proof of Lemma 5.1

Before giving the proof of Lemma 5.1, we will need to prove two other lemmas.

Lemma 5.2 Let A be a function A : [n]→ {1,−1}. Let t = (s1, s2) ∈ BA be such that l(t) > 2
and l(s1), l(s2) > 0. Then, there exist t1, t2 ∈ BA, such that {t1, t2} is a proper partition of t.

Proof:
Denote s1 = [i1, j1], s2 = [i2, j2].

Since t ∈ BA, we have A(s1) + A(s2) = 0. If A(s1) = A(s2) = 0 then we can define
t1 = (s1, ∅), t2 = (∅, s2). Otherwise, we can assume w.l.o.g. that A(s1) is negative and A(s2)
is positive.

If A(i1) 6= A(i2), we can define t1 = ([i1, i1], [i2, i2]), t2 = ([i1+1, j1], [i2+1, j2]). Otherwise,
we can assume w.l.o.g. that A(i1) = A(i2) = 1.

Since A(s1) is negative and A(i1) = 1, there must exist j
′ ∈ s1, such that A([i1, j

′]) = 0.
We can then define t1 = ([i1, j

′], ∅), t2 = ([j
′ + 1, j1], s2).
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Since we required l(t) > 2 and l(s1), l(s2) > 0, we have in all cases l(t1), l(t2) > 0, and
hence {t1, t2} is a proper partition of t. 2

Lemma 5.3 Let A be a function A : [n]→ {1,−1}. Let t = (s1, s2) ∈ BA be such that l(t) > 2
and l(s1), l(s2) > 0. Then, there exist t1, t2, t3 ∈ BA, such that {t1, t2, t3} is a partition of t,
and

1. L(t1), L(t3) ≤ 0.5 · L(t).

2. L(t2) ≤ 0.75 · L(t).

3. l(t2) ≤ max(l(s1), l(s2)).

Proof:
First note that since l(s1), l(s2) > 0, we have L(t) = l(t), and since l(t) > 2 and is even,
L(t) = l(t) ≥ 4. We will describe a procedure for finding t1, t2, t3 with the required properties.

We start with t̂1 = (∅, ∅), t̂2 = (s1, s2) and t̂3 = (∅, ∅). Note that t = t̂1 ◦ t̂2 ◦ t̂3.

Claim 5.4 Let t′1, t
′
2, t

′
3 ∈ BA be such that t = t′1 ◦ t

′
2 ◦ t

′
3. Assume that l(t

′
1), l(t

′
3) ≤ 0.5 · l(t)

and that both intervals in t′2 are non-empty, and l(t′2) > 2. Then, there exist t′′1, t
′′
2, t

′′
3 ∈ BA,

such that t = t′′1 ◦ t
′′
2 ◦ t

′′
3, and l(t

′′
1), l(t

′′
3) ≤ 0.5 · l(t), and l(t

′′
2) < l(t′2).

Proof:
By Lemma 5.2 (applied to t′2), there exist t̃1, t̃3 ∈ BA, such that {t̃1, t̃3} is a proper partition
of t′2. Since t = t′1 ◦ t

′
2 ◦ t

′
3 and since t

′
2 = t̃1 ◦ t̃3, we have t = t′1 ◦ t̃1 ◦ t̃3 ◦ t

′
3.

If l(t′1) + l(t̃1) ≤ 0.5 · l(t) then we can define t
′′
1 = t′1 ◦ t̃1, t

′′
2 = t̃3, t

′′
3 = t′3. Otherwise,

l(t̃3) + l(t′3) ≤ 0.5 · l(t), and we can define t
′′
1 = t′1, t

′′
2 = t̃1, t

′′
3 = t̃3 ◦ t

′
3.

Since {t̃1, t̃3} is a proper partition of t
′
2, in both cases l(t

′′
2) < l(t′2). 2

We now continue with the proof of Lemma 5.3. We apply Claim 5.4 on t′1 = t̂1, t
′
2 = t̂2,

t′3 = t̂3, and we substitute (i.e., redefine) t̂1
.
= t′′1, t̂2

.
= t′′2, t̂3

.
= t′′3. We keep applying Claim 5.4

and substituting in t̂1, t̂2, t̂3, until the conditions of Claim 5.4 are not satisfied by t̂1, t̂2, t̂3,
namely, either l(t̂2) ≤ 2 or one of the intervals in t̂2 is empty. (Note that the process must
stop because l(t̂2) keeps decreasing). At this point we can define t1 = t̂1, t2 = t̂2, t3 = t̂3.

Since t1, t2, t3 are the output of Claim 5.4, t1, t2, t3 ∈ BA, and {t1, t2, t3} is a partition of t,
and L(t1), L(t3) ≤ 0.5 · l(t) = 0.5 · L(t). It remains to prove that L(t2) ≤ 0.75 · L(t), and
l(t2) ≤ max(l(s1), l(s2)). Recall that there were two possibilities: either l(t2) ≤ 2 or one of
the intervals in t2 is empty.

In the first case, L(t2) ≤ l(t2) ≤ 2. Since L(t) = l(t) ≥ 4, we have in the first case,
L(t2) ≤ 0.5 · L(t), and l(t2) ≤ 0.5 · l(t) ≤ max(l(s1), l(s2)).

In the second case, L(t2) = 0.75 · l(t2) ≤ 0.75 · l(t) = 0.75 · L(t). Since the non-empty
interval of t2 is a sub-interval of either s1 or s2, we have l(t2) ≤ max(l(s1), l(s2)). 2
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Proof of Lemma 5.1:
Denote t = (s1, s2). If l(s1), l(s2) > 0, then the proof follows by Lemma 5.3. Otherwise, one of
the intervals s1, s2 is empty. W.l.o.g. assume that s1 is empty. Then, since t ∈ BA, we know
that l(s2) = l(t) is even. Partition s2 into two intervals {s

′
1, s

′
2} with l(s

′
1) = l(s′

2) = 0.5 · l(s2).
The proof now follows by applying Lemma 5.3 on t′ = (s′

1, s
′
2) as follows.

Note that L(t) = 0.75 · l(t) = 0.75 · l(t′) = 0.75 · L(t′). By Lemma 5.3 there exist
t1, t2, t3 ∈ BA, such that {t1, t2, t3} is a partition of t

′ (and hence also of t), and L(t1), L(t3) ≤
0.5 · L(t′) < 0.75 · L(t), and L(t2) ≤ l(t2) ≤ max(l(s

′
1), l(s

′
2)) = 0.5 · l(t) < 0.75 · L(t). 2

5.2 The Construction

We will now define our multilinear polynomial f (with coefficients in {0, 1}), such that over any
field, f can be computed by a polynomial-size multilinear circuit and cannot be computed by a
polynomial-size multilinear formula. f will be defined over the set of variables X = {x1, ..., xn}
(where n is even) and a set of (auxiliary) variables

X ′ =
{

x′
t,t1,t2,t3

}

t,t1,t2,t3∈T

That is, for every t, t1, t2, t3 ∈ T we have an (auxiliary) variable x
′
t,t1,t2,t3

. Note that the total
number of auxiliary variables is polynomial in n.

f will be defined in the following way. For every t ∈ T , such that l(t) is even, we will
define a multilinear polynomial ft. We then define

f = f([n],∅).

We define the polynomials ft by induction on L(t):

Case 1: L(t) = l(t) = 0. We define in this case, ft = 1.

Case 2: 0 < L(t) ≤ 2. Since l(t) is even, l(t) = 2. Hence, the union of the two intervals in t
contains two indices. Denote these indices by it, jt. We define in this case,

ft = xit · xjt + 1.

Note that for the two possible partitions of {xit , xjt} into {y1} ∪ {z1}, the partial derivatives
matrix of ft is the identity matrix of size 2× 2 and is hence of rank 2 (i.e., full rank).

Case 3: L(t) > 2. Since l(t) is even, l(t) is at least 4. We define in this case,

ft =
∑

{t1,t2,t3}∈P(t)

x′
t,t1,t2,t3

· ft1 · ft2 · ft3 .

Observe that (by the inductive definition) for any {t1, t2, t3} that give a partition of t, the
polynomials ft1 , ft2 , ft3 depend on disjoint sets of variables. Hence, since we only sum over
{t1, t2, t3} that give partitions of t, it follows by induction that the polynomial ft is multilinear.

12



5.3 Upper Bound

The inductive definition of f gives a syntactic multilinear circuit for f . Note that since we
defined an arithmetic circuit to be of fan-in (i.e., in-degree) 2 (see Subsection 1.1), we need
to replace the sum in the definition of each ft by a tree of depth O(log n) of addition gates
(of in-degree 2).

The final circuit is of size polynomial in n, since the size of T (and hence also the size
of X ′ and the size of P(t) for every t ∈ T ) is polynomial in n.

The circuit is of depth O(log2 n), since in the definition of ft we only sum over {t1, t2, t3}
with L(t1), L(t2), L(t3) ≤ 0.75 · L(t) and since L(([n], ∅)) < n. (Note that this gives a depth
of O(log n), but since we replace every sum by a tree of depth O(log n) of addition gates we
get another factor of O(log n)).

Corollary 5.5 Over any field F, the polynomial f (as defined above) can be computed by a
polynomial-size syntactic multilinear circuit of depth O(log2 n).

5.4 Lower Bound

We will now show that any multilinear formula for f , over any field F, is of size nΩ(logn). For
the proof, we use Corollary 3.8.

Denote n = 2m. Let G be a field extending F, such that the transcendental dimension of
G over F is infinite, that is, G contains an infinite number of elements that are algebraically
independent over F. Define A′ : X ′ → G to be such that the variables in X ′ are mapped to
elements that are algebraically independent over F.

Let A be any partition of the variables in X into {y1, ..., ym}∪{z1, ..., zm}. Denote by fA′,A
the polynomial f after substituting in every variable in X ′ the value assigned to it by A′ and
after replacing every variable in X by the variable assigned to it by A.

Claim 5.6 Over the field G,
Rank(MfA′,A

) = 2m.

Proof:
In this proof, the Rank function is always taken over the field G. For simplicity, we denote
in this proof by g the polynomial fA′,A, and for every t we denote by gt the polynomial ft,A′,A
(i.e., the polynomial ft after substituting in every variable in X

′ the value assigned to it by
A′ and after replacing every variable in X by the variable assigned to it by A).

Define the function Ã : [n] → {1,−1} by Ã(i) = 1 if A(xi) ∈ {y1, ..., ym} and Ã(i) = −1
if A(xi) ∈ {z1, ..., zm}. For simplicity, we denote the set BÃ also by BA. We will prove by
induction on L(t) that for every t ∈ BA,

Rank(Mgt) ≥ 2
l(t)/2.

For L(t) = l(t) = 0, we defined ft = 1. Hence, Mgt is the 1 × 1 identity matrix and its
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rank is 1. For 0 < L(t) ≤ 2, we know that l(t) = 2, and we defined ft = xit · xjt + 1. Since
t ∈ BA, the matrix Mgt is the 2× 2 identity matrix and its rank is 2.

For L(t) > 2,
ft =

∑

{t1,t2,t3}∈P(t)

x′
t,t1,t2,t3

· ft1 · ft2 · ft3 .

Hence,
gt =

∑

{t1,t2,t3}∈P(t)

A′(x′
t,t1,t2,t3

) · gt1 · gt2 · gt3 ,

and by Proposition 3.1,

Mgt =
∑

{t1,t2,t3}∈P(t)

A′(x′
t,t1,t2,t3

) ·Mgt1 ·gt2 ·gt3
.

Therefore, since every A′(x′
t,t1,t2,t3

) is algebraically independent (over F) of all the other ele-
ments in the domain of A′ and all the coefficients that appear in any of the matrices in the
sum6,

Rank(Mgt) ≥ max
{t1,t2,t3}∈P(t)

Rank(Mgt1 ·gt2 ·gt3
).

By Lemma 5.1, there exist t̂1, t̂2, t̂3 ∈ BA, such that {t̂1, t̂2, t̂3} ∈ P(t). Thus, by Proposition 3.1
and by the inductive hypothesis for t̂1, t̂2, t̂3,

Rank(Mgt) ≥ Rank(Mgt̂1
·gt̂2

·gt̂3
) = Rank(Mgt̂1

) ·Rank(Mgt̂2
) ·Rank(Mgt̂3

)

≥ 2l(t̂1)/2 · 2l(t̂2)/2 · 2l(t̂3)/2 = 2l(t)/2.

Since this is true for every t ∈ BA, we can apply it for t = ([n], ∅) ∈ BA and get

Rank(Mg) ≥ 2
m.

Since Mg is a matrix of size 2
m × 2m, we actually have an equality in the last formula. 2

Corollary 5.7 Over any field F, any multilinear formula for the polynomial f (as defined
above) is of size nΩ(logn).

Proof:
Follows immediately from Corollary 3.8 and Claim 5.6. 2
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