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Abstract

Error-correcting codes and related combinatorial constructs play an important role in several
recent (and old) results in computational complexity theory. In this paper we survey results on
locally-testable and locally-decodable error-correcting codes, and their applications to complex-
ity theory and to cryptography.

Locally decodable codes are error-correcting codes with sub-linear time error-correcting al-
gorithms. They are related to private information retrieval (a type of cryptographic proto-
col), and they are used in average-case complexity and to construct “hard-core predicates” for
one-way permutations. Locally testable codes are error-correcting codes with sub-linear time
error-detection algorithms, and they are the combinatorial core of probabilistically checkable
proofs.
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1 Introduction

Many recent (and not-so-recent) results in complexity theory rely on error-correcting codes. The use
of coding-theoretic concepts, constructions and algorithms has been a major theme of complexity
theoretic results in the past few years, and so has been the re-interpretation of older results in a
coding-theoretic language.

An error-correcting code is a mapping C : {0, 1}k → {0, 1}n (or, more generally, C : Σk → Γn

where Σ and Γ are finite sets) with the property that if we are given a string y that is “close” to a
valid encoding C(x),1 then it is possible to find out the message x from the “corrupted encoding”
y. Towards this goal, it is necessary and sufficient that for any two different messages x, x ′, their
encodings C(x) and C(x′) differ in a lot of coordinates. Error-correcting codes are motivated by
the task of reliably sending information over a noisy channel. In such an application, the sender has
a message x, he computes and sends C(x) over the channel, because of noise the receiver receives a
string y that differs from C(x) in a few coordinates (the ones where transmissions errors occurred),
but if the number of errors is bounded then the receiver can still reconstruct x from y.

1.1 Early Uses of Error-Correcting Codes in Cryptography and Complexity

A natural application of error-correcting codes in computational complexity is to the setting of fault-
tolerant computation. In one natural model of fault-tolerant computation, we want to compute a
boolean function using a circuit, and each gate of the circuit has a small probability ε of failing
(and producing a wrong output). We would like to construct a “fault-tolerant” circuit that, even
in the presence of these errors, will have a reasonably high probability of computing the function
correctly. (In this model one typically assumes that the failures of different gates are mutually
independent events.) This problem was introduced by von Neumann [vN56], who suggested that
error-correcting codes could be applied to it. Low-density parity-check codes were applied to
compute linear functions [Eli58, Tay68] in variants of this model and general functions [Pap85] in
the general model.

Another early application of error-correcting codes to cryptography was Shamir’s secret sharing
scheme [Sha79], which can be seen as an application of Reed-Solomon codes.2 A different use of
coding theory for secret sharing is in [BOGW88] and in subsequent work on the “information-
theoretic” model of security for multi-party computations.

Finally, we mention that McEliece’s cryptosystem [McE78] is based on the conjectured in-
tractability of certain coding-theoretic problems. The study of the complexity of coding-theoretic
problems is clearly an important source of interaction between coding theory and complexity the-
ory, but in this paper we will restrict ourselves to the use of algorithmic coding-theoretic results in
complexity theory.

1.2 Error-Correcting Codes and Average-Case Complexity

A paper by Levin [Lev87] contains one of the earliest uses of coding theory in order to prove an
average-case complexity result. The goal of the paper is to construct pseudorandom generators
from certain one-way functions and a preliminary step is to construct “hard-core predicates” for
such functions.3 Without getting too technical, we can abstract the use of error-correcting codes
in [Lev87] as follows: (i) there is a computational problem P that is presumably hard to solve on a

1meaning that y and C(x) differ in a small number of coordinates.
2This connection was first noticed by McEliece and Sarwate[MS81].
3We extensively discuss hard-core predicates for one-way permutations in Section 4.

4



certain set of inputs; (ii) we think of the right answers for P on those inputs as our “message” and
we encode it with an error-correcting code; (iii) we define a new computational problem P ′, which
is to compute entries of the above encoding. The important idea is now to observe that if we have
a good-on-average algorithm for P ′, that is, an algorithm that solves P ′ on all but a small fraction
of inputs, we can think of the set of outputs of this algorithm as being a “corrupted” version of
our encoding of P ; using a decoding algorithm for our code we can now solve P correctly on all
inputs, which contradicts our intractability assumption for P . In conclusion, from a problem P
that was assumed to be worst-case hard and from an error-correcting code we have constructed a
new problem P ′ that is average-case hard.

The above outline skips an important point: presumably the complete description of P (and
P ′) is an object of exponential size, while we would like our worst-case to average-case reduction
to run in polynomial time, so that we want to use an error-correcting code for which decoding can
be performed in poly-logarithmic time.

Roughly speaking, in Levin’s paper and in other similar cryptographic applications one applies
an encoding “locally,” to small pieces of the computational problem, so that it is not necessary to
have a poly-logarithmic time decoder. As a consequence, the reduction relates a stronger form of
average-case complexity to a weaker form (which is enough for these cryptographic applications)
instead of relating average-case complexity to worst-case complexity (which is important in other
complexity-theoretic applications).

Sections 3 and 4 are devoted to error-correcting codes having decoding algorithms running in
poly-logarithmic (or even constant) time, and their applications to complexity theory and cryptog-
raphy. Some of the applications follow the same line of reasoning sketched above.

1.3 Program Testing, Hard-Core Bits, and Sub-linear Time Error-Correction

Work done in the late 1980s and early 1990s on “hiding instances from oracles” [BF90], on the
self-reducibility of the permanent [Lip90], and of PSPACE-complete and EXP-complete problems
[FF93], as well as work more explicitly focused on average-case complexity [BFNW93] is now seen as
based on sub-linear time decoding algorithms for certain polynomial-based error-correcting codes,
although this is a view that has become common only since the late 1990s.

Such results were typically discussed in terms of self-correction, a notion introduced by Blum,
Kannan, Lipton and Rubinfeld [BK89, Lip90, BLR93] in the setting of program testing.

Around the same time, Goldreich and Levin [GL89] introduced an efficient and general way
of constructing hard-core predicates for one-way functions (the cryptographic problem mentioned
above and extensively discussed in Section 4). The Goldreich-Levin construction is now seen as a
sub-linear time list-decoding algorithm for an error-correcting code, a perspective first suggested by
Impagliazzo and Sudan in unpublished papers in the early 1990s. The coding-theoretic perspective
is useful because it suggests that different, and possibly even more efficient, hard-core predicates can
be constructed using different codes and different decoding algorithms.4 Improvements to [GL89]
via the solution of other decoding problems are reported in [GRS00], with an explicit discussion of
sub-linear time decoding. Recent work by Akavia, Goldwasser and Safra [AGS03] gives a coding-
theoretic interpretation (along with generalizations and improvements) for other hard-core predicate
constructions that previously seemed to require ad-hoc algebraic analyzes and to be independent
of coding theory.

A paper by Babai et al. [BFLS91] is probably the first one to explicitly discuss sub-linear time
decoding algorithms for error-correcting codes, and their possible relevance in the classical setting

4Such improvements were the focus of the manuscripts by Impagliazzo and Sudan.
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of coding theory, that is, error-resistant storage and transmission of information.5 The relevance of
sub-linear time decoding to average-case complexity, and the generality of the approach of using a
code to encode the description of a computational problem, are pointed out explicitly in [STV01].
Katz and this author [KT00] give the first negative results for codes with sub-linear time decoding
algorithms and note that, besides their relation to hard-core predicates and average-case complexity,
they are also related to private information retrieval [CGKS98], a type of cryptographic protocol
discussed in Section 3.2.

1.4 Program Testing and Locally Testable Codes

Apart from Levin’s work [Lev87], which motivated [GL89], most of the line of work described in the
previous section can be traced to the work on program testing by Blum and Kannan [BK89] and
Lipton [Lip90]. Suppose that we are interested in computing a function f , and that we are given
an algorithm A that may or may not be correct: is it possible to test the correctness of A “on the
fly” while we run it? The approach proposed in [BK89, Lip90] was roughly as follows: to construct
a self-testing procedure for f that, given an algorithm A, would accept with high probability if A
solves f correctly on all inputs, and it would reject with high probability if A is incorrect on many
inputs. (Note that the self-testing procedure may accept with high probability an algorithm that
makes few mistakes.) An algorithm rejected by the self-tester would be discarded as buggy. If an
algorithm A is accepted by the self-tester, then we would use A in connection with a self-corrector
for f . A self-corrector for f is a procedure that, given an algorithm A that solves f on many inputs,
and given an arbitrary input x, computes f(x) with high probability.

Sudan’s PhD Thesis [Sud92] is an early work that makes an explicit connection between self-
testing and error-detection6 and between self-correcting and error-correction.

We note that self-correction, besides being related to error-correction, also relates to average-
case complexity (a worst-case intractable problem that is self-correctable is also necessarily average-
case intractable). Lipton [Lip90] presents a self-corrector that works for any function that can be
expressed as a low-degree polynomial, and, in particular, is a self-corrector for the permanent. En-
coding PSPACE-complete and EXP-complete problems using a polynomial-based encoding (which
is called the Reed-Muller code, as we will see in a later section), Feigenbaum and Fortnow [FF93]
give self-correctors for certain PSPACE-complete and EXP-complete problems, and Babai et al.
[BFNW93] use these results to prove average-case complexity results for certain EXP-complete
problems. Since the self-correction perspective is very natural, it took some time to see the con-
structions of [FF93, BFNW93] as being about error-correcting codes with sub-linear time decoding.

Just as self-correcting is strongly related to sub-linear time decoding of error-correcting codes,
so is self-testing related to sub-linear time error-detection. The self-testing algorithms by Blum,
Luby and Rubinfeld [BLR93] for linear functions and by Gemmell et al. [GLR+91, RS96] for
polynomial functions can indeed be seen as sub-linear time error-detection algorithms for certain
error-correcting codes. Such testing algorithms played a fundamental role in the construction of
probabilistically checkable proofs (PCP) [FGL+91, AS98, ALM+98], which in turn revolutionized
the study of approximation algorithms.7

5As we discuss below, known and conjectured negative results make such applications unlikely.
6The error-detection problem for an error correcting code is to distinguish a valid encoding C(x) from a string y

that is not a valid encoding of any message.
7This is a story that is both too long and too exciting to be effectively summarized here. We try to give such a

summary in Section 5.5. The reader should also refer to one of the many excellent survey papers on the subject, such
as, for example, [Aro98].
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Locally testable codes, that is, codes with sub-linear time error-detection algorithms, were soon
recognized to be the combinatorial core of PCP constructions, and the question of providing simpler
and more efficient constructions of such codes was posed as an open question in various writings
from the mid 1990s, such as [Aro94, Spi95, FS95, RS96]. Great progress has been made towards
such constructions in the past two years, with the latest results [BSGH+04, DR04] providing a
more clarifying perspective on the relationship between these codes and PCP constructions.

1.5 Further Reading

Regarding coding theory in general, van Lint’s book [vL99] is an excellent reference. Madhu Sudan’s
notes [Sud, Sud01] are excellent introductions to algorithmic coding theory, and they are the main
source that we used for our brief presentation of results in algorithmic coding theory in Section 2.

A survey on applications of coding theory to complexity theory was written by Joan Feigenbaum
[Fei95] about ten years ago. Many themes treated in [Fei95] are still current. Venkat Guruswami’s
thesis [Gur01] has a chapter on applications of coding theory to complexity and cryptography.
A survey paper by Madhu Sudan [Sud00] focuses on applications of list-decoding algorithms to
complexity theory, including the applications to average-case complexity and hard-core predicates
that we discuss in this paper.

1.6 Organization of this Paper

We start the paper with some review material on error-correcting codes and algorithmic coding
theory. This material has wider applications than the ones that we chose to focus on in this paper.

We then consider sub-linear time error-correction algorithms, their relation to private informa-
tion retrieval, and their applications in average-case complexity and cryptography.

Finally we discuss sub-linear time error-detection algorithms and their relation to PCP con-
structions.

2 Error-Correcting Codes

2.1 Shannon’s Setting

A party called the sender has a message x ∈ Σk that he wants to send to another party called the
receiver. Here Σ is a finite alphabet (often Σ = {0, 1}) and k is the message length.

The sender and the receiver communicate through a noisy channel that introduces errors. To
eliminate errors (or, at least, to dramatically reduce the probability of errors) the sender first
encodes his message using an encoding function C : Σk → Σn with n > k that introduces some
redundancy, and then sends C(x) through the channel. The receiver receives a string y that is
possibly different from C(x) because of transmission errors. The receives then feeds y to a decoding
algorithm D that, under some assumption about the error pattern introduced by the channel, is
able to compute x.

We would like to design efficient procedures C and D such that the above holds under general
assumptions about the channel and with n not much larger than k. This setting was introduced
by Shannon [Sha48] in his monumental work that defined information theory.
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2.2 Error-Correcting Codes

The Hamming Distance dH(a, b) between two strings a, b ∈ Σn is the number of entries i such that
ai 6= bi.

An [n, k, d]q code is a function C : Σn → Σk such that

• |Σ| = q;

• For every x 6= x′ ∈ Σk, dH(C(x), C(x′)) ≥ d.

The parameter k is called the information length of the code and n is called the block length.
Abusing terminology a little, we call d the minimum distance of the code.8

If an [n, k, d]q code admits a decoding procedure that is always able to correct e errors, then
it must be that d ≥ 2e + 1. Conversely, if d ≥ 2e + 1 then there is a (possibly not efficiently
computable) decoding procedure that is able to correct up to e errors.

Error-correcting codes, introduced by Hamming [Ham50], solve the coding problem in models
where there is an upper bound to the number of errors introduced by the channel. Error-correcting
codes can also be used in settings where we have a probabilistic model for the channel, provided that
we can show that with high probability the number of errors introduced by the channel is smaller
than the number of errors that the decoding procedure can correct. In the rest of this paper we
only discuss error-correcting codes, but the reader can see that any algorithmic result about error-
correcting codes implies an algorithmic solution to Shannon’s problem for various distributions of
errors.

For a given k, we are interested in constructing [n, k, d]q codes where n is small (ideally, n =
O(k)), d is large (ideally, we would like d = Ω(n)) and q is small (ideally, Σ = {0, 1} and q = 2).
Sometime we will call the ratio k/n the information rate (or just rate) of the code, which is the
“amortized” number of alphabet elements of the message carried by each alphabet element sent
over the channel. We will also call the ratio d/n the relative minimum distance of the code.

2.3 Negative Results

Before seeing constructions of error-correcting codes, let us start by seeing what kind of trade-offs
are impossible between k, d and n.

Suppose C is a [n, k, d]q code, and associate to each message x the set of strings Sx defined as
the set of all strings y that agree with C(x) on the first n− d + 1 coordinates. We claim that these
sets are all disjoint. Otherwise, if we had y ∈ Sx ∩Sx′ we would have that y and C(x) agree in the
first n− d + 1 coordinates, and so would y and C(x′), but then C(x) and C(x′) would also have to
agree on the firt n−d+1 coordinates and this would contradict the minimum distance requirement
of the code. Now, we have qk disjoint sets each of size qn−d+1 contained in a space of size qn, and
so we have proved the following result.

Lemma 1 (Singleton Bound) In a [n, k, d]q code, k ≤ n − d + 1.

As we will see later, this negative result can be matched if the size q of the alphabet is large
enough compared to n. For smaller alphabets, however, stronger bounds are known.

Lemma 2 (Plotkin’s Bound) In a [n, k, d]q code, k ≤ n − (q/(q − 1))d + logqn.

For example, if q = 2, then the relative minimum distance d/n cannot be larger than 1/2, and
for constant q it cannot be larger than 1− 1/q. For proofs of these results, see for example [vL99].

8More precisely, the minimum distance of a code C is minx6=x′{dH(C(x), C(x′)}, so that if C is an [n, k, d]q code,
then d is a lower bound to the minimum distance.
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2.4 Constructions of Error-Correcting Codes and Decoding Algorithms

In this section we will consider various constructions of error-correcting codes. All these construc-
tions will have the property of being linear, that is the alphabet Σ will be a field F, and the encoding
function C : F

k → F
n will be a linear function.

If C is a linear code, then there is a matrix A such that the encoding function can be specified
as C(x) = A · x. Also, there is a matrix H such that y is a codeword (that is, a possible output of
C) if and only if H · y = 0, where 0 is the all-zero vector. This means that for every linear code C
there is always an encoding circuit of size at most quadratic (that simply computes A · x given x)
and a circuit of size at most quadratic that solves the error-detection problem, that is, the problem
of deciding whether a given string is a codeword or not.

Let the weight of a vector y ∈ F
n be defined as the number of non-zero entries. (Equivalently,

the weight of a vector is its Hamming distance from the all-zero vector.) Then it is easy to see that
the minimum distance of a linear code is equal to the minimal weight of a non-zero codeword.9

This observation often simplifies the study of the minimum distance of linear codes.

2.4.1 Random Error-Correcting Codes

As a first example of linear error-correcting code, we see what happens if we pick at random a linear
code over the field {0, 1}. In order to show that, with high probability, the code has large minimum
distance, we show that, with high probability, all non-zero inputs are mapped into codewords with
a large number of ones. This is easy to show because, for a random matrix A and a fixed non-zero
vector x, the encoding A · x is uniformly distributed, and so it has a very low probability of having
low weight. The argument is completed by using a union bound. The formal statement of the result
and a sketch of the proof is below. This existence result is called the Gilbert-Varshamov bound
because it was first proved by Gilbert [Gil52] for general random codes, and then Varshamov [Var57]
observed that the same bond could be obtained by restricting oneself to random linear codes.

Lemma 3 (Varshamov) For every δ < 1/2 and every n there is a [n,Rn, δn]2 linear code such
that

R ≥ 1 − H2(δ)) − Θ((log n)/n)

Where H2(x) = x log2(1/x) + (1 − x) log2(1/(1 − x)) is the binary entropy function.

Proof: We pick a linear function C : {0, 1}k → {0, 1}n at random by picking at random a k × n
0/1 matrix A and defining C(x) = Ax.

We use the probabilistic method to show that there is a positive probability that every non-zero
message is encoded into a string with at least δn ones.

For a particular x 6= 0k, we note that C(x) is uniformly distributed in {0, 1}n, and so

Pr[w(C(x)) < d] = 2−n ·
d−1∑

i=0

(
n

i

)

≤ 2−n · 2nH2(d/n)+O(log n)

Where we used the fact that there are 2n·H(k/n)+Θ(log n) binary strings of length n having weight k.
A union bound shows that

Pr[∃x 6= 0k : w(C(x)) < d] < 2k · 2−n · 2nH2(d/n)+O(log n)

9To be precise, one also needs to assume that the encoding function C is injective. Alternatively, one can see that
the minimum distance is equal to the minimum weight of the encoding of a non-zero input.
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which is smaller than 1 under the assumption of the lemma. �

It is worth noting that the observation about minimum distance versus minimum weight plays
a role in the proof. A proof that didn’t use such a property would have considered the event that
two possible inputs x, x′ are mapped into encodings of distance smaller than d, and then we would
have taken a union bound over all such pairs. This would have led to a bound worse by a factor of
two than the bound we achieved above.

As an interesting special case, we have that for every ε > 0 there is a constant rate R =
O(ε2) such that for every n there is a [n,Rn, (1/2 − ε) · n]2 linear code. That is, there are linear
codes with constant rate and with relative minimum distance arbitrarily close to 1/2. (Recall
that Plotkin’s bounds does not permit codes with relative minimum distance strictly larger than
1/2.) More generally, if q is a prime power and ε > 0 then there is a constant rate R for which
[n,Rn, (1 − 1/q − ε) · n]q linear codes exist for all sufficiently large n.

There is no known algorithm to decode random linear codes in polynomial time on average. It
is, however, possible to solve the decoding problem for any linear code in exponential time by using
brute force.

2.4.2 Reed-Solomon Codes

The next code we consider is based on the following well-known fact about (univariate) polynomials:
a polynomial of degree t is either identically zero or it has ≤ t roots.

Encoding and Minimum Distance. In a Reed-Solomon code [RS60] we think of every message
as representing a low-degree polynomial, and the encoding of the message is the n values that we
get by evaluating the polynomial at n fixed points. A more formal description follows.

Let q be a prime power and Fq be a finite field of size q. Let us fix n distinct elements of Fq,
x1, . . . , xn, and let k < n. We define a [n, k, n − k + 1]q linear code as follows.

Given a message (c0, . . . , ck−1), we interpret it as a description of the polynomial p(x) = c0 +
c1x + . . . + ck−1x

k−1. The encoding of such a message will be the vector (p(x1), . . . , p(xn)).
Such a procedure maps indeed a message of length k into an encoding of length n, and it is

a linear mapping. To verify the claim about the minimum distance, if (c0, . . . , ck−1) is not the
all-zero vector, then the corresponding polynomial p is a non-zero polynomial of degree k−1. Such
a polynomial can have at most k − 1 roots, and so at lest n− (k − 1) of the values p(x1), . . . , p(xn)
must be non-zero. The reader should notice that Reed-Solomon codes meet the Singleton bound,
and thus have an optimal trade-off between rate and minimum distance.

Decoding Algorithms. Decoding the Reed-Solomon code in a channel that introduces e <
(n − k + 1)/2 errors is equivalent to the following problem:

• Given: distinct elements x1, . . . , xn of Fq, parameters e and k, with e < (n − k + 1)/2, and
elements y1, . . . , yn of Fq;

• Find: a polynomial p of degree at most k − 1 such that

#i : p(xi) 6= yi ≤ e

Note that, because of the constraint on e and k, the problem has always a unique solution p. A
polynomial time algorithm for the decoding problem has been known since the early 1960s, following
Peterson’s polynomial time algorithm to decode BCH codes [Pet60] and the reduction of Gorenstein
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and Zierler [GZ61], who showed that decoding Reed-Solomon codes can be seen as a special case
of the problem of decoding BCH codes.10 A simple and efficient polynomial time algorithm for
the decoding problem for Reed-Solomon codes was devised by Berlekamp and Welch [WB86]. We
describe the Berlekamp-Welch algorithm in the Appendix.

2.4.3 Reed-Muller Codes

Reed-Muller codes [Ree54] generalize Reed-Solomon codes by considering multivariate polynomials
instead of univariate polynomials. That is, we think of each message as specifying a low-degree
multivariate polynomial, and the encoding of the message is the evaluation of the polynomial at a
certain set of points. If the evaluation points are suitably chosen, we still have the property that
a non-zero low-degree polynomial has few roots among these points, and so we can still infer that
the resulting encoding is an error-correcting code with good minimum distance.

Let q be a prime power and F be a field of size q. To define a Reed-Muller code we choose
a subset S ⊆ F, a degree t < |S| and a parameter m. We will think of an input message as the
description of an m-variate degree-t polynomial. The message is encoded by specifying the value
of the polynomial at all the points in Sm.

We can see that there are up to
(m+t

m

)
possible monomials in an m-variate polynomial of degree

at most t. An input message is, therefore, a sequence of k =
(m+t

m

)
coefficients. The encoding is

the evaluation of the polynomial at n = |S|m different points. Note that if m = 1 we are back to
the case of Reed-Solomon codes. Regarding minimum distance, we have the following result, that
is called the Schwartz-Zippel Lemma (after [Sch80] and [Zip79]) in the computer science literature.

Lemma 4 If p is a non-zero degree-t polynomial over a field F and S ⊆ F, then

Pr
x∼Sm

[p(x) = 0] ≤ t

|S|

To compare Reed-Solomon codes and Reed-Muller codes it can be helpful to look at a concrete
example. Suppose we want to map k field elements into n field elements and we want the minimum
distance to be at least n/2.

In the Reed-Solomon code we would choose n to be 2k, and so the minimum distance will be
k + 1 > n/2. The field size has to be at least 2k.

In the Reed-Muller code, we also have to choose the parameter m. Suppose we choose m = 2.
Then we want to choose t and S such that t = |S|/2, k =

(t+2
2

)
, so that k ≈ t2/2 and |S| = 2t. The

encoding length is |S|2 = 4t2 ≈ 8k. The field size has to be at least 2t ≈ 2
√

2k.
We see that the rate has become worse, that is, the encoding length is bigger, but the field size

can be smaller, that is, a smaller alphabet is sufficient.
For larger values of m, we would get an encoding length n = 2O(m)k and a requirement that

the field be of size at least 2O(m) · k1/O(m).
What is the extreme case of very small alphabet and very large encoding length? We can

choose t = 1, so that we only need |S| = 2, but then we have m = k − 1, and, catastrophically,
n = 2k−1. In this code, we see the input message (c0, c1, . . . , ck−1) as representing the affine function
(x1, . . . , xk−1) → c0 + c1x1 + · · · + ck−1xk−1. The encoding is the evaluation of such a function at
all points in {0, 1}k−1.

We may in fact consider an even more wasteful code in which we interpret the message as a
linear, instead of affine, function. That is, we think of a message (c1, . . . , ck) as representing the

10BCH codes are a class of algebraic error-correcting codes that we will not discuss further in this paper.
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function (x1, . . . , xk) → c1x1+· · ·+ckxk, and the encoding is the evaluation of such a function at all
points in {0, 1}k . Such a [k, 2k, 2k−1]2 encoding is typically called (with some abuse of terminology)
the Hadamard code.

2.4.4 Concatenated Codes

Reed-Solomon and Reed-Muller codes have very good trade-offs between rate and minimum distance
and, indeed, the Reed-Solomon codes exhibit an optimal trade-off. The drawback of Reed-Solomon
and Reed-Muller codes is the need for large alphabets: in the Reed-Solomon code the alphabet
size must be at least as large as the encoding length; in the Reed-Muller codes smaller alphabets
are possible, but the trade-off between rate and minimum distance worsens when one uses smaller
alphabets.

Concatenation is a method that can be used to reduce the alphabet size without compromising
too much the information rate and the minimum distance.

Suppose that we have a [N,K,D]Q code Co : ΓK → ΓN and a [n, k, d]q code Ci : Σk → Σn.
Suppose also that Q = qk, and let us fix some way to identify elements of Γ with strings in Σk. We
call Co the outer code and Ci the inner code.

Let X ∈ Γk be a message and let Co(X) be its encoding. We can think of each coordinate
of Co(X) as containing a message from Σk, and we can apply the encoding Ci() to each such
message. The end result will be a string in ΣNn. If we start from two different messages X,X ′,
their encodings Ci(X) and Ci(X

′) will differ in at least D coordinates, and each such coordinate
will lead at least d coordinates of its second-level encoding to be different. In summary, we have
described a way to encode a message from ΓK as a string in ΣnN so that any two different encodings
differ in at least dD coordinates. If we observe that we can identify ΓK wih ΣkK , we conclude that
what we just described is a [nN, kK, dD]q code.

Lemma 5 (Concatenation) Suppose we have an explicit construction of a [N,K,D, ]Q code and
of a [n, k, d]q, with Q = qk, then we also have an explicit construction of a [nN, kK, dD]q code.

This idea is due to Forney [For66].
By concatenating a Reed-Solomon code of rate 1/2 and relative minimum distance 1/2 with

another Reed-Solomon code with the same rate and relative minimum distance, we can get, say, a
[n, n/4, n/4]O(log n) code.

If we concatenate such a code with a linear code promised by the Gilbert-Varshamov bound,
we get a [n,Ω(n),Ω(n)]2 code, and the inner code is over a small enough space that it can be found
efficiently by brute force. This idea is due to Justesen [Jus72].

What about decoding? It is easy to see that if we concatenate a [N,K,D, ]Q code and a [n, k, d]q
code, and if the outer code (respectively, the inner code) has a decoder algorithm that can correct
E errors (respectively, e errors), then it is easy to design a decoding algorithm for the concatenated
code that corrects up to eE errors.

Unfortunately this is far from optimal: since e < d/2 and E < D/2, we are able to correct
< dD/4 errors, while we might hope to correct up to dD/2 − 1 errors.

There is a more sophisticated general decoding algorithm for concatenated codes, due to Forney
[For66], which is beyond the scope of this short overview. Forney’s algorithm can indeed decode
up to dD/2 − 1 errors.
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2.4.5 Error Rate for Which Unique Decoding is Possible

Using concatenation, the codes described so far, algorithms for these codes, and Forney’s decoding
algorithm for concatenated codes, it is possible to show that for every ε > 0 there is a rate R
and, for every large enough n, a [n,Rn, (1/2 − ε) · n]2 code that can be encoded and decoded in
polynomial time; the decoding algorithm is able to correct up to (1/4 − ε/2) · n errors.

This is the largest fraction of errors for which the decoding problem can be solved. Recall that
the decoding problem is well defined only if the number of errors is less than half the minimum
distance, and that for a binary code with good rate the minimum distance cannot be more than
n/2, so that it is not possible to correct more than n/4 errors in a binary code.

If we use an alphabet of size q, results described in this section lead to the result that for
every ε > 0 there is a rate R and, for every large enough n, a [n,Rn, (1 − 1/q − ε) · n]q code that
can be encoded and decoded in polynomial time; the decoding algorithm is able to correct up to
(1/2− 1/2q − ε/2) ·n errors. This is, again, essentially the best possible fraction of errors for which
unique decoding is possible.

2.5 List Decoding

The notion of list decoding, first studied by Elias [Eli57], allows us to break the barrier of n/4 errors
for binary codes and n/2 errors for general codes.

If C : Σk → Σn is a code, a list-decoding algorithm for radius r is an algorithm that given a
string y ∈ Σn finds all the possible messages x ∈ Σk such that the Hamming distance between C(x)
and y is at most r. If r is less than half the minimum distance of the code, then the algorithm
will return either an empty list or the unique decoding of y. For very large values of r, the list of
possible decodings could be exponentially big in k. The interesting combinatorial question, here,
is to find codes such that, even for very large values of r, the list is guaranteed to be small.11

Algorithmically, we are interested in producing such lists in polynomial time.
As we will see, there are binary codes for which efficient list-decoding is possible (with lists

of constant size) even if the number of errors is of the form (1/2 − ε) · n. For codes over larger
alphabets, even (1 − ε) · n errors can be tolerated.

2.5.1 The Hadamard Code

The simplest case to analyze is the Hadamard code.

Lemma 6 Let f : {0, 1}k → {0, 1} be a function and 0 < ε < 1/2. Then there are at most 1/4ε2

linear functions l such that f() and l() agree in at least a 1/2 + ε fraction of inputs.

This means that good list-decoding is possible, at least combinatorially. From the algorithmic
point of view, we can consider the fact that the input for a decoding algorithm is a string of length
n = 2k, and there are only 2k possible decodings. Therefore, a brute-force decoding algorithm runs
in polynomial time.

In Section 4 we will see a probabilistic algorithm that runs in time polynomial in k and 1/ε.

11We will often work in settings where the size of the list is upper bounded by a constant. A size polynomial in k

is also acceptable.

13



2.5.2 Reed-Solomon Codes

The list-decoding problem for Reed-Solomon codes can be stated as follows: given n distinct points
(x1, y1), (x2, y2), . . . , (xn, yn) in F

2
q and parameters k, t, find a list of all polynomials p such that:

1. p has degree ≤ k − 1; and

2. # i : p(xi) = yi ≥ t.

With no further constraints on n, k and t, it is not clear that the list of such polynomials is
small (that is, poly(n, k, t)). In particular, if t = k, there are at least qk such distinct polynomials
(pick any of the k points and interpolate). Therefore, we will definitely require that t > k if we
would like to efficiently list-decode.

The first polynomial time algorithm for this problem, for t >
√

2nk is due to Sudan [Sud97].
The error bound was then improved to t >

√
nk in [GS99], which is essentially best possible,

because for smaller values of t the size of the list may be superpolynomial, and so the problem
becomes intractable even from a combinatorial perspective.

We give a proof of the following theorem in the Appendix.

Theorem 7 ([Sud97]) Given a list of n points (x1, y1), . . . , (xn, yn) in F
2
q, we can efficiently find

a list of all polynomials p(x) of degree at most k − 1 that pass through at least t of these n points,
as long as t > 2

√
nk. Furthermore, the list has size at most

√

n/k.

2.5.3 Concatenated Codes

Suppose we have an outer code Co which is an [N,K,D]Q code and an inner code Ci which is
an [n, k, d]q code with qk = Q, and that we define the concatenated code C which is then an
[nN, kK, dD]q code. Suppose we have a good list-decoding algorithm for both the outer code and
the inner code: can we derive a list-decoding algorithm for the concatenated code?

Here is a very simple idea: apply the inner list-decoding algorithm to each block, and so come
up with a sequence of N lists. Pick a random element from each list, and construct, in this way a
string of length N , then apply the outer list-decoding algorithm to this list.

Suppose that the inner decoding algorithm was able to decode from (1− ε)n errors and produce
a list of size l.

Suppose also that, overall, we are given a string that agrees with a valid codeword C(x) of C
in at least 2εnN entries. Then there are at least εN blocks in which there are at most (1 − ε)n
errors, and in which the inner decoding algorithm has a decoding consistent with C(x) in the list.
On average, when we pick randomly from the lists, we create a string that has agreement at least
εN/l with the outer encoding of x. If the outer list-decoding algorithm is able to tolerate (1−ε/l)N
errors, then we will find x in the list generated by the outer list-decoding algorithm.

This argument can be derandomized by observing that we do not need to choose independently
from each list. We deduce that

Theorem 8 If Co is a [N,K,D]Q code with a (L, (1 − ε/l)N) list decoding algorithm, and Ci is a
[n, k, d]q code with a (l, (1 − ε)n) list decoding algorithm, and qk = Q, then the concatenated code
C is a [nN, kK, dD]q code and it has a (L, (1 − 2ε)nN) list decoding algorithm.

Basically, if both the outer and the inner code can be list-decoded from an arbitrarily large
fraction of errors, then so is their concatenation.
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Similarly, one can argue that if the outer code can be list-decoded from an arbitrarily large
fraction of errors, and the inner code can be list-decoded from a fraction of errors arbitrarily close
to 1/2, then their concatenation can be list-decoded from a fraction of errors arbitrarily close to
1/2.

More sophisticated algorithms for list-decoding concatenated codes are in [GS00b].

2.5.4 Error Rate for Which List-Decoding is Possible

Using the results that we mentioned above we can prove that for every ε and for every k there is
a polynomial time encodable code C : {0, 1}k → {0, 1}n that is (L, (1/2 − ε) · n) list decodable in
polynomial time, where n = poly(k, 1/ε) and L = poly(1/ε). Thus, a meaningful (and useful) form
of error-correction is possible with a binary code even if the number of errors is close to n/2.

By the way, considerably better results are possible, and, in particular, it is possible to have
n = O(k · poly(1/ε)), so that the rate is constant for fixed ε. It is also possible to implement the
list-decoder in nearly-linear or even linear time. (For some recent results in these directions, see
e.g. [GS00b, GI01, GI02, GI03] and the references therein.)

For larger alphabets, it is similarly possible to have list-decodable codes that tolerate a fraction
of errors close to (1 − 1/q) · n.

3 Sublinear Time Unique Decoding

In this section we discuss error-correction algorithms that run in sub-linear time, and their relations
to private information retrieval (a type of cryptographic protocol) and to average-case complexity,
as well as to the notions of self-correction, instance-hiding and random-self-reduction.

3.1 Locally Decodable Codes

Let C : Σk → Σn be an error correcting code. The results and the algorithms described so far deal
with the following setting: for some message x ∈ Σk, the codeword C(x) ∈ Σn has been “sent,”
however a corrupted string y ∈ Σn has been “received,” which differs from C(x) in a bounded
number of entries; our goal is to reconstruct x, possibly in time polynomial or even linear in n. In
this section we deal with algorithms whose running time is sublinear in n and k, or even a constant
independent of n. An algorithm with a such a fast running time cannot possibly reconstruct the
entire message, since it does even have to time to write it down. Instead, we will look for algorithms
that given an index i and a corrupted version of C(x) will be able to compute just the entry xi.
Such codes are called locally decodable error-correcting codes.

Such codes could be useful in the setting of information storage: a very large amount of in-
formation (for example several songs) could be encoded as a single codeword and then stored in
a medium that is subject to become partially corrupted over time (for example a CD, which is
subject to scratches). When a particular piece of information (for example, a song) is needed,
then the decoding algorithm will not decode the entire content of the medium, but only the part
that is needed. Hopefully, then, the decoding time will be proportional only to the length of the
desired fragment of information, whereas the whole medium will be robust against a number of
errors proportional to the size of the entire storage.12

12In practice, the information on music and data CD and on DVD is encoded in a different way. The data is split in
relatively small blocks, each block is encoded with a variant of the Reed-Solomon code, and then the encoding of each
block is scattered in non-consecutive locations on the disk. This system has very poor resistance against worst-case

15



As we will see, however, even the best known locally decodable codes have very poor rate, and
this is conjectured to be an inherent problem, and none of them seem to have applications to data
transmissions and data storage. In complexity theory and in cryptography, on the other hand, they
have several applications, as we will see.

We start with a formal definition. We make the following convention, that we maintain through
the paper: whenever we refer to an oracle algorithm, we assume that the algorithm makes non-
adaptive queries.

Definition 1 (Locally Decodable Code) A code C : Σk → Γn is (q, δ, p)-locally decodable if
there is a probabilistic oracle algorithm of query complexity at most q such that for every message
x ∈ Σk, index i ∈ {1, . . . , k}, and string y such that d(y, C(x)) ≤ δn we have

Pr[Ay(i) = xi] ≥ p .

The probability is taken over the internal coin tosses of A.

In this setting, a message x made of k elements of an alphabet Σ is encoded as n elements of
alphabet Γ. After at most δn errors occur, we are interested in reconstructing an entry xi of x.
Algorithm A performs such a task with probability at least p while looking at only q entries of the
corrupted encoding of x.

We will mostly be interested in the case in which q is a small constant, Σ = {0, 1}, and
Γ = {0, 1}t.

3.2 Relation to Private Information Retrieval

A private information retrieval scheme is a system in which a “database” x, a k-bit string, is known
to q independent “servers” S1, . . . , Sq. A “user” is interested in a bit xi of x and wants to retrieve
it with a single round of communication, in such a manner that no server can tell the value i. More
formally, we require that the distribution of the query sent to each server be independent of i. A
weaker requirement is that the distributions corresponding to various i be statistically close in the
view of each server.

Definition 2 (One-Round Private Information Retrieval) A (1 − δ)-secure q-server one-
round private information retrieval system with recovery probability p for k-bits database is a col-
lection of q + 2 procedures (Q,S1, . . . , Sq, R) that work as follows.

Fix a string x ∈ {0, 1}k and an index i ∈ [k]. On input an index i and random coins, the query
procedure Q computes q queries j1, . . . , jq ∈ [n]. On input the query jt and the string x ∈ {0, 1}k,
the t-th server produces (deterministically) the answer at = St(x, jt) ∈ {0, 1}l. Given i, the recovery
procedure R computes R(i, a1, . . . , aq).

We require that the following two conditions hold:

Recovery For every x ∈ {0, 1}k and i ∈ [k], there is a probability at least p (over the coin tosses
of Q) that the final output of R equals xi.

errors, because one can destroy a block of the original data by damaging its encoding, which is a very small fraction
of the overall encoding. On the other hand, this system performs well against a small number of “burst” errors, in
which contiguous locations are damaged. The latter type of errors is a good model for the damage suffered by CDs
and DVDs.
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Privacy For every x ∈ {0, 1}k, every i, i′ ∈ [k] and every t ∈ [q], if we sample at random
(a1, . . . , aq) ∼ Q(i) and (a′1, . . . , a

′
q) ∼ Q(i′), then the distribution of at and a′t have statistical

distance at most δ.

We call l the answer size of the PIR system, and log2 n the query length. The communication
complexity of the system is q · (l + log n).

The definition is long and technical, but hopefully it is not too hard to follow it if one has clearly
in mind the intuitive notion that the definition is trying to capture. All known constructions have
perfect recovery probability p = 1 and they are 1-secure (that is, queries made to the same server
for two different indices are identically distributed).

All known constructions of both PIR and LDCs follow from constructions of a more general
object, that we define below.

Definition 3 (Perfectly Smooth Decoder) A perfectly smooth decoder for a code C : Σk → Γn

is a probabilistic oracle algorithm A such that for every i ∈ k and every x ∈ {0, 1}k we have

Pr[AC(x)(i) = xi] = 1

Furthermore, if q is the query complexity of A, then for every j ∈ [q] and every i ∈ [k], the
distribution of the j-th oracle query made by AC(x)(i) is uniform over [n].

Suppose we have a perfectly smooth decoder for a code C. Then it is easy to see that for every
δ < 1/q the decoder shows that C is also a (q, δ, 1− δq) locally decodable code: If y is a string that
is δ-close to a codeword C(x), and let i be any index; then there is at least a 1 − δq fraction of
the coin tosses of A such that the view, and outcome, of Ay(i) and AC(x)(i) are the same, and so
Ay(i) has at least a probability 1 − δq of correctly computing xi. If q is not a constant, then this
observation does not give us a LDC that is able to correct a constant fraction of errors, so only
perfectly smooth decoder of constant query complexity give good LDCs.

Regarding PIR, consider the following approach. The user simulates A(·)(i) and finds out the
queries j1, . . . , jq that A would have made.13 Then it sends each query to a different server. Given
jt, the t-th server computes C(x) and returns that jt-th entry of C(x). Given these answers, the
user completes the simulation of AC(x)(i) and computes xi.

This PIR system is 1-secure, has perfect recovery, the query size is log n and the answer size is
log |Γ|.

The main known results for constant values of q are shown in Table 1.
For q = 2, the Hadamard code gives a perfectly smooth code with exponential encoding length.

The exponential blow-up is necessary for all 2-query binary LDCs [KdW03]. Even for q = 2 and
large alphabets, tight results are not known. Chor et al. [CGKS98] show that one can achieve

encoding length roughly 2k1/3
with an alphabet of size roughly 2k1/3

, which corresponds to a PIR
with communication complexity O(k1/3). For such alphabet sizes, the only applicable lower bounds
to the encoding length are in [KT00], and they are barely super-linear.

For q = 3, even for binary alphabet there is a huge gap between a polynomial lower bound
and a slightly sub-exponential upper bound. For larger q, the best known Boolean constructions
achieve encoding length just slightly better than 2k1/q

, while the lower bound is roughly k1+1/q.
Below we give some more references to constructions and lower bounds.

13Recall that all the oracle algorithms in this paper make non-adaptive queries.
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Setting Construction Lower Bounds
of perfectly smooth codes for all LDCs

2 queries, Boolean encoding n = 2k n = 2Ω(k) [KdW03]

2 queries, encoding using {0, 1}l n = l · 2k/l n = 2Ω(k/2polyl) [KdW03]

2 queries, encoding using {0, 1}O(k1/3) n = 2O(k1/3) [CGKS98] n = Ω(k4/3) [KT00]

3 queries, Boolean encoding n = 2
√

k [BI01] k = Ω̃(n2) [KdW03]

3 queries, encoding using {0, 1}l n = 2
√

k/l [BI01] k = Ω((n/l)1.5) [KT00]

q queries, Boolean encoding n = 2kO(log log q/q log q)
[BIKR02] k = Ω̃(nq/(q−2))[KdW03]

Table 1: Main known results on Locally Decodable Codes with decoders of constant query com-
plexity.

3.3 Local Decoders with Constant Query Complexity

We give an overview of some simple constructions of perfectly smooth codes. We will not get
into details of the best known construction, the one by Beimel et al [BIKR02], which is somewhat
complicated.

3.3.1 Hadamard Code

Let us start by considering the Hadamard code H : {0, 1}k → {0, 1}2k
. In the Hadamard code, the

encoding H(x) has one entry for every vector a ∈ {0, 1}k , and the content of the a-th location of
H(x)a is the bit a ·x =

∑

j ajxj (mod 2). Suppose we have oracle access to H(x) and we want to
reconstruct xi for some index i. Clearly xi = ei ·x, where ei is a vector with a 1 in the i-th position
and 0s elsewhere, however we cannot just read the ei-th position of H(x), because a smooth decoder
must make uniformly distributed queries. Instead, we use the following trick: we pick at random
a vector a ∈ {0, 1}k and we read the entries H(x)a and H(x)a⊕ei , which will return, respectively,
a · x and (a⊕ ei) · x. By linearity, the xor of these two values will be ((a⊕ a⊕ ei) · x) = ei · x = xi.
This idea dates back to [BLR93].

If the smooth decoder is applied to a string y that is at relative distance δ < 1/4 from a valid
codeword C(x), then, for every i, the decoder succeeds with probability at least 1−2δ in computing
xi. If the relative distance between C(x) and y is 1/4−ε, then the success probability of the decoder
is 1/2 + 2ε, which can be amplified to, say, 1 − 1/4k by repeating the decoding independently for
O(ε−2 ·log k) times and then taking the majority value. If we do this for every i, we get an algorithm
that runs in time O(ε−2k log k) and computes x with probability at least 3/4.

3.3.2 Polynomial Codes

A similar idea (dating back to [BF90]) can be used to get a perfectly smooth decoder for a variant
of the Reed-Muller code. The variant will have the property of being a systematic code, meaning
that the message occurs as a substring of the encoding.

To make the Reed-Muller code systematic, we proceed as follows. We have a field F, a subset
S ⊆ F, a degree parameter t and a number of variables m. Besides, we also choose another subset
A ⊆ S of size |A| = t/m. In the standard Reed-Muller code, we would just consider all possible
(m+t

m

)
coefficients that an m-variate degree-t polynomial can have, and we encode a message of

length
(
m+t
m

)
by interpreting each message coordinate as a coefficient. This time, instead, we have

a (shorter) message of length |A|m = (t/m)m, which we think of as a function f : Am → F; using
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interpolation, we find a polynomial p of degree ≤ t that agrees with f on Am. The evaluation of
this polynomial on Sm will be our encoding.

This is not much worse than the standard encoding, and, for example, it remains true that
the rate is constant for constant m. The advantage, is that the original message is a subset of
the encoding. (The evaluation of the polynomial at Am.) A code with such a property is called a
systematic code.

In the following discussion we assume S = F.
Consider now the following algorithm that, given oracle access to a polynomial p : F

m → F of
degree t, and given a, computes p(a) by making random oracle queries.

1. Choose a random b ∈ F
m and consider the line l(z) = a + zb.

2. Query p at locations l(1), l(2), . . . , l(t + 1).

3. Compute the unique univariate degree t polynomial q such that q(z) = p(l(z)) for z =
1, 2, . . . , t + 1. Return q(0).

Where, in the algorithm description, we used “2,” . . . “t + 1” as the names of t elements of F

distinct from 1 and 0.
The algorithm is based on the following idea: if p(x1, . . . , xm) is a multivariate polynomial of

degree t, and l(z) = (a1 + zb1, . . . , am + zbm) is a line, then P (l(z)) is a univariate polynomial in
z of degree at most t. As such, it can be reconstructed if we are given its values at t + 1 different
points.

So we pick at random a line l() that passes through the point a (at which we want to evaluate
p()), we read the value of p(l() at t + 1 different points, we reconstruct the univariate polynomial
p(l(z)), and finally, by evaluating it at 0, we compute p(l(0)) = p(a). The second observation to
make, which completes the analysis, is that, on a random line of the form l(z) = a+zb every point,
except l(0) = a, is uniformly distributed, and so the procedure is making uniform queries.

A disadvantage of this procedure is that it can never lead to a constant query complexity,
because the degree can never be a constant in the version of the Reed-Muller code we described
before. We now describe another variant in which we encode a message as a constant-degree
multilinear polynomial, so that the above algorithm has constant query complexity.

Suppose that k ≤
(m

t

)
. We index each message entry by a unique t-element subset S of [m].

Given a message x = (xS)S⊆[m], we define the polynomial

px(z1, . . . , zm) =
∑

S:|S|=t

xS

∏

j∈S

zj

over the field F. The encoding C(x) is obtained by evaluating px over all points in F
m.

Since px has total degree t, the decoding algorithm described above also works for the code C.
Moreover, C is systematic: We can write xS = px(eS), where eS = (eS [1], . . . , eS [m]) ∈ F

m and

eS [j] =

{
1 if j ∈ S,
0 otherwise.

The code C can encode messages of length up to
(
m
t

)
and has codeword length n = |F|m,

provided |F| > t. If we take, say, |F| ≤ 2t, this yields n = 2O(t log tk1/t), where t = q − 1.
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3.4 Local Decoder with Polylogarithmic Complexity

If we want decoders with constant query complexity, then the best known constructions are super-
polynomial.

By adjusting the parameters in the Reed-Muller-like constructions of the previous sections, it is
however possible to have perfectly smooth codes with n = poly(k), or even n = O(k), and sub-linear
complexity. The problem is that a perfectly smooth decoder of super-constant query complexity is
not necessarily a good local decoder able to correct a large number of errors.

There is, however, a way to get a good local decoder even when the degree of the polynomial
(and so the query complexity of the decoding algorithm) are high.

We are considering the following problem: we have a message, which we view as a function
f : Am → F, for some subset A ⊆ F. We encode the message by finding a polynomial p of degree t
that agrees with f on all of Am, and the encoding is the evaluation of p at all points of F

m.
Now we have oracle access to a corrupted encoding g : F

m → F, which disagrees from p in
a δ fraction of elements of F

m. We are given an entry a ∈ Am and we would like to compute
f(a) = p(a) with high probability by using oracle access to g.

As before, we pick a random b ∈ F
m and consider the random line l(z) = a + bz, z ∈ F, and

we would like to find the univariate polynomial q(z) = p(l(z)), because if we find q() then we have
also found f(a) = p(a) = q(0). Instead of just reading t + 1 points of p(l(z)) and interpolating (we
don’t have access to p()), we read g(l(z)) for, say, 3t values of z, and then we apply the Berlekamp-
Welch algorithm to find the degree-t polynomial q() that agrees the most with these values. The
Berlekamp-Welch algorithm will indeed find q() provided that there are fewer than t places among
those we read where g(l()) differs from p(l()). Recall that each of these places is a point on a line,
and so it is random, so that on average we expect to encounter at most 3δt errors, which is less
than t/4, say, if δ < 1/12. If so, then a Markov argument shows that with probability at least 3/4
we indeed find fewer than t errors and so we correctly find q().

This is far from optimal, but it gives an idea of how good LDCs with super-constant query
complexity work.

By playing with the parameters, it is possible to construct, for every ε, binary LDCs C :
{0, 1}k → {0, 1}n where n = O(k) and the decoding algorithm has query complexity nε. The best
lower bound on query complexity for LDCs of linear encoding length is logarithmic, and so we have
again an exponential gap between constructions and lower bounds. Our guess is that the lower
bound should be improved.

Open Question 1 Prove that there cannot be a binary (q, δ, 3/4)-LDC C : {0, 1}k → {0, 1}n where
q = O(log n) and n = O(k).

Notice also that the techniques sketched in this section show the existence of LDCs C : {0, 1}k →
{0, 1}n with n = poly(k), with a decoder of poly(log k) complexity, and with a polynomial time
encoding algorithm.

3.5 Application to Average-Case Complexity

Let us now see how the results seen so far apply to average-case complexity.
Let L be an EXP-complete problem, and for an input length t let us consider the restriction of

L to inputs of length t. We can see L restricted to some inputs as being a binary string of length
2t. (The truth-table of a Boolean function with t-bits input.)

Let us encode this string using our code C: we get a string of length 2O(t) = 2t′ , and let us
think of this string as defining a new problem L′ on inputs of length t′. If L was in EXP, then so is
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L′. In fact, if L was EXP-complete, then so is L′. In addition, if we have an algorithm for L′ that
is good on average,14 the algorithm together with the local decoder give a probabilistic algorithm
for L that works on all input, and EXP ⊆ BPP.

This argument shows that if every problem in EXP can be solved well on average then EXP ⊆
BPP.

This argument raises many questions, such as the following:

• Can the same argument work for PSPACE? The answer is yes, provided we can construct a
good LDC in logarithmic space. This is in fact easy to do, and so the same argument does
indeed apply to PSPACE.

• Can the same argument work for NP? Viola [Vio03] shows that the LDC decoding does not
work for NP, and, more generally, for any problem in the polynomial hierarchy. Bogdanov
and Trevisan [BT03] show that worst-case to average-case reductions in NP are problematic
even if they are not based on LDCs.

3.6 Lower Bounds

In this section we give an overview of lower bounds for locally decodable codes.
The following notion is a useful relaxation of the notion of perfectly smooth code.

Definition 4 (Smooth Decoder) A (q, c, p)-smooth decoder for a code C : Σk → Γn is a proba-
bilistic oracle algorithm A of query complexity q such that for every i ∈ k and every x ∈ {0, 1}k we
have

Pr[AC(x)(i) = xi] ≥ p

Furthermore, for every t ∈ [q], every i ∈ [k], and every j ∈ [n], the probability that the t-th query of
A(·)(i) is j is at most c/n. A code having a (q, c, p)-smooth decoder is also called a (q, c, p)-smooth
code.

A perfectly smooth decoder of query complexity q is a (q, 1, 1)-smooth decoder.
The definition of smooth decoder allows the algorithm to use non-uniform distributions of

queries, however no query has a probability of being made which is much higher than with respect
to the uniform distribution.

The following result shows that every locally decodable code has a smooth decoder.

Lemma 9 ([KT00]) If C : Σk → Γn is a (q, δ, p)-LDC, then it is also a (q, 1/δ, p)-smooth code.

Goldreich et al. [GKST02] also show that every private information retrieval system implies a
smooth code with related parameters.

These results show that it is enough to prove lower bounds for smooth codes, a strategy followed
explicitly in [KT00, GKST02] and implicitly in [KdW03].

Another step is the following.

Lemma 10 If C : Σk → Γn is a (q, c, 1/|Σ| + ε)-smooth code, then for every index i ∈ [k] there is
a collection Mi of Ω(nε/c) disjoint q-tuples (j1, . . . , jq) such that for a random x it is possible to
predict with probability bounded away form half the entry xi given the entries C(x)j1 , . . . , C(x)jq .

14That is, an algorithm that runs in polynomial time and solves L′ correctly on, say, a 90% fraction of inputs.
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If C : F
k → F

n is linear, then the conclusion of the above Lemma has a simpler interpretation.
If we write C(x) = (c1 · x, . . . , cn · x), then for every i there is a a collection Mi of Ω(nε/c) disjoint
q-tuples (j1, . . . , jq) such that the vector ei is in the span of cj1 , . . . , cjq .

A converse can also be proved, that is, if the above collections exist then the code is smooth
and also locally decodable, which means that there is no loss in generality in trying to prove a lower
bound using this combinatorial structure. The exponential lower bound in [GKST02] follows from
the above reasoning and from the following combinatorial result.

Lemma 11 Let a1, . . . , an ∈ {0, 1}k be (not necessarily distinct) vectors and suppose that for every
i ∈ [k] there is a set Mi of δn disjoint pairs (j, j ′) such that aj ⊕ aj′ = ei.

Then n ≥ 22δk.

A proof of the following combinatorial result would give the first super-polynomial lower bound
for the case of linear codes decodable with three queries. (So far, super-polynomial lower bounds
have been proved only for the case of two queries. Upper bounds are super-polynomials for all
constant query complexities.)

Open Question 2 Suppose that a1, . . . , an is a sequence of elements of {0, 1}k such that for every
i ∈ [k] there is a set of Ω(n) disjoint triples (j1, j2, j3) such that aj1 ⊕ aj2 ⊕ aj3 = ei. Prove that n
must be super-polynomial in k.

This is the natural next lower bound question to address, and it is much harder than it looks.
We also mention another question. The best lower bounds for LDCs are currently those from

[KdW03], proved using quantum information theory. The use of quantum arguments in a “classical”
problem is surprising, and it would be interesting to see a purely combinatorial proof of the same
results.

Open Question 3 Re-prove the results of [KdW03] without using quantum information theory.

3.7 Notes and References

The notion of locally decodable codes was explicitly discussed in various places in the early 1990s,
most notably in [BFLS91, Sud92], and it was explicitly defined in [KT00], where smooth codes
are also defined. The notion of private information retrieval was introduced by Chor and oth-
ers [CGKS98]. Locally decodable codes, private information retrieval and smooth codes can be
seen as the combinatorial analogs of notions that had been studied in complexity theory in the late
1980s and early 1990s. In particular, one can see the decoding procedure of a locally decodable
codes as a combinatorial version of a self-corrector [BK89, Lip90, BLR93], a perfectly smooth de-
coder is analogous to a random-self-reduction, a notion explicitly defined in [AFK89, FKN90], and
a private information retrieval system is analogous to an “instance-hiding” scheme [AFK89].

The perfectly smooth decoder of Hadamard Codes is due to Blum and others [BLR93] and the
one for Reed-Muller codes is due to Beaver and Feigenbaum [BF90]. There has been a substantial
amount of work devoted to the construction of efficient private information retrieval schemes, lead-
ing to the sophisticated construction of Beimel and others [BIKR02]. Work by Ambainis, Beimel,
Ishai and Kushilevitz [Amb97, IK99, BI01] is particularly notable. The Reed-Muller decoder of
Section 3.4 is due to Gemmell and others [GLR+91]. It should be noted that there are other mod-
els and questions about private informational retrieval that we did not discuss in this section. In
particular, we did not discuss the notion of computationally secure private information retrieval,
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in which the distribution of queries are just computationally indistinguishable, the notion of sym-
metric private information retrieval, in which the user does not get any other information about x
except xi, and other algorithmic problems, such as issues of efficiency for the server. The reader
can find information and references on private information retrieval in a recent survey paper by
Gasarch [Gas04].

Lower bounds for private information retrieval were first proved by Mann [Man98]. Lower
bounds for smooth codes, which imply lower bounds for locally decodable codes and for private
informational retrieval, are proved in [KT00, GKST02, Oba02, KdW03].

4 Sublinear Time List Decoding

Sub-linear time list-decoding is perhaps a less intuitive notion to define than sub-linear time unique
decoding.

As in the past section, we have some code C : {0, 1}k → {0, 1}n and we have oracle access to
a string y ∈ {0, 1}n that is within some distance d from a codeword, and we want to find all the
messages x such that C(x) and y are within distance d.

Since the decoder has to run in time o(k), it cannot output the full list, but rather it will
output a list of “compressed” representations of messages. What will a compressed representation
of a message x be like? It will be the code of an efficient probabilistic oracle algorithm that given
i and oracle access to y gives xi in output with high probability.

Another way to look at this setting is to think of the decoding algorithm as outputting a list of
“local decoders” as previously defined, one for every message in the list.

This model is discussed in detail in [Sud00], along with the description of several applications.
We will quickly review such applications, and refer the reader to [Sud00] for more details, and we
will devote more space to results by Akavia et al [AGS03], that postdate [Sud00].

4.1 Formal Definition of Local List-Decoder

Let us fix a model of computation to describe oracle algorithms.

Definition 5 (Local List-Decoding) A probabilistic oracle algorithm A is a local list-decoder
for a code C : Σk → Σn for radius r if, for every string y ∈ Σn, Ay outputs a list of probabilistic
oracle algorithms D1, . . . , DL such that for every string x such that dH(C(x), y) ≤ rn the following
happens with probability at least 3/4 over the random choices of Ay:

∃j ∈ [L].∀i ∈ [k].Pr[Dy
j (i) = xi] ≥ 3/4 .

The probability in the above expression is taken over the random choices of Dy
j .

We note that we are interested in the complexity both of A and of D1, . . . , DL, and, ideally,
all these complexities would be a constant. Interestingly, constant complexity (at least, constant
oracle query complexity) is achievable for the Hadamard code when r = 1/2 + ε, for constant ε.

In applications to average-case complexity and cryptography, running time poly-logarithmic in
n is also acceptable, and we will mention a result, due to Sudan and others [STV01], showing that
a variant of the Reed-Muller codes have local list decoder of polylogarithmic complexity in k and
n and polynomial in 1/ε.

In the case of the Hadamard code, for which n = 2k, poly-logarithmic complexity in n is
equivalent to polynomial complexity in k, and a local list-decoder has enough time to explicitly

23



output the list of codewords. Goldreich and Levin [GL89] present a list-decoder for the Hadamard
code that runs in time polynomial in k and in 1/ε when r = 1/2 + ε. The local decoder of
constant (depending on ε) query complexity can be derived by a more careful analysis (and some
modifications) of the algorithm of Goldreich and Levin. We note that, in most applications of the
Goldreich-Levin result, 1/ε is either polynomially related to k, or it is even superpolynomial in
k. For this reason, a local decoder of complexity polynomial in 1/ε and independent of k is not
significantly more efficient than the original Goldreich-Levin algorithm.

4.2 Local List Decoders for the Hadamard Code and for Polynomial Codes

We state the some known results about local list-decoding of error-correcting codes. We will prove
the Goldreich-Levin result in Section 4.4.

Theorem 12 ([GL89]) Let H : {0, 1}k → {0, 1}2k
be the Hadamard code. There is an algorithm

that, given oracle access to y ∈ {0, 1}2k
and a parameter ε, runs in poly(k/ε) time and outputs,

with high probability, a list of all the strings x ∈ {0, 1}k such that the relative Hamming distance
between y and C(x) is at most 1/2 − ε.

The theorem has a stronger form in which the algorithm runs in poly(1/ε) time, independent of k,
and outputs a list of local decoders, each running in poly(1/ε) time.

The next result that we state is for polynomial encodings.
Let F be a field, m be an integer, A ⊆ F be a subset. Consider the polynomial encoding

C : F
|A|m → F

|F|m in which we think of a message as a function f : Am → F, and its encoding is
obtained by finding, using interpolation, a polynomial p of degree ≤ m|A| that agrees with f on
Am, and then evaluating p on all the points of F

m.

Theorem 13 ([STV01]) There is a constant c such that the following happens. Let C : F |A|m →
F
|F|m be the polynomial encoding described above. There is an algorithm that, given oracle access

to a string g ∈ F
|F|m and a parameter ε > c ·

√

|A|m/|F|, runs in time poly(ε−1,m, |A|, log |F|) and

outputs a list of local decoders such that, for every f ∈ F
|A|m, if the relative distance between P (f)

and g is less than 1− ε, then there is a local decoder in the list that computes f given oracle access
to g.

In simpler terms, Theorem 13 states that there for every ε > 0 there is an efficiently computable
error correcting code C : F

k → F
n such that n = poly(ε−1, k) and such that local list decoding can

be performed in poly(ε−1, log(n)) time even after (1 − ε)n errors occurred.
The code can be concatenated with a binary code to obtain a binary locally list-decodable code.

Theorem 14 ([STV01]) For very ε and k there is a polynomial time encodable code C : {0, 1}k →
{0, 1}n with n = poly(k, ε−1) and a local list decoding algorithm that runs in time poly(ε−1, log n)
and is able to correct up to (1/2 − ε)n errors.

4.3 Applications to Average Case Complexity

Average-case complexity is an ideal application for a sub-linear time list decoder, since one can
deal with average-case algorithms that make a very large fraction of errors. On the other hand,
coding-theoretic methods can prove average-case complexity results only for classes like PSPACE
and EXP, while one is typically interested in the average-case complexity of problems within NP.
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A strong motivation to the study of average-case complexity in EXP came from a result by
Nisan and Wigderson [NW94]. Before stating the result, let us introduce the following notion: a
decision problem on inputs of length n is (S(n), δ(n))-average case hard if every circuit C of size
≤ S(n) fails to solve the problem on at least a δ(n) fraction of inputs of length n.

Theorem 15 (Nisan-Wigderson) Suppose that there is a problem in DTIME(2O(n)) that is
(2Ω(n), 1/2 − 1/2Ω(n))-average case hard. Then P = BPP.

The Nisan-Wigderson result shows an extremely strong conclusion from a very strong assump-
tion. The postulated average-case complexity is very high, and the assumption would sound more
natural if it referred to standard (worst-case) circuit complexity. The following result, however,
shows an equivalence between worst-case assumptions and average-case assumptions about prob-
lems in DTIME(2O(n)).

Theorem 16 (Impagliazzo Wigderson [IW97]) Suppose that there is a problem L in
DTIME(2O(n)) that has circuit complexity 2Ω(n); then there is also a problem L′ in DTIME(2O(n))
that is (2Ω(n), 1/2 − 1/2Ω(n))-average case hard. (And P = BPP.)

The Impagliazzo-Wigderson proof was very complicated, and their construction included several
parts, one of them being, essentially, a Reed-Muller encoding of the starting problem.

The code and the decoder of Theorem 14 give a simpler proof of Theorem 16, as follows. Let
L be problem in the assumption of Theorem 16. For every n, let us consider the binary string x
of length K = 2n that describes the “truth-table” of L for inputs of length n. Let us compute
C(x), which is of length N = poly(K) = 2cn for some constant c. We define L′ to be the problem
whose truth-table, on inputs of length cn, is C(x). Having a circuit that computes L ′ correctly
on a 1/2 + ε fraction of inputs is essentially the same as having oracle access to a string of length
N that is within distance 1/2 − ε from C(x). Applying the linear decoder, we can find a list of
programs such that one of them computes x on any entry of our choice (that is, it solves L on any
input of length n of our choice) probabilistically in time polynomial in 1/ε and in n. Since our goal
is to build a circuit, we can non-uniformly pick the correct program from the list, and convert the
probabilistic algorithm into a deterministic circuit. If we had a circuit of size 2δcn that computed
L′ on a 1/2 + 1/2δcn fraction of inputs of length cn, and if we picked ε appropriately, we end up
constructing a circuit of size 2O(δn) that solves L on all inputs of length n, which contradicts the
assumption of the theorem if δ is small enough.

4.4 Proof of the Goldreich-Levin Result

In this section we describe the Goldreich-Levin list-decoding algorithm for the Hadamard code. It
will be convenient to think of the codewords of the Hadamard code as functions:

Definition 6 Let a ∈ {0, 1}k, and define La : {0, 1}k → {0, 1} to be the function La(x) = a · x.
Then, La(·) is the Hadamard encoding of a.

We may then state the main result from [GL89] as follows.

Theorem 17 ([GL89]) There is a (probabilistic) algorithm that given oracle access to a function
g : {0, 1}k → {0, 1} and a parameter ε > 0 runs in time O

(
1
ε4

k log k
)

and outputs a list of O
(

1
ε2

)

elements of {0, 1}k such that: for every a for which La and g agree on > 1
2 + ε fraction of inputs,

the probability that a is in the list is at least 3/4.
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We recall from Section 3.3.1 that if we are given an oracle that agrees with a linear function La on,
say, a 7/8 fraction of the inputs, then it is possible to compute a in time O(k log k). Our goal will
be to able to simulate an oracle that has good agreement with La by “guessing” the value of La at
a few points.

We first choose t random points x1 . . . xt ∈ {0, 1}n where t = O(1/ε2). For the moment, let us
suppose that we have “magically” obtained the values La(x1), . . . , La(xk). Then define g′(z) as the
majority value of:

La(xj) ⊕ g(z ⊕ xj) j = 1, 2, . . . , t (1)

Since for each j we obtain La(z) with probability at least 1
2 + ε, by choosing t = O(1/ε2) we can

ensure that

Pr
z,x1,...,xt

[
g′(z) = La(z)

]
≥ 31

32
. (2)

from which it follows that

Pr
x1,...,xk

[

Pr
z

[
g′(z) = La(z)

]
≥ 7/8

]

≥ 3

4
. (3)

Consider the following algorithm.

Algorithm GL-First-Attempt:
pick x1, . . . , xt ∈ {0, 1}k where t = O(1/ε2)
for all b1, . . . , bt ∈ {0, 1}

define g′b1...bt
(z) as majority of: bj ⊕ g(z ⊕ xj)

apply the algorithm of Section 3.3.1 to uniquely decode g ′
b1 ...bt

add result to list

The idea behind this program is that we do not in fact know the values La(xj), so we guess
all possibilities by considering all choices for the bits bj. For each a such that La and g agree on
more than half of their domain, we will eventually choose bi = La(xj) for all j and then, with high
probability, recover a via the algorithm of Section 3.3.1. The obvious problem with this algorithm is
that its running time is exponential in t = O(1/ε2) and the resulting list may also be exponentially
larger than the O(1/ε2) bound promised by Theorem 17.

To overcome these problems, consider the following similar algorithm.

Algorithm GL:
choose x1, . . . , xl ∈ {0, 1}k where l = O (log(1/ε))
for all b1, . . . , bl ∈ {0, 1}

define g′b1...bl
(z) as majority over all nonempty S ⊆ {1, . . . , l} of: (⊕j∈Sbj) ⊕ g

(

z ⊕ ⊕

j∈S xj

)

apply the algorithm of Section 3.3.1 to uniquely decode g ′
b1 ...bl

add result to list

Let us now see why this algorithm works. First we define, for any nonempty S ⊆ {1, . . . , l},
xS =

⊕

j∈S xj. Then, since x1, . . . , xl ∈ {0, 1}k are random, it follows that for any S 6= T, xS and
xT are independent and uniformly distributed. Now consider any a such that La(x) and g(x) agree
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on 1
2 + ε of the values in their domain. Then for the choice of {bj} where bj = La(xj) for all j, we

have that

⊕

j∈S

bj = La(xS)

and, with probability 1
2 + ε,

g



z ⊕
⊕

j∈S

xj



 = g(z ⊕ xS) = La(z ⊕ xs) = La(z) ⊕ La(xS)

so combining the above results yields

⊕

j∈S

bj ⊕ g



z ⊕
⊕

j∈S

xj



 = La(z)

with probability 1
2 + ε.

Note the following simple lemma whose proof we omit:

Lemma 18 Let R1, . . . , Rt be a set of pairwise independent 0− 1 random variables, each of which
is 1 with probability at least 1

2 + ε. Then Pr[
∑

i Ri ≥ t/2] ≥ 1 − O( 1
ε2t

).

Lemma 18 allows us to upper-bound the probability that the majority operation used to compute
g′ gives the wrong answer. Combining this with our earlier observation that the {xS} are pairwise
independent, we see that choosing l = 2 log 1/ε+O(1) suffices to ensure that g ′

b1...bl
(z) = La(z) with

probability ≥ 7
8 . Thus we can use the algorithm of Section 3.3.1 to obtain a with high probability.

Choosing l as above ensures that the list generated is of length at most 2l = O(1/ε2) and the
running time is then O(ε−4 ·k log k), due to the O(1/ε2) iterations of the algorithm of Section 3.3.1,
that runs in O(k log k) time and the fact that one evaluation of g ′() requires O(1/ε2) evaluations
of g(). This completes the proof of the Goldreich-Levin theorem.

4.5 Applications to “Hard-Core Predicates”

The motivation of the result of Goldreich and Levin was the construction of a “hard-core” predicate
for every one-way permutation. We define these notions and explain the connection.

4.5.1 Hard-core Predicates for One-way Permutations

Intuitively, a function f : {0, 1}k → {0, 1}k is a one-way permutation if it is easy to compute but
hard on average to invert. Note that f is a permutation on the set {0, 1}k , and not a function that
permutes the bits of its input string. Formally,

Definition 7 A permutation f : {0, 1}k → {0, 1}k is (s, ε)-one-way if:

• There is an efficient algorithm that on input x outputs f(x);

• For all circuits D : {0, 1}k → {0, 1}k of size s, and for all sufficiently large k,

Pr
x

[D(f(x)) = x] ≤ ε .
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Often in applications such as the construction of pseudorandom generators in cryptography,
we are interested in a hard-on-average decision problem. This motivates the notion of a hard-core
predicate:

Definition 8 A function B : {0, 1}k → {0, 1} is a (s, ε) hard-core predicate for a permutation f if
it is hard on average to compute B(x) given f(x), that is: for all circuits D : {0, 1}k → {0, 1} of
size s, and for all sufficiently large k,

Pr
x

[D(f(x)) = B(x)] ≤ 1/2 + ε

4.5.2 Hard-core Predicates Using Goldreich-Levin

The Goldreich-Levin theorem gives us a hard-core predicate for any one-way permutation (with a
slight modification) whose hardness is closely related to that of the original permutation:

Theorem 19 If f is a (s, 1/s)-one-way, then B(x, r) = x ·r is a (sΩ(1), 1/sΩ(1)) hard-core predicate
for the permutation f ′ : {0, 1}2k → {0, 1}2k, where f ′(x, r) = (f(x), r).

Proof: The proof is by contradiction: given an algorithm A that computes the hard-core predicate
B on a 1/2 + ε fraction of its inputs, we produce an algorithm that inverts f on some Ω(ε) fraction
of inputs, contradicting the one-way-ness of f for a suitable choice of parameters. The reduction
is uniform, so we will present the proof for a uniform algorithm A; the result extends readily
to circuits. More precisely, having a uniform reduction means that if we start with a one-way
permutation that is hard to invert using polynomial-time algorithms (respectively polynomial-sized
circuits), we obtain a hard-core predicate that is hard to predict using polynomial-time algorithms
(respectively polynomial-sized circuits).

Now, suppose we are given an algorithm A that runs in time t (or a circuit of size t for the
non-uniform setting) such that:

Pr
x,r

[A(f(x), r) = x · r] ≥ 1/2 + ε

Then by an averaging argument, we have:

Pr
x

[Pr
r

[A(f(x), r) = x · r] ≥ 1/2 + ε/2] ≥ ε/2

Fix any x such that
Pr
r

[A(f(x), r) = x · r] ≥ 1/2 + ε/2

Note that as we vary r over {0, 1}k , x ·r yields the Hadamard encoding of x and therefore A(f(x), ·)
yields a good approximation to this encoding. We can then recover a list of candidates for x via
list-decoding. The precise reduction is as follows: On input f(x),

1. Define g(r) = A(f(x), r). For an ε/2 fraction of the choices of x, g(r) and Lx(r) agree on
1/2 + ε/2 fraction over the choices of r.

2. Run the Goldreich-Levin algorithm using g(·) as an oracle, and with parameter ε/2. This
takes time O

(
1
ε4 k log k

)
and computes a list of size O

(
1
ε2

)
.

3. For each element x′ of the list, output x′ if f(x′) = f(x).
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For a ε/2 fraction of the choices of x, this algorithm outputs x on input f(x) with probability
3/4. This yields an algorithm A′ that runs in time O

(
t · 1

ε4
k log k + 1

ε2
kO(1)

)
satisfying

Pr
x

[A(f(x)) = x] ≥ 3ε/8

which means f cannot be (poly(k, 1/ε, t), O(ε))-one-way. It follows that if f is (s, 1/s)-one-way,
then B is a (sΩ(1), 1/sΩ(1)) hard-core predicate for the permutation f ′. �

Remark 1 Note that if f is one-way, then f ′ is also one-way.

4.5.3 Hard-core Predicates via (Efficiently) List-Decodable Codes

Let C : {0, 1}k → {0, 1}n be a binary code, and f : {0, 1}k → {0, 1}k be a permutation. Consider
the predicate B : {0, 1}k × [n] → {0, 1} given by B(x, j) = C(x)j and the corresponding function
f ′ : {0, 1}k × [n] → {0, 1}k × [n] given by f ′(x, j) = (f(x), j). Extending the result in the previous
section (which corresponds to C being the Hadamard code), it is easy to see that if f is a one-
way permutation, and C is an efficiently list-decodable code, then B(x, j) = C(x)j is a hard-core
predicate for f ′. The reduction is as follows:

Suppose we are given an algorithm A that runs in time t such that:

Pr
x,j

[A(f(x), j) = C(x)j] ≥ 1/2 + ε

Then,
Pr
x

[Pr
j

[A(f(x), j) = C(x)j ] ≥ 1/2 + ε/2] ≥ ε/2

Now, given f(x), use the list-decoding for C to find a list of all codewords with agreement at least
1/2 + ε/2 to the corrupted codeword whose jth entry is A(f(x), j) in time poly(k, 1/ε).

The advantage here is that for certain choices of ε, there are efficiently list-decodable codes whose
block length is much shorter than that of the Hadamard code, and therefore we can construct hard-
core predicates for one-way permutations f ′ whose input length is less than double the one of f .
For instance, we can concatenate Reed-Muller codes with Hadamard codes to obtain codes with
message length k and block length O(k2/ε2) which are efficiently list-decodable from agreement
1/2 + ε, and for which we can compute C(x)j in time poly(k, log 1/ε) (to ensure that the predicate
can be computed efficiently). For ε = k− log k, this yields a construction of hard-core predicates
wherein the increase in the input length for f ′ is only O(log2 k).

More generally, starting with a (s, 1/s)-one-way permutation f : {0, 1}k → {0, 1}k , we can
construct another (s, 1/s)-one-way permutation f ′ : {0, 1}k+O(log s) → {0, 1}k+O(log s) that has a
(sΩ(1), 1/sΩ(1)) hard-core predicate.

4.5.4 Pseudorandom Generators from One-way Permutations

It is not difficult to show that if x · r is hard to compute given f(x), r, then (f(x), r, x · r) is
computationally indistinguishable from a random (2k + 1)-bit string.15 In particular, if f is a one-
way permutation, then G : {0, 1}2k → {0, 1}2k+1 that sends (x, r) to (f(x), r, x·r) is a pseudorandom
generator.16

15This use of hard-core predicates and one-way permutations to construct pseudorandom generators is due to Blum,
Micali and Yao [BM84, Yao82].

16Of course we have not formally defined computational indistinguishability nor pseudorandom generator. The
purpose of this short section is just to give the reader a feel for the use of hard-core predicates in cryptography. The
reader is referred to the excellent and comprehensive treatment in [Gol01].
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Once we obtain a pseudorandom generator that stretches the input by one bit, then it is possible
to construct pseudorandom generators of arbitrary stretch [BM84, Yao82].

4.6 Goldreich-Levin and Fourier Analsys

We now make a small detour to introduce Fourier analysis for Boolean functions. We will then see
that the Goldreich-Levin algorithm can be used to compute Fourier coefficients of Boolean functions,
with important applications to computational learning theory. A relation between Fourier analysis
and list decoding will also come up later, when we will discuss the work of Akavia and others
[AGS03]. Another application of Fourier analysis will also be noted in Section 5.1 in the context
of “local testers” for the Hadamard code.

4.6.1 Fourier Analysis of Boolean Functions

In the context of list-decoding of Hadamard codes, we have been looking at boolean functions
f : {0, 1}k → {0, 1}, and linear functions La : {0, 1}k → {0, 1}, where La(x) = ⊕i:ai=1 xi. In
this section, we study function F : {0, 1}k → {1,−1} ⊆ R by identifying 0, 1 with 1,−1 in the
range, and ⊕ with · (multiplication over R). For a function f : {0, 1}k → {0, 1} we denote by
f∗ : {0, 1}k → {−1, 1} the function defined as f ∗(x) = (−1)f(x).

Consider now the linear function La, the function L∗
a has the form L∗

a = (−1)x·a =
∏

i:ai=1(−1)xi .
In the following, we will denote by χa the function L∗

a

For any F, G : {0, 1}k → R, we define the dot product F · G as 1
2k

∑

x F (x)G(x). It is then

straight-forward to verify that χa · χa = 1, and χa · χb = 0 for a 6= b. Therefore, {χa | a ∈ {0, 1}k}
is an orthonormal basis for the set of functions F : {0, 1}k → R. This means we can write any
function F : {0, 1}k → R as:

F (x) =
∑

a∈{0,1}k

f̂aχa(x)

where F̂a = F · χa ∈ R. The coefficients F̂a are called the Fourier coefficients of F .
If f : {0, 1}k → {0, 1} is a Boolean function, then whenever we refer to the “Fourier coefficients

of f()” we will always actually refer to the Fourier coefficients (as defined above) of f ∗. That is, if
f is a Boolean function then the notation f̂a refers to the coefficient f̂∗

a of f∗.
The dot product f ∗ ·g∗ and the Fourier coefficients f̂a have a combinatorial interpretation when

f, g : {0, 1}k → {0, 1} are boolean functions. Observe that

f∗ · g∗ =
1

2k

∑

x

f(x)g(x) = Pr
x

[f∗(x) = g∗(x)] − Pr
x

[f∗(x) 6= g∗(x)] = 2Pr
x

[f∗(x) = g∗(x)] − 1 .

Therefore,

Pr
x

[f∗(x) = g∗(x)] =
1

2
+

1

2
f∗ · g∗

and in particular,

Pr
x

[f(x) = La(x)] = Pr
x

[f∗(x) = χa(x)] =
1

2
+

1

2
f̂a (4)

Also, for any F : {0, 1}k → R, we have F · F =
∑

a F̂ 2
a . In the case f is a boolean function,

f∗ · f∗ = 1, so this yields:
∑

a

f̂2
a = 1 (5)
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4.6.2 Learning the Fourier Coefficients of a Boolean Functions

The Goldreich-Levin theorem may be interpreted as providing an efficient algorithm that given
oracle access to some boolean function f and some threshold ε, finds all linear functions La that
agrees with f on at least 1/2 + ε fraction of inputs. By (4), these linear functions correspond
exactly to Fourier coefficients f̂a that are at least 2ε. Furthermore, given a and oracle access to
f , estimating f̂a is easy (by estimating Prx[f(x) = La(x)]), so we may eliminate any extraneous
coefficients that may be computed by the Goldreich-Levin algorithm.

This idea is often applied to learning classes of boolean functions f for which the Fourier
coefficients are concentrated on a small set S, that is, there is some set S ⊆ {0, 1}k such that
|S| = poly(k) and

∑

a∈S f̂2
a ≥ 1 − ε. Given oracle access to access to f , we can define a function g

such that f and g disagree on O(ε) fraction of inputs. Furthermore, g can be efficiently computed
as follows:

1. Fix t = poly(k, 1/ε).

2. Find a list L of all a such that the corresponding Fourier coefficients f̂a are at least ε/t using
the Goldreich-Levin algorithm. From (5), there are at most O(t2/ε2) such values.

3. Compute an estimate ĝa of f̂a for all a ∈ L by estimating Prx[f(x) = La(x)] using sampling.

4. Define g∗ =
∑

a∈L ĝaχa as an estimate for f ∗. Return the function g(x) = 1
2 + 1

2g∗(x).

To bound the fraction of inputs on which f and g disagree, we will need to bound the errors due to
the omission of the small Fourier coefficients, and in the estimation of the large Fourier coefficients.

See [KM93] for this interpretation of Goldreich-Levin, and for interesting applications to learning
theory.

4.7 More Hard-Core Predicates Using List Decoding

In this section we present the results of Akavia et al. [AGS03], which give a fresh coding-theoretic
perspective to results that, previously, had only ad-hoc algebraic proofs.

The techniques of Akavia et al. give, in particular, new proofs that certain predicates are
hard-core for RSA function and for exponentiation, which are the two more studied families of
permutations that are conjectured to be one-way. We recall their definition below.

Definition 9 Given N = pq, p and q prime, choose e so gcd(e, ϕ(N)) = 1. Then the RSA
permutation ZN → ZN is

RSAN,e(x) = xe mod N .

Definition 10 Given p prime, g a generator for Z
∗
p, the EXP isomorphism Zp−1 → Z

∗
p is

EXPp,g(x) = gx mod p .

Suppose that we have a permutation p mapping ZN into ZN , for example RSA or exponentiation,
and a predicate B : ZN → {0, 1}, and that we would like to show that if p is one-way that B is
hard-core. To prove such an implication we need to show that algorithm that computes B(x) given
p(x) (for a fraction of x’s noticeably larger than 1/2) can be transformed into an algorithm that
computes x given p(x) (for a noticeable fraction of xs.)

In order to express this reduction as a coding-theoretic problem, we asume we also have a code
C : ZN → {0, 1}n satisfying the following property.
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Definition 11 (Accessible Codes) C is accessible with respect to p, B if there is a probabilistic
polynomial time algorithm A such that

• For x ∈ ZN , j ∈ {1, . . . , n},

A(p(x), j) = p(y) s.t. B(y) = C(x)j .

• Over the choice of random x and j, A(p(x), j) is distributed close to uniform in ZN .

Intuitively, this is saying the if we are given x and j, and we are interested in computing the
j-th bit of the codeword C(x), then we can efficiently find a string z such that B(p(−1)(z)) is equal
to C(x)j . Furthermore, if we are interested in finding C(x)j for a random x and for a random j
then the string z will be uniformly distributed. This means that if we have an algorithm that has
a probability 1/2 + ε of computing B(y) given p(y) (the probability being over a random choice
of y), then we also have an algorithm that has probability essentially 1/2 + ε of computing C(x)j

given x and j (the probability being over the random choice of x and j.) In particular, for at least
an ε/2 fraction of the x’s we can compute C(x) on at least 1/2 + ε/2 of the entries.

We then have the following result.

Lemma 20 Assume p is a one-way permutation, C is accessible (w.r.t. p,B), and C is list-
decodable (from 1

2 + ε agreement in time poly( 1
ε , log N)). Then B is a hard-core predicate for p.

Proof: We only give a sketch. Assume otherwise, that on 1
2 +ε fraction of the y, we can determine

B(y) from p(y). Over x and j, A(p(x), j) is (nearly) uniform, so there is some ε
2 fraction of the x’s

for which 1
2 + ε

2 of the codeword indices j are good. The list-decoding algorithm succeeds for these
x’s. �

In order to prove that, for example, a certain predicate is hard-core for RSA, we need to define
a list-decodable error-correcting that is accessible with respect to RSA and the predicate. The
following family of codes will work in many instances.

Definition 12 (Multiplication Code) Let B : ZN → {0, 1} be a predicate. We define the mul-

tiplication code for B, CB : ZN → {0, 1}ZN as

CB(x)j = B(xj mod N) .

There are two steps now for showing that a predicate B is hard-core for a permutation p using
this framework: show that CB is accessible for p, and show that CB is a list-decodable code.

Clearly, the second part of the proof depends only on B, and it is independent of the particular
permutation p that we have in mind. Perhaps surprisingly, for RSA and EXP the first part of the
proof does not depend on B at all.

Lemma 21 ∀B, CB is accessible with respect to RSA and EXP.

Moving on to the list-decodability of CB, we first need the following definition.

Definition 13 B : ZN → {0, 1} is a basic t-segment predicate if in

B(0), B(1), B(2), . . . , B(N − 1), B(0) ,

there are ≤ t changes of values. B is t-segment if for some invertible a ∈ Z
∗
N , B(xa) is basic

t-segment.
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For example, the most-significant bit, msb(x), defined by

msb(x) =

{
1 if x ≥ dN/2e
0 otherwise

is a basic 2-segment predicate. (Moreover, msb was previously known to be a hard-core predicate
for RSA and EXP.)

As another example, if N is odd, then the least significant bit, lsb(x) = x mod 2, is a 2-segment
predicate. Indeed, msb(x) = lsb(2x) – equivalently, lsb(x) = msb(x/2) = msb(x N+1

2 ). For if

x = 2y + b with b ∈ {0, 1} and 0 ≤ y < N−b
2 , then

x
N + 1

2
= (N + 1)y +

N + 1

2
b = dN

2
eb + y .

Notice that EXP leaks the least significant bit (whether or not gx mod p is a quadratic residue).
The above argument fails since lsb(2x) = 0 in the domain Zp−1 since p−1 is even; 2 is not invertible.

Theorem 22 (Main Result of [AGS03]) Let B : ZN → {0, 1} be a balanced, t-segment predi-
cate. Then there is a list-decoding algorithm that given t and ε, and oracle access to g : ZN → {0, 1}
having agreement 1

2 +ε with CB(x), runs in time poly(log N, t, 1/ε) and outputs a list that with high
probability contains x.

(By “balanced,” we mean that B has at most a constant more, or fewer, zeros than ones. This
condition could be weakened.)

We get as immediate corollaries that msb is hard-core for RSA and EXP, and, in fact, every
balanced t-segment predicate B is hard-core for RSA and EXP.

The proof of Theorem 22 has essentially four parts.

1. First, the authors consider the Fourier analysis of functions of the form f : ZN → C. We
can think of codewords CB(x) as functions mapping ZN into {0, 1}, and so, in particular,
as functions mapping ZN into {0, 1}. The authors show that if B : ZN → {0, 1} is a basic
t-segment predicate then, for every x, the function f corresponding to the codeword C B(x)
is concentrated, which essentially means that f is well-approximated by a function that has
only few non-zero coefficients.

2. Then the authors show that if f is a concentrated function and g is another function that
agrees with f on a 1/2 + ε fraction of inputs, then there is a Fourier coefficient that is large
(that is, at least some value depending on ε and on the “concentration” of f) for both f and
g.

3. The authors also show that given oracle access to a function f : ZN → C and a threshold τ it
is possible to efficiently find the (small) list of all the coefficients of f that are larger than τ .

4. Finally, for every fixed t-segment predicate B, there is an algorithm that given a Fourier
coefficient finds the (small) list of all the strings x such that that coefficient is large for the
function corresponding to CB(x)

Having proved all these results, the list-decoding algorithm is as follows: we first find (using part
3 above) all the large Fourier coefficients of g, where “large” means larger than a threshold that is
polynomial in ε, 1/t and 1/ log N . Then, for each of these coefficients, we find (using part 4) all
the strings x such that CB(x) is large in that coefficient.
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4.8 Notes and References

Hard-core predicates appear in the work of Blum and Micali [BM84] and of Goldwasser and Micali
[GM84], and they were defined in a more general setting by Yao [Yao82], who showed that every
one-way permutation can be modified to have a hard-core predicate. Levin [Lev87] gives a different
proof that uses error-correcting codes. Goldreich and Levin [GL89] give a more efficient construction
of hard-core predicates. As previously discussed, the Goldreich-Levin algorithm can be seen as a
sub-linear time list-decoding procedure for the Hadamard codes. Goldreich and others [GRS00]
give a list-decoding algorithm for the Reed-Muller codes that runs in sub-linear time for certain
ranges of the parameters. The algorithm is required to output a list of messages, rather than
a list of implicit representations, and so the linear time cannot be sublinear in k. (Although it
is sub-linear in n if n is much larger than k.) A general connection between list-decoding and
hard-core predicates was recognized in unpublished work in mid 1990s by Impagliazzo and Sudan.
Kushilevitz and Mansour [KM93] recognized the connection between Goldreich-Levin and Fourier
analysis, and its applications to learning.

Prior to the work of Akavia and others [AGS03], hard-core predicates for specific algebraic one-
way permutations were proved with ad-hoc techniques. The work of Akavia and others [AGS03]
combines learning, list-decoding, Fourier analysis and hard-core predicates in a very surprising
generalization of the techniques of [GL89].

Sudan and others [STV01] present sublinear time list decoding algorithms for Reed-Muller
codes, with applications to worst-case to average-case complexity. The connection between coding
theory and worst-case to average-case connection is further discussed in [TV02, Vio03, Tre03].

5 Locally Testable Codes

In this section we consider codes with sub-linear time error-detection algorithms. We look for
algorithms that are able to distinguish valid codewords from strings that are “far” in Hamming
distance from all codewords.

Definition 14 (Locally Testable Code (LTC)) A code C : Σk → Σn is (q, δ, p)-locally testable
if there is an oracle algorithm A of query complexity q such that

• For every message x, Pr[AC(x)accepts] = 1.

• For every string y that has distance at least δn from all codewords of C, Pr[Ayaccepts] ≤ p.

This notion was introduced by Rubinfeld and Sudan [RS96] and by Friedl and Sudan [FS95],
and it also appears (under the name of “probabilistically checkable” codes) in Arora’s PhD thesis
[Aro94] and (under the name “checkable” codes) in Spielman’s PhD thesis [Spi95].

Remark 2 We make a few remarks about the definition.

• A stronger condition is to say that the code is (c, q)-locally checkable if there is an algorithm
A of query complexity q that satisfies the first part of the above definition, and such that if y is
a string that is at distance at least d from all codewords then Pr[Ayaccepts] ≤ 1− cd/n. This
means that the algorithm has, as in the above definition, a constant probability of rejecting
strings that are at more than a certain constant minimum distance from all codewords, but
also that it has a non-zero probability of rejecting any non-codeword, and that the rejecting
probability grows linearly with the distance of the code. Many positive results about locally
checkable codes prove that this stronger condition is satisfied.
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• We gave a one-sided error definition. A two-sided error definition could also be given and it
would also make sense.

While the notion of locally testable codes was introduced only around 1994, local testers for
the Hadamard code [BLR93] and for the Reed-Muller code [GLR+91] had been studied in the
context of program self-testing, and had found their most powerful application in the construction
of probabilistically checkable proofs.

5.1 Local Testers for the Hadamard Code and the Reed-Muller Code

In this section we present simple local testers for the Hadamard code and for the Reed-Muller code.
More involved encodings are used in the proof of the PCP Theorem and in the construction of
shorter locally testable codes.

In the problem of testing the Hadamard code we are given a string f ∈ {0, 1}2k
, that we can

think of as a function f : {0, 1}k → {0, 1} and we want to devise an algorithm that accepts with
probability one if f is a linear function and that rejects with constant probability if f is far from
linear. A necessary and sufficient condition for f to be linear is that f(a) ⊕ f(b) = f(a ⊕ b) for
every a, b ∈ {0, 1}k . Consider the test that checks this condition for random a, b.

Algorithm BLR:
Input: function f : {0, 1}k → {0, 1} given as an oracle

pick x, y ∈ {0, 1}k

if f(x) ⊕ f(y) == f(x ⊕ y) then accept
else reject

This test was proposed by Blum, Luby and Rubinfeld [BLR93]. It is clear that if f is linear then
the test accepts with probability one. The authors of [BLR93] show that if f is at relative distance
at least δ from all linear functions then the test rejects with probability at least 2δ/9. The following
improvement is due to Bellare and others [BCH+96].17

Theorem 23 ([BCH+96]) If f is at relative distance at least δ from all linear functions then the
Algorithm BLR rejects f with probability at least δ.

Proof: We just give a sketch of the proof. Recall the notion of Fourier transfrom of a Boolean
function discussed in Section 4.6. If {f̂a}a∈{0,1}k are the Fourier coefficients of f , then the relative

distance between f and the linear function La is precisely 1
2 − 1

2 f̂a. Under the assumption of the

theorem, 1
2 − 1

2 f̂a ≥ δ for every a. A simple computation shows that the probability that the BLR

test rejects is precisely 1
2 − 1

2 f̂3
a . Therefore we have:

Pr[BLR accepts f ] =
1

2
− 1

2
f̂3

a ≥ 1

2
− 1

2
max

a
f̂a

∑

a

f2
a =

1

2
− 1

2
max

a
f̂a ≥ δ

where we used the fact that
∑

a f̂2 = 1 for every Boolean function f . �

Let us now turn to the problem of checking the Reed-Muller code. Here we are given a function
f : F

m → F and we want to recognize the case in which f is far from every m-variate polynomial of

17The result of [BLR93] applies more generally to the problem of testing whether f : G → H is far from all
homomorphism of group G into group H. The improvement in [BCH+96] is only for the case, discussed here, in
which G = {0, 1}k, H = {0, 1}, and the group operation is XOR.
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total degree t. To simplify notation, let 1, . . . , t + 1 denote t different field elements. The following
testing algorithm is due to Rubinfeld and Sudan [RS96]. (Note the similarity to the decoding
algorithm of Section 3.3.2.)

Algorithm RS:
Input: degree parameter t, function f : F

m → F given as an oracle
pick x, y ∈ F

m

Find univariate degree t polynomial q such that q(i) = f(x + i · y) for i = 1, . . . t + 1
if f(x) = q(0) then accept
else reject

If f is equal to some m-variate polynomial of degree t, then the restriction of f to the line x+ iy is
a univariate polynomial of degree t in i, that we can find using interpolation. The algorithm finds
the correct polynomial q(), and then it verifies that q(0) = f(x) and accepts.

As usual in these proofs, the difficult part of the analysis is to show that if f is far from all
polynomials, then the test rejects with high probability.

Theorem 24 ([RS96]) There is a constant c such that if |F| ≥ 2t+2, and f has relative distance
at least δ from all degree-t polynomials, with δ < c/t2, then Algorithm RS rejects with probability
at least δ/2.

This gives a local testers for polynomials with constant degree.

5.2 Probabilistically Checkable Proofs

Probabilistically checkable proofs are defined as follows.

Definition 15 (Probabilistically Checkable Proofs) Let L be a language and V be a proba-
bilistic polynomial time oracle machine. We say that V is a (q(n), r(n))-restricted PCP verifier for
L if the following conditions hold:

• On input x of length n, and for every oracle π, V π(x) makes at most q(n) oracle queries and
tosses at most r(n) random bits.

• If x ∈ L then there is a string π such that Pr[V π(x)accepts] = 1.

• If x 6∈ L then for every string π, Pr[V π(x)accepts] ≤ 1/2.

We denote by PCP[r(n), q(n)] the class of languages that have (r(n), q(n))-restricted verifiers.

We think of π as being a “proof” that x ∈ L. Such a proof needs only be of length 2r+q,
because this is the maximum number of distinct oracle queries that the machine can make. If
r + q = O(log n) then the proof π is of polynomial length, and the verification process of V can
be derandomized by running through all possible r, so every language in PCP[O(log n), O(log n)]
is also in NP, and the proof π can be thought of as an NP witness for x.

The stunning result about PCP is that every NP witness can be put in such a form that it can
be checked with high confidence in constant time.

Theorem 25 (PCP Theorem [AS98, ALM+98]) NP = PCP[O(log n), O(1)].

Rather than trying to survey constructions, applications and ideas in the area of PCP, we will
discuss the recently proposed notion of “PCP of proximity,” that has been used to construct shorter
locally testable codes [BSGH+04] and to make progress towards a combinatorial and simpler proof
of the PCP Theorem [DR04].
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5.3 PCPs of Proximity

Consider the following definition.

Definition 16 (PCP of Proximity [BSGH+04, DR04]) An (r(n), q(n))-restricted PCP of δ-
Proximity for an NP relation R is a probabilistic polynomial time oracle algorithm A such that

• If (x, y) ∈ R, then there is a π such that Pr[Ay,π(x)accepts] = 1.

• If Pr[Ay,π(x)accepts] ≤ 1/2. then y is δ-close to a y ′ such that (x, y′) ∈ R.

A PCP of proximity is the same as a standard PCP, except for the fact the proof is composed
of two parts: a standard witness y and a possibly very complex component π. When the verifier
accepts with high probability, then not only it has confidence that a witness exists for input x, but
actually it has confidence that y itself is close to a witness.

The definition becomes more clear, perhaps, when specialized to a particular NP problem, say,
circuit satisfiability.

Definition 17 (Assignment Tester) An assignment tester is a PCP of proximity for the circuit
satisfiability problem. Formally, a (δ, r(n), q(n)) Assignment Tester is a probabilistic polynomial
time oracle algorithm A such that

• If C is a circuit and a is an assignment such that C(a) = 1, then there is a π such that
Pr[Aa,π(C)accepts] = 1.

• If Pr[Aa,π(C)accepts] ≤ 1/2, then a is δ-close to a a′ such that C(a′) = 1.

5.4 Relations between PCPs of Proximity, PCP, and Locally Testable Codes

We have already observed that a PCP of Proximity is only a stronger algorithm than a PCP verifier.
The randomness, query complexity and completeness constraints are the same. The soundness
constraint in the definition of PCPP not only implies that x is in the language, but it also implies
the stronger property that there is a witness that x ∈ L which is close to the initial segment of the
oracle proof.

It is less trivial, but still simple, to get a LTC from a PCPP, or, equivalently, from an AT. Let C
be an error-correcting code, and let C be a circuit that checks whether a given string is a codeword
of the code, let V be an assignment tester for C. Then for every codeword C(x) there is a proof
πx such that C(x), π(x) is accepted with probability 1 by the assignment tester V . Suppose now
that (y, w) is accepted with probability higher than 1/2 by V : then y is close to a valid codeword
C(x). If we could argue that (y, w) is close to (C(x), πx), then we would have shown that the
mapping x → (C(x), πx) is a good error-correcting code. Unfortunately, if the length of the proof
is large compared with the length of the assignment, then it is not possible to conclude that (y, w)
is close to (C(x), πx) just because y is close to C(x). This is indeed a problem because in all known
constructions the length of the proof is super-linear in the length of the assignment.

This problem is resolved by considering the mapping x → (C̄(x), πx) where C̄(x) is a sequence
of several identical copies of C(x), enough copies so that the total length is equal to about O(1/δ)
times the length of y.

Our tester is given a string (y1, . . . , yk, w), where the yi are supposed to be identical copies of the
same codeword C(x), and w is supposed to be the proof πx that C(x) is a valid codeword. The tester
first checks that strings yi are approximately equal. This is done by repeatedly picking a pair i, j
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and then comparing the strings yi, yj in a random position. Then the tester simulates the algorithm
of the assignment tester. Each query of the assignment tester to the assignment part of the oracle
is randomly routed to one of the strings yi. Clearly a valid codeword is accepted with probability 1.
The analysis is completed by arguing that if the test accepts with high probability (say, larger than
3/4), then the strings yi are approximately all equal and that a “majority” decoding into a single
string y is such that y, C(x) would have been accepted by the assignment tester with probability at
least 1/2. So y is close to a valid codeword, and y1, . . . , yk is close to a valid repetition of a valid
codeword. Details are in the full version of [BSGH+04].

From [SS96, Spi96], we know that there are error-correcting codes C : {0, 1}k → {0, 1}n with
constant relative minimum distance, for which n = O(k) and such that there is a circuit of size O(k)
that recognizes valid codewords. If there were assignment testers with constant query complexity
and linear proof length, then the above argument would show the existence of an LTC with block
length O(k), that is, an asymptotically optimal LTC.

Assignment testers with linear proof length are not known, and the best known construction is
as follows.

Theorem 26 ([BSGH+04]) For every constant ε there is a constant q such that there is an
Assignment Tester of query complexity q that, for a circuit of size k, uses O(log k) randomness and
expects a proof of length 2O((log k)ε) · k.

We remind the reader that results from [KT00] imply that a locally decodable code with a
decoder having constant query complexity cannot have encoding length k1+o(1), so the above result
already shows a separation between the rate of LTCs versus LDCs with comparable parameters.

The main open question is clearly

Open Question 4 Are there LTCs with constant query complexity and constant rate?

Similarly, we could ask if there are assignment testers with proofs of linear length. If there
were an assignment tester with logarithmic randomness, constant query complexity and a proof of
linear length, then there would a randomized reduction from, say, 3SAT to the Max CUT problem.
Starting from a 3SAT instance with n variables and O(n) clauses, the reduction would produce an
instance of Max CUT with N = O(n) nodes and M = O(n). For some fixed constants p and ε,
a satisfiable 3SAT instance would produce a graph where the size of the maximum cut is at least
pM ; an unsatisfiable instance of 3SAT would produce a graph where the size of the maximum cut
is at most p(1 − ε)M . Consider now the following question.

Open Question 5 Is it possible to approximate the Max CUT problem in bounded-degree graphs
to within a factor 1 + o(1) in time 2o(n)?

A positive answer would imply that an assignment tester like the one discussed above could be
used to get a 2o(n) algorithm for 3SAT, a conclusion that is typically considered to be unlikely. A
positive answer to Question 5 could then be taken as evidence that assignment testers need proofs
of super-linear length.

5.5 Notes and References

The PCP Theorem was the culmination of a long line of collaborative work, that is difficult to
summarize.
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In telling this story, one typically starts from the introduction of the model of “interactive proof
systems” due independently to Goldwasser, Micali and Rackoff [GMR89] and to Babai [Bab85]. In
this model, a probabilistic verifier interacts with a prover, as opposed to receiving a fixed proof
and checking its validity. The work of Goldwasser, Micali and Rackoff [GMR89] also introduces
the notion of “zero-knowledge proof system,” which later became a fundamental primitive in the
construction of cryptographic primitives. A fundamental result by Goldreich, Micali and Wigderson
[GMW91] shows that every problem in NP has a zero-knowledge proof system, assuming that a
certain cryptographic assumption is true. Ben-Or et al. [BOGKW88] considered a model of zero-
knowledge where the verifier can interact with two (or, more generally, several) provers, who are all
computationally unbounded but unable to communicate with each other once the protocol starts.
The contribution of [BOGKW88] was to show that every problem in NP has a zero-knowledge proof
system in this model, without cryptographic assumptions. The model of multi-prover interactive
proof (without the zero-knowledge requirement) was further studied by Fortnow, Rompel and
Sipser [FRS88]. They show that the class MIP of languages admitting such proof systems has
the following equivalent characterization: it can be seen as the class of languages that admit
exponentially long proofs of membership that can be checked in polynomial time by a randomized
verifier (with bounded error probability). In modern terminology, MIP = PCP[poly(n),poly(n)].
This class is clearly contained in NEXP, where NEXP is the class of decision problems that admit
exponentially long proofs that can be checked in exponential time in the length of the input (but,
without loss of generality, in polynomial time in the length of the proof itself).

Initially, it was conjectured that MIP was only a small extension of NP, and that coNP 6⊆ MIP.
Shortly after Shamir’s proof that IP = PSPACE [Sha92], Babai, Fortnow and Lund [BFL91]
showed that MIP = NEXP. This is a surprising result, because it says that for every language that
admits exponentially long proofs, such proofs can be encoded in such a way that a polynomial-
time randomized verifier can check them. The verifier will accept correct proofs with probability
1, and “proofs” of incorrect statements with probability ≤ 1/2 (or, equivalently, with probability
exponentially small in the length of the input). So the verifier becomes convinced of the validity of
the proof even if it only looks at a negligible part of the proof itself.

It is natural to ask whether polynomially long proofs can be checked in polylogarithmic time.
This question has to be phrased carefully, since a polylogarithmic time verifier cannot even read the
instance, which makes it impossible to verify a proof for it. However if both the instance and the
proof are encoded in a proper (efficiently computable) way, then Babai et al. show that polyloga-
rithmic time verification is possible [BFLS91]. A variant of this result was also proved by Feige et
al. [FGL+91]: they show that NP-proofs have a quasi-polynomial length encoding (i.e. an encoding
of length nO(log log n)) such that a polynomial-time verifier can verify the correctness of the proof in
polynomial time by using O(log n log log n) random bits and reading O(log n log log n) bits of the
proof. The main result of Feige et al. [FGL+91] was to show a connection between the computa-
tional power of such a model and the hardness of approximating the Max Clique problem.18 The
result of Feige et al. [FGL+91] can be written as NP ⊆ PCP[O(log n log log n), O(log n log log n)].

Arora and Safra [AS98] introduced several new ideas to improve on [FGL+91], and proved
that NP = PCP[O(log n), O(

√
log n)]. The main contribution of Arora and Safra is the idea of

“composing” proof systems together. The next step was to realize that the reduction from PCP
to Max Clique was not an isolated connection between proof checking and approximability. Sudan
and Szegedy (as credited in [ALM+98]) discovered that the computations of a (O(log n), O(1))-
restricted verifier can be encoded as instances of the Max 3SAT problem. Then, using the web

18A clique in a graph is a subset of vertices that are all pairwise adjacent. The Max Clique problem is, given a
graph, to find the largest clique.

39



of reductions between optimization problems initiated by Papadimitriou and Yannakakis [PY91],
this also implies that the strength of (O(log n), O(1))-restricted verifiers implies the hardness of ap-
proximating several important problems including the Traveling Salesman Problem and the Steiner
Minimal Tree problems in metric spaces. This was a strong motivation to prove the PCP Theo-
rem [ALM+98], a proof that came only a few months after the initial circulation of the paper of
Arora and Safra [AS98]. The work of Arora and others [ALM+98] introduced several new ideas and
results, including the construction of a constant-query verifier requiring exponential proof length,
the proof of a stronger “low degree test” (see below) and the construction of a constant-query verifier
with polynomial proof length (with the proof being a string over an alphabet of super-polynomial
size).

More recent work has focus on strengthening relation between query complexity, error probabil-
ity and other parameters, and improve hardness of approximation. In this paper we focus instead
on the questions of proof length and construction of locally testable codes, that have received
relatively less attention until recently.

Locally testable codes were discussed in many places, including [Aro94, Spi95, FS95]. Con-
structions of short PCPs were first presented by Polishuck and Spielman [PS94]. Friedl and Sudan
[FS95] construct both short PCPs and good locally testable codes, and further improvements are
due, more recently, to Harsha and Sudan [HS00].

The design and analysis of “low degree” tests is essentially the problem of giving local testers
for polynomial codes. The development of this line of work up to 1992 is extensively surveyed in
Sudan’s thesis [Sud92], and the main results are in [BFL91, BFLS91, FGL+91, GLR+91, RS96,
AS98, ALM+98]. The previously cited papers [PS94, FS95, HS00], that focus on short PCP proofs
and efficient locally testable codes, contain results on low-dgree tests. Other recent work on low
degree tests not related to the length of the PCP (but rather on achieving very low error probability)
appears in [RS97, AS97].

Considerable progress has been made on the construction of short PCPs and short LTCs in
the past two years. Goldreich and Sudan [GS02] give a nearly-linear length construction of locally
testable codes and PCPs. The result of [GS02] is based on a probabilistic construction, and so
the codes are not computable in polynomial time, although they can be computed by polynomial
size circuits. Similarly, the verifier in their PCP construction can be realized by a polynomial size
circuit but not by a uniform machine. The results of Goldreich and Sudan have been improved
and made explicit in [BSSVW03, BSGH+04]. There are no known lower bound for locally testable
codes, except the one in [BSGS03] for a very special case.

Dinur and Reingold have recently made considerable progress towards a simpler and more
“combinatorial” proof of the PCP theorem [DR04], a direction of work on which there is essentially
no previous result, except for interesting work by Goldreich and Safra [GS00a].
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A Appendix

A.1 Unique Decoding of the Reed-Solomon Code

In this section we describe the Berlekamp-Welch [WB86] polynomial time algorithm for decoding
the Reed-Solomon code.

Recall that decoding an [n, k, n − k + 1]q Reed-Solomon code in a channel that introduces
e < (n − k + 1)/2 errors is equivalent to the following problem:

• Given: distinct elements x1, . . . , xn of Fq, parameters e and k, with e < (n − k + 1)/2, and
elements y1, . . . , yn of Fq;

• Find: a polynomial p of degree at most k − 1 such that

#i : p(xi) 6= yi ≤ e

Consider the following algorithm:

Algorithm BW:
if there is a polynomial p such that p(xi) = yi for all i = 1, . . . , n then output p
else

Find polynomials E(x) and N(x) such that:
- E is not identically zero;
- E(x) has degree at most e and N(x) has degree at most e + k − 1;
- For every i = 1, . . . , n, N(xi) = E(xi) · yi;

Output N(x)/E(x), or output error if N(x) is not a multiple of E(x).

We claim that the algorithm can be implemented to run in O(n3) time and that it correctly
finds the unique solution.

Let p be the unique solution, and let I = {i : p(xi) 6= yi}. If I is empty, then the algorithm
finds p in the first step. We want to show that, if I is not empty, then remaining steps can be
implemented in O(n3) time and that the algorithm finds p in the last step.

Regarding efficiency, polynomial division can be realized in almost linear time, so we only need to
worry about the task of finding E and N We can write E(x) =

∑e
i=0 aix

i and N(x) =
∑e+k−1

i=0 bix
i,

and see the problem of realizing step (2) of the algorithm as the problem of finding coefficients ai

and bi such that the constraints N(xi) = E(xi)yi are satisfied. Such constraints are linear in ai and
bi, and so, if the set of constraints has a non-zero solution, then a non-zero solution can be found
in cubic time using Gaussian elimination.

To see that a non-zero solution exists, let us define the polynomials E(x) =
∏

i∈I(x − xi) and
N(x) = E(x) ·p(x). Then by definition the degree of E is at most e, and the degree of N is at most
k − 1 + e. Furthermore, if i ∈ I we have E(xi) = 0 and N(xi) = 0, so that N(xi) = E(xi)yi = 0;
if i 6∈ I we have N(xi) = E(xi)p(xi) = E(xi)yi, and so all the constraints are satisfied. Finally, I
is not empty (otherwise we would have found p in the first step of the algorithm) and so E is not
the all-zero polynomial.

Regarding correctness, let E,N be the polynomials defined above, and let E ′, N ′ be the solution
found by the algorithm, we want to argue that N(x)/E(x) = N ′(x)/E′(x), which is the same
as N(x)E′(x) = N ′(x)E(x). The polynomials N(x)E ′(x) and N ′(x)E(x) have degree at most
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2e + k − 1 < n, and so, to show that they are equal, it is enough to show that they agree in n
inputs. This is easily verifier because, for every i = 1, . . . , n, we have

N(xi)E
′(xi) = yiE(xi)E

′(xi) = N ′(xi)E(xi)

A.2 List-Decoding of the Reed-Solomon Code

In this section we present a polynomial time algorithm, due to Sudan [Sud97], to list-decode the
Reed-Solomon code. The algorithm proves Theorem 7.

Recall that the list-decoding problem for Reed-Solomon codes can be stated as follows: given n
distinct points (x1, y1), (x2, y2), . . . , (xn, yn) in F

2
q and parameters k, t, find a list of all polynomials

p such that:

1. p has degree ≤ k − 1; and

2. # i : p(xi) = yi ≥ t.

A.2.1 A Geometric Perspective

For the purpose of this algorithm, we will want to describe the n given points using low-degree
planar curves that pass through them; that is, we consider curves {(x, y) : Q(x, y) = 0} where
Q(x, y) is a low-degree polynomial. Note that we are not restricted to curves with degree one in y;
in particular, we may describe points on a circle centered at (0, 0) with the equation x2 +y2−1 = 0.
Other examples of point sets that may be described using low-dimensional curves are lines, and
unions of lines and circles.
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� In the example on the left, we have a set of 13 points that lie

on the union of a circle and two lines. Suppose the point in
the center is (0, 0). Then, the set of points lie on the curve
described by: (x2 + y2 − 1)(x − y)(x + y) = 0.

A.2.2 A Simple List-Decoding Algorithm

For the list-decoding problem, the intuition is that if p is a polynomial with large agreement, then
the curve y − p(x) = 0 passes through many of the given points. Therefore, what we will do in the
list-decoding algorithm is to first find a low-degree polynomial Q passing through all of the given
points, and then show that all low-degree curves that pass through many of the given points divides
Q. This reduces the list-decoding problem to factorizing a bivariate polynomial over a finite field,
for which efficient algorithms do exist. Consider Algorithm S in Figure 1.
There are two problems that we need to address:

1. Does there exist a low-degree polynomial Q that pass through all the given points, and if so,
how can we find one efficiently?

2. Must every low-degree polynomial that pass through many of the given points divide Q?
For instance, taking t = 3 for concreteness; it seems conceivable that we have a polynomial
R(x, y) quadratic in y that passes through 6 of the given points that lie on y−p1(x), y−p2(x)
for two low-degree polynomials p1, p2, and that R(x, y) divides Q, but neither y − p1(x) nor
y − p2(x) does.
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Algorithm S:
Input: n distinct points (x1, y1), . . . , (xn, yn) in F

2
q

Find Q(x, y) such that:
- Q has degree ≤ dx − 1 in x and ≤ dy − 1 in y;
- Q(xi, yi) = 0 for all i = 1, 2, . . . , n;
- Q 6≡ 0.

Factor Q(x, y)
for each factor of the form y − p(x)

if p is a feasible solution then output p

Figure 1: Sudan’s algorithm for list-decoding the Reed-Solomon code.

A.2.3 Finding Q

First, we address the problem of finding Q. We may write

Q(x, y) =
∑

i=0,...,dx−1;j=0,...,dy−1

cijx
iyj

Now, the problem reduces to finding the dxdy coefficients of Q: cij, i = 0, 1, . . . , dx − 1; j =
0, . . . , dy − 1. Observe that the requirement Q(xi, yi) = 0 is equivalent to a system of linear
constraints on the coefficients {cij}. Furthermore, this is a homogeneous system, so it will always
have the all 0’s solution, corresponding to Q ≡ 0. On the other hand, if dxdy > n, that is, the
number of variables is more than the number of linear constraints, then we can always efficiently
find a non-zero solution to the linear system that yields a non-zero Q that passing through all the
n points.

A.2.4 Proof of Correctness

Next, we will have to show that every polynomial p with large agreement with the points
(x1, y1), . . . , (xn, yn) is a factor of Q. More precisely, we are told that:

1. p(x) is a degree k − 1 polynomial such that y − p(x) is zero in at least t of the points.

2. Q(x, y) has degree dx − 1 in x and dy − 1 in y and passes through all the points (that is,
Q(xi, yi) = 0 for i = 1, 2, . . . , n).

3. There are ≥ t points (xi, yi) such that Q(xi, yi) = yi − p(xi) = 0.

For simplicity, we can rewrite these conditions assuming that we are choosing n points on the
curve Q(x, y) = 0, which yields the following statement:

Proposition 27 Suppose that

1. Q(x, y) is bivariate polynomial in x, y with degree dx − 1 in x and dy − 1 in y.

2. p(x) is a degree k − 1 polynomial in x.

3. There are ≥ t points (xi, yi) such that Q(xi, yi) = yi − p(xi) = 0.

4. t > (dx − 1) + (k − 1)(dy − 1).
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Then y − p(x) divides Q(x, y).

This proposition is a special case of Bezout’s Theorem, that says that any two curves that
share lots of points in common must share a common factor. Here, y − p(x) is irreducible (over
polynomials in y with coefficients from Fq[x]), so it divides Q(x, y). A simple proof of this special
case is shown below.

It is also important to note that we only require that the points (x1, y1), . . . , (xn, yn) be distinct,
and not that x1, . . . , xn be distinct, as in the case for list-decoding Reed-Solomon codes. This allows
the list-decoding procedure to be used in a more general setting, as we shall see later.

Proof: View Q is a univariate polynomial in y whose coefficients are univariate polynomials in x:

q(y) = q0(x) + yq1(x) + . . . + ydy−1qdy−1(x)

Recall the Factor Theorem for polynomials: β is such that q(β) = 0 iff y − β divides q(y). This
tells us that p(x) is such that q(p(x)) ≡ 0 iff y − p(x) divides Q(x, y). Therefore, to show y − p(x)
divides Q(x, y), it suffices to show that Q(x, p(x)) is the zero polynomial.

From condition 3, we know that Q(xi, p(xi)) = 0 for at least t distinct values of the xi’s. On
the other hand, Q(x, p(x)) as a univariate polynomial in x can be written as:

Q(x, p(x)) = q0(x) + p(x)q1(x) + . . . + p(x)dy−1qdy−1(x)

and has degree at most (dx − 1) + (k − 1)(dy − 1). Therefore, if t > (dx − 1) + (k − 1)(dy − 1), then
Q(x, p(x)) ≡ 0 and y − p(x) divides Q(x, y). �

A.2.5 Fixing the Parameters

We are now ready to fix the parameters dx, dy. Recall that we require that:

1. dxdy > n, so that we have sufficient variables in the linear system for finding Q;

2. t > dx + kdy, to ensure that every polynomial with large agreement is a factor of Q.

We want to maximize t under both constraints, and that is optimized by setting dx =
√

kn and
dy =

√

n/k, so dx + kdy = 2
√

kn. As a polynomial in y, Q has degree dy and therefore at most
dy factors. Hence, there are at most dy =

√

n/k polynomials in the list. This yields the following
results:

Theorem 28 Given a list of n points (x1, y1), . . . , (xn, yn) in F
2
q, we can efficiently find a list of

all polynomials p(x) of degree at most k − 1 that pass through at least t of these n points, as long
as t > 2

√
nk. Furthermore, the list has size at most

√

n/k.

Theorem 29 For every ε > 0, and for all sufficiently large n, there exist:

1. A [n, εn, (1−ε)n]n Reed-Solomon code, such that we can efficiently list-decode from agreement
in at least 2

√
εn locations, and size of the list is at most

√

1/ε.

2. A [n, ε2n/4, (1 − ε2/4)n]n Reed-Solomon code such that we can efficiently list-decode from
agreement in at least εn locations, and the size of the list is at most 2/ε.
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A.2.6 Increasing the List-Decoding Radius

Observe that in the proof of correctness, we only require that Q(x, p(x)) has degree less than t in x.
Therefore, it suffices that for all monomials xiyj in Q(x, y), we have i+kj < t (instead of the more
restrictive constraint that i < t/2 and j < t/2k). This means that we may consider any Q(x, y) of
the form:

Q(x, y) =
∑

i+kj<t

cijx
iyj

Therefore, the number of coefficients (and thus the number of variables in the linear system) is
given by:

| {(i, j) : i + kj < t} |=

t/k
︷ ︸︸ ︷

t + (t − k) + (t − 2k) + . . . + (t − t

k
· k) =

t

k
· 1

2
(t + 0) =

t2

2k

(instead of t/2 · t/2k = t2

4k if we consider only i < t/2 and j < t/2k.) To ensure that the linear

system {Q(xi, yi) = 0 | i = 1, 2, . . . , n} is under-determined, we need t2

2k > n, or equivalently,

t >
√

2kn. For such t, it suffices to consider Q of the form:

Q(x, y) =
∑

i+kj<t | j≤
√

2n/k

cijx
iyj

This allows us to place an upper bound of
√

2n/k on the size of list (instead of the crude bound
t/k).

Theorem 30 Given a list of n points (x1, y1), . . . , (xn, yn) in F
2
q, we can efficiently find a list of

all polynomials p(x) of degree at most k − 1 that pass through at least t of these n points, as long
as t >

√
2nk. Furthermore, the list has size at most

√

2n/k.
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