
What Can be Efficiently Reduced to the

Kolmogorov-Random Strings?

Eric Allender∗†

Rutgers University, New Brunswick, NJ, USA

allender@cs.rutgers.edu

Harry Buhrman

CWI and University of Amsterdam, Amsterdam, Netherlands

buhrman@cwi.nl

Michal Koucký‡

McGill University, Montréal, PQ, Canada

mkoucky@cs.mcgill.ca

June 1, 2004

Abstract

We investigate the question of whether one can characterize complexity classes
(such as PSPACE or NEXP) in terms of efficient reducibility to the set of Kolmogorov-
random strings RC. We show that this question cannot be posed without explicitly
dealing with issues raised by the choice of universal machine in the definition of
Kolmogorov complexity. Among other results, we show that although for every uni-
versal machine U , there are very complex sets that are ≤P

dtt
-reducible to RCU

, it is
nonetheless true that P = REC ∩

⋂

U
{A : A≤P

dtt
RCU

}. We also show for a broad
class of reductions that the sets reducible to RC have small circuit complexity.

1 Introduction

The set of random strings is one of the most important notions in Kolmogorov complexity
theory. In this paper, we will be making reference to two widely-studied variants of
Kolmogorov complexity. The easiest variant to describe is C: Given a Turing machine
U , CU (x) is defined to be the minimum length of a “description” d such that U(d) = x.

∗This is an extended version of a paper that appeared in Proceedings of the 21st Symposium on
Theoretical Aspects of Computer Science, Montpellier, France, 2004.

†Partially supported by NSF grant CCR-0104823.
‡Partially supported by NSF grant CCR-0104823. Part of this work was done while visiting CWI,

Amsterdam and while a graduate student at Rutgers University, NJ.

1

Electronic Colloquium on Computational Complexity, Report No. 44 (2004)

ISSN 1433-8092

As usual, we fix one such “universal” machine U and define C(x) to be equal to CU (x).
In most applications, it does not make much difference which “universal” machine U is
picked; it suffices that U satisfies the property that for all U ′ there exists a constant c
such that CU (x) ≤ CU ′(x) + c. A string is said to be C-random (or simply random) if
C(x) ≥ |x|. (For additional background, please see [LV93, DH04].) Let RC denote the
set of random strings, and let RCU

denote the corresponding set when we need to be
specific about the particular choice of machine U .

The other variant of Kolmogorov complexity is known as “prefix-free complexity”.
The prefix-free complexity of a string x is denoted K(x), and (similar to C(x)) it is
defined as the length of the shortest string d such that U(d) = x, the difference being
that now U is restricted to be a machine such that if U(d) produces any output, then
for all non-empty strings z, U(dz) is undefined. Again, please consult [LV93, DH04]
for additional background and motivation for this notion. As above, let RK denote the
set of K-random strings, and let RKU

denote the corresponding set when we need to be
specific about the particular choice of machine U .

It has been known since [Mar66] that RC and RK are co-r.e. and are complete under
weak-truth-table reductions. (That is, the halting problem can be solved by a machine
that, on input x, computes a set of queries to RC and then uses the answers to those
queries to decide whether x is in the halting problem. It is important to note that in this
weak-truth-table reduction, there is no computable bound that can be placed on the time
used by the oracle machine, for the part of the computation that takes place after the
queries are answered.) This was improved significantly by Kummer, who showed that
RC is complete under truth-table reductions [Kum96] (even under disjunctive truth-
table reductions (dtt-reductions)).1 Thus there is a computable time bound t and a
function f computable in time t such that, for every x, f(x) is a list of strings with
the property that f(x) contains an element of RC if and only if x is not in the halting
problem. Kummer’s argument in [Kum96] is not very specific about the time bound t.
Can this reduction be performed in exponential time? Or in doubly-exponential time?
In this paper, we provide an answer to this question; surprisingly, it is neither “yes” nor
“no”.

The question of whether or not the halting problem is truth-table reducible to RK

is more complicated. (See [MP02].) We defer discussion of this matter until Section 4.
Kummer’s theorem is not primarily a theorem about complexity, but about com-

putability. More recently, however, attention was drawn to the question of what can
be efficiently reduced to RC. Using derandomization techniques, it was shown in
[ABK+02] that every r.e. set is reducible to RC (and to RK) via reductions computable
by polynomial-size circuits. This leads to the question of what can be reduced to RC

1Kummer does show in [Kum96] that completeness under truth-table reductions does not hold under
some choices of numberings of the r.e. sets; however his results do hold for every choice of a universal
Turing machine (i.e., “Kolmogorov” numberings, or “optimal Gödelnumberings”). Kummer’s result
holds even under a larger class of numberings known as “optimal numberings”. For background, see
[Sch74].

2

by polynomial-time machines. In partial answer to this question, it was also shown in
[ABK+02] that PSPACE is contained in PRC . In this paper, we use similar techniques
to show that NEXP is in NPRC . (One should note that these proof techniques give
similar statements also for RK, namely PSPACE ⊆ PRK and NEXP ⊆ NPRK .)

Question: Is it possible to characterize PSPACE in terms of efficient reductions to
RC (or RK)?

Our goal throughout this paper is to try to answer this question. We present a
concrete hypothesis later in the paper. Before presenting the hypothesis, however, it
is useful to present some of our work that relates to Kummer’s theorem, because it
highlights the importance of being very precise about what we mean by “the Kolmogorov
random strings”.

Our first theorem suggests that Kummer’s reduction might be computable in doubly-
exponential time.

Theorem 1 There exists a universal Turing machine U such that {02x
: x is not in

the Halting problem} is polynomial-time reducible to RCU
(and in fact this reduction is

even a ≤P
dtt reduction).

Theorem 1 is a corollary of Theorem 12.
Note that, except for the dependence on the choice of universal machine U , this is

a considerable strengthening of the result of [Kum96], since it yields a polynomial-time
reduction (starting with a very sparse encoding of the halting problem). In addition,
the proof is much simpler.

However, the preceding theorem is unsatisfying in many respects. The most annoying
aspect of this result is that it relies on the construction of a fairly “weird” universal
Turing machine U . Is this necessary, or does it hold for every universal machine? Note
that one of the strengths of Kolmogorov complexity theory has always been that the
theory is essentially insensitive to the particular choice of universal machine. We show
that for this question (as well as for other questions regarding efficient reductions to the
set of Kolmogorov-random strings) the choice of universal machine does matter.

1.1 Universal Machines Matter

To illustrate how the choice of universal machine matters, let us present a corollary of
our Theorem 13.

Corollary 2 Let t be any computable time bound. There exists a universal Turing
machine U and a decidable set A such that A is not dtt reducible to RCU

in time t.

Thus, in particular, the reason why Kummer was not specific about the running
time of his truth-table reduction in [Kum96] is that no such time bound can be stated,
without being specific about the choice of universal Turing machine. This stands in

3

stark contrast to the result of [ABK+02], showing that the halting problem is P/poly-
reducible to RC; the size of that reduction does not depend on the universal Turing
machine that is used to define RC.

Most notions in complexity theory (and even in computability theory) are invariant
under polynomial-time isomorphisms. For instance, using the techniques of [BH77]
it is easy to show that for any reasonable universal Turing machines U1 and U2, the
corresponding halting problems Hi = {(x, y) : Ui(x, y) halts} are p-isomorphic. However,
it follows immediately from Corollary 2 and Theorem 1 that the corresponding sets of
random strings RCUi

are far from being p-isomorphic; they are not even efficiently
reducible to each other.

Corollary 3 Let t be any computable time bound. There exist universal Turing ma-
chines U1 and U2 such that RCU1

is not many-one reducible to RCU2
in time t.

Recently, Miller has shown an even stronger result [Mil04]: There exist universal Tur-
ing machines U1 and U2 such that RCU1

is not many-one reducible to RCU2
by any

computable function. A proof of this fact can be found in the appendix.
The lesson we bring away from the preceding discussion is that the choice of univer-

sal machine is important, in any investigation of the question of what can be efficiently
reduced to the random strings. In contrast, all of the results of [ABK+02] (showing hard-
ness of RC) hold no matter which universal Turing machine is used to define Kolmogorov
complexity.

Another obstacle that seems to block the way to any straightforward characterization
of complexity classes in terms of RC is the fact that, for every universal Turing machine
and every computable time bound t, there is a recursive set A such that A≤P

dtt RCU

but such that A 6∈ DSPACE(t) (Theorem 15). Thus PRC does not correspond to any
reasonable complexity class. How can we proceed from here?

We offer the following hypothesis, as a way of “factoring out” the effects of pathologi-
cal machines. In essence, we are asking what can be reduced to the Kolmogorov-random
strings, regardless of the universal machine that is used.

Hypothesis 4 PSPACE = REC ∩
⋂

U PRCU .

We are unable to establish this hypothesis (and indeed, we stop short from calling
it a “conjecture”). However, we do prove an analogous statement for polynomial-time
dtt reductions.

Motivation for studying dtt reductions comes from Kummer’s paper [Kum96] (pre-
senting a dtt reduction from the complement of the halting problem to RC), as well
as from Theorem 1 and Corollary 2. The following theorem (which follows immedi-
ately from our Theorem 13) is similar in structure to Hypothesis 4, indicating that it is
possible to “factor out” the choice of universal machine in some instances.

Theorem 5 P = REC ∩
⋂

U{A : A≤P
dtt RCU

}.

4

We take this as weak evidence that something similar to Hypothesis 4 might be true,
in the sense that it shows that “factoring out” the effects of universal machines can lead
to characterizations of complexity classes in terms of reducibility to the random strings.

1.2 Approaching the Hypothesis

In order to prove Hypothesis 4, one must be able to show that there are decidable sets
that cannot be reduced efficiently to RCU

for some U . Currently we are able to do this
only for some restricted classes of polynomial-time truth-table reductions: (a) monotone
truth-table reductions, (b) parity truth-table reductions, and (c) truth-table reductions
that ask at most nα queries, for α < 1.

In certain instances, we are able to prove a stronger property. In the case of parity
truth-table reductions and disjunctive reductions, if there is a reduction computable in
time t from A to RCU

for every U , then A can already be computed nearly in time t.
(See Theorems 13 and 14.) That is, for these classes of reducibilities, a reduction to RC

that does not take specific properties of the universal machine into account is nearly
useless. We believe that this is likely to be true for any polynomial-time truth-table
reduction. Note that this stands in stark contrast to polynomial-time Turing reducibility,
since PSPACE-complete problems are expected to require exponential time, but can be
solved in polynomial time with RC as an oracle. An even stronger contrast is provided
by NP-Turing reducibilities. The techniques of [ABK+02] can be used to show that
NEXP ⊆ NPRC ; and thus RC provably provides an exponential speed-up in this setting.

Theorem 6 NEXP ⊆ NPRC .

Proof. It suffices to show that NEXP is in MARC , since by [ABK+02] this class is equal
to NPRC . Every problem in NEXP has a two-prover interactive proof system [BFL91].
The strategies for the optimal provers are computable, and hence by [ABK+02] they
are in PRC/poly. Thus the following MA protocol suffices to recognize any language
in NEXP: On input x, Merlin sends Arthur oracle circuits C1 and C2, such that Ci

computes the optimal strategy of prover i, when evaluated relative to oracle RC. Now
Arthur can simulate the rest of the protocol, and accept if and only the verifier in the
protocol accepts. 2

2 Preliminaries and Definitions

In this section we present some necessary definitions. Many of our theorems make
reference to “universal” Turing machines. Rather than give a formal definition of what a
universal Turing machine is, which might require introducing unnecessary complications
in our proofs, we will leave the notion of a “universal” Turing machine as an intuitive
notion, and instead use the following properties that are widely known to hold for any

5

natural notion of universal Turing machine, and which are also easily seen to hold for
the universal Turing machines that we present here:

• For any two universal Turing machines U1 and U2, the halting problems for U1 and
U2 are p-isomorphic. That is, U1 halts on input x if and only if U2 halts on input
x′ (where x′ encodes the information (U1, x) in a straightforward way). This is a
length-increasing and invertible reduction; p-isomorphism now follows by [BH77].

• For any two universal Turing machines U1 and U2, there exists a constant c such
that CU1(x) < CU2(x) + c.

Let U1 be the “standard” universal Turing machine. If U2 is any other machine that
satisfies the two properties listed above, then we will consider U2 to be a universal
Turing machine. We are confident that our results carry over to other, more stringent
definitions of “universal” Turing machine that one might define. This does not seem to
us to be an interesting direction to pursue.

For a universal Turing machine U , the Kolmogorov complexity of a string x with
respect to U is CU = min{|p|; p ∈ {0, 1}∗ & U(p) = x}. We define RCU

= {x ∈ {0, 1}∗ :
CU (x) ≥ |x|}. When we state a result that is independent of a particular choice of a
universal Turing machine U we will drop the U in CU and refer simply to C(x).

We let REC refer to the class of computable (or recursive) sets. We refer to the
recursively-enumerable (or computably-enumerable) sets as “r.e.” sets. The complement
of an r.e. set is co-r.e.. P,NP,PSPACE,NE,EE denote the classes of problems solvable in
polynomial time, nondeterministic polynomial time, polynomial space, nondeterministic
time 2O(n) and 22O(n)

, respectively. PA/f(n) denotes the class of problems solvable by
oracle circuits of size polynomial in f(n) with oracle A.

For a set A ⊆ {0, 1}∗ and an integer n, A(·) denotes the characteristic function of
A, and we use notation A=n = A ∩ {0, 1}n and A<n =

⋃

i<n A=i.

2.1 Reductions

Let R be a complexity class and A and B be languages. We define the following types
of reductions.

• Many-one reductions. We say that A R-many-one reduces to B (A ≤R
m B) if there

is a function f ∈ R such that for any x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B.

• Truth-table reductions. We say that A R-truth-table reduces to B (A ≤R
tt B) if there

is a pair of functions q and r, both in R, such that on an input x ∈ Σ∗, function
q produces a list of queries q1, q2, . . . , qm so that for a1, a2, . . . , am ∈ {0, 1} where
ai = B(qi), it holds that x ∈ A if and only if r(〈x, (q1, a1), (q2, a2), · · · , (qm, am)〉) =
1.

If r = ∧iai, then the reduction is called a conjunctive truth-table reduction (≤R
ctt).

If r = ∨iai, then the reduction is called a disjunctive truth-table reduction (≤R
dtt).

6

If the function r computes the parity of a1, a2, . . . , am, then the reduction is called
a parity truth-table reduction (≤R

⊕tt). If the function r is monotone with respect to
a1, a2, . . . , am then the reduction is called a monotone truth-table reduction (≤R

mtt).
(A function r is monotone with respect to a1, . . . , am, if for any input x, any set of
queries q1, . . . , qm, and a1, . . . , am, a′1, . . . , a

′
m ∈ {0, 1}, where for all i, ai ≤ a′i, if r

accepts 〈x, (q1, a1), (q2, a2), · · · , (qm, am)〉 then it is also the case that r accepts the
tuple 〈x, (q1, a

′
1), (q2, a

′
2), · · · , (qm, a′m)〉) If the number of queries m is bounded by

a constant, then the reduction is called a bounded truth-table reduction (≤R
btt). If

the number of queries m is bounded by f(n), then the reduction is called a f(n)

truth-table reduction (≤R
f(n)−tt). For a function t(n), ≤

t(n)
tt denotes truth-table

reductions running in deterministic time O(t(n)).

• Turing reductions. We say that A R-Turing reduces to B (A ≤R
T B) if there is an

oracle Turing machine in class R that accepts A when given B as an oracle.

3 Inside PRC

We have two kinds of results to present in this section. First we present several theorems
that do not depend on the choice of universal machine. Then we present our results
that highlight the effect of choosing certain universal machines.

3.1 Inclusions that Hold for all Universal Machines

The following is a strengthened version of claims that were stated without proof in
[ABK+02].

Theorem 7

1. {A ∈ REC : A≤P
ctt RC} ⊆ P .

2. {A ∈ REC : A≤P
btt RC} ⊆ P .

3. {A ∈ REC : A≤P
mtt RC} ⊆ P/poly.

Proof. In all three arguments we will have a recursive set A that is ≤
(q,r)
tt reducible to

RC, where (q, r) is the pair of polynomial-time-computable functions defining the ≤P
ctt,

≤P
btt and ≤P

mtt reductions, respectively. For x ∈ {0, 1}∗, Q(x) will denote the set of
queries produced by q on input x.

1. (q, r) computes a ≤P
ctt reduction. For any x ∈ A, Q(x) ⊆ RC. Hence, Q =

⋃

x∈A Q(x) is an r.e. subset of RC. Since RC is immune (i.e., has no infinite r.e. subset),
Q is finite. Hence we can hard-wire Q into a table and conclude that A ∈ P .

2. (q, r) computes a ≤P
btt reduction. We will prove the claim by induction on the

number of queries. If the reduction does not ask any query, the claim is trivial. Assume

7

that the claim is true for reductions asking fewer than k queries. We will prove the claim
for reductions asking at most k queries. Take (q, r) that computes a ≤P

btt reduction and
such that |Q(x)| ≤ k, for all x. For any string x, let mx = min{|q| : q ∈ Q(x)}. We claim
that there exists an integer l such that for any x, if mx > l and Q(x) = {q1, q2, . . . , qk′}
then r(〈x, (q1, 0), (q2, 0), . . . , (qk′ , 0)〉) = A(x). For a contradiction assume that for any
integer l, there exists x such that mx > l and r(〈x, (q1, 0), (q2, 0), . . . , (qk′ , 0)〉) 6= A(x).
Since A is recursive, for any l, we can find the lexicographically first xl having such a
property. All the queries in Q(xl) are longer than l and at least one of them should
be in RC. However, each of the queries can be described by O(log l) bits, which is the
contradiction. Hence, there exists an integer l such that for any x, if mx > l then
r(〈x, (q1, 0), (q2, 0), . . . , (qk′ , 0)〉) = A(x). Thus we can encode the answers for all queries
of length at most l into a table and reduce the number of queries in our reduction by
one. Then we can apply the induction hypothesis.

3. (q, r) computes a ≤P
mtt reduction. q is computable in time nc, for some c > 1.

We claim that r does not depend on any query of length more than 2c log n. Assume
that for infinitely many x, r does depend on queries of length more than 2c log |x|, i.e.,
if Q(x) = {q1, q2, . . . , qm} and a′1, a

′
2, . . . , a

′
m ∈ {0, 1} are such that a′

i = RC(qi) for
|qi| ≤ 2c log |x|, and a′

i = 0 for |qi| > 2c log |x|, then r(〈x, (q1, a
′
1), (q2, a

′
2), . . . , (qm, a′m)〉)

6= A(x). Since r is monotone, this may happen only for x that belong to A. The
set of all such x can be enumerated, by assuming that all queries of length greater
than 2c log |x| are not in RC and assuming that all shorter queries are in RC, and
then computing successively better approximations to the correct answers for the short
queries by enumerating the complement of RC, until an answer vector is obtained on
which r evaluates to zero, although x is in A. Note that for better approximations to
the true value of RC, r will still evaluate to zero because r is a monotone reduction.
Hence for given l, we can find the first x of length more than l in this enumeration.
One of the queries in Q(x) is of length more than 2c log l and it belongs to RC. But we
can describe every query in Q(x) by c log l + 2 log log l + log l + O(1) bits, which is less
than 2c log l. That is a contradiction. Since we have established that r depends only on
queries of length at most 2c log n, we can encode information about all strings of this
size that belong to RC into a polynomially large table. Thus A is in P/poly. 2

Theorem 8 If A is recursive and it reduces to RC via a polynomial-time f(n)-truth-
table reduction then A is in P/(f(n)2f(n)3 log f(n)).

The following is an immediate corollary of the previous theorem.

Corollary 9 If A is recursive and reduces to RC via a polynomial-time truth-table re-
duction with O(log(n)/ log log n) queries then A is in P/poly.

Since we know that there are recursive languages (in fact languages in EE) that are
not in P/2n − 1 we also obtain the following corollary.

8

Corollary 10 Let g(n) be such that g(n)2g(n)3 log g(n) < 2n. Then there exists a recursive
A such that A does not reduce to RC via a polynomial-time g(n)-truth-table reduction.
In particular for any α < 1 there exists a recursive A that does not reduce to RC via a
polynomial-time nα-truth-table reduction.

Proof of Theorem 8. W.l.o.g. f(n) is unbounded. Let M be the reduction from A
to RC that uses at most f(n) queries. Let Q(x) be the query set that M(x) generates.
We will remove from Q(x) all the strings that have length at least sn = 2 log(f(n)) +
2 log log f(n) + c for some suitably chosen constant c. Let Q′(x) = Q(x)

⋂

{0, 1}<sn be
this reduced set.

Note that there are at most 2sn strings of length less than sn and that there are at
most

(2sn

f(n)

)

< (2sn)f(n) < 2f(n)3 log f(n) possible subsets Q′(x), when n is large enough.

Partition {0, 1}n into equivalence classes, where [x] = {y : Q′(y) = Q′(x)}. We will
show that for each equivalence class [x] there is an answer sequence vx such that, for
all y ∈ [x], y is in A if and only if M accepts y when the answers to Q(y) are answered
according to vx for all of the queries in Q′(y), and all of the long queries are answered
negatively.

Thus the advice string consists of an encoding of vx, which can be written using f(n)
bits, for each possible set Q′(x). This yields the desired advice bound.

It remains only to show that the string vx exists. Assume otherwise. Thus, given
m, there is a recursive procedure that finds the lexicographically first string x of length
n such that log f(n) > m and for all v there is some yv ∈ [x] on which the result of
running M(yv) with answer vector v does not answer correctly about whether yv is in
A. Let v be the answer sequence for Q′(x) ∩ RC, and let r be the number of 1’s in v
(i.e., r is the size of Q′(x) ∩ RC). Thus, given (m, r) we can compute Q′(x) and start
the enumeration of the complement of RC until we have enumerated all but r elements
of Q′(x). Thus we can compute v and find yv. Since M(yv) is not giving the correct
answer about whether yv is in A, but M does give the correct answer when using RC

as an oracle, it follows that Q(yv) contains an element of RC of length greater than sn.
However, this string is described by the tuple (m, r, i), along with O(1) additional bits.
For the appropriate choice of c and large enough n, this has length less than sn, which
is a contradiction. 2

Note that the preceding proof actually shows that, for every x such that [x] has
“small enough” Kolmogorov complexity, we can pick vx to be the answer sequence for
Q′(x)∩RC. If this were true for every x, then it would follow easily that every decidable
set A that is reducible to RC via a polynomial-time truth-table reduction is in P/poly.

3.2 Pathological Universal Machines

Before presenting the results of this section, we digress in order to introduce some
techniques that we will need.

9

The following development is motivated by a question that one can naturally ask:
what is the size of (RC)=n? It is a part of folklore that the number of strings in RC

of length n is Kolmogorov random. But is it odd or even? One would be tempted to
answer that since |(RC)=n| is Kolmogorov random, the parity of it must also be random.
The following universal Turing machine Ueven shows that this is not the case.

Let Ust be the “standard” universal Turing machine. Consider the universal Turing
machine Ueven defined by: for any d ∈ {0, 1}∗, Ueven(0d) = Ust(d) and Ueven(1d) = the
bit-wise complement of Ust(d). It is immediate that the size of (RCUeven

)=n is even for
all n. To construct a universal Turing machine Uodd for which the size of (RCUodd

)=n is
odd for all n (large enough), is a little bit more complicated.

We will need the following definition. For any Turing machine U we can construct
an enumerator (Turing machine) E that enumerates all pairs (d, x) such that U(d) = x,
for d, x ∈ {0, 1}∗. (The running time of E is possibly infinite.) Conversely, given an
enumerator E that enumerates pairs (d, x) so that if (d, x) and (d, x′) are enumerated
then x = x′, we can construct a Turing machine U such that for any x, d ∈ {0, 1}∗,
U(d) = x if and only if E ever enumerates the pair (d, x). In the following, we will often
define a Turing machine in terms of its enumerator.

We define Uodd in terms of its enumerator Eodd that works as it is described below.
Eodd will maintain sets of non-random strings {Ni}i∈N during its operation. At any
point in time, set Ni will contain non-random strings of length i that were enumerated
by Eodd so far. Eodd will try to maintain the size of sets Ni to be odd (except while
they are empty.)

Initialize all {Ni}i∈N to the empty set.2

For all d ∈ {0, 1}∗, run Ust(d) in parallel.
Whenever Ust(d) halts for some d and produces a string x do:

Output (0d, x).
If |0d| < |x| and N|x| = ∅ then set N|x| := {x}.
Else if |0d| < |x| and x 6∈ N|x| then:

Pick the lexicographically first string y in {0, 1}|x| − (N|x| ∪ {x}).
Set N|x| := N|x| ∪ {x, y} and output (1d, y).

Continue.
End.
It is easy to see that the Turing machine Uodd defined by the enumerator Eodd is

universal. Also it is clear that for all n large enough, (RCUodd
)=n is of odd size.

The ability to influence the parity of (RCU
)=n allows us to (sparsely) encode any

recursively enumerable information into RCU
. We can state the following theorem.

Theorem 11 For any recursively enumerable set A, there is a universal Turing machine
U such that if C = {02x

: x ∈ A}, then C ≤P
⊕tt RCU

. Consequently, A ≤EE
⊕tt RCU

.

2We assume in the usual way that Eodd works in steps and at step s it initializes the s-th set of
{Ni}i∈N to the empty set. Our statements regarding actions that involve infinite computation should
be interpreted in a similar way.

10

Proof. Observe, C ⊆ {02i

: i ∈ N}. We will construct the universal Turing machine
U so that for any integer i > 3, 02i

∈ C if and only if (RCU
)=i is of odd size. Then,

the polynomial time parity reduction of C to RCU
can be constructed trivially as well

as the double-exponential parity reduction of A to RCU
.

Let M be the Turing machine accepting the recursively enumerable set C. We will
construct an enumerator E for U . It will work as follows. E will maintain sets {Ni}i∈N

during its computations. At any point in time, for every i > 0 the set Ni will contain
non-random strings of length i that were enumerated by E so far and E will try to
maintain the parity of |Ni| unchanged during most of the computation. E will also run
M on all strings z = 02i

in parallel and whenever some new string z will be accepted
by M , E will change the parity of Nlog |z| by making some new string of length log |z|
non-random. The algorithm for E is the following.

Initialize all {Ni}i∈N to the empty set.
For all d ∈ {0, 1}∗ and z ∈ {02i

: i ∈ N}, run Ust(d) and M(z) in parallel.
Whenever Ust(d) or M(z) halts for some d or z = 02i

do:

If Ust(d) halts and produces output x then:
Output (00d, x).
If |00d| < |x| and x 6∈ N|x| then:

Pick the lex. first string y in {0, 1}|x| − (N|x| ∪ {x}).
Set N|x| := N|x| ∪ {x, y} and output (01d, y).

Continue.

If M(02i
) halts and i > 3 then:

Pick the lexicographically first string y in {0, 1}i − Ni.
Set Ni := Ni ∪ {y}, and output (1i−1, y).
Continue.

End.
Clearly, enumerator E defines a universal optimal Turing machine and for any integer

i > 3, 02i
∈ C if and only if (RCU

)=i is of odd size. 2

Parity is not the only way to encode information into RC. The following theorem
illustrates that we can encode the information so that one can use ≤P

dtt reductions to
extract it. In particular, this proves our Theorem 1.

Theorem 12 For any recursively enumerable set A, there is a universal Turing machine
U such that if C = {02x

: x ∈ A}, then C ≤P
dtt RCU

. Consequently, A ≤EE
dtt RCU

.

Proof. First, define a universal Turing machine Uopt as follows: Uopt(0d) = Ust(d) and
Uopt(1d) = d. Clearly, for any x ∈ {0, 1}∗, CUopt(x) ≤ |x| + 1. For any d ∈ {0, 1}∗ and
any s ∈ {0, 1}5, U is defined as follows:

On input 0ds, run Uopt(d) and if Uopt(d) halts then output Uopt(d)s .
On input 1d do:

Run Uopt(d), until it halts.

11

Let y be the output of Uopt(d).

Check if 02|y| ∈ C.
If 02|y| ∈ C then output y05.

End.
It is clear that for any x ∈ {0, 1}∗, CU (x) ≤ |x| + 2. Further, for any s, s′ ∈

{0, 1}5 − {05}, CU (xs) = CU (xs′). Finally, for any y ∈ {0, 1}∗, 02|y| ∈ C if and only if

CU (y05) < CU (y15) − 4. Hence, if 02|y| ∈ C then y05 6∈ RC. The ≤P
dtt reduction of C to

RC works as follows: on input 02n

, for all y ∈ {0, 1}n ask queries y05. Output 0 if none
of the queries lies in RC and 1 otherwise. 2

One could start to suspect that maybe all recursive functions are reducible to RC

in, say, doubly exponential time, regardless of which universal Turing machine is used
to define RC. We do not know if that is true but the following theorem shows that
certainly disjunctive truth-table reductions are not sufficient.

Theorem 13 For any computable time-bound t(n) ≥ n, every set A in REC ∩
⋂

U{A :

A≤
t(n)
dtt RCU

} is computable in time O(t3(n)).

A corollary of Theorem 13 is that P = REC ∩
⋂

U{A : A≤P
dtt RCU

} (Theorem 5).

Proof. It suffices to show that for each decidable set A that is not computable in time

O(t3(n)), there is a universal machine U such that A is not ≤
t(n)
dtt -reducible to RCU

. Fix
a decidable set A not computable in time O(t3(n)).

Let Ust be a (standard) universal Turing machine, and define U so that for all d,
U(00d) = Ust(d). Note that, for every length m, fewer than 1

4 of the strings of length m
are made non-random in this way.

Now we present a stage construction, defining how U treats descriptions d 6∈ {00}{0, 1}∗ .
We present an enumeration of pairs (d, y); this defines U(d) = y. In stage i, we guaran-
tee that the i-th Turing machine qi that runs in time t(n) (in an enumeration of clocked

Turing machines computing ≤
t(n)
dtt reductions) does not reduce A to RCU

.
At the start of stage i, there is a length li with the property that at no later stage

will any string y of length less than li be enumerated in our list of pairs (d, y). (At stage
1, let l1 = 1.)

Let T be the set of all subsets of the strings of length less than li. For any string x,

denote by Qi(x) the list of queries produced by the ≤
t(n)
dtt reduction computed by qi on

input x, and let Q′
i(x) be the set of strings in Qi(x) having length less than li.

In Stage i, the construction starts searching through all strings of length li or greater,
until strings x0 and x1 are found, having the following properties:

• x0 6∈ A,

• x1 ∈ A,

• Q′
i(x1) = Q′

i(x2), and

12

• One of the following holds

– Qi(x1) contains fewer than 2m−2 elements from {0, 1}m for each length m ≥ li,
or

– Qi(x0) contains at least 2m−2 elements from {0, 1}m for some length m ≥ li

We argue below that strings x0 and x1 will be found after a finite number of steps.
If Qi(x1) contains fewer than 2m−2 elements from {0, 1}m for each length m ≥ li,

then for each string y of length m ≥ li in Qi(x1), pick a different d of length m − 2
and add the pair (1d, y) to the enumeration. This guarantees that Qi(x1) contains no

element of RCU
of length ≥ li. Thus if qi is to be a ≤

t(n)
dtt reduction of A to RCU

, it must
be the case that Q′

i(x1) contains an element of RCU
. However, since Q′

i(x1) = Q′
i(x0)

and x0 6∈ A, we see that qi is not a ≤
t(n)
dtt reduction of A to RCU

.
If Qi(x0) contains at least 2m−2 elements from {0, 1}m for some length m ≥ li, then

note that at least one of these strings is not produced as output by U(00d) for any string
00d of length ≤ m − 1. We will guarantee that U does not produce any of these strings
on any description d 6∈ {00}{0, 1}∗ , and thus one of these strings must be in RCU

, and

hence qi is not a ≤
t(n)
dtt reduction of A to RCU

.
Let li+1 be the maximum of the lengths of x0, x1 and the lengths of the strings in

Qi(x0) and Qi(x1).
It remains only to show that strings x0 and x1 will be found after a finite number of

steps. Assume otherwise. It follows that {0, 1}∗ can be partitioned into a finite number
of equivalence classes, where y and z are equivalent if both y and z have length less
than li, or if they have length ≥ li and Q′

i(y) = Q′
i(z). Furthermore, for the equivalence

classes containing long strings, if the class contains both strings in A and in A, then the
strings in A are exactly the strings on which qi queries at least 2m−2 elements of {0, 1}m

for some length m ≥ li. This yields an O(t3(n))-time algorithm for A, contrary to our
assumption that A is not computable in time O(t3(n)). 2

A similar technique yields the following result.

Theorem 14 For any computable time-bound t(n) ≥ n, every set A in REC ∩
⋂

U{A :

A≤
t(n)
⊕tt RCU

} is computable in time O(t3(n)).

Proof. It suffices to show that for each decidable set A that is not computable in time

O(t3(n)), there is a universal machine U such that A is not ≤
t(n)
⊕tt -reducible to RCU

.
In what follows we will describe such a machine U in terms of its enumerator E. Let
q1, q2, . . . be an enumeration of all Turing machines (query generators) that work in time
at most t(n). Let Qi(x) denote the set of queries generated by qi on input x. During
the construction of E we will diagonalize against all qi’s.

To diagonalize against machine qi we will pick two strings x0 6∈ A and x1 ∈ A and
we will force the parity of |Qi(x0) ∩ RCU

| and |Qi(x1) ∩ RCU
| to be the same.

13

We will construct E so to maintain the parity of |Qi(x0)∩RCU
| and |Qi(x1)∩RCU

|.
To do so E will maintain sets Nl, Dl, Cl, Ll,j ⊆ {0, 1}l, for l ∈ IN, j ∈ {0, 1}, where Nl

will be the set of non-random strings that were seen so far and Dl will be the set of
descriptions that were used so far to make some strings non-random. Sets Nl and Dl

are initially empty. Sets Cl (the “common” queries of length l that are asked on both
inputs x0 and x1) and Ll,j (the queries of length l that are asked on input xj but not
on x1−j) will be obtained by partitioning Qi(x0) and Qi(x1), for some i, and |Cl − Nl|
and |Ll,j − Nl| will be maintained even.

Let c be such that for all n ≥ c,
∣

∣

∣

(

RCUst

)=n∣

∣

∣
≥ 3. E uses the following sub-procedure

that can be invoked with any set of strings, all having length l ≥ c.
make-even(S):

Let l be the common length of strings in S.
If |S − Nl| is even do nothing
Otherwise do the following:

Pick x ∈ S − Nl and d ∈ {0, 1}l−2 − Dl−2.
Set Nl := Nl ∪ {x} and Dl := Dl ∪ {d}.
Output (1d, x).

End.

E plays two strategies simultaneously.
The first strategy. For all d ∈ {0, 1}∗, E runs Ust(d) in parallel. Whenever some

computation Ust(d) halts and produces output x, E outputs (00d, x). If |0d| < |x| and
x 6∈ N|x| then do the following: Set l := |x|. Set Nl := Nl ∪ {x} and if Cl, Ll,0, Ll,1 were
already defined invoke make-even(Cl), make-even(Ll,0), make-even(Ll,1).

This strategy ensures that E determines a universal Turing machine and that |Cl−Nl|
and |Ll,j − Nl| are maintained even. Note that procedure make-even will be forced to
make some string non-random at most once per every string x that becomes non-random
because of Ust. (In addition, it may be forced to make at most three additional strings
of each length non-random when Ll,0, Ll,1 and Cl are defined.)

The second strategy. E proceeds according to the algorithm described below. The
algorithm proceeds in stages. At stage k, it will diagonalize against reduction qk.

Set l1 = c.
For successive k := 1, 2, 3, . . ., do the following:

Pick two strings x0 6∈ A and x1 ∈ A, each having length at least lk, so that
Qk(x0)

≤lk = Qk(x0)
≤lk .

As in the proof of Theorem 13, it is easy to argue that such strings exist.
Set lk+1 := 1 + max{lk, |y| : y ∈ Qk(x0) ∪ Qk(x1)}.
For i ∈ {lk, . . . , lk+1 − 1} and j ∈ {0, 1} do:

Set Li,j := (Qk(xj) − Qk(x1−j)) ∩ {0, 1}i.
Set Ci := Qk(x0) ∩ Qk(x1) ∩ {0, 1}i.
Invoke make-even(Li,j) and make-even(Ci).

14

Continue with the next k.
End.
It is clear from the construction that no qi parity truth-table reduces A to RCU

. 2

4 C-complexity versus K-complexity

Theorem 5, which shows that P is equal to REC∩
⋂

U{A : A≤P
dtt RCU

}, is motivated in
large part by our interest in whether one can prove or disprove Hypothesis 4 (concerning
whether PSPACE is equal to REC ∩

⋂

U PRCU). It is worth observing that, in order to
have any hope of characterizing complexity classes in terms of efficient reducibility to
RC, it is necessary to take the intersection over all universal machines U . This is because
there are always arbitrarily complex decidable sets in PRCU , as the following theorem
shows.

Theorem 15 For every universal Turing machine U and every time-constructible func-
tion t(n) ≥ n, there is a recursive set A 6∈ DSPACE(t) such that A≤P

dtt RCU
.

Proof. This follows immediately from Kummer’s theorem (showing that there is a
dtt reduction from the complement of the halting problem to RC) [Kum96]. Fix any
universal Turing machine U and time-bound t(n) ≥ n. By Kummer’s result, there
is a time-bound t′ such that the Halting problem dtt-reduces to RCU

in time t′(n).
W.l.o.g. t′(n) ≥ n. Let A 6∈ DSPACE(t(t′(2n))) be a recursive set. Consider set

B = {0t′(2|x|)−|x|−1)1x : x ∈ A}. Clearly, B 6∈ DSPACE(t(n)). Since A is recursive,
it reduces to RCU

via a dtt-reduction running in time t′(nc), for some constant c. It
follows that B ≤P

dtt RCU
. 2

This is an appropriate point to return to the topic of prefix Kolmogorov complexity
(K(x)), and to the question of whether the results we state for C-complexity hold also
for K-complexity.

In particular, it is important to note that no analogue of Theorem 15 is known to
hold for K-complexity. This is because the proof of Theorem 15 relies on Kummer’s
theorem, which states that the halting problem is truth-table reducible to RC.

In contrast, Theorem 2.7 of [MP02] states that there is an optimal prefix machine
U such that there is no truth-table reduction from the halting problem to the set
{(x, n) : KU (x) < n}. Thus in particular, RKU

is not hard under truth-table reduc-
tions. This should be contrasted with the fact that the proof of our Theorem 11 carries
over unchanged to the setting of K-complexity, and thus there is a universal machine
U ′ such that RKU

is hard under (parity) truth-table reductions. That is, it seems that
nothing can be said about whether the halting problem is truth-table reducible to RK,
without being specific about the choice of universal prefix Turing that one uses to define
the measure RK.

15

In particular, it might be the case that P is equal to REC ∩ {A : A≤P
dtt RK}, or

that PSPACE is equal to REC ∩PRK) (at least for some choice of universal machine U
defining K-complexity).

All of the proofs in this paper for C-complexity carry over also to the setting of
K-complexity, with the exceptions of Theorems 1, 5, 12, 13, 14 and 15. That is, if
one starts with a “standard” universal prefix-free Turing machine, then it is easy to see
that the machines we construct in our proofs will also be prefix-free, which is enough to
show that the claim we established for C-complexity holds also for K-complexity (again,
except for Theorems 1, 5, 12, 13, 14 and 15).

5 Conclusions and Open Problems

Can one show that not every decidable set is ≤P
tt-reducible to RC (at least for some choice

of universal machine)? Can one improve Theorem 8 to show that every set ≤P
tt-reducible

to RC is in P/poly?
Can one improve Theorem 5, to show that P is equal to

⋂

U{A : A≤P
dtt RCU

}? (I.e.,
is every set in this intersection already decidable?)

Is there a proof of Hypothesis 4? It might be more feasible to prove a related
hypothesis more in line with Theorems 7 and 8 of Section 3. For instance, can one prove
that for any universal machine: {A ∈ REC : A≤P

TRC} ⊆ EXP/poly?

Acknowledgments

We would like to thank Rod Downey, Troy Lee, Joe Miller, and Kolya Vereshchagin for
helpful discussions.

References

[ABK+02] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneb-
urger. Power from random strings. In FOCS: IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 669–678, 2002.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BH77] L. Berman and J. Hartmanis. On isomorphisms and density of NP and other
complete sets. SIAM Journal on Computing, 6:305–323, 1977.

[DH04] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. In
preparation., 2004.

16

[Kum96] M. Kummer. On the complexity of random strings. In Symposium on Theo-
retical Aspects of Computer Science (STACS), volume 1046 of Lecture Notes
in Computer Science, pages 25–36. Springer, 1996.

[LV93] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and its Appli-
cations. Springer-Verlag, August 1993.

[Mar66] D.A. Martin. Completeness, the recursion theorem and effectively simple
sets. Proceedings of the American Mathematical Society, 17:838–842, 1966.

[Mil04] Joe Miller. Personal communication. 2004.

[MP02] Andrej A. Muchnik and Semen Ye. Positselsky. Kolmogorov entropy in the
context of computability theory. Theoretical Computer Science, 271:15–35,
2002.

[Sch74] C. P. Schnorr. Optimal enumerations and optimal Gödel numberings. Math-
ematical Systems Theory, 8:182–191, 1974.

Appendix

In this appendix, we include a proof of a result due to Miller [Mil04], which improves
our Corollary 3. We thank Joe Miller for encouraging us to include our proof of his
result here.

Theorem 16 There are universal Turing machines U1 and U2 such that RCU1
is not

many-one reducible to RCU2
.

Proof. In a manner similar to several of the other proofs in this paper, we will build
two machines U1 and U2, where U1(0

5d) = U2(0
5d) = Ust(d), where Ust is a “standard”

universal machine. By determining what action U1 and U2 take on inputs that do not
begin with five zeros, we will guarantee that there is no many-one reduction from RCU1

to RCU2
.

Note first that any possible many-one reduction f from RCU1
to RCU2

has the prop-
erty that there is some constant c such that, for all x in RCU1

, |x| − c < |f(x)| < |x|+ c.
To see this, observe that CU2(f(x)) < |x| + O(1) (since a machine computing f can be
described with O(1) bits). Thus if x is in RCU1

, and f is a many-one reduction, then f(x)
must be in RCU2

, and hence for some constant c we have |x|+c > CU2(f(x)) ≥ |f(x)|. It
remains now to show that there is a constant c such that, for all x in RCU1

, |x|−c < |f(x)|.
For any string y and number d, define zy,d to be the lexicographically least string z such
that (a) f(z) = y, and (b) |y| < |z| − d. It is easy to see that there is a constant b
such that CU1(zy,d) ≤ |y| + b log d. Assume for the sake of contradiction that for ev-
ery c, there is a string xc ∈ RCU1

such that |f(xc)| < |xc| − c. Pick c large enough
so that b log c < c, and pick y = f(xc). By assumption, zy,c exists. Since f is a

17

many-one reduction, it follows that zy,c is in RCU1
. But this is a contradiction, since

CU1(zy,c) ≤ |y| + b log c < |y| + c < |zy,c|. Thus we have established that any many-one
reduction f from RCU1

to RCU2
has the property that there is some constant c such

that, for all x in RCU1
, |x| − c < |f(x)| < |x| + c.

Observe that fewer than 2n−5 strings x of length n are caused to have CUi
(x) < n

by descriptions of the form 05d. When defining the behavior of machines U1 and U2 we
will guarantee that at most half of the strings of length n will be non-random, and thus
it will be the case that, for any possible reduction f from RCU1

to RCU2
, there will be

some constant c such that |x| − c < |f(x)| < |x| + c for at least half of the strings of
each length.

Let f1, f2, f3, . . . be an enumeration of all partial-recursive functions. Partition the
natural numbers into non-overlapping segments S[i, j] and define a sequence of numbers
ni,j such that S[i, j] contains all of the integers between ni,j − j and ni,j + j. We will
define an enumeration of pairs (d, y) to define the behavior of U1 and U2 for descriptions
d that do not begin with five zeros, to guarantee requirement(i,j):

• If partial-recursive function fi happens to be defined on all strings having length
ni,j and for at least half of the strings x of length ni,j, |fi(x)| is in S[i, j], then
there is some string x of length ni,j such that the condition “x ∈ RCU1

” is not
equivalent to the condition “fi(x) ∈ RCU2

”.

By the observations in the preceding paragraphs, if our construction satisfies each re-
quirement(i,j), then this suffices to prove the theorem.

Our strategy for dealing with requirement(i,j) is to wait until fi(x) is defined for all
strings x of length ni,j. If this condition is never obtained, or it is obtained but it is
not the case that |fi(x)| is in S[i, j] for at least half of the strings x of length ni,j, then
requirement(i,j) is satisfied, and we need do nothing more.

At this point, there are three cases:
Case 1: For at least 1/10 of the strings x of length ni,j, there is a string y 6= x of

length ni,j such that fi(x) = fi(y).
Partition all strings x of length ni,j into blocks such that block [x] contains all strings

y of length ni,j for which fi(y) = fi(x). We are guaranteed that there are at least 2ni,j /10
strings x such that [x] has size at least two, and thus a simple enumeration produces a
list x1, x2, . . . xr for r ≤ 2ni,j /20, such that the set T =

⋃

l[xl] contains at least 2ni,j /10
strings and the blocks [xl] are pairwise disjoint.

For each block [xl] ⊆ T , select an unused description dl of length ni,j − 1 that
does not begin with five zeros, and enumerate (dl, xl) into the definition of U1. Note
that, if fi is a many-one reduction, then each element of T must be made non-random
according to CU1 . However, at most 1/20 of the strings of length ni,j were explicitly
made non-random by using an encoding of length ni,j − 1, and thus the other elements
of T must be non-random because of descriptions of the form 05d. But there are fewer
than 2ni,j−5 < 2ni,j /20 such descriptions, and thus some elements of T must remain
random. Thus requirement(i,j) holds.

18

Case 2: Case 1 does not hold, and for at least 1/20 of the strings x of length ni,j,
|x|+ j ≥ |fi(x)| ≥ |x| and there is no string y 6= x of length ni,j such that fi(x) = fi(y).

In this case, let T consist of the lexicographically first 2ni,j /20 strings x for which this
condition holds. For each of these strings, enumerate a pair (d, fi(x)) into the definition
of U2, where d is an unused description of length |fi(x)| − 1 that does not begin with
five zeros. Again, it is easy to see that requirement(i,j) holds, because each of these
strings x must be made non-random by U1 if fi is a reduction, and there are not enough
descriptions available for this to be accomplished.

Case 3: Case 1 and Case 2 do not hold.
In this case, it must be the case that for at least 7/20 of the strings x of length ni,j,

|x| − j ≤ |fi(x)| < |x| and there is no string y 6= x of length ni,j such that fi(x) = fi(y).
(Half of the strings x must have fi(x) with length in range, and at most 3/20 of the
strings are eliminated by the first two cases.)

In this case, let T consist of the lexicographically first 2ni,j /20 strings x for which
this condition holds. For each of these strings, enumerate a pair (d, x) into the definition
of U1, where d is an unused description of length |x| − 1 that does not begin with five
zeros. Again, it is easy to see that requirement(i,j) holds, because each of the strings
fi(x) must be made non-random by U2, but there are only

∑j
k=1 2ni,j−k−5 ≤ 2ni,j /32

descriptions available for this to be accomplished.
2

19

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

