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Abstract. Assuming 3-SAT formulas are hard to refute on average, Feige showed some
approximation hardness results for several problems like min bisection, dense k-subgraph,
max bipartite clique and the 2-catalog segmentation problem. We show a similar result
for max bipartite clique, but under the assumption, 4-SAT formulas are hard to refute
on average. As falsity of the 4-SAT assumption implies falsity of the 3-SAT assumption
it seems that our assumption is weaker than that of Feige.

1 Introduction and Results

Given a standard set of n propositional variables V = Vn a k-clause is an ordered
k-tuple l1 ∨ · · · ∨ lk where li = x or li = ¬x for an x ∈ Vn. In the first case we
call li a non-negated or positive literal in the second case a negated or negative one.
We denote the variable underlying the literal l by V (l), thus V (x) = V (¬x) = x.
Altogether we have 2knk different k-clauses. A k-SAT formula F simply is a set of k-
clauses. We write C1 ∧ · · · ∧Cm for the k-SAT formula with clauses C1, . . . , Cm. Given
a truth value assignment a with 0 (standing for false) and 1 (standing for true) of Vn

a k-SAT formula F is true under a iff for each clause C of F there is an x ∈ V such
that x ∈ C and a(x) = 1 or ¬x ∈ C and a(x) = 0. In this case we say that a satisfies
C or that a makes C true. The set of variables set to true by a is denoted by Ta, the
set of variables set to false by Fa.

Given p = p(n) with 0 ≤ p ≤ 1 the random formula Formn,k,p is obtained as
follows: Pick each of the 2knk k-clauses independently with probability p. An event A
of Formn,k,p (actually a family of events An ) holds with high probability for Formn,k,p

if and only if Pr[Formn,k,p ∈ An] → 1 when n gets large. Its probability is negligible if
Pr[Formn,k,p ∈ An] → 0. We use the same terminology for random structures different
from Formn,k,p, too.

Considering a high probability event, the following certification problem naturally
arises: Given a random instance, how can we be sure that this event really holds for
the instance. Depending on the event considered this question can usually be answered
running appropriate inefficient algorithms with the given instance. We however are
interested in an efficient algorithm satisfying the following requirements: It always stops
in polynomial time. It says that the instance belongs to the event considered or it gives
an inconclusive answer. If the answer is not the inconclusive one the answer must be
correct, in that the instance really belongs to the event. Moreover the algorithm must
be complete, in that it gives the correct answer with high probability with respect
to the random instance. In the case of correctness and completeness we use the term
“efficient certification algorithm”. Formn,k,c/nk−1 is unsatisfiable with high probability
when c > ln 2 is a constant. Conditioning on the high probability event that in this
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case the number of clauses is approximately c ·2kn this follows from the fact that when
picking c ·2kn times a random clause from the set of all 2k ·nk k-clauses the expectation
of the number of satisfying assignments is 2n · (1 − 1/2k)c2kn ≤ 2n · e−cn. This bound
approaches 0 when c > ln 2. Concerning the related certification problem Feige [Fe 02]
introduces something like a random 3-SAT hardness hypothesis:

For any constant c > ln 2 there is no efficient certification algorithm of the
unsatisfiability of Formn,3,c/n2 .

The truth of this hypothesis is supported by the fact that for p(n) = o(1/n3/2) no
progress concerning the efficient certification of unsatisfiability of Formn,3,p has been
made. The best known result is efficient certification of unsatisfiability of Formn,3,c/n3/2

for some sufficiently large constant c, cf. [FeOf 03 b]. Feige shows that this hypotheses
implies several lower bounds on the approximability of combinatorial problems for
which such bounds could not be obtained from worst-case assumptions like P 6= NP,
cf. [H̊a99].

As a random hardness hypothesis is much stronger than a mere worst-case hypoth-
esis like P 6= NP it is particularly important to weaken it as much as possible. This
motivates to consider random 4-SAT instead of 3-SAT. The random 4-SAT hardness
hypothesis reads:

For any constant c > ln 2 there is no efficient certification algorithm of the
unsatisfiability for Formn,4,c/n3 .

The trivial reduction: Given F = Formn,3,c/n2 place a random literal into each clause
of F to obtain a 4-SAT instance G, shows, that the 3-SAT hypothesis is stronger than
the 4-SAT hypothesis. This is so because the result of the reduction G = Formn,4,c/n3

is a truly random formula, and if G is unsatisfiable then F is unsatisfiable.

Moreover, note that Formn,3,c/n2 can be efficiently certified unsatisfiable in the not-
all-equal sense (that is at least one true and one false literal per clause) [GoJu 03]. Such
a result is not known for Formn,4,c/n3 , indicating that random 4-SAT is substantially
harder to deal with than random 3-SAT. In case of 3 literals per clause, we consider
the graph whose vertices are the literals and whose edges are obtained by making a
triangle from each clause. Satisfiability in the not-all-equal sense implies the existence
of a cut of the graph with at least 2/3 of all edges. The existence of such large cuts can
be excluded efficiently with high probability for Formn,3,c/n2 . Similar constructions do
not seem to work for 4-SAT.

Among the problems considered by Feige is the clique problem for bipartite graphs.
Let G = (V1, V2, E) be a bipartite graph. V1 and V2 are the sets of vertices (V1 is the
left hand side and V2 is the right hand side) and E ⊆ V1 × V2 is the set of edges. A
(bipartite) clique in G is a subgraph H = (W1, W2, F ) of G with Wi ⊆ Vi such that
F = W1 × W2. Sometimes we denote such a clique by (W1, W2) because the set F of
edges is well defined. We are interested in the optimization problem maximum clique,
that is to determine the maximum size of a clique in G.

When the size of H is measured as

# of vertices of H = |W1| + |W2|
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the problem is solvable in polynomial time [GaJo 79], problem GT24. If however the
size of H is measured as

# of edges of H = |W1 × W2| = |W1| · |W2|

the problem interestingly becomes NP-hard [Pe 00] and approximation algorithms are
of interest. This is the version of the problem we consider. The approximation ratio
of an algorithm for a maximization problem is the maximum size possible divided by
the size of the solution found by the algorithm. For the classical clique problem no
approximation ratio below n1−ε for any constant ε > 0 is possible by a polynomial
time algorithm (unless P = NP), cf. [H̊a99]. Similar results are not known for our
bipartite case. Among other results Feige shows in [Fe 02] that there is a constant
δ > 0 such that the bipartite clique problem cannot be approximated with a ratio
below nδ, provided the random 3-SAT hardness hypothesis holds.

Our final main result is

Theorem 1. Under the random 4-SAT hardness hypothesis for graphs with n vertices
there is no polynomial time approximation algorithm for the bipartite clique problem
with a ratio below nδ for some constant δ > 0.

We postpone the proof of Theorem 1 from the subsequent Theorem 2 by means of
the derandomized graph product to section 4.

Theorem 2. Under the random 4-SAT hardness hypothesis there exist two constants
ε1 > ε2 > 0 such that no efficient algorithm is able distinguish between bipartite graphs
G = (V1, V2, E) with |V1| = |V2| = n which have a clique of size ≥ (n/16)2(1 + ε1) and
those in which all bipartite cliques are of size ≤ (n/16)2(1 + ε2).

2 Discrepancy certification in random bipartite graphs

Let B = (V1, V2, E) be a bipartite graph an 2n vertices with |V1| = |V2| = n. Let

E(X, Y ) = {{x, y} ∈ E | x ∈ V1, y ∈ V2}

be the set of edges with one endpoint in X ⊆ V1 and the other in Y ⊆ V2. We abbreviate
|E(X, Y )| with e(X, Y ).

Definition 3. We say B as above is of low discrepancy with respect to ε iff for all
X ⊆ V1, |X| = αn and all subsets Y ⊆ V2, |Y | = βn we have that

|e(X, Y ) − αβ · |E|| ≤ ε|E|

The random bipartite graph Bn,c/n has the set of vertices V1 = {1, . . . , n} and
V2 = {n + 1, . . . , 2n}. Each each edge {x, y} with x ∈ V1 and y ∈ V2 is picked with
probability c/n independently. Then Bn,c/n enjoys the low discrepancy property for
each arbitrarily small constant ε > 0 if only c = c(ε) is large enough.

At first we show that the number of edges in Bn,c/n is with high probability cn ·
(1 + o(1)). Note that the number of edges |E| in Bn,c/n is binomial distributed with
parameters n2 and c/n. So, the expectation of |E| is n2 · c/n = cn.
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The well known tail bound for a random variable Z distributed according to the
binomial distribution Bin(N, p) (Chernoff’s bound) reads that for any 1 > δ > 0

Pr[Z ≥ (1 + δ)E[Z])] ≤ exp((−1/3)δ2E[Z])) (1)

and

Pr[Z ≤ (1 − δ)E[Z]] ≤ exp((−1/2)δ2E[Z]))]. (2)

Letting δ = 1/ log n we get

Pr[| |E| − cn| ≥ cn/ log n] ≤ 2 exp((−1/3)cn/ log2 n) = o(1).

So with probability 1 − o(1) we have that |E| = cn · (1 + o(1)).
To show that Bn,c/n has the low discrepancy property take some arbitrary small

constant ε > 0. Let X ⊆ V1 and Y ⊆ V2 be two fixed subsets with |X| = αn and
|Y | = βn. Then e(X, Y ) is a random variable follows the binomial distribution Bin(|X| ·
|Y |, c/n). The expectation of e(X, Y ) is

µ = E[e(X, Y )] = |X| · |Y | · c/n = αn · βn · c/n = αβ · cn
Picking c sufficiently large, for example such that ε ≥ 1/ log c, we see with (1) and (2)
together with |E| = cn · (1 + o(1)) = µ/(αβ) · (1 + o(1)) that

Pr[|e(X, Y ) − µ| ≥ ε|E|] = Pr[|e(X, Y ) − µ| ≥ ε/αβ · (1 + o(1)) · µ]

< 2 · exp(−ε2/(αβ)2 · (1 + o(1)) · µ/3)

≤ 2 · exp(−ε2cn/4)

= o(2−2n).

As we have at most 2n ·2n possible sets X and Y , we have the low discrepancy property
for all sets X and Y defined as above with high probability. We get

Lemma 4. Given ε > 0 an arbitrarily small constant and c = c(ε) sufficiently large
but constant Bn,c/n has low discrepancy with respect to ε with high probability.

Moreover, there is a polynomial time algorithm BipDisc introduced in [CoGoLa 04],
which is able to check the property stated in the lemma. This algorithm takes as input
a bipartite graph B = (V1, V2, E). It tries to certify that for all sets X ⊆ V1 with
|X| = αn and Y ⊆ V2 with |Y | = βn

|α · β · |E| − e(X, Y )| ≤ c1 ·
√

α · β · |E|n + n · e−|E|/(c1·n) (3)

where c1 is a constant independent of the rest. If the algorithm gets Bn,c/n as input it
certifies (3) almost surely.

So for any constant ε > 0 and c large enough, for example so that ε ≥ 1/ log c and
c ≥ c3

1, we have with |E| = cn · (1 + o(1)) that asymptotically

c1 ·
√

α · β · |E|n + n · e−|E|/(c1·n) ≤ c1 ·
√

cn2 + n · e−c/c1

≤ c1 · |E|/√c + n

≤ c−1/6 · |E| + c−1|E|
≤ ε|E|

and Algorithm BipDisc certifies low discrepancy for every constant ε > 0 if c = c(ε) is
large enough.
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3 Proof of Theorem 2

Before we take care on the proof of Theorem 2, we review the following algorithm. It
takes as input any 4-SAT formula and bounds the number of variables set to true resp.
set to false by a satisfying assignment a. Let Ta (resp. Fa) be the set of variables set to
true (resp. false) under a. We denote the set of clauses in F containing only non-negated
variables P = P (F ). This set is also called positive clauses. The clauses containing only
negated variables form the set N = N(F ) and are called negative clauses.

Algorithm 5.

Input: A 4-SAT formula F .

1. Set S := P (F ) and i := 0.
2. While (S 6= ∅) do
3. Take some clause C = c1 ∨ c2 ∨ c3 ∨ c4 from S.
4. Delete all clauses containing one of the ci from S.
5. i := i + 1
6. Output i as a lower bound on |Ta|
7. Repeat 1-5 for S := N(F ).
8. Output i as a lower bound on |Fa|.

The idea of the algorithm is the following. In every clause C there must be at least
one literal true. If we consider the set P (F ), at least one variable per clause must be
set to true. As we do not know this variable, we delete all clauses containing a variable
from the chosen clause C. If some clauses left, we repeat the procedure, because some
more variables must be set to true. Looking on N(F ) we get a lower bound on the
number of variables set to false by a satisfying assignment. This shows the correctness
of the algorithm.

On Formn,4,c/n3 the algorithm almost surely certifies that the number of variables
set to true is at least n/16 · (1 + o(1)). It gives the same lower bound for the variables
set to false. To see this, let k be the value of i in Step 6. We have chosen k clauses
and have at most 4k different variables in these clauses. Let s be the number of clauses
containing one of these variables. Then E[s] is bounded by 4k ·4|P |/n. Using Chernoff’s
bound we derive that with high probability s ≤ 16k · |P |/n · (1+1/ log k). So we deleted
at most 16k|P |/n · (1 + 1/ log k) clauses in Step 4. As we reached step 6 S must be
empty. This shows, that k is at least n/16 · (1+o(1)). The other bound can be obtained
analogously.

We need this algorithm and its answer for the further results. By using it, we can
rely on the important property that any satisfying assignment for a given formula F
sets a linear number of variables to true and a linear number to false. We need this
now and then and state out the importance when we use this fact.

Now we come to the proof of Theorem 2. The proof relies on the certification of low
discrepancy of certain bipartite projection graphs of Formn,4,c/n3 . Let F be a 4-SAT
formula and S ⊆ F an arbitrary set of clauses from F . Then we define 6 projection
graphs Bij = (V1, fV2, Eij), 1 ≤ i < j ≤ 4, of S. The sets V1 and V2 are copies of the
variables V of F . So we set V1 = V × {1} and V2 = V × {2}. But for clarity of reading
we relinquish on (x, 1) (resp. (y, 2)) and use only x (resp. y). So x ∈ V1 denotes another
vertex than x ∈ V2 even if they mean the same variable in V .
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We have an edge {x, y} ∈ Eij with x ∈ V1 and y ∈ V2 if and only if we have a clause
l1 ∨ l2 ∨ l3 ∨ l4 ∈ S with V (li) = x and V (lj) = y.

Algorithm 6.

Input: A 4-SAT formula F and ε > 0.

1. Apply Algorithm 5 to F . Give an inconclusive answer if one bound is below n/20.
2. Check that |P | = cn · (1 + o(1)) and |N | = cn · (1 + o(1)).
3. Construct the 6 projection graphs of N and the 6 projection graphs of P . Check for

every projection that the number of edges is ≥ |N |·(1−o(1)) for N and |P |·(1−o(1))
for P . Give an inconclusive answer if this is not the case.

4. Apply the Algorithm BipDisc from Section 2 to certify low discrepancy with respect
to ε > 0 to all these projection graphs. Give an inconclusive answer if one application
gives an inconclusive answer. Give a positive answer otherwise.

Lemma 7. Algorithm 6 is complete for Formn,4,c/n3 whenever c is a sufficiently large
constant.

Proof. Step 1 is complete as Algorithm 5 gives on Formn,4,c/n3 almost surely two bounds
of size n/16 · (1 + o(1)).

The completeness of Step 2 follows from Chernoff’s bound on |P | and |N |.
Step 4 is passed successfully as follows from the completeness of BipDisc for Bn,c/n

when c is large enough. Note that in our case the projections considered are random
bipartite graphs Bn,p with p = 1 − (1 − c/n3)n2

= c/n · (1 + o(1)).
Now we calculate the difference between the number of clauses of P and the number

of edges in the projection Bij . As every edge is induced by at least one clause, we must
have that |Eij | ≤ |P |. But some clauses induce no edge in Eij . We could have pairs
of clauses l1 ∨ l2 ∨ l3 ∨ l4, g1 ∨ g2 ∨ g3 ∨ g4 ∈ P inducing the same edge in Gij . This
means li = gi and lj = gj . The expected number of such pairs is n2 · n4 · (c/n3)2 = c2.
By Markov’s inequality the number of these pairs exceeds log n with probability o(1).
So we have with high probability more than |P | − log n = |P | · (1 − o(1)) edges in Bij .
The same holds for the projections of N . This implies that Formn,4,c/n3 passes Step 3
successfully with high probability. ut

Low discrepancy of the projections implies interesting properties. Let |Fa| = αn
and |Ta| = (1 − α)n.

Lemma 8. Let a be a satisfying assignment for F . Then low discrepancy with respect
to ε of the projections gives that 1/3 − O(ε) ≤ α ≤ 2/3 + O(ε).

Note that the above statement is only useful when ε is very small against α. As
ε > 0 is a constant α should have a constant lower bound independent of ε. Remember,
this feature is assured by the first step of Algorithm 6.

Proof. Consider the projection B1,1 = (V1, V2, E1,1) of P . Low discrepancy of B1,1 gives

|e(Fa, Fa) − α2 · |E1,1|| ≤ ε · |E1,1|.

The edges in E1,1(Fa, Fa) are induced by clauses in P of type (Fa, Fa, V, V )P , i.e. clauses
beginning with two variables from Fa and the third and fourth variable doesn’t matters.
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Together with |E1,1| = |P | · (1 + o(1)) we have that |(Fa, Fa, V, V )P | = (α2 + O(ε))|P |.
As a is a satisfying assignment, the third or the fourth variable in these clauses comes
from Ta. This means that

|(Fa, Fa, Ta, Fa)P | + |(Fa, Fa, Ta, Ta)P | ≥ (α2/2 + O(ε))|P |

or

|(Fa, Fa, Fa, Ta)P | + |(Fa, Fa, Ta, Ta)P | ≥ (α2/2 + O(ε))|P |.
The first possibility gives that e(Fa, Ta) in B1,3 is at least (α2/2+O(ε))|P |. But by low
discrepancy this is at most (α · (1 − α) + O(ε))|P |. From

α2/2 + O(ε) ≤ α · (1 − α) + O(ε)

we get α ≤ 2/3 + O(ε). Note, the derivation holds only if α is bounded away from 0
by an independent constant as we divide by α. Here again we use the result given by
Algorithm 5.

We get the same bound for the second possibility and the graph B1,4. The bound
α ≥ 1/3 − O(ε) we get by doing the same things for N beginning with B1,1 and
E1,1(Ta, Ta). ut

We let % = |P | = |P (F )| and ν = |N | = |N(F )|. Then %i = %i,a is the number
of clauses of P which contain exactly i literals true under a. We use the analogous
notation νi = νi,a for N .

Then low discrepancy of the projections gives some stronger results than Lemma 8.

Theorem 9. Given ε > 0 a arbitrarily small constant Algorithm 6 certifies that for
any assignment a with |Fa| = αn satisfying Formn,4,c/n3 the following equations, hold:

(a) %0 = 0
%2 = 6α2% − 3%1 + O(ε)%
%3 = (−12α2 + 4α)% + 3%1 + O(ε)%
%4 = (6α2 − 4α + 1)% − %1 + O(ε)%

(b) The equations for the νi are analogous with 1 − α instead of α:
ν0 = 0
ν2 = 6(1 − α)2ν − 3ν1 + O(ε)ν
ν3 = (−12(1 − α)2 + 4(1 − α))ν + 3ν1 + O(ε)ν
ν4 = (6(1 − α)2 − 4(1 − α) + 1)ν − ν1 + O(ε)ν

Note that (a) and (b) imply that the %i, νi, i ≥ 2, are determined by α and %1, ν1 up to
the O(ε)-terms. The claim of Theorem 9 is only useful if α is substantial larger than ε.
This again shows the relevance of Algorithm 5. It certifies that α is bounded away from
0 by a fixed constant. This fact allows us to find a sufficiently small constant ε > 0.

Proof. To show that Algorithm 6 correctly certifies the properties of Theorem 9 let
ε > 0 be a constant and F be a 4-SAT formula which passes the algorithm successfully.
Let a with |Fa| = αn be a satisfying assignment of F . The first equation %0 = 0 trivially
holds as a satisfies F .
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By low discrepancy we get for any projection B of P = P (F ) that in B

e(Fa, Fa) = α2 · % + O(ε)%

No clause from %3 induces an edge belonging to E(Fa, Fa). Looking at all 6 projections
each clause from %2 induces one edge in one projection and each clause from %1 induces
one edge in three projections. Thus we have

6α2% + O(ε) · % =
∑

B

eB(Fa, Fa) = 3%1 + 1%2 + o(%), (4)

where G ranges over all 6 projection of P . The o(%) term accounting for those clauses
inducing no edge. In each projection B of P we have

eB(Ta, Ta) = (1 − α)2 · % + O(ε)%

and therefore
6(1 − α)2 · % = 6%4 + 3%3 + %2 + O(ε)%. (5)

Finally
% = %4 + %3 + %2 + %1. (6)

Remember, %0 = 0 as a is a satisfying assignment. The second equation from (a)

%2 = 6α2% − 3%1 + O(ε)% (7)

follows directly from (4). Plugging (7) into (5) yields

6(1 − α)2% = 6%4 + 3%3 + 6α2% − 3%1 + O(ε) · %

and simply algebra gives

2% − 4α% = 2%4 + %3 − %1 + O(ε)%. (8)

Plugging (7) into (6) gives

(1 − 6α2)% = %4 + %3 − 2%1 + O(ε)%. (9)

Subtracting (9) from (8) we get

2% − 4α% − (1 − 6α2)% = %4 + %1 + O(ε)%.

and simple algebra gives the fourth equation of (a)

%4 = (1 + 6α2 − 4α)% − %1 + O(ε)%. (10)

Plugging (10) into (8) we get

2% − 4α% = 2% + 12α2% − 8α% − 2%1 + %3 − %1 + O(ε)%

and this gives the third equation from (a)

%3 = −12α2% + 4α% + 3%1 + O(ε)%

(b) follows analogously with N and |Ta| = (1 − α)n. ut
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We can obtain Lemma 8 from the above equalities, too. For this use % ≥ %1 + %4 to get
α ≥ 2/3 + O(ε). The other bound we could get through ν ≥ ν1 + ν4.

To extend the construction from section 4.1 of [Fe 02] from 3-SAT to 4-SAT is the
purpose of

Definition 10. Given two sets V1 and V2 of 4-clauses, the bipartite graph BG(V1, V2) =
(V1, V2, E) is defined by: For C ∈ V1, D ∈ V2 we have an edge {C, D} ∈ E iff C =
u1 ∨ u2 ∨ u3 ∨ u4, D = v1 ∨ v2 ∨ v3 ∨ v4 and for all i V (ui) 6= V (vi).

As we consider clauses as ordered it can be well that

{x1 ∨ x2 ∨ x3 ∨ x4 , ¬x2 ∨ ¬x1 ∨ x4 ∨ x3} ∈ E

provided the xi are all distinct. However we never have that

{x1 ∨ x2 ∨ x3 ∨ x4 , ¬x1 ∨ v1 ∨ v2 ∨ v3} ∈ E

as V (x1) = V (¬x1) = x1.
For a set of clauses S and 1 ≤ i ≤ 4 the rotations of S are:

ROT1(S) = {v2 ∨ v3 ∨ v4 ∨ v1 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT2(S) = {v3 ∨ v4 ∨ v1 ∨ v2 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT3(S) = {v4 ∨ v1 ∨ v2 ∨ v3 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT4(S) = S

Corollary 11. There exists a small constant δ > 0 (e.g. δ = 1/50) such that Algorithm
6 certifies the following property for Formn,4,c/n3 where c is sufficiently large: If F =
Formn,4,c/n3 is satisfiable there must be a bipartite clique of size ≥ (cn/16)2 · (1 + δ) in
one of the following eight graphs:

BG(P, ROTi(N)) with 1 ≤ i ≤ 4

BG(P, ROTi(P )) with i = 1, 2

BG(N, ROTi(N)) with i = 1, 2

Proof. We only need to show that Algorithm 6 correctly certifies the property claimed.
To this end let F be a 4-SAT formula which passed Algorithm 6 successfully. We
distinguish two cases. In the first case is %2 ≤ 3/8 · % · (1 + δ) and ν2 ≤ 3/8 · ν · (1 + δ).
In the second case at least one inequality is violated. We start with the second case.

Assume %2 > 3/8 ·%(1+δ). Note that %2 refers to six subsets of clauses having 2 true
and 2 false variables under a. So there is at least one subset with cardinality ≥ 1/16 ·
%(1 + δ). Let for an example (Ta, Fa, Fa, Ta)P be this subset. Then BG(P, ROT2(P ))
has a large bipartite clique. For the left side of the clique take all clauses of type
(Ta, Fa, Fa, Ta)P in P . The right side is the rotated set of these clauses. Through the
rotation the clauses change to (Fa, Ta, Ta, Fa)ROT2(P ). As Ta ∩Fa = ∅, (Ta, Fa, Fa, Ta)P

and (Fa, Ta, Ta, Fa)ROT2(P ) form a bipartite clique. The size of the clique is bounded
below by

(1/16 · %(1 + δ))2 ≥ (cn/16)2 · (1 + δ)2 · (1 − o(1)) > (cn/16)2 · (1 + δ).
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For any of the five other types we get the same bound maybe using BG(P, ROT1(P )).
If ν2 > 3/8 · ν(1 + δ) use BG(N, ROTi(N)) in the same way.

Now we come to the case %2 ≤ 3/8 ·%(1+ δ) and ν2 ≤ 3/8 ·ν(1+ δ) From the second
equalities of (a) and (b) in Theorem 9 we get

%1 = 2α2% − %2/3 + O(ε)% ≥ 2α2% − 1/8 · %(1 + δ) + O(ε)%

and
ν1 ≥ 2(1 − α)2ν − 1/8 · ν(1 + δ) + O(ε)ν.

As %1 consists of four subsets of clauses having exactly one variable true under a we
have one subset with cardinality ≥ (α2/2 − (1 + δ)/32 + O(ε))%. For example this is
(Fa, Ta, Fa, Fa)P . Also we get one subset in N having exactly one variable false under a
with at least ((1−α)2/2−(1+δ)/32+O(ε))ν clauses. Let this subset be (Fa, Ta, Ta, Ta)N .
Looking at BG(P, ROT3(N)) we see that this two subsets form a bipartite clique with
at least

(

α2

2
− 1 + δ

32
+ O(ε)

)

% ·
(

(1 − α)2

2
− 1 + δ

32
+ O(ε)

)

ν (11)

edges. Conceive (11) as a function of α. Then it is concave for 1/5 ≤ α ≤ 4/5. Lemma
8 gives us 1/3 − O(ε) ≤ α ≤ 2/3 + O(ε) as a is a satisfying assignment. Because of
the concavity we only have to check these both limits to lower bound (11). For ε and
δ sufficiently small we get in both cases a lower bound of

(

(1/3 − O(ε))2

2
− 1 + δ

32
+ O(ε)

)

% ·
(

(2/3 + O(ε))2

2
− 1 + δ

32
+ O(ε)

)

ν

≥
(

1

18
− 1 + δ

32
+ O(ε)

)

% ·
(

2

9
− 1 + δ

32
+ O(ε)

)

ν

≥ % · ν
250

≥ (cn · (1 + o(1)))2

250
=

(cn)2

256
· 256

250
· (1 + o(1))

>
(cn

16

)2
· (1 + δ)

ut
Theorem 12. Let ε > 0 an arbitrarily small constant and c = c(ε) large enough. For
F = Formn,4,c/n3 the maximum clique size in the graphs below is with high probability
bounded above by (cn/16)2 · (1 + ε). This applies to the graphs BG(R, T ) where R and
T each are one among the sets ROTi(N(F )), ROTi(P (F )) for 1 ≤ i ≤ 4 (R = T is
also possible).

Proof. Let G = BG(R, T ) = (R, T, E). We show the claim for R = P (F ) and T =
ROT1(P (F )). Clearly the remaining cases can be treated similarly. Let K ⊆ R and
L ⊆ T such that K×L ⊆ E, meaning that K and L induce a clique in G. For 1 ≤ i ≤ 4
let

Ki = {x | u1 ∨ u2 ∨ u3 ∨ u4 ∈ K, x = V (ui)}
and analogously for Li. By definition of BG(R, T ) and as K × L ⊆ E we have that
Ki ∩ Li = ∅ for all 1 ≤ i ≤ 4. The theorem follows when we show that for all sets
Ki ⊆ V , Li = V \ Ki

|(K1, K2, K3, K4)R| · |(L1, L2, L3, L4)T | ≤ (cn/16)2 · (1 + ε)
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with high probability for Formn,4,c/n3 . Given Ki, Li let

X = |(K1, K2, K3, K4)R| and Y = |(L1, L2, L3, L4)T |.

Then X is binomial distributed with parameters κ and c/n3, and κ = |K1| · |K2| ·
|K3| · |K4|. Y is also binomial distributed but with the parameters λ and c/n3, and
λ = |L1| · |L2| · |L3| · |L4|. Note that X and Y can be dependent because T = ROT1(R).

Assume first that κ, λ ≥ εn4. In this case we have

E[X] = κ · c/n3 ≥ ε · cn and E[Y ] = λ · c/n3 ≥ ε · cn.

By Chernoff’s bound we have

Pr[X ≥ E[X] · (1 + ε2)] ≤ exp(−ε4/3 · E[X]) ≤ exp(−ε5/3 · cn)

and
Pr[Y ≥ E[Y ] · (1 + ε2)] ≤ exp(−ε4/3 · E[X]) ≤ exp(−ε5/3 · cn)

Concerning the product we get from these estimates that

Pr[X · Y ≥ E[X] · E[Y ] · (1 + ε2)2] ≤ 2 · exp(−ε5/3 · cn)

The product E[X] ·E[Y ] is maximized when |Ki| · |Li| = n/2 for 1 ≤ i ≤ 4. In this case
κ = λ = n4/16, E[Y ] = E[X] = n4/16 · c/n3 = cn/16 and

Pr[X · Y ≥ (cn/16)2 · (1 + ε)]

≤ Pr[X · Y ≥ (cn/16)2 · (1 + ε2)2] For ε small enough.

≤ Pr[X · Y ≥ E[X] · E[Y ] · (1 + ε2)2]

≤ 2 · exp(−ε5/3 · cn).

Picking c large enough this probability is o(2−4n).
The second case arises for κ < εn4. As P (F ) = cn · (1+ o(1)) with high probability,

we can condition on the event Y ≤ cn · (1 + o(1)). Let Z be binomial distributed with
the parameters εn4 and c/n3. Then we get

Pr[X ≥ c/162 · n]

≤ Pr[Z ≥ c/162 · n]

≤ Pr[Z ≥ 1/(256ε) · εcn]

≤ Pr[Z ≥ 2 · εcn] For ε < 1/512.

≤ Pr[Z ≥ 2 · E[Z]]

≤ exp(−1/3 · εcn)

leading to

Pr[X · Y ≥ (cn/16)2 · (1 + ε)] ≤ Pr[X ≥ c/162 · n] ≤ exp(−1/3 · εcn),

which is o(2−4n) when c is large enough. The third case λ < εn4 can be handled
similarly and is omitted. The claim follows as we have only 24n possibilities to choose
K1, . . . , K4. ut
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Corollary 11 and Theorem 12 shows the correctness of Theorem 2. If we would have
an approximation algorithm with ratio for example 1.01, we could distinguish between
the satisfiable formulas inducing graphs with cliques ≥ (cn/16)2 · (1.02) (Corollary 11)
and the typical formulas whose graphs only have cliques of size e.g. (cn/16)2 · (1.001)
from Theorem 12. This means we could refute 4-SAT on average.

4 Proof of Theorem 1

Let ε1 > ε2 > 0 be constants as in Theorem 2. Let Gl (l for large) be the set of
graphs G = (V1, V2, E) with |V1| = |V2| = n having a bipartite clique of size at least
(n/16)2 · (1 + ε1). The set Gs (s for small) contains all the graphs G = (V1, V2, E)
with |V1| = |V2| = n and the maximal clique is at most (n/16)2 · (1 + ε2). The size of
the cliques in Gl and Gs differ by a factor (1 + ε1)/(1 + ε2). This factor we call gap.
As the gap of (1 + ε1)/(1 + ε2) is constant, we have no chance to detect it directly
with an approximation algorithm A having ratio nδ. So we construct from G a graph
G = (V1,V2, E) with |V1| = |V2| having significantly more vertices and edges as G. The
goal is to enlarge the constant gap to a factor of |V1|δ for some constant δ > 0. Then
we can detect the gap with A. Firstly, we examine the following idea:

1. Choose k ∈ N.

2. Let V1 be the set of all k-tuples of vertices in V1.

3. Let V2 be the set of all k-tuples of vertices in V2.

4. Two vertices x = (x1, . . . , xk) ∈ V1, y = (y1, . . . , yk) ∈ V2 induce an edge {x, y} ∈ E
iff ({x1, . . . , xk}, {y1, . . . , yk}) form a bipartite clique in G.

Let M ⊆ V1, then V1(M) denotes the set of all tuples in V1 consisting only of vertices
from M and analogously for N ⊆ V2 and V2(N). With the above construction |V1(M)| =
|M |k and |V2(N)| = |N |k.

From die construction of E the following two statements hold. Firstly for every
bipartite clique (L, R) in G we have that (V1(L),V2(R)) is a bipartite clique in G.
Secondly for every clique (L,R) in G let L be the vertices in the tuples of L and R be
the vertices in the tuples of R. Then (L, R) form a bipartite Clique in G. Note that
L ⊆ V1(L) and R ⊆ V2(R).

For G ∈ Gs we use this fact to get an upper bound for the clique size in G. Let
(L,R) and (L, R) as above. Then

|L| · |R| ≤ |V1(L)| · |V2(R)| = |L|k · |R|k = (|L| · |R|)k ≤ (n/16)2k · (1 + ε2)
k

bounds the clique size in G.

From the first statement we get for G ∈ Gl and (L, R) its maximal clique that G
has a clique of size

|V1(L)| · |V2(R)| = |L|k · |R|k = (|L| · |R|)k ≥ (n/16)2k · (1 + ε1)
k.

Now we have a gap of ((1 + ε1)/(1 + ε2))
k. For a bounded k this is still constant. But

for unbounded k we cannot construct the sets V1 and V2 in polynomial time as they
have size nk. So we have to choose a subset of all tuples.
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The next idea is to choose every tuple uniform and independent. Then we have for
M ⊆ V1 that E[V1(M)] = (|M |/n)k · |V1|. Together with Chernoff’s bounds we have
with high probability

|V1(M)| = (|M |/n)k · |V1| · (1 + o(1))

provided |M | and |V1| are so that E[V1(M)] is linear in n. We get for G ∈ Gl and (L, R)
its maximal clique that G has a clique of size

|V1(L)| · |V2(R)| ≥
( |L|

n

)k

· |V1| ·
( |R|

n

)k

· |V2| · (1 + o(1))

≥
(

1 + ε1

256
+ o(1)

)k

· |V1| · |V2|.

For G ∈ Gs let (L,R) and (L, R) as in the second statement above. We get

|L| · |R| ≤ |V1(L)| · |V2(R)|

≤
( |L| · |R|

n2

)k

· |V1| · |V2| · (1 + o(1))

≤
(

1 + ε2

256
+ o(1)

)k

· |V1| · |V2|.

Both facts together give us a gap of

(

1+ε1

256 + o(1)
1+ε2

256 + o(1)

)k

=

(

1 + ε1

1 + ε2
+ o(1)

)k

≥ (1 + ε)k

for some constant ε > 0. Now we choose k = dln ne, then this gap is at least (1+ε)ln n =
nln(1+ε). Choosing every tuple with probability say n2/nk, we get with high probability
|V1| = n2 · (1 + o(1)) and |V2| = n2 · (1 + o(1)). So for δ < ln(1 + ε)/2 algorithm A with
ratio nδ recognizes this large gap. So through this construction of G A could decide if
a given graph G belongs to Gs or to Gl.

But as we are interested in deterministic algorithms we do not want to choose the
tuples randomized. We use the so called derandomized graph product as introduced
in [AlFeWiZu 95]. This makes use of Ramanujan graphs, cf. [LuPhSa 88]. These reg-
ular graphs have good expansion properties. The above construction of V1 and V2 is
substituted by the following procedure:

1. Choose k ∈ N odd and a large constant d ∈ N.
2. Construct a Ramanujan graph H with n vertices and degree d.
3. Identify every vertex from V1 with exactly one vertex in H.
4. Enumerate all walks in H of length k− 1. Each of this walks can be seen as a tuple

of k vertices from V1 (in order of appearance on the walk). Put each such tuple into
V1.

5. Identify every vertex from V2 with exactly one vertex in H.
6. Enumerate all walks in H of length k − 1. Put for each walk the relating tuple into

V2.
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Note that |V1| = |V2| = n · dk−1 as we have n vertices in H each has d neighbors.

Fact 13. From [AlFeWiZu 95] section 2 we have for every set M ⊆ V1

|V1(M)| ≤ |M | · dk−1 ·
( |M |

n
+

2√
d
·
(

1 − |M |
n

))k−1

|V1(M)| ≥ |M | · dk−1 ·
( |M |

n
− 2√

d
·
(

1 − |M |
n

))k−1

and the same for N ⊆ V2 and V2(N).

The first inequality evaluates to

|V1(M)| ≤ |M | · dk−1 ·
( |M |

n
+

2√
d
·
(

1 − |M |
n

))k

≤ |M |
n

· ndk−1 ·
( |M |

n
+ O

(

1√
d

))k−1

≤ |V1| ·
( |M |

n
+ O

(

1√
d

))k

and the second to |V1(M)| ≥ |V1| ·
(

|M |
n + O

(

1√
d

))k
where the constant behind the O

is < 0. We get for every N ⊆ V2 on the same way |V2(N)| = |V2| ·
(

|N |
n + O

(

1√
d

))k

With the same calculations as in the randomized case above we get for G ∈ Gl in
G a clique of size at least |V1| · |V2| · ((1 + ε1)/256 + O(1/

√
d))k. In the case G ∈ Gs we

have in G only cliques of size at most |V1| · |V2| · ((1+ ε2)/256+O(1/
√

d))k. So we have
a gap of

(

1+ε1

256 + O(1/
√

d)
1+ε2

256 + O(1/
√

d)

)k

=

(

1 + ε1 + O(1/
√

d)

1 + ε2 + O(1/
√

d)

)k

= (1 + ε)k

for some constant ε > 0 provided d large enough. If we set k to the smallest odd
integer ≥ ln n, we have a gap of at least (1 + ε)ln n = nln(1+ε). The number of vertices
in G is bounded above by 2n · dk−1 = O(n1+ln d), remember d is a constant. So an

approximation ratio for A of nδ with δ < ln(1+ε)
1+ln d and constant suffices to detect the

gap. As this contradicts the random 4-SAT hardness hypothesis, we found a δ for
Theorem 1. The certification algorithm for unsatisfiability of Formn,4,c/n3 could be the
following:

Algorithm 14. Input a 4-SAT formula F .
Step 1. Apply Algorithm 6 to F .
Step 2. Construct G = (V1,V2, E) as described for every BG from Corollary 11.
Step 3. Apply A to every G.
Step 4. If A detects a clique of size ≥ |V1| · |V2| · ((1 + ε1)/256 + O(1/

√
d))k/|V1|δ give

an inconclusive answer, otherwise give a positive answer.

The correctness of the algorithm follows from Corollary 11. Its completeness from The-
orem 12 and the completeness of Algorithm 6.
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