Electronic Colloguium on Computational Complexity, Report No. 49 (2004)

Optimal Trade-Off for Merkle Tree

Traversal

Piotr Berman* Marek Karpinski’ Yakov Nekrich?

Abstract. We prove upper and lower bounds for computing Merkle
tree traversals, and display optimal trade-offs between time and space
complexity of that problem.

*Dept.of Computer Science and Engineering, The Pennsylvania State University. Re-
search done in part while visiting Dept. of Computer Science , University of Bonn. Work
partially supported by NSF grant CCR-9700053 and NIH grant 9R01HG02238-12. E-mail
berman@cse.psu.edu

TDept. of Computer Science, University of Bonn. Work partially supported by DFG
grants , Max-Planck Research Prize, DIMACS and IST grant 14036 (RAND-APX). E-mail
marek@cs.uni-bonn.de

IDept. of Computer Science, University of Bonn. Work partially supported by IST
grant 14036 (RAND-APX). E-mail yasha@cs.uni-bonn.de

ISSN 1433-8092

1 Introduction

Merkle trees have found wide applications in cryptography mainly due to
their conceptual simplicity and applicability. Merkle trees were first described
by Merkle [M79] in 1979 and studied intensively in a number of papers, cf.,
e.g., [JLMS03] and [S03]. In cryptographic applications, however, Merkle
trees were not very useful for small computational devices, as the best known
techniques for traversal required a relatively large amount of computation
and storage. In this paper we address the issue of possible improvements of
Merkle tree traversals.

Merkle tree is a complete binary tree such that values of internal node,
are one-way functions of the values of their children. Every leaf value in
Merkle tree can be identified with respect to a publicly known root and the
authentication path of that leaf. An authentication path of a leaf consists of
the siblings of all nodes on the path from this leaf to the root.

Merkle trees have had many cryptographic applications, such as certifica-
tion refreshal [M97], broadcast authentication protocols [PC02], third party
data publishing [DGO1], zero-knowledge sets [MRKO03] and micro-payments
[RS96]. A frequent problem faced in such applications is, so called, Merkle
tree traversal problem, the problem of outputting the authentication data
for every leaf. In [M87] Merkle has proposed a technique for traversal of
Merkle trees, which required O(log”n) space and O(logn) time per authen-
tication path in the worst case. Recently two results, improving a technique
of Merkle, have appeared. Jakobsson, Leighton, Micali and Szydlo [JL.MS03]
describe a Merkle tree traversal algorithm with O(log® n/ log log n) space and
O(log n/loglogn) time per output. In [S03] Szydlo describes a method, re-
quiring O(log n) space and O(log n) time and provides a proof that this bound
is optimal, i.e. he proves, that there is no traversal algorithm, that would
require both o(log n) space and o(logn) time.

In this paper we investigate further the trade-off between time and space
requirements of Merkle tree traversals. [JLMS03] and [S03] were the starting
points of these investigations.

First, we present an algorithm, that works in O(logn/h) time and
O((logn/h)2") space per round for arbitrary parameter h. For A = O(1) our
result is equivalent to the result of Szydlo, however we consider all operations
(not just computations of one-way functions) in our analysis. Our result is
also an extension of that of Jakobsson, Leighton, Micali and Szydlo [JLLMS03],
in that we prove that it can be extended for arbitrary values of h. Besides
that, we achieve better constants in the space bound.

Secondly, we show that the results of [S03] and [JLMS03] remain true, if
we consider all operations and not just hash computations. (If 2 is higher

[S]

than constant we ignore times, that we need to output the values in the last
case).

In particular, we show that an algorithm with 2log n/log loglogn hash
functions evaluations and storage requirement of
(logn/logloglogn + 1) loglog n 4+ 2log n hash values per output can be con-
structed. This algorithm works with O(logn/logloglogn) operations per
output.

At the end, we show that if a tree traversal algorithm works in time
O(logn/h) then required space is O((logn/h)2"). Thus we show that our
trade-off is optimal.

2 Preliminaries and Notation

Below we denote by a hash (unit) a one-way function and hash computation
will denote a computation of the value of a one-way function. In a Merkle
tree leaf values are hash values of the leaf pre-images. Leaf pre-images can
be, for instance, generated with a pseudo-random generator. We will de-
note by leaf-cale a function, that computes pre-images of the leaves. Let
¢r=hasholeaf-calc be the function that computes value of the i-th leaf. Let
oo (parent)=hash (left-child||right-child) be the function, that computes the
value of the parent node from the values of its children. We will presume,
that we need one computation unit to compute ¢; or ¢,.

We must generate n outputs, where n is the number of leaves. Every
output consists of the leaf pre-image and its authentication path. An authen-
tication path consists of the siblings of all nodes on the path to the root.
Outputs for the leaves must be generated consecutively left-to-right. This
makes our task easier, because outputs for consecutive leaves have many
common node values.

In order to verify the leaf one consecutively computes the values of its
ancestors. Verification succeeds only if the computed root value equals to
the known root value.

In this paper the following notation will be used. H will denote the
Merkle tree height. We will say, that a node is on level A, if its depth is
H — A. The i-th node from the left on level A will be denoted by (A,). A
job, computing node (A,) will also be denoted by (A,7). We will say, that
A is the job level and ¢ is the index of the job. Sometimes we will identify
a subtree of the Merkle tree by its root node (A,:). We will use a subtree
height h as a parameter in our algorithm and L will be equal to H/h.

We say, that a node N is needed if it is a part of an authentication path.

3 Main Idea

We describe here the main idea of our algorithm and give key observations
on which the algorithm is based.

The following well-known evaluation algorithm is used to compute the
value of the i-th node at level A and is an important part of all Merkle tree
traversal algorithms.

Eval (A)i)
if(A==0)
return ¢ (i);
else
V = Eval(A—1,2:);
return ¢,(V, Fval(A—1,2: + 1))

Figure 1: Algorithm Eval

This basic version of algorithm Ewval requires 24 computational units and
A storage units. The last follows from the fact, that at most one node value
V for every height : = 0,1,..., A has to be stored at every stage of the
algorithm. This stored values will be further called tail values.

Our algorithm uses procedure Fval to estimate the values of nodes, that
will be needed in the future authentication path. Jobs, that compute the
values of nodes (A,7) and called by our algorithm (and not by another job)
will be called root jobs.

The key observation on which our algorithm is based, is that during the
computation of node (A,1) its children (A —1,2:), (A —1,2: 4+ 1) as well as
all other descendants will be computed. Therefore by storing intermediate
results of evaluation some future computations can be saved. Actually for
every computed node N on level ¢/ all its descendants on levels th—1, ..., 1h—
h (i.e. a complete subtree of height h rooted in V) will be retained to be used
in the future authentication paths. Thus only nodes at height th 1 =1,... L
will be computed directly.

Another key observation, is that we can schedule the computations of the
nodes, needed in the future in such a way, that at most H storage units are
necessary to store all tail values.

Figure 2: Subtrees computed at a round of the algorithm

4 Algorithm Description

Our algorithm consists of three phases: root generation, output and ver-
ification. During the first phase the root of the Merkle tree is generated.
Additionally, the initial set of subtrees with roots at (¢h,0), ¢ = 1,..., L is
computed and stored.

The verification phase is identical to the traditional verification phase
(see, for instance, [JLMS03]).

The output phase consists of 2¥ rounds and during round j an image of
the j-th leaf and its authentication path are output. In the rest of this section
we will describe an algorithm for the output phase and prove its correctness.

For convenience we will measure time in rounds. During each round a cer-
tain number of computation units will be spent on computation of subtrees,
needed in the future authentication paths. Thus our algorithm will start at
time 0 and end at time 27 — 1 and 4-th round will start at time z. In the first
part of the algorithm description we will ignore the costs of all operations,
except of the computations of hash functions. Later we will show, that the
number of other operations, performed during a round, is O(L).

During round j we store L already computed subtrees with roots at
(sh,m,) with j € [m,2*" (m,+1)2*"),s = 0,1,..., L. During the same round
we also spend 2L computation units in order to compute jobs (sh,ms + 1)
and construct the corresponding subtrees. At round (m; + 1)25h the subtree

(sh,ms) will be discarded, However the subtree (sh, m;+ 1) will be retained
for the next 2°" rounds, while subtree (sh,m, + 2) is computed.

During each round there are at most L different jobs competing for 2L
computation units. These jobs will be called active. Active jobs are scheduled
according to the following rules:

1. A root job (ih,k) k = 1,..., H/2" becomes active at time (k — 1)2'",
i.e. during the (k — 1)2""-th round.

2. All recursive calls for computation of nodes (s,-) performed by root
jobs (&',-) with s’ > s, that already started when job (s,-) becomes
active, must be completed, before job (s,-) starts.

3. In all other cases the jobs with the lower level have priority over the
jobs with the higher level.

Consider job (sh,1), that starts at time 2°";. Rule 2 guarantees us, that,
all jobs with levels s’ > s will finish their level s calls, before computation of
job (sh,i) starts. Therefore, when job (sh,i) is computed only one tail node
on each of the levels (s — 1)h, (s — 1)h 4+ 1,...,sh — 1 will be stored. Now
consider a job, with level s’ > s, calling a level s job . All jobs with levels
s" > s do not store any tail nodes at levels 0,1,...s". All jobs with levels
5 < s' do not store any nodes, according to rules 2 and 3.

This scheduling guarantees us, that at any time only one tail value for a
level i = 1,2,..., H will be stored by all jobs (sh,#). Since only 2L subtrees
(one currently used and one currently computed for each level ih) must be
stored at each round and subtrees require (2H/h)2"*! space. Hence the
memory requirement of our algorithm is (2H/k)2" + H = O((H/R)2") .

These considerations allow us to formulate the following trade-off between
time and space complexity.

Theorem 1 Merkle tree can be traversed in time O(H/h) with O((H/h)2")

storage units.

Corollary 1 Merkle tree can be traversed in time O(log n/log®® n) with
O(log nloglogn/log® n) storage unils.

In the next subsections, we will prove the algorithm correctness by show-
ing, that all the values are computed on time and we prove the time bound,
stated in the theorem by analysis of the operations, necessary for the job
scheduling.

4.1 Correctness Proof
In the section we show, that job (s, k) will be completed at time £2°.

Lemma 1 Suppose, that at time (k—1)2°" for every level 1 = h,2h, ..., (s—
Dh,(s+ 1)h,...Lh there is al most one unfinished job on level 1. Then the
job (sh,k) will complete before k2" .

Proof: Consider the time interval [(k — 1)2%" k25"). Since there are at most
(L —s) jobs with unfinished recursive calls to Eval(s,-) the time to complete
the recursive calls is limited by (L — s)2*"+1. Besides that, there are also jobs
with lower indices, that must be completed before (sh, k) can be completed.
There are at most 267 such jobs with index s’ < s. Hence the total num-
ber of computation units, needed for these jobs is (s — 1)(2***! — 1). Thus
we have more than 2°"+1 computation units left to complete the job (sh, 2k).

Lemma 2 At every moment of time there is only one running job on level

sh,s=1,2,...,L.

Proof: At time 0 we start only one job on level sh. For every level sh and
every index i we can easily prove by induction, using Lemma 1, that at time
interval [2°"4, 2" (74 1)) there is only one running job with index on level sh.

Lemma 3 Computation of job (sh,1) will be finished before time k2°"

Proof: Easily follows from Lemma 1 and Lemma 2.

In our computation only every h-th node on the computation path is
computed directly. Below we will show which nodes should be retained during
the computation of (sh,1).

All nodes (th —m,s2™ + j), where m = 1,...,hand 7 =0,...,m — 1
must be retained. In other words, all descendants of (ih,s) at levels ih —
I,...,(z = 1)h must be retained.

Proposition 1 Descendants of a node (ih,m) are needed during rounds
[m?ih, (m + 1)2“”).

Proof: Indeed, children of (ih,m) are needed during rounds [m2"+2"=1 (m+
1)2%) and [m2", m2" + 2"=1). For descendants on other levels, this propo-
sition is proved by the fact, that when a node is needed, the sibling of its
parent is also needed.

Combining Lemma 3 with the above statement we see, that every node
will be computed before it is needed for the first time.

7

4.2 Time Analysis

We have shown above, that our algorithm performs L hash-function com-
putations per round. Now we will show, that all other operations will take
O(L) time per round.

Lemma 4 Job scheduling, according to rules 1.-3. can be implemented in
O(L) time per round.

For every level s = 1h we store a list Q); of level s jobs, that have to be
performed. When a new job on level :h becomes active, or when a level s
job is called by another job, it is added to ();. Lists (); are implemented as
queues.

At round j our algorithm, checks all queues); in ascending order. If a
non-empty @); is found, we spend 2L hash computations on computing the
last job [in @);. If the job [is finished after k& < 2L hash computations we
remove [from ;. If [is not a root job, we return its result to the job, that
called it and traverse queues @);, Qi11, ... Q; until another non-empty queue
is found.

When a job (s,1) recursively calls job (s',2°7%'i + j) we add this new job
to list Q5. When a non-root job is completed it returns its value to the job,
that called it.

We also have to modify the procedure Fval in order to limit the number
of recursive calls. In the modified version, the number of recursive calls per
round does not exceed L, because a procedure on level s calls procedures on
level s — h. In this procedure variable T'aul; stores the value of the tail node
on level 7. Note that variables T'ail;, 2+ = 1,2,..., H are common to all jobs.
The value of node (s, k) is stored in T'ail,, if k is even. If k is odd we compute
the value of parent of (s, k). (This is possible because value of the sibling of
(s, k) is stored in T'ails). The modified version of Fval is shown on Fig. 3.

5 The Lower Bound

In this section we prove the lower bound on space and time complexity of
Merkle tree traversals and show that that the algorithm, described above is
asymptotically optimal. We prove the following result:

Theorem 2 Any Merkle tree traversal algorithm with average time per round
O(logn/a) requires Q((logn/a)2*) space.

In order to prove this theorem we will consider only time required for the
hash computations.

Eval(A,i)

if(A== 0)
return(¢; (7))
else
ind 1= 2"
lev:i=A—h

while(lev # A)
V = Eval(lev,ind)
while(ind mod 2 = 1)
V= ¢o(Tailie,, V')

lev :=lev+ 1
ind := ind/?2
Taily, =V

ind := (ind + 1)216“+L_A

Figure 3: Modified procedure Eval

First we will make a difference between nodes with even and odd indices,
further called even and odd nodes respectively. Even nodes are needed after
their children. In case of odd non-leaf nodes the situation is opposite: they
are needed before their children. Namely, (s,2:+1) is needed during the time
interval [2:2°, (20 + 1)2°) and its children, (s — 1,47 + 3) and (s — 1,4¢ + 2),
are needed during [2°7'(4i + 2),2571 (44 + 3)) and [2571(4i + 3), 2571 (44 + 4))
respectively. We can generalize this observation: an odd node is needed
before all its proper descendants. We have just proved it for children; to
extend the proof by one more generation, observe that when a node is needed
and it is not the root, then the sibling of its parent is needed.

During the computation, when we execute

v = Fval(s,1) = ¢o(Fval(s —1,21), Eval(s — 1,21 + 1))

we can remove vg = Fval(s — 1,2i) and vy = FEval(s — 1,27 + 1) or not.
Suppose that we are not removing value v; even though we will not keep v;
until it is needed . Then we can normalize our algorithm by removing v; and
keeping v instead: computing v is the only use for v; other than including
it in a certificate. Clearly, this normalization increases neither memory nor
time.

Computing Fval(s,1) takes 2! — 1 computation units and in our lower
bound reasoning we can estimate this as 2° steps. By adding s’s over all
needed odd nodes we obtain the total number of job units. The number of

9

job units for odd nodes on level s is 252H=5=1 = 2H-1 — y, /2. Therefore the
total number of job units for odd nodes of the Merkle tree is Hn/2. We do
not count the costs of computing needed values of even nodes in our lower
bound proof.

When we decide to remember a value that is used to compute another,
we do three things: (a) we account for a certain number of steps — steps used
to compute this value that were not accounted for by other remembered
values, (b) we account for a certain number of memory units (one memory
unit allows to store one value through one round) and (c¢) we account for
a certain number of job units — job units that correspond to the steps that
could be executed each time that this value is computed.

We account for the remembered values in an order in which children
precede the parents.

Suppose that we rememeber the value of node vy during the computation
of node v, but do not remember the value of v{, where v; is an ascendant of
vg. Then we can save more job units by remembering v, instead of vg. Hence,
if we remember the value of vy on level [y during computation of node v on
level [, then values of all nodes on levels [y, o+ 1,...,[are also remembered.
Therefore when a node on level s is computed it is either computed “from
scratch” with 2571 —1 steps or it is computed with 1 step because its children
were already computed and remebered.

Suppose that we remember the result Fval(s,2:i41) and we use this value
a times for computation of node values (including node (s,2i+1)). The last
use, when Fval(s,2i+ 1) is needed, requires 2° memory units. If we want to
use this value twice, we have to compute it before its parent (or other odd
ancestor is needed), and since the parent (ancestor) is needed for 2°*! rounds
or more, we need at least 2°t! memory units. By induction, if we want to
use Fval(s,2i+ 1) for a node values, we need to use at least 2°7'2® memory
units.

Consider a node (s,2i + 1). Suppose that its value was used in a compu-
tations. As shown above, we need either 2°t! — 1 steps or 1 step to compute
it. If we need 1 step, than the total number of job values we accounted for is
a and the total number of memory units is 2°7'2°. Suppose, that we needed
251 — 1 steps to compute (s,2i 4+ 1). Then the total number of job units is
a(2°*! —1) and the number of memory units is 2*712*. Now we can distribute
the steps and memory units between the job units that we have accounted
for. Each of them receives a™! steps and at least 27! /a memory units.

If we use z to express the amount of steps a job unit obtains, then the
minimal number of obtained memory units is %,2‘21/2. Note that this is a
convex function of z (the second derivative is positive for positive z). Thus
if job units receive z steps on average then on average they receive at least

10

Figure 4: Example of a subtree. Computed nodes are marked by circles.
Nodes, marked by circles or squares are stored.

%ZQl/Z memory units.

As a result, if the computation takes Hn/2a steps then it uses at least
2%/a x Hn/4 memory units, and given that we have n rounds, in average
round we need to remember at least H2"/4a values.

6 A Constant Improvement

In this section we describe an improved version of the algorithm from the
section 4. In our improved version we do not compute all nodes in the
subtrees. Instead of this only the nodes with even indices are computed.
This is possible because even nodes will be needed after their children are
needed. Therefore, if we store both children of an even node until their parent
is needed, we can compute its value with one hash computation.

Thus in a subtree (ih, k) we only compute nodes (¢h — 1,2k + 1), (1h —
2,4k+1),(th —3,8k+1),... and only the nodes (ih —1,2k+1), (th — 2,4k +
1), (ih — 2,4k 4+ 3),...,(th — h, k2" + 1), ..., (ih — h, k2" + 2" — 1) must be
stored.

Computation of all odd descendants of (ih, k) will take time 2#=11 — 1 4
9ih—2+1 _ | T 9ih—h+l _ 1 — Zz;(l) 9ih—k _}, — 9ih+l _ 9(i—1)h+1 _ We
will need h extra hash computations to compute the even nodes. Therefore
the total number of computations for subtree (ih, k) is 2ih+! — 20=1A+1,

It is easy to see, that there is at most one “new” even node at every
round. Therefore it takes at most one extra computation per round to deal

11

with even nodes (if we compute even nodes just as they are needed).

To compute the node (s,7) with one hash computation we have to store
its odd child (s — 1,25 + 1) during rounds [(27 4+ 1)2°7!, (25 4+ 2)2°~!). Thus
there are at most 2 odd nodes, that should be kept “extra time” and at
most h nodes that are a part of an authentication path during each round.
Therefore the total memory requirement is (2* — 1 + 2h)L per subtree. We
need the first summand to store the odd nodes in the subtree and we need
the second summand to store the even nodes from the current authentication
path and odd nodes kept “extra time”.

The nature of our trade-off depends on the subtree height h. For subtree
height A = 1 this improvement results in almost 3/2-fold increase in space
and speed-up of almost factor 2. This allows us to formulate the following
result

Corollary 2 A Merkle tree traversal algorithm can be implemented with
log n hash function evaluations, 3logn memory locations for hash values and
O(logn) time for other operations per round

For larger values of A the time improvement becomes very small but we
have an almost two-fold decrease of the space used by hash values. In the last
case we can also schedule our computation in such way that the values in the
next subtree are computed almost exactly at the time when the corresponding
values in the current subtree “expire” and can be discarded. In the last case
at most one extra value per subtree would have to be stored. In our modified
algorithm computation of odd nodes of subtree (¢h, k), ¢ =2,3,,..., L — 1
will be divided into two stages. In the first stage descendants of (¢h, k) on
level (1 — 1)k (“leaves” of the subtree) will be computed. We will further call
nodes ((¢ — 1)k, 2"k + 7), 7 € [0,2") bottom level nodes of subtree (ih, k). In
the second stage the odd nodes will be computed from bottom level nodes.
Observe that computation of the subtree (ih,k) takes place in the same
time interval [2*(k — 1),2""k) as in our first algorithm. The idea of our
modification is that nodes ((— 1)h,2"k + j), 7 € [0,2") i.e. bottom level
nodes of (ih, k), will be computed slower than odd nodes of subtree (ih, k—1)
will be discarded. Computation of the odd nodes from the bottom tree nodes
is performed during the last 2" rounds of the interval [2'*(k — 1),21"k). We
will further call the jobs, computing the bottom level nodes secondary jobs
and the last job, computing the remaining odd nodes of the subtree will be
called a primary job.

In order to reserve 2" rounds for computation of odd nodes we allocate
20=1% _1 rounds for computation of every secondary job. Below we reformu-
late the scheduling rules for job computation. Observe that these modified

12

rules are applied for subtrees on levels 2h,3h, ..., (L — 1)h. We also reserve
two computational units per round for the subtrees on level h.

1. The m-th secondary job of subtree (i%, k) becomes active at time 2" (k—
1)4+26=Y%pn —m. Primary job of (ih, k) becomes active at time 27# % —2"

2. All recursive calls for computation of nodes (s,-) performed by root
jobs (s',-) with s’ > s, that already started when job (s,-) becomes
active, must be completed, before job (s, -) starts.

3. In all other cases the jobs with the lower level have priority over the
jobs with the higher level.

Now we prove the space bound of our modified algorithm. First we show,
that a secondary job of a node on ik can be completed in 20=Y* — 1 rounds.

Lemma 5 Suppose, that at time (k—1)2" +m20=D% _m m =0,1,...,2" 1
for every level | = h,2h,... (1 — 1)h,(¢ + 1)h,... Lh there is at most one
unfinished secondary job of a job on level [. Then the m-th secondary job of
(ih, k) will complete before (k — 1)2% + (m 4 1)20-Dh —m — 1,

Proof: Consider the time interval [(k — 1)2“” 4+ m20=1h _ m, (k — 1)2“1 +
(m + 1)20-Dk iy — 1),

Since there are at most (L — 1) jobs with unfinished recursive calls to
Eval(s,-) the time to complete the recursive calls is limited by (L —4)(2+! —
1). Besides that, there are also jobs with lower indices, that must be com-
pleted before (sh, k) can be completed. There are at most 20=% such jobs
for every index 7' < 1. Thus for any fixed ¢/ < 7 all jobs on level 7’ require
227+ — 1) < 2"+ — 1 job units. Another (2! — 1)20-1" < 9+l _q
computation units are claimed by subtrees on level h. Hence the total num-
ber of computation units required by all other jobs is strictly less than
(L — 1)(2"*1 — 1). Hence the total number of computation units, needed
for all such jobs is less than (z — 2)(2""+1 — 1).

Thus we have at least 2**' — 1 computation units left to complete the
m-th secondary job of (ih, k).

Lemma 6 Computation of the m-th secondary job of (ih, k), 1 =2,3,..., L—
1 will be finished before time (k —1)2% + (m + 1)20=D% —py — 1

Proof is analogous to the Proof of Lemma 3

It easily follows from Lemma 6 and Rule 1 that m-th bottom node of
(sh, k) will be finished in interval [Qih(k -+ m2(-1h _ m, Qih(k —1)+(m+
126Dk iy — 1),

13

It remains to compute how many odd nodes of (ih, k—1) will be discarded
before Qih(k -1+ m2=Dh .

Let w = 2". After 2"(=Ym rounds the number of remaining nodes can be
estimated as (w —m)/24+ (w—m)/4+ ...+ (w—m)/w < (w—m). We did
not count the nodes of the current authentication path in this estimation.
Therefore the total number of stored nodes in (¢h, k) and (ih,k—1) in interval
[257(k —1),2"k — 2") is limited by 2".

The primary job for (sh, k) can be computed in 2" rounds. This job can
be performed in-place, because when a new node is computed its even child
can be discarded.

In the modified algorithm we apply the job scheduling scheme only to
subtrees on levels th, + = 2,..., L — 1. Since there is only one subtree for
: = L it is not recomputed. Therefore the total number of tail nodes does
not exceed H — h.

During each round we use two reserved computation units to compute
the next level h subtree. By the same argument as above we can see that the
number of remaining nodes in the current level h subtree after m rounds is
limited by 2" — m . Therefore the total number of nodes in the current and
future subtrees of level A is limited by 27. This computation would require
up to h additional units for the tail values. Therefore the total number of
tail valuesis H —h+h=H.

The above considerations allow us to formulate the following

Theorem 3 A Merkle tree traversal can be implemented in O(L) time with
2L hash operations. This algorithm requires L2" + 2H memory locations to
store hash values.

In the last Corollary we have ignored the time necessary to output the
log n values per round. The result, described in the abstract follows, if we
choose h = log(?’) n.

7 Conclusion

In this paper we describe the first optimal trade-off between time and space
complexity of Merkle tree traversals.

We believe it is possible to improve further the constants in the described
trade-off by differentiating between various types of nodes in our procedure.

14

References

[CJ02] D. Coppersmith, M. Jakobsson, “Almost Optimal Hash Sequence
Traversal”, Financial Cryptography, 2002, 102-119

[DGO1] P.Devanbu, M. Gertz, C. Martel, S.G. Stublebine “Authentic Third
Party Data Publication” 14th TFIP Workshop on Database Security,
2000

[J02] M. Jakobsson, “Fractal Hash Sequence Representation and Traversal”,
ISIT, 2002, p. 437

[JLMS03] M. Jakobsson, T. Leighton, S. Micali and M. Szydlo, Fractal
Merkle Tree Representation and Traversal, RSA Cryptographers Track,
RSA Security Conference, 2003.

[L02] H. Lipmaa, “On Optimal Hash Tree Traversal for Optimal Time
Stamping”, Proc. Information Security Conference, 2002, LNCS 2433,
357-371.

[M79] R. Merkle, “Secrecy, Authentication and Public Key Systems”, UMI
Research Press, 1982

[M87] R. Merkle, A Digital Signature Based on a Conventional Encryption
Function, Proc. Crypto 1987, 369-378.

[M97] S. Micali, “Efficient Certificate Revocation” , Technical Report TM-
542b, MIT Laboratory for Computer Science, March 22, 1996

[MRKO03] S. Micali, M. Rabin, J. Kilian “Zero-Knowledge Sets”, Proc. 44th
FOCS (2003), 80-91 .

[PCO02] A. Perrig, R.Canetti, D. Tygar, D. Song, “ The TESLA Broadcast
Authentication Protocol” | Cryptobytes, vol 5, pp. 2-13,
Available at http://citeseer.nj.nec.com/perrig02tesla.html

[RS96] R. Rivest, A. Shamir, “PayWord and MicroMint - Two Simple Mi-
cropayment Schemes”, CryptoBytes, vol. 1, pp. 7-11.
Available at theory.lcs.mit.edu/ rivest/RivestShamir-mpay.ps

[S03] M. Szydlo, Merkle Tree Traversal in Log Space and Time,
Proc. Eurocrypt 2004, LNCS vol. 3027, pp. 541-554. Available at
http://www.szydlo.com/logspacetime.ps.gz

ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

15 ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc

