
Deterministic Clustering with Data Nets ∗

Michelle Effros Leonard J. Schulman

Abstract

We consider the K-clustering problem with the `2
2 distortion measure, also known as the

problem of optimal fixed-rate vector quantizer design. We provide a deterministic approximation
algorithm which works for all dimensions d and which, given a data set of size n, computes in
time poly(K)(d/ε)O(d)n log log n+(d/ε)O(Kd) a solution of distortion at most 1+ε times optimal.
The key tool is construction of a new kind of representation called a ”data net”. A variety of
applications of this object are discussed.

I Introduction

A striking lesson from the field of statistics is that important properties of a data set can be
determined, to some precision, by examining a small, random subset of the data. In the field of
clustering algorithms, specifically, a key technique is to choose a random subset of the input points,
cluster that set, and then extend the clustering to the entire original input. This approach has
enabled algorithms whose complexity scales very slowly as a function of the size of the data set. (See
discussion and references in [7].) This approach can also be used to perform clustering on continuous
distributions. For example, [19] applies a clustering optimized for n iid samples from distribution
p(x) to an independent sample drawn from the same distribution; results include a bound on the
rate of convergence of the resulting expected performance to the optimal performance theoretically
achievable on p(x). The observation that we can learn about a complex distribution by examining
a small random sample is important since large data sets characterize many clustering applications.
However, algorithms based on sampling appear to be critically dependent on a source of random
bits.

We study the K-clustering problem for `22 distortion, which is equivalently formulated as a
problem in data compression. A fixed-rate vector quantizer of dimension d and rate (lgK)/d is a
data compression system representing each vector in IRd by one of K possible vectors, known as
“codewords” or “reproduction values.” In the fixed-rate vector quantizer design problem with the
`22 distortion measure, we are given a pdf p(x) on IRd, an integer K ≥ 1, and the “squared error”
distortion measure ρ(x,y) = ||x−y||2. An optimal vector quantizer is a set {µ?1, . . . , µ?K} ⊂ IRd that
achieves the minimal expected distortion

∫

IRd p(x)mink∈{1,...,K} ρ(x, µ
?
k)dx. While optimal scalar

(d = 1) fixed- and variable-rate quantizer design for discrete distributions can be accomplished in
polynomial time [5, 25, 27, 28, 21] and algorithms for locally optimal design for arbitrary dimension
d are well known (e.g., [18, 6]), globally optimal design for a distribution p(x) that puts equal
probability on every point in an n-point “data” or “training” set is NP-hard even for fixed-rate
quantization with K = 2 [9]. We seek a deterministic ε-approximation algorithm for fixed-rate

∗California Institute of Technology, Pasadena, CA 91125. The work of M. Effros (effros@caltech.edu) is partially
supported by NSF Grant No. CCR-0220039 and a grant from Caltech’s Lee Center for Advanced Networking. The
work of L. J. Schulman (schulman@caltech.edu) is partially supported by NSF CAREER grant 0049092, the Charles
Lee Powell Foundation, and a visiting membership at MSRI.

1

Electronic Colloquium on Computational Complexity, Report No. 50 (2004)

ISSN 1433-8092

vector quantizer design. Such an algorithm designs, for any ε > 0, a collection of K reproduction
values yielding expected distortion within a factor of (1 + ε) of the optimal expected distortion.

Our algorithm works for any dimension d and finds a (1 + ε)-optimal vector quantizer in time
quasilinear in the size n of the training set. The algorithm also serves as an approximation algorithm
for the d-dimensional, fixed-rate operational distortion-rate function. The approach is different
from the random sampling approach described above in two key features. First, our approach
is deterministic. Second, the key to our algorithm is in our reduction of the space of potential

outputs (
(IRd

K

)

, the space of possible codebooks) rather than in a reduction of the algorithm’s large
input (the n-point training set). The list of potential codebooks we produce is short – its length is
independent of the training set size – and is guaranteed to contain a near-optimal codebook.

There has been a large amount of work recently on various clustering tasks; this brief survey
describes only the most directly related work, pertaining to `22 K-clustering. Randomized algorithms
giving a (1+ε)-approximation to the `2 K-clustering problem for d = 2 in time O(nKnO(1/ε) log n)

and then extending to d > 2 in time O(2O((1+log(1/ε)/ε)d−1)n(logn)(logK)) appear in [2] and [17],
respectively. Their problem differs from ours both in their assumption that the distortion measure
is a metric (we treat the squared difference distortion measure) and in their requirement that the
K codewords be training vectors. A poly-time randomized approximation algorithm for precisely
our problem appears in [22], and a randomized solution running in time O(exp(ε−8K3(lnK)(ln 1

ε +

lnK))n logK n) appears in [7]. (Similar results, though not for `22, appear in [3].)
Known deterministic algorithms for our problem are a factor of 2 approximation [9] running

in time polynomial in n (and exponential in K and d), a poly-time constant-factor approximation
even for the case of arbitrary K [16], and a O(ε−2K2dn logK n)-time ε-approximation [20].

The contribution of this paper is a fundamentally new approach to clustering problems. The
key step is to identify a finite and exhaustive set of candidate codewords, which we call a “data
net.” “Finite” means that the size of this set is a function of K, ε, and d but not of n, the number
of training vectors. “Exhaustive” means that only these points need to be considered as candidates
for the locations of the codewords. Given such a set of candidate codewords, it is possible to directly
test and compare all possible solutions in time linear in n or to find an approximation to the best
codebook from the given set even more quickly.

While our first application of this new technique is to a family of `22 K-clustering problems, we
believe that the new “net-point” approach has the potential to yield deterministic solutions for a
much wider variety of clustering criteria than the narrowly-defined `22 criterion used in this paper.
We limit our claims in this manuscript to the cases that have been proven. These cases include
K-clustering and a variety of network vector quantization problems described in Section VII-B.
All rely on the `22 distortion measure. The `22 version of K-clustering is widely motivated, in part
because of applications involving mixtures of Gaussian sources, and in part due to metric embedding
theorems [24]. Further, the `22 distortion measure remains the almost universal choice in practical
applications.

A more precise description of the “net-point” approach follows.
Let ∆ be the (unknown) expected distortion achievable by an optimal K-clustering, and define

a data net to be a set Z ⊂ IRd, regions {Az}z∈Z , and mapping ζ : IRd → Z such that

1. The additive property:
∫

Az
p(x)||x− z||2dx ≤ ε∆/K for all z ∈ Z.

2. The multiplicative property: For any µ ∈ Rd and x 6∈ Aζ(µ), ||x− ζ(µ)||2 ≤ (1 + ε)||x− µ||2.

The additive property establishes that for subset Az of IRd, the cost of reproducing x by z rather
than mapping the points in this region to their optimal codeword(s) increases the expected distor-
tion by at most a small additive constant. The multiplicative property establishes that the cost of

2

mapping x to ζ(µ?k) instead of optimal codeword µ?k is bounded by a small multiplicative constant
for all x 6∈ Aζ(µ?

k
).

Theorem 1 The deterministic algorithm introduced in Section III-A designs a data net of size

(1/ε)d+1ed log d+O(d)
(

K4 +K2/ε2
)

within time

O
((

K2ed log d+O(d) +Kd/ε
)

n log log n+ (1/ε)d+1e2d log d+O(d)
(

K4 +K2/ε2
))

.

The algorithm can also perform efficient data net design (and therefore efficient vector quantizer
design) for simply characterized continuous distributions, as discussed in Section VII-A.

Application of the data net to K-clustering yields the following theorem.

Theorem 2 Given a data set of size n and a data net of size N , the deterministic K-clustering
(VQ) algorithm of Section III-B finds a clustering of distortion D ≤ (1 + ε)∆ within time

(1/ε)d+1eO(d)N2n+ (1/ε)d+1eO(d)NK+2.

Thus, by Theorem 1, the given algorithms perform data net construction followed by K-clustering
in total time

(

K2ed log d+O(d) +Kd/ε
)

n log logn+ (1/ε)3(d+1)e2d log d+O(d)(K8 +K4/ε4)n

+eKd log(d/ε)+O(Kd+d log d+K log(K/ε))

≤ poly(K)(d/ε)O(d)n log log n+ (d/ε)O(Kd).

Subsequent to codebook design, individual encodings can be performed in time log(K/ε) us-
ing [13].

The proofs of Theorems 1 and 2 appear in Sections III.

II Preliminaries

Given a distribution p(x) on IRd and the squared error distortion measure ρ(x,y) = ||x− y||2, an
optimal K-clustering is K points µ?1, . . . , µ

?
K such that

{µ?1, . . . , µ?K} = arg min
{µ1,...,µK}

∫

IRd
p(x)

[

min
1≤k≤K

ρ(x, µk)

]

dx.

We call each cluster center µk a codeword, each collection of K codewords a codebook, and each
solution {µ?1, . . . , µ?K} to the above minimization an optimal codebook. Let

∆ =

∫

IRd
p(x)

[

min
1≤k≤K

ρ(x, µ?k)

]

dx

denote the expected distortion of an optimal codebook. An optimal codebook for n points T =
{t1, t2, . . . , tn} (known as a data set or training set) is simply an optimal codebook for the em-
pirical distribution of T (which is the uniform distribution on the points of T). The goal of an
approximation algorithm is to find K points µ1, ..., µK such that

∫

IRd
p(x)

[

min
1≤k≤K

ρ(x, µk)

]

dx ≤ (1 + ε)∆

3

The following notation is useful in what follows. For a distribution p and a set of points S, let
ρ(p, S) be the integrated distortion of assigning p to nearest points in S. (For example, ∆ =
minS={µ1,...,µk} ρ(T , S).) When the distribution is understood, then for any C ⊆ IRd, define

ρ(C, z) =
∫

C
p(x)ρ(x, z)dx µ(C) = argmin

z
ρ(C, z).

For any points t,m ∈ IRd, let `∞(t,m) denote the maximal absolute coordinate of t with respect
to coordinate axes centered at m; more precisely, if t = (t1, . . . , td) and m = (m1, . . . ,md), then
`∞(t,m) = max{|t1 −m1|, . . . , |td −md|}. Finally, for any region h ⊆ IRd and point m ∈ IRd, let
med(h,m) be the median of {`∞(t,m) : t ∈ h} with respect to distribution

ph(x) =







p(x)
∫

x∈h
p(x)

x ∈ h

0 otherwise.

III Algorithms

A The Data-Net Design Algorithm

1. Produce an estimate (denoted ∆̂0) of ∆ satisfying ∆ ≤ ∆̂0 ≤ 4n∆, as described in Section
IV-A.

2. Perform a binary search for the greatest integer i in the range [0, 2 + lgn] for which the
space-partitioning algorithm of Section IV-B, run with argument ∆̂ = ∆̂0/2

i, does not report
that ∆̂ < ∆/2.

Let ∆̂, M , and the partition of space into regions A1, . . . , AM be as found by the space
partitioning algorithm for the critical value of i.

3. Create a “data net” by placing several “clouds” of points around the centroid of each region
Am of the partition {A1, . . . , AM}, as described in Section IV-C.

Proof of Theorem 1: Step 1 takes time O(n logK) by Lemma 1. Step 2 requires at most log logn
iterations, each of which takes time O(n(Kd/ε+K2ed log d+O(d))) by Theorem 3. Step 3 takes time
O((1/ε)d+1ed log d+O(d)(K4+K2/ε2)) and yields a data net of size (1/ε)d+1ed log d+O(d)(K4+K2/ε2)
by Theorem 4. The total runtime is O((Kd/ε+K2ed log d+O(d))n log logn+(1/ε)d+1ed log d+O(d)(K4+
K2/ε2)). 2

B The ε-Approximate K-Clustering (VQ) Algorithm

1. Design a data net of size N using the algorithm described in Section III-A.

2. Replace the input data T by a “reduced data set” T̃ containing at most

N + (1/ε)d+1eO(d)N2

points, as described in Section V.

3. By exhaustive search, choose the best codebook for T̃ using K codewords drawn from the
data net.

4

Proof of Theorem 2: Given a data net Z for distribution p, the following argument shows that
the best codebook from Z gives an ε-approximation for the optimal K-clustering for source p. Let
{V ?

k }Kk=1 be the Voronoi cells for optimal codebook {µ?k}Kk=1. Then optimal encoding with the best
codebook {µ1, . . . , µK} ⊂ Z gives distortion

D =

∫

IRd
p(x) min

k∈{1,...,K}
||x− µk||2dx

≤
∫

IRd
p(x) min

k∈{1,...,K}
||x− ζ(µ?k)||2dx

≤
K
∑

k=1

∫

V ?
k

p(x)||x− ζ(µ?k)||2dx

=
K
∑

k=1





∫

V ?
k
∩Aζ(µ?

k
)

p(x)||x− ζ(µ?k)||2dx +

∫

V ?
k
−Aζ(µ?

k
)

p(x)||x− ζ(µ?k)||2dx




≤
K
∑

k=1





ε∆

K
+ (1 + ε)

∫

V ?
k
−Aζ(µ?

k
)

p(x)||x− µ?k||2dx




≤ (1 + 2ε)∆.

The first inequality follows by definition since {µ1, . . . , µK} is the best codebook from Z; the second
inequality follows since the Voronoi cells V ?

1 , . . . , V
?
K for optimal codebook {µ?1, . . . , µ?K} may be

suboptimal for codebook {ζ(µ?1), . . . , ζ(µ?K)}; the third inequality follows from the additive and
multiplicative properties of the data net; and the final inequality follows from the definition of ∆
and the optimality of codebook {µ?1, . . . , µ?K}.

Step 1 designs a data net of size ed log d+O(d)M4(1/ε)3(d+1) in time

O((Kd/ε+K2ed log d+O(d))n log log n+ (1/ε)d+1ed log d+O(d)(K4 +K2/ε2))

by Theorem 1. Given the size of the data net created in Step 1, Step 2 runs in time O(n(Kd/ε+
K2ed log d+O(d))4(1/ε)3(d+1)) and replaces the training set T of size n by the reduced training
set T̃ of size ñ = (Kd/ε + K2ed log d+O(d))4(1/ε)3(d+1). By Theorem 5, the optimal codebook
{µ1, . . . , µK} ⊂ Z for T̃ is an ε-approximation for the optimal codebook for T . Step 3 uses an
exhaustive search to find the best codebook {µ1, . . . , µK} ⊂ Z for T̃ in time O(K2K+4(d/ε +
Ked log d+O(d))2K+4(1/ε)(d+1)(K+3)). The total run time is

(

K2ed log d+O(d) +Kd/ε
)

n log logn+ (1/ε)3(d+1)e2d log d+O(d)(K8 +K4/ε4)n

+eKd log(d/ε)+O(Kd+d log d+K log(K/ε)).

2

IV Deterministic Construction of a Data Net

This section details the steps used in designing the data net.

5

1. Find a hypercube h such that ρ(IR− h, µ(IR)) < ε∆̂/K.

2. Set M = 1. Run procedure split(h).

Figure 1: The space partitioning algorithm.

A The Initial Estimate of ∆

Lemma 1 ([12, 15, 14, 11, 1]) There is an algorithm that computes in time O(n logK) a num-
ber ∆̂0 satisfying

∆ ≤ ∆̂0 ≤ 4n∆.

Proof: The method is to approximate ∆ by the square of the solution to the Euclidean K-center
problem. In that problem, the goal is to find K codewords in IRd minimizing the greatest Euclidean
distance from a data point to its nearest codeword. Equivalently, the problem is to find a smallest
r and a set S so that |S| = K and T is contained in the balls of radius r about members of S. Let
r? denote this smallest r. Observe that (r?)2/n ≤ ∆ ≤ (r?)2.

In [12] and [15, 14], Gonzalez and, independently, Hochbaum and Shmoys give an O(nK)
time algorithm that computes an S satisfying r ≤ 2r?. Feder and Greene improve the run time
to O(n logK) in [11] and show that beating factor 1.822 is NP-hard. A survey of these results
and related work appears in [1]. Applying a 2-approximation for the K-center problem to give
r? ≤ r ≤ 2r? and setting ∆̂0 = r2 gives ∆ ≤ ∆̂0 ≤ 4n∆. 2

B The Space Partitioning Algorithm

Theorem 3 The space partitioning algorithm either reports that ∆̂ < ∆/2 or creates a partition
{A1, . . . , AM} of IRd with

A. (Distortion within regions): maxm∈{1,...,M} ρ(Am, µ(Am)) ≤ ε∆̂/K.

B. (Number of regions): M ≤ 2d+2K/ε+K2ed log d+O(d).

C. (Runtime): The algorithm runs in time O(n(Kd/ε+K2ed log d+O(d))).

Algorithm

The algorithm, given in Figure 1, finds a hypercube h outside of which the total distortion is small
(step 1) and then recursively splits h (step 2). Let tree T describe the partitioning process. More
precisely, set the root of T to IRd and let h and IRd − h be the children of IRd. Each time a region
h′ is split, set the resulting subregions (split creates exactly 2d of them) to be the children of h′.
If the splitting procedure runs to completion (rather than reporting that ∆̂ is too small), then the
leaves of the final tree T are the desired partition {A1, . . . , AM}.

Procedure split, given in Figure 4, takes as its input a d-dimensional, axis-parallel hypercube.
The routine recursively divides that hypercube into smaller regions until either all leaves of T meet
the desired distortion constraint or the total number of leaves exceeds the bound on M . Global
variable M , initialized to 1 on the first call of split, maintains a running count on the number
of leaves in the current tree T . If T is not too large (step 1), then the division process begins by
splitting hypercube h in half along each dimension to create 2d equal sub-cubes (step 2). If one and

6

m•

h1 h2

h3 h4

?

6

`

m•
h1

h2

h3 h4

?6s

(a) (b) (c) (d)

Figure 2: The region division and modification process in IR2 and IR3. Here (a) and (c) show an
initial division, and (b) and (d) show the same division after modification. In (c) and (d), the
bottom, rear subregion on the left is shaded to show its shape.

only one sub-cube, say h1, has distortion exceeding ε∆̂/K, then the algorithm shrinks the “heavy”
region and grows its neighbors until at least one of those neighbors reaches the critical distortion
or all regions become light (step 3).1 The procedure then continues by recursively splitting any
remaining heavy regions (step 4).

To describe step 3 in greater detail, let h1 be the single heavy region in {h1, . . . , h2d}, h2, . . . , hd+1

be the neighbors of h1 (the sub-cubes that share faces with h1), m be the outside corner of h1 (the
corner that is not shared with any other sub-cube hm), and ` be the side length of h1. (See Fig-
ure 2(a) and (c).) Shrinking h1 to size s < ` is equivalent to replacing h1 with the hypercube of side
length s anchored at m (h1 := {x ∈ h : `∞(x,m) < s}) and expanding the neighbors h2, . . . , hd+1

so that neighbor hm, 2 ≤ m ≤ d+ 1, acquires the convex span between the original face shared by
h1 and hm and the new parallel face of h1. (See Figure 2(b) and (d).)

Step 3 uses a binary search to iteratively narrow in on an optimal value for the side length
s of h1. Variables {(hm, pm, µm, Dm)}d+1

m=1 track the current knowledge of the regions and their
probabilities (pm =

∫

hm
p(x)dx), centroids (µm = µ(hm)), and distortions (Dm = ρ(hm, µm)).

Constants sin and sout track current bounds on the optimal value of s (s ∈ [sin, sout]). At each
intermediate step, the algorithm maintains h1, . . . , hd+1 at their smallest possible sizes given the
current knowledge of sin and sout. That is, h1 has sidelength sin and h2, . . . , hd+1 have length
2`− sout in their longest dimension. Finally, hmid = {x ∈ h : `∞(x,m) ∈ (sin, sout)} describes the
region between h1 and ∪d+1

m=2hm. (See Figure 3.)
The initialization sets hmid := h1 (the initial hypercube of side length `), sin := 0, sout := `,

(h1, p1, µ1, D1) := ({}, 0,m, 0), and (hm, pm, µm, Dm) := (hm,
∫

hm
p(x)dx, µ(hm), ρ(hm, µ(hm))) for

all m ∈ {2, . . . , d + 1}. At iteration i, the algorithm splits hmid at its median s := med(hmid,m),

giving inner region hin := {x ∈ hmid : `∞(x,m) < s} and outer region hout := hmid − hin. Let h
(m)
out

be the portion of hout that lies in the convex span between the prior hm and the hypercube of length
s anchored at m. (See Figure 3.) The algorithm calculates the distortions that would result if h1

were grown to include hin and h2, . . . , hd+1 were grown to include hout. More precisely, these are

the distortions ρ(h′m, µ(h
′
m)), where h

′
1 = h1 ∪ hin and h′m = hm ∪ h(m)

out , m ∈ {2, . . . , d+ 1}. If the
maximal distortion over h′2, . . . , h

′
d+1 is less than or equal to ε∆̂/K, then for each 2 ≤ m ≤ d+ 1,

(hm, pm, µm, Dm) is updated to h′m and its probability, centroid, and distortion, hmid is updated

1This choice is important to the counting argument of Section VI-A since it keeps T relatively balanced.

7

m•
h1

h2

h3 h4

h
(2)
out

h
(3)
out

hmid = hin ∪ h
(2)
out

∪ h
(3)
out

hin

6?
sin6

?

sout

6

?

2`− sout

Figure 3: Searching for the optimal size of h1. The shaded region is hmid.

to hin, and sout is updated to s. Otherwise, (h1, p1, µ1, D1) is updated to h′1 and its probability,
centroid, and distortion, hmid is updated to hout, and sin is updated to s. The iterative procedure
continues until finding a split location s where either sin = sout or all regions are light or h1 is heavy
and its heaviest neighbor just reaches the threshold ε∆̂/K. Since the probability of a training vector
that lies on the boundary of two or more regions can be divided arbitrarily among those regions,
maxi∈{2,...,d+1} ρ(h

′
i, µ(h

′
i)) is a continuous function of s and the proper choice of cell membership

for training vectors lying on boundary sin = sout yields regions meeting one of the previous two
conditions (all regions light or at least two regions heavy).

While the above procedure creates some regions that are not hypercubes, the final choice of
side length s allows non-hypercube regions to grow up to but not beyond distortion ε∆̂/K; as a
result, non-hypercube regions are never split, which is important since split requires a hypercube
as its input.

Proof of Theorem 3:

A. (Distortion within regions): Property A follows immediately when the given construction
runs through all splits (rather than stopping because the number of regions created exceeds
the given bound on M).

B. (Number of regions): The proof of Section VI-A demonstrates that the number of regions
required cannot exceed 2d+2K/ε+K2ed log d+O(d) if ∆̂ ≥ ∆/2.

C. (Runtime): Given a finite training set T , let the bounding box h be the smallest box centered
at µ(IRd) that contains T . The runtime for finding µ(IRd) and the bounding box is O(dn).

The rest of the runtime equals the sum over calls to split of the runtime (excluding recursive
calls) in each.

Steps 1 and 2 of split together (including calculating the centroids and distortions of each
of the 2d regions) run in time O(d2dn).

Step 3 involves many iterations, each with a new value of hmid. The runtime of iteration i
is proportional to nid, where ni is the number of training vectors in hmid. (Deterministic
calculation of the median of ni elements runs in time O(ni), specifically 2.96ni + o(ni) com-
parisons [4, 23, 8].) The number ni halves in each iteration, so the total runtime of step 3 is
O(n′d) where n′ is the number of points in the initial hmid, which is h1.

The number of calls to split is the number of internal nodes in the tree T , which has degree 2d

andM leaves. The number of internal nodes, M ′, is related toM byM ′ = (M−1)/(2d−1) ≤

8

1. If M > 2d+2K/ε+K2ed log d+O(d), then halt and report “∆̂ < ∆/2”; else M := M +2d−1
endif.

2. Divide h into 2d axis-parallel hypercubes h1, . . . , h2d by cutting h in half in each dimension.

3. If ρ(hm, µ(hm)) > ε∆̂/K, for exactly one m ∈ {1, . . . , 2d}, let h1 be that heavy region and
h2, . . . , hd+1 be the neighbors of h1.

(a) Initialize: Set hmid := h1, sin := 0, sout := `, pmid :=
∫

x∈hmid
p(x)dx,

(h1, p1, µ1, Dm) = ({}, 0,m, 0), and ∀m ∈ {2, . . . , d+ 1},
(hm, pm, µm, Dm) := (hm,

∫

hm
p(x)dx, µ(hm), ρ(hm, µ(hm))).

(b) Repeat:
s := med(hmid,m)
hin := {x ∈ hmid : `∞(x,m) < s}
hout := hmid − hin

µin := µ(hin)
Din := ρ(hin, µin)
pmid := pmid/2
µ′1 := (p1µ1 + pmidµin)/(p1 + pmid)
D′1 := D1 + p1ρ(µ1, µ

′
1) +Din + pmidρ(µin, µ

′
1)

for m = 2 to d+ 1,

p
(m)
out :=

∫

h
(m)
out

p(x)dx

µ
(m)
out := µ(h

(m)
out)

D
(m)
out := ρ(h

(m)
out , µ

(m)
out)

µ′m := (pmµm + p
(m)
out µ

(m)
out)/(pm + p

(m)
out)

D′m := Dm + pmρ(µm, µ
′
m) +D

(m)
out + p

(m)
out ρ(µ

(m)
out , µ

′
m)

end

If maxm∈{2,...,d+1}D
′
m ≤ ε∆̂/K,

then
sout := s, hmid := hin

for m = 2 to d+ 1,

(hm, pm, µm, Dm) := (hm ∪ h(m)
out , pm + p

(m)
out , µ

′
m, D

′
m)

end
else

sin := s, hmid := hout

(h1, p1, µ1, D1) := (h1 ∪ hin, p1 + pmid, µ
′
1, D

′
1)

endif
until either sin = sout

or maxm∈{1,...,d+1}D
′
m ≤ ε∆̂/K

or (D′1 ≥ ε∆̂/K and maxm∈{2,...,d+1}D
′
m = ε∆̂/K).

Set h1 := h1 ∪ hin, hm := hm ∪ h(m)
out ∀m ∈ {2, . . . , d+ 1}.

4. For m = 1 to 2d, if ρ(hi, µ(hi)) > ε∆̂/K, then split(hi), endif. end.

Figure 4: Procedure split(h).

9

1. Given an input set Z of size M , choose L to be a collection of at most M − 1 distances such
that every distance ||z− z′||, z, z′ ∈ Z, is within a factor of

√
2 of some ` ∈ L.

2. For each (z, `) ∈ Z×L, create a “cloud” of net-points around z; the inner radius of the cloud
is `ε, the outer radius of the cloud is `/ε, all net-points lie along lines of polar spacing ε,
and the radial spacing is adjusted to match the polar spacing locally. See Figure 6. Output
C(Z) denotes the union of Z and all of the points in these clouds.

Figure 5: Cloud construction C(Z).

(2d+2K/ε +K2ed log d+O(d) − 1)/(2d − 1) ≤ 8K/ε +K2ed log d+O(d). The total runtime of the
procedure is O(dn+ d2d +M ′nd) ≤ O(n(Kd/ε+K2ed log d+O(d))).

2

C The Data Net Construction

Theorem 4 Given a partition {A1, . . . , AM} satisfying the distortion constraints (property A) of
Theorem 3, the following algorithm produces a data net of size at most

M + (1/ε)d+1eO(d)M2

in time
O
(

M + (1/ε)d+1eO(d)M2
)

.

The data net design algorithm relies on the cloud construction described below.

Cloud Construction

Given a set Z with M points from IRd, the procedure creates M “clouds” of data net points around
each of the M points in Z, giving M 2 clouds in total. Each cloud is parameterized by a constant
` ∈ L. A cloud with parameter ` has inner radius ε` and outer radius `/ε. The set L is chosen to
guarantee that for any pair of points z, z′ ∈ Z there exists a cloud with parameter ` ∈ L within
a constant factor of the distance ||z − z′||. The notation C(Z) designates the union of Z and the
constructed cloud points. Figure 5 formalizes the cloud construction.

The following lemma is useful in restricting the size of L.

Lemma 1 In an n-point metric space δ there are n − 1 distances {`i} such that every distance
δ(x,y) is within a factor of

√
2 of some `i.

Proof: The proof begins with the complete undirected graph between points of the metric space
and proceeds in steps i = 1, ..., n′ ≤ n − 1 until no edges remain. In each step, select a shortest
remaining edge, define Li to be its length, and remove all remaining unselected edges of length at
most 2Li. No combination of the selected edges can form a cycle, so at most n − 1 edges can be
selected before the graph is empty. Set `i =

√
2Li. 2

It is interesting to notice that the bound of n − 1 distances in Lemma 1 is optimal no matter
how large the allowed constant factor.

10

ε

-¾
-¾ `ε

`/ε

Figure 6: A sketch, for d = 2, of the net-point construction for a single value of (z, `).

Data Net Construction

For the data net construction, set Z = {µ(A1), . . . , µ(AM)}, where {A1, . . . , AM} is the partition
constructed in Section III-B. Apply the above cloud construction to get data net Z = C(Z).

Completing the data net description requires defining mapping ζ : IRd → Z and regions
{Az}z∈Z .

Let ζ : IRd → Z be defined as

ζ(x) = argmin
z∈Z

[||x− z||+ π(z)] ,

where penalty function π(z) = 0 when z ∈ Z and π(z) = ε` for each z ∈ C(Z)−Z that belongs to
a cloud with parameter `.

Figure 7 illustrates the following definitions used to describe the regions {Az}z∈Z . For any
z ∈ Z, let z1 be a closest element of Z−{z} and let `1 = ||z−z1||. For any x ∈ IRd and r ∈ (0,∞),
B(x, r) denotes the closed ball of radius r about x. Let Z ′ = Z −B(z1, 2ε`1). If Z

′ 6= φ, let z2 be
a closest element of Z ′ to z1 and let `2 = ||z1 − z2||. Let H be the half-space of points closer to z
than to z1. Define

Az =











B(z, `1/4) if z ∈ Z
H if z ∈ Z − Z and Z ′ = φ
H ∩B(z,max{`1, `2}/4) if z ∈ Z − Z and Z ′ 6= φ.

Figure 8 summarizes the data net construction.

Proof of Theorem 4: By Lemma 1, set L has size M − 1. Each cloud contains a number of points
bounded above by (1/ε)d+1eO(d). Thus the data net has size no greater than M+(1/ε)d+1eO(d)M2.
The proofs of the additive and multiplicative properties of Z, ζ, and {Az}z∈Z are the topic of
Section VI-B. 2

11

z1

z2

z

H

`1

`2

I

III

II

Figure 7: The definition of Az under conditions I (z ∈ Z), II (z 6∈ Z and Z ′ = φ), and III (z 6∈ Z
and Z ′ 6= φ).

1. Let Z = {µ(Am)}Mm=1 (assume that µ(Ai) 6= µ(Aj) for all i 6= j).

2. Construct data net Z = C(Z), and define ζ and {Az}z∈Z as described in Section C.

Figure 8: Data net construction.

12

V Deterministic ε-Approximate K-Clustering

Recall that the K-clustering algorithm of Section III-B involves three steps: designing a data net,
reducing the training set size, and then exhaustively finding the best codebook from the data net
for the reduced training set. Only the second step, described below, requires further description.

Reducing the Data Set

In this section we show that an input distribution (or empirical distribution of a training set) p
can, for the purpose of ε-approximate k-clustering, be replaced by a distribution p̃ of finite support
(where “finite”, as usual, means a size that depends on d, K, and ε, but is independent of the input
distribution). Specifically, our construction, and our claim concerning it, are these:

Construction: First form the set Z = {µ(A1), . . . , µ(AM)}, where {A1, . . . , AM} is the
partition whose design is described in Section III-B. Then form the data net C(Z) as described in
Section III-C. Then form the set C(C(Z)), and let π be the penalty function associated with the
second stage of the construction (so π(u) = 0 for u ∈ C(Z) and π(u) = ` for all u ∈ C(C(Z))−C(Z)
constructed in a cloud of parameter `). For x ∈ IRd, let η(x) be a point y ∈ C(C(Z)) minimizing
||x− y||+ π(y). Let

p̃(y) =

∫

η−1(y)
p(x) dx

Observe that the support of p̃ is of size at most eO(d)M4/ε3(d+1).
The following theorem shows that for the purpose of ε-approximate K-clustering we can replace

p by p̃.

Theorem 5 Let S = {µ1, . . . , µk} ⊆ C(Z), and let S̃ = {µ̃1, . . . , µ̃k} ⊆ C(Z) be an ε-approximate
best K-clustering of p̃ by C(Z). Then ρ(p, S̃) ≤ (1 +O(ε))ρ(p, S).

Proof: For any x we abbreviate notation by letting y = η(x), µ be the nearest point to x in S, and
µ̃ be the nearest point to y in S̃.

Let L1 =
∫

(||x− µ̃||2−||x−µ||2) dx. (We do not require that S be a best clustering for p using
points of C(Z), but if so, 0 ≤ L1.)

Let L2 =
∫

(||y− µ̃||2 − (1 + ε)||y− µ||2) dx ≤ 0. (We require that S̃ be an ε-approximate best
clustering for p̃ using points of C(Z), which is why L2 ≤ 0.)

What we need to show is that

L1 ≤ O(ε)

∫

||x− µ||2 dx. (1)

It will suffice to show the evidently weaker

L1 ≤ O(ε)

∫

(||x− µ||2 + ||x− µ̃||2) dx, (2)

which is equivalent because
∫

(||x − µ||2 + ||x − µ̃||2) dx = L1 + 2
∫ ||x − µ||2 dx, so equation 2

implies L1(1−O(ε)) ≤ O(ε)
∫ ||x− µ||2 dx and in turn L1 ≤ O(ε)

∫ ||x− µ||2 dx.
Next we note that since L2 ≤ 0, it suffices to show that

L1 − L2 ≤ O(ε)

∫

(||x− µ||2 + ||x− µ̃||2) dx.

It may seem that this makes our task needlessly harder, but the advantage comes in recasting the
desired inequality as

13

∫

(||x− µ̃||2 − ||x− µ||2 − ||y − µ̃||2 + (1 + ε)||y − µ||2) dx ≤ O(ε)

∫

(||x− µ||2 + ||x− µ̃||2) dx.

in which we show that the inequality holds for each term x.
We consider three cases according to the location of x relative to µ and µ̃. Let ` = ||µ− µ̃||.
Case 1: Either ||x− µ|| ≤ ε` or ||x− µ̃|| ≤ ε`. Either implies ||x− y|| ≤ ε`.
Case 1a: ||x− µ̃|| ≤ ε`. Then ||x− µ|| ≥ (1− ε)`. The contribution of x to L1 − L2 is

(||x− µ̃||2 − ||y− µ̃||2) + ((1 + ε)||y− µ||2 − ||x− µ||2) ≤ O(ε2)`2 +O(ε)`||x− µ|| ≤ O(ε||x− µ||2).

Case 1b: ||x− µ|| ≤ ε`. Then ||x− µ̃|| ≥ (1− ε)`. The contribution of x to L1 − L2 is

(||x− µ̃||2 − ||y− µ̃||2) + ((1 + ε)||y− µ||2 − ||x− µ||2) ≤ ||x− µ̃||`O(ε) +O(ε2)`2 ≤ O(ε||x− µ̃||2).

Case 2: Case 1 does not hold, and either ε` < ||x− µ|| ≤ `/ε or ε` < ||x− µ̃|| ≤ `/ε.
This implies there is a y′ for which

π(y′) + ||x− y′|| ≤ εmin{||x− µ||, ||x− µ̃||},

either in the cloud about µ of radius (within
√
2 of) ||µ − µ̃||, or in the cloud about µ̃ of radius

(within
√
2 of) ||µ − µ̃||. The point y′ may be different from y, but its existence implies that

||x− y|| ≤ εmin{||x− µ||, ||x− µ̃||}. The contribution of x to L1 − L2 is

(||x− µ̃||2 − ||y − µ̃||2) + ((1 + ε)||y − µ||2 − ||x− µ||2) ≤ (||x− µ̃||2 + ||x− µ||2)O(ε).

Case 3: `/ε < ||x − µ||, ||x − µ̃||. This implies that `/ε < ||y − µ||, ||y − µ̃|| ≤ 2||x − µ||. The
contribution of x to L1 − L2 is

(||x− µ̃||2−||x−µ||2)+((1+ε)||y−µ||2−||y− µ̃||2) ≤ (||x−µ||2+ ||y−µ||2)O(ε) ≤ ||x−µ||2O(ε).

VI Proofs

A The Partition Size Bound

This section aims bound the sizeM of the partition {A1, . . . , AM} designed in Section III-B provided
that the input ∆̂ satisfies ∆̂ ≥ ∆/2. Again, recall that tree T describes the complete partitioning
process. The children of a node A of distortion greater than ε∆̂/K are the 2d regions chosen to
partition it. The tree leaves are the partition A1, . . . , AM of IRd. Note that a node A is internal if
and only if ρ(A,µ(A)) > ε∆̂/K. Let T ′ be the restriction of T to its internal nodes excluding the
root. The bound on M follows from a bound on the number M ′ = (M − 1)/2d of leaves in T ′. The
bound on M ′ follows by accounting for every leaf A′ in one of two ways: “charge by volume” or
“charge by distortion.” The following notation is useful to that discussion.

Again let B(x, r) denote the closed ball of radius r about x. ∂B(x, r) denote the boundary
of B(x, r), Bo(x, r) = B(x, r) − ∂B(x, r) denote the corresponding open ball, and B ′(x1,x2) =
B(x1, 10||x1 − x2||) describe a radius-(10||x1 − x2||) ball around x1.

For a region A′ that is to be charged by volume, the goal is to prove that there exist optimal
codewords µ?i and µ?j such that vol(A′ ∩ B′(µ?i , µ

?
j))/vol(B

′(µ?i , µ
?
j)) > e−d log d−O(d); that is, A′

occupies a constant fraction of B ′(µ?i , µ
?
j). At most K2ed log d+O(d) regions can have this property.

For a region A′ that is to be charged by distortion, the goal is to prove that
∫

A′

p(x)

[

min
1≤k≤K

ρ(x, µ?k)

]

dx ≥ ε∆̂/(4K);

14

B′

B
A

r

x1

x2

Figure 9: Region definitions used in the proof of Lemma 2. Here F is the intersection between A
and ∂(B). The shaded region is C (here bounded for display purposes), and CB and CB′ are the
portions of the shaded region that lie in balls B and B ′, respectively.

that is, region A′ contributes at least distortion ε∆̂/(4K) to the optimal performance. Since the
optimal code achieves distortion ∆, at most ∆/(ε∆̂/(4K)) regions can have this property. The
resulting bound is M = 2dM ′ + 1 ≤ 2d(8K/ε+K2ed log d+O(d)).

Let A′ be some leaf of T ′. The construction of A′ implies that A′ cannot be long and narrow –
an important property for regions charged by volume. To make this observation precise, define the
fatness of a region A ⊆ IRd [26], here denoted by fat(A), as follows

fat(A) = min
x1,x2∈A

vol(A ∩ B(x1, ||x1 − x2||))
vol(B(x1, ||x1 − x2||))

.

Lemma 2 and Corollary 1 lead to the bound of leaf fatness fat(A′) given in Lemma 3. The specific
form of the bound is not essential to the volume charging argument, which requires only that the
lower bound be a positive function of the dimension d.

Lemma 2 shows that x2 can be chosen to lie on the boundary of A′.

Lemma 2 Given any region A that is star convex relative to x1 and any x2 ∈ A,

vol(A ∩B(x1, ||x1 − x2||))
vol(B(x1, ||x1 − x2||))

≥ vol(A ∩B(x1, r))

vol(B(x1, r))

for all r > ||x1 − x2||.

Proof: Consider the following geometric quantities (illustrated in Figure 9)

B = B(x1, ||x1 − x2||) C = {x : ray(x1,x) ∩ F 6= φ} (shaded region)

B′ = B(x1, r) CB = C ∩B
F = ∂(B) ∩A CB′ = C ∩B′,

where ray(x,y) denotes the ray originating at x and passing through y. Then

vol(A ∩B)

vol(B)
≥ vol(C ∩B)

vol(B)
=

area(F)

area(∂(B))
=

vol(C ∩ (B′ −B))

vol(B′ −B)
≥ vol(A ∩ (B′ −B))

vol(B′ −B)
,

where the final inequality follows from the star convexity of A. 2

15

Corollary 1 For any convex region A,

fat(A) =
vol(A)

vol(B(·, diam(A)))
.

Proof: By Lemma 2, there exists an (x1,x2) ∈ A2 such that A ⊆ B(x1, ||x1 − x2||) and
vol(A ∩B(x1, ||x1 − x2||))
vol(B(x1, ||x1 − x2||))

= fat(A).

Thus any (x1,x2) ∈ A2 that achieves the fatness fat(A) satisfies

vol(A ∩B(x1, ||x1 − x2||))
vol(B(x1, ||x1 − x2||))

=
vol(A)

vol(B(x1, ||x1 − x2||))
≥ vol(A)

vol(B(x1, diam(A)))
,

with equality if and only if ||x1 − x2|| = diam(A). 2

Corollary 1 leads to the bound on fat(A′) given in Lemma 3.

Lemma 3 For any leaf A′,
fat(A′) ≥ e−d log d−O(d).

Proof: By Corollary 1 and the construction of A′, if d is even, then

fat(A′) =
vol(A′)

vol(B(0, diam(A′)))

≥ min
t∈[0,1]

(d+ 1− td)/d

πd/2(d/2)!(d− 1 + (2− t)2)d/2

=
d+ 1

dπd/2(d/2)!(d+ 3)d/2

2

Use s to denote the “linear dimension” of region A′, where the linear dimension of A′ ⊆ IRd is
the side length of the largest axis-parallel, d-dimensional hypercube that lies within A′. Constant
s serves as a simple approximation for the the diameter of A′; Lemma 4 shows their relationship
more precisely.

Lemma 4 diam(A′) ≤ s
√
d+ 3.

Proof: Given the tree construction, region A′ is either a hypercube or a modified polyhedron of
the type shown in Figure 2. The diameter of the region is maximized when the elongation is at
its most extreme. In this case, the diameter equals the distance between the two furthest corners
of an axis-parallel region with side-length s in d − 1 dimensions and a side-length 2s in the last
dimension, giving diam(A′) ≤

√

(d− 1)s2 + (2s)2. 2

The argument that follows uses a careful case analysis to decide whether to charge a particular
A′ by volume or by distortion. That case analysis relies on the following definitions:

µ?(A′) = arg min
1≤k≤K

||µ(A′)− µ?k||

` = ||µ(A′)− µ?(A′)||

F = B

(

µ?(A′),
`

4

)

−Bo(µ(A′), `)

G = B(µ?(A′), 4`)−
(

B

(

µ?(A′),
`

4

)

∪B(µ(A′), `)

)

H = IRd −B(µ?(A′), 4`).

16

F -

G

H

ª ª

µ?(A′) µ(A′)

Figure 10: The regions F , G, and H used in the counting argument to estimate M .

Thus µ?(A′) denotes the optimal codeword that is closest to centroid µ(A′), ` denotes the distance of
centroid µ(A′) to its nearest optimal codeword, and F , G, and H are three non-overlapping regions
in IRd, as shown in Figure 10. Since F contains at least one optimal codeword, the following three
values are well-defined.

µ?F = arg max
µ?∈{µ?1,...,µ

?
K
}∩F

||µ?(A′)− µ?||

`′ = ||µ?(A′)− µ?F ||

V =

{

x ∈ IRd : min
µ?∈{µ?1,...,µ

?
K
}∩F

ρ(x, µ?) = min
µ?∈{µ?1,...,µ

?
K
}
ρ(x, µ?)

}

.

Case 1. s ≤ `/(2
√
d+ 3). Charge A′ by distortion. By Lemma 4 and the assumption, diam(A′) ≤

s
√
d+ 3 ≤ `/2. So no x ∈ A′ can be closer than `− `/2, to its closest optimal reproduction, giving

∫

A′

p(x)

[

min
1≤k≤K

ρ(x, µ?k)

]

dx ≥
∫

A′

p(x)

(

`

2

)2

dx

≥
∫

A′

p(x)
(

diam(A′)
)2
dx ≥ ρ(A′, µ(A′)) ≥ ε∆̂/K.

Case 2. s > `/(2
√
d+ 3) and there is an optimal codeword µ?j in G. Charge A′ by volume

to the pair {µ?(A′), µ?j}. The proof begins by showing that B(µ(A′), `) ⊆ B(µ?(A′), µ?j) and that
B(µ(A′), `) accounts for a constant fraction of the volume of B ′(µ?(A′), µ?j). The argument goes
on to show that A′ accounts for a constant fraction of the volume of B(µ(A′), `).

By definition of G, `/4 ≤ ||µ?(A′)− µ?j || ≤ 4`. Thus

B(µ(A′), `) ⊂ B(µ?(A′), 10`/4) ⊂ B′(µ?(A′), µ?j)

vol(B(µ(A′), `))

vol(B′(µ?(A′), µ?j))
=

`d

(10||µ?(A′)− µ?j ||)d
≥ `d

(40`)d
=

1

(40d)
.

If A′ lies entirely within B(µ(A′), `), then s > `/(2
√
d+ 3) and the shape of A′ imply

vol(A′ ∩B(µ(A′), `))

vol(B(µ(A′), `))
≥ sd/d

πd/2`d/(d/2)!
>
c−d2

d

17

for some constant c2 independent of A′. (The given form of the volume equation assumes d even.
The equation is similar for d odd.) If A′ extends outside of B(µ(A′), `), then there exists some point
on x ∈ A′ that lies on the outer boundary of B(µ(A′), `), and applying Lemma 3 with x1 = µ(A′)
and ||x1 − x2|| = ` gives vol(A′ ∩B(µ(A′), `))/vol(B(µ(A′), `)) ≥ c−d1 /d.
Case 3. s > `/(2

√
d+ 3), {µ?1, . . . , µ?K} ∩ G = φ, and A′ ∩ B(µ?(A′), 3`′) 6= φ. Charge A′ by

volume to {µ?(A′), µ?F }. If `′ = 0, then A′ occupies the full volume of B′(µ?(A′), µ?F). Otherwise,
apply Lemma 3 with x1 ∈ B′(µ?(A′), 3`′)∩A′ and x2 = µ(A′). Then ||x1 − x2|| ≥ `− 3`′ ≥ `′, and
vol(A′∩B(x2, `

′))/vol(B(x2, `
′)) ≥ c−d1 /d. Since the radius of B(x2, `

′) is 1/10 that of B′(µ?(A′), µ?j)
and B(x2, `

′) ⊂ B′(µ?(A′), µ?j), the desired result is obtained.

Case 4. s > `/(2
√
d+ 3), {µ?1, . . . , µ?K} ∩G = φ, A′ ∩ B(µ?(A′), 3`′) = φ, and A′ ⊆ V . Charge

A′ by distortion. Bound

∫

A′

[

min
1≤k≤K

ρ(x, µ?k)

]

dx =

∫

A′

p(x)

[

min
µ?∈{µ?1,...,µ

?
K
}∩F

ρ(x, µ?)

]

dx (3)

≥
∫

A′

p(x)

[

1

4
ρ(x, µ?(A′))

]

dx ≥ 1

4
ρ(A′, µ(A′)) ≥ 1

4

ε∆̂

K
. (4)

Here (3) follows from A′ ⊆ V . The definition of `′ implies that all optimal codewords in F lie
in a ball of radius `′ around µ?(A′); since A′ does not intersect the ball of radius 3`′ around
µ?(A′), (minµ?∈{µ?1,...,µ?K}∩F ||x−µ?||)/||x−µ?(A′)|| ≥ 1/2, giving the first inequality. The last two
inequalities follow by definition of µ(A′) and design of A′, respectively.
Case 5. s > `/(2

√
d+ 3), {µ?1, . . . , µ?K} ∩ G = φ, A′ ∩ B(µ?(A′), 3`′) = φ, and A′ 6⊆ V . Here

A′ ∩ V 6= φ by definition of µ?(A′), and A′ ∩ V c 6= φ by assumption. Thus there exist codewords
µ?i ∈ {µ?1, . . . , µ?K} ∩ F and µ?j ∈ {µ?1, . . . , µ?K} ∩H such that the intersection between the Voronoi
regions for µ?i and µ?j runs through A′. Charge A′ by volume to {µ?i , µ?j}. Let `′′ = ||µ?i − µ?j ||.
By definition of F and H, `′′ ≥ 15`/4. Since the boundary between the Voronoi cells for µ?i and
µ?j runs through A′, maxx∈A′ ||µ?i − x|| ≥ `′′/2, giving maxx∈A′ ||µ(A′)− x|| ≥ `′′/2− 5`/4 ≥ `′′/6.
Applying Lemma 3 with x1 = µ(A′) and ||x1 − x2|| ≥ `′′/6 tells us that A′ occupies some fraction
e−d log d−O(d) of the ball of radius `′/6 around µ(A′). Since that ball falls entirely within the ball
of radius 10`′ around µ?(A′) and occupies a constant fraction of its volume, the desired result is
obtained.

B The Data Net Properties

The topic of this section is a proof that the choices of Z, ζ, and {Az}z∈Z described in Section III-C
meet the definition of a data net. Theorems 6 and 7 show that the data net satisfies the additive
and multiplicative properties, respectively.

Theorem 6 (Additive analysis) There exists a constant c such that ρ(Az, z) ≤ cdε∆̂/K.

Proof: The argument that follows shows that for every z ∈ Z, Az intersects M ′ ≤ cd of the regions
in {A1, . . . , AM}. Let {A1, . . . , AM ′} be those intersecting regions. The definition of Az gives
||x− z|| ≤ (1 + ε)||x− µ(Am)|| for all m ∈ {1, . . . ,M ′} and x ∈ Az ∩Am, and thus

ρ(Az, z) ≤
M ′
∑

m=1

(1 + ε)2ρ(Az ∩Am, µ(Am)) ≤ cdε∆̂/K.

When z ∈ Z, each Am that intersects Az must cross the annulus between B(z, `1/4) and B(z, `1).
Thus by the shape of Am, Am has linear dimension at least 3`1/(4

√
d+ 3) and occupies an angular

section of fraction at least c−d of ∂B(z, 5`1/8).

18

Let P = Z − Z, the collection of points designed through the cloud construction. When z ∈ P
and Z ′ = φ, Z ⊆ B(z1, 2ε`1). Any Am intersecting Az has linear dimension ≥ (1/2− 2ε)`1/

√
d+ 3

and occupies an angular section of fraction at least c−d of ∂B(z1, `1/4).
When z ∈ P and Z ′ 6= φ, let Z1 = Z ∩B(z1, 2ε`1) and let Z2 = Z − Z1. For any Am such that

µ(Am) ∈ Z1, the previous argument follows. For any Am such that µ(Am) ∈ Z2 and Am∩Near(p) 6=
φ, Am intersects B(z,max{`1, `2}/4) and ||µ(Am) − z|| ≥ max{`1, `2 − `1} ≥ max{`1, `2/2} ≥
max{`1, `2}/2. Consequently, the linear dimension of Am is at least max{`1, `2}/(2

√
d+ 3), and

Am covers a constant fraction of ∂B(z, 3max{`1, `2}/8). 2

Theorem 7 proves that if µ?i ∈ V (z), then ||x − z|| ≤ ||x − µ?||/(1 − 4ε) for all x 6∈ Az, giving
ρ(C?i ∩Ac

z, z) ≤ ρ(C?i ∩Ac
z, µ

?)/(1− ε). We first show Lemmas 2 and 3.

Lemma 2 If V (z) 6= ∅, then z ∈ V (z).

Proof: Suppose x ∈ V (z). Then ||x− z||+ π(z) ≤ ||x− z|| and ||x− z||+ π(z) ≤ ||x− p||+ π(p)
for all z ∈ Z and p ∈ P . By the triangle inequality ||x − z′|| − ||x − z|| ≤ ||z − z′|| for all z′, so
π(z) ≤ ||z− z|| and π(z) ≤ ||z− p||+ π(p) for all z ∈ Z and p ∈ P . 2

Lemma 3 If z ∈ Z generates a cloud of parameter `, then for any z ∈ B(z, `(1 − ε)/ε) ∩ P ,
diam(V (z)) = O(εmax{`, ||z− z||}).

Proof: Any z ∈ B(z, (1 + ε)ε`) lies between x and a radius-ε` sphere of net-points. Any other
z ∈ B(z, (1− ε)(`/ε)) lies among net-points spaced at order ε||z− z|| distances. 2

Theorem 7 (Multiplicative analysis) There exists a constant c such that for each z ∈ Z and
x /∈ Az, B(x, (1− cε)||x− z||) ∩ V (z) = ∅.

Proof: If z ∈ Z, then V (z) ⊆ B(z, ε`1). So if x /∈ Az = B(z, `1/4), then ||x − z|| − ε`1 ≥
||x− z|| − ε(4||x− z||) = (1− 4ε)||x− z||, and V (z) is disjoint from B(x, (1− 4ε)||x− z||).

If z ∈ P and Z ′ = φ, then z is created in a cloud about some z ∈ B(z1, 2ε`1). Suppose that
V (z) ⊆ L = {y ∈ IRd : ||y − z|| ≥ ||y − z|| + `1(1 − ε)} (a set with a hyperbolic boundary). The
desired result follows by a geometric argument that shows that for x 6∈ H, B(x, (1 − 4ε)||x − z||)
does not intersect L. Suppose instead that V (z) extends outside L; then the following argument
gives a contradiction. If V (z)∩Lc 6= φ, then π(z) ≤ ε`1, point z is generated in a cloud of parameter
` ≤ `1 around z, and z is not on the inner sphere of the cloud in which it is generated. In this
case, the cloud generating z has points on the sphere of radius ||z − z|| around z and also on the
sphere of radius (1− ε)||z− z|| around z. These points have the same penalty as z and are spaced
regularly enough so V (z) is contained in a wedge-shaped region entirely contained within L.

If z ∈ P , Z ′ 6= φ, and z is created by some z ∈ B(z1, 2ε`1), then the reasoning from the
previous case implies V (z) ⊆ L. That handles the multiplicative distortion for x /∈ H; it remains to
handle the multiplicative distortion for x /∈ B(z,max{`1, `2}/4). Observe that z ∈ B(z1, `2/(2ε));
therefore, z is internal to the cloud of parameter `2 about z1. So by Lemma 3, V (z) has diameter
O(εmax{`1, `2}) and so B(x, (1− 4ε)||x− z||) ∩B(z,max{`1, `2}/4).

If z ∈ P , Z ′ 6= φ, z is created by some z /∈ B(z1, 2ε`1), and `2 ≤ 4`1, then the existence
of z2 again implies that z ∈ B(z1, `2/(2ε)) and is internal to the cloud of parameter `2 about
z1; thus by the previous argument, V (z) has diameter O(εmax{`1, `2}) = O(ε`1) . If x /∈ H ∩
B(z,max{`1, `2}/4), then in particular ||x− q|| ≥ `1/4. So for a suitable c, dictated by the bound
on diam(V (q)), B(x, (1− cε)||x− z||) ∩ V (z) = ∅.

If z ∈ P , Z ′ 6= φ, and z is created by some z /∈ B(z1, 2ε`1), and `2 > 4`1 (so z /∈ B(z1, 4`1)),
then we want to show that diam(V (z)) = O(ε`1). This suffices since (always) B(z, `1/4) ⊆ Az.

19

Let ` be the parameter of the cloud that generated z. Note `/ε ≥ `2 − `1 ≥ 3`2/4, so ` ≥ 3ε`2/4.
If ` > `1/ε then π(z) > `1 so by lemma 2, V (z) is empty and we’re done. It remains to consider
the case 3ε`2/4 ≤ ` ≤ `1/ε. There is a cloud about z1 of parameter `, hence of inradius at most
`1 and outradius at least 3`2/4 which in turn is at least 3`1. This cloud’s penalty is ε`, equal to
the penalty of z. If ` ≤ `1(1 − ε)/ε then the inradius is ≤ `1(1 − ε), so z is surrounded in all
directions, at a spacing of ε`1, by points of penalty equal to its own; hence diam(V (z)) = O(ε`1).
On the other hand if `1(1 − ε)/ε < ` ≤ `1/ε then π(z) > `1(1 − ε) so V (z) cannot extend past
the hyperplane perpendicular to z1z, at distance ε`1 from z and distance (1− ε)`1 from z1; while
outside of B(z1, `1), z is surrounded in all directions, at a spacing of ε`1, by points of penalty equal
to its own. So in this case too, diam(V (z)) = O(ε`1). 2

VII Discussion

A Continuous Source Distributions

Our method does not rely in a very essential way on the finiteness of the data set. One of the
design principles of our algorithm, which leads to its quasilinear runtime, is that the algorithm
should access the data distribution only through some elementary types of queries, and that the
runtime should be expressible in terms of the numbers of these queries. Those queries are: given a
polyhedral region A and a point x, compute µ(A), ρ(A,µ(A)) and ρ(A,x); and given a polyhedral
region A, sweep some of the walls of A until ρ(A,µ(A)) reaches some prescribed value. In addition
the algorithm requires a coarse initial estimate ∆̂0 on ∆ and a suitable initial bounding box for the
distribution, such that for the exterior Ac of that bounding box, ρ(Ac, µ(A)) is less than ε∆/K.
These are the only ingredients we need for the method.

B More Applications of Data Nets

Sections III–IV treat the data net design algorithm and its application to vector quantizer design.
The vector quantizers introduced there are compression algorithms designed for networks where a
single transmitter compresses information at a fixed rate of logK bits per vector, and the informa-
tion is decoded by a single receiver. While the data net design algorithm originated from a search
for a solution to that classic problem, it applies much more widely. We treat more applications
in [10]. A summary of a few simple examples from [10] follows. These examples are of particular
interest to the data compression community.

We again consider lossy compression problems with fixed-rate coding solutions. We move,
however, from systems where a single transmitter sends information to a single receiver (so-called
point-to-point networks) to more general network communication environments. In particular, we
treat the following examples.

1. Multiresolution vector quantization: One transmitter sends a data description to L
receivers. Receiver ` receives only the first

∑`
i=1 logKi bits of the binary description. The

goal in code design is to minimize the weighted sum of the distortions resulting from the L
reconstructions. This problem is known as the multiresolution source coding problem.

2. Multiple description vector quantization: One transmitter sends L descriptions (also
called packets) of a single source across an unreliable channel. Each packet is either received
perfectly by the decoder or is entirely lost in transmission. The goal in code design is to make
the expected distortion of the source reconstruction as small as possible; the expectation is
taken with respect to a known distribution on the 2L possible packet-loss scenarios.

20

3. Side information vector quantization: One transmitter describes a single source to a
single receiver. The receiver observes side information unavailable to the decoder. The side
information may be helpful in reconstructing the desired source. The goal in code design
is to minimize the expected distortion of the reconstruction; the expectation is taken with
respect to the joint distribution on the source and side information. Side information source
coding is also called Wyner-Ziv source coding after the work of Wyner and Ziv [29] describing
the optimal performance of a side information source code when the coding dimension d is
allowed to grow without bound.

4. Broadcast vector quantization: A single transmitter describes multiple sources to a family
of decoders. Each source is intended for a distinct subset of the receivers, and each component
of the description is received by a distinct subset of the receivers. Each receiver uses all of
its received descriptions to reconstruct all of its desired sources. The goal in code design is
to minimize the weighted sum of the distortions of the reconstructions built by the receivers.

5. Joint source-channel vector quantization: A single transmitter describes a single source
to a single receiver using a fixed-rate description of rate logK bits per vector. Due to chan-
nel noise, the source description index i ∈ {0, 1 . . . ,K − 1} may be corrupted during the
transmission process and received as some distinct index j from the same alphabet. The goal
in code design is to minimize the expected distortion in the source reproduction. Here the
expectation is taken with respect to the known probability p(i, j) of receiving index j when
index i is transmitted.

6. Joint source-channel vector quantization for the side-information network: This
scenario combines the side-information and joint source-channel vector quantizers, designing a
code for the side-information coding environment in the presence of a noisy channel. The goal
in code design is to minimize the expected distortion subject to both the joint distribution on
the source and side information and the probability p(i, j) that transmitted index i is received
by the decoder as index j.2

7. Remote source vector quantization: An encoder observes a noisy copy of the true source
and describes it to the decoder. The decoder reconstructs the true source as accurately as
possible.

The simple examples described above can be combined to create an even richer set of coding
scenarios (multiresolution multiple access codes, multiple description broadcast codes, and so on).

In each example, let S be the number of sources (S = 1 in all but the BCVQ), K be the
maximal number of codewords that can be distinguished by any single decoder, T be the total
number of single-source codewords in the code, and ∆ be the optimal performance (usually an
expected distortion over some distribution on the reconstructions at different receivers).

Theorems 8–14 In each of the above scenarios, designing a data net of size

N ≤ (1/ε)d+1ed log d+O(d)
(

K4 +K2/ε2
)

for each source, and using the best T codewords from those data nets gives a code with total distortion
D ≤ (1 + ε)∆ within time

≤ Spoly(K)(d/ε)O(Td)n log logn.

2The given notation assumes that the corruption probability p(i, j) is independent of the source and side-
information values x and y. While this assumption is likely appropriate for most coding environments, it is in
now way critical for optimal code design using the proposed approach.

21

References

[1] P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Computing
Surveys, 30:412–458, 1998.

[2] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-medians and
related problems. In Annual ACM Symposium on Theory of Computing, pages 106–113, Dallas,
Texas, 1998.

[3] M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proc. 34th
ACM STOC, pages 250–257, 2002.

[4] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds for selection. Journal
of Computing and System Sciences, 7:448–461, 1973.

[5] J. D. Bruce. Optimum Quantization. PhD thesis, M.I.T., Cambridge, MA, May 1964.

[6] P. A. Chou, T. Lookabaugh, and R. M. Gray. Optimal pruning with applications to tree struc-
tured source coding and modeling. IEEE Transactions on Information Theory, IT-35(2):299–
315, March 1989.

[7] W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes
for clustering problems. In Proc. 35’th Ann. Symp. on Theory of Computing (STOC), 2003.

[8] D. Dor and U. Zwick. Selecting the median. SIAM J. Comput., 28(5):1722–1758, 1999.

[9] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large graphs and
matrices. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1999.

[10] M. Effros and L. J. Schulman. Manuscript, 2004.

[11] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In Proc. 20th
Ann. ACM Symp. Theory Comput., pages 434–444. ACM, 1988.

[12] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Com-
puter Science, 38:293–306, 1985.

[13] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proceedings of
the Symposium on Foundations of Computer Science (FOCS), pages 94–103, Las Vegas, NV,
October 2001.

[14] D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms for
bottleneck problems. J. Assoc. Comput. Mach., 33(3):533–550, 1986.

[15] D. S. Hochbaum and D. B. Smoys. A best possible heuristic for the k-center problem. Math.
Oper. Res., 10:180–184, 1985.

[16] K. Jain and V. Vazirani. Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and lagrangian relaxation. J. ACM, 48:274–296, 2001.

22

[17] S. G. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the Euclidean k-
median problem. In Proc. European Symposium on Algorithms, pages 378–389. Springer-Verlag
LNCS, 1999.

[18] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design. IEEE Trans-
actions on Communications, 28(1):84–95, January 1980.

[19] T. Linder, G. Lugosi, and K. Zeger. Rates of convergence in the source coding theorem,
in empirical quantizer design, and in universal lossy source coding. IEEE Transactions on
Information Theory, 40:1728–1740, November 1994.

[20] J. Matousek. On approximate geometric k-clustering. Discrete & Computational Geometry,
24:61–84, 2000.

[21] D. Muresan and M. Effros. Quantization as histogram segmentation: globally optimal scalar
quantizer design in network systems. In Proceedings of the Data Compression Conference,
pages 302–311, Snowbird, Utah, March 2002.

[22] R. Ostrovsky and Y. Rabani. Polynomial time approximation schemes for geometric clustering
problems. J. ACM, 49(2):139–156, 2002.

[23] A. Schönhage, M. Paterson, and N. Pippenger. Finding the median. J. Comput. System Sci,
13:184–199, 1976.

[24] L. J. Schulman. Clustering for edge-cost minimization. In Proc. 32’nd Ann. Symp. on Theory
of Computing (STOC), pages 547–555, 2000.

[25] D. K. Sharma. Design of absolutely optimal quantizers for a wide class of distortion measures.
IEEE Transactions on Information Theory, IT-24(6):693–702, November 1978.

[26] A. F. van der Stappen, D. Halpern, and M. H. Overmars. The complexity of the free space
for a robot moving amidst fat obstacles. Computational Geometry: Theory and Applications,
3:353–373, 1993.

[27] X. Wu. Algorithmic approach to mean-square quantization. PhD thesis, University of Calgary,
1988.

[28] X. Wu and K. Zhang. Quantizer monotonicities and globally optimal scalar quantizer design.
IEEE Transactions on Information Theory, IT-39(3):1049–1053, May 1993.

[29] A. D. Wyner and J. Ziv. The rate-distortion function for source coding with side information
at the decoder. IEEE Transactions on Information Theory, IT-22(1):1–10, January 1976.

23

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

