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Locally consistent constraint satisfaction

problems

Zdenék Dvoiak Daniel Kral’ Ondftej Pangrac *

Abstract

An instance of a constraint satisfaction problem is [-consistent if
any [ constraints of it can be simultaneously satisfied. For a set I of
constraint types, p;(II) denotes the largest ratio of constraints which
can be satisfied in any /-consistent instance composed by constraints
from the set II. In the general case of sets II consisting of finitely many
Boolean predicates, we express the limit po(II) := lim p;(II) as the

(e o]

minimum of a certain functional on a convex set of polynomials. Our
technique yields a robust deterministic algorithm (for a fixed set II)
running in time linear in the size of the input and 1/e which finds either
an inconsistent set of constraints (of size bounded by the function of ¢)
or a truth assignment which satisfies the fraction of at least poo(II) —¢
of the given constraints. In addition, we compute the values of p;({ P})
for every predicate P which has arity at most three or which is 1-
extendable.

Introduction

Constraint satisfaction problems form an important abstract computational
model for a lot of problems arising in practice. This is witnessed by an enor-
mous recent interest in the computational complexity of various constraint
satisfaction problems [4, 5, 6, 18]. Some instances of real problems do not
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require all the constraints to be satisfied but it is enough to satisfy a large
fraction of them. In order to maximize the fraction of satisfied constraints,
the input can usually be pruned by removing small sets of contradictory con-
straints so the input instance is “locally” consistent. Formally, an instance
of the constraint satisfaction problem is [-consistent if any [ constraints of it
can be simultaneously satisfied.

In this paper we focus on constraint satisfaction problems whose con-
straints are Boolean predicates. If II is a set of Boolean predicates, then
pi(IT) denotes the fraction of the constraints which can be satisfied in each
[-consistent instance of the problem whose constraints are the predicates of
II. If IT consists of only a single predicate P, we simply use p;(P) instead
of py({P}). Similarly, pj’(II) denotes this ratio for the weighted version of
the problem (see Section 2 for formal definitions). The limits of p;(II) and
pi(II) are denoted by poo(II) and p¥ (II), i.e., poo(Il) = limy,o py(II) and
P (1) = limy 00 o (11).

We study both the asymptotic behavior of p;(II) for finite sets of predi-
cates I and the exact values of p;(P) for some predicates P. In the following
subsections, we discuss our results in more detail as well as their relation
to previous work. Most of our results hold both for the weighted and un-
weighted case. Some of the results even extend to the case when the set II
is infinite (see Section 7).

1.1 Asymptotic results

We express p¥ (II) for all finite sets of predicates I and pe (II) for all such
sets of predicates Il of arities at least two as the minimum of a certain
functional ¥ on a convex hull of a finite set 7(IT) of polynomials derived
from IT (Corollary 2). The formal definitions of the functional ¥ and the set
7(IT) are postponed to Section 2.

One of our algorithmic results (Theorem 1) is designing, for any fixed set
IT of Boolean predicates, a deterministic algorithm which given ¢ > 0 and a
sufficiently locally consistent instance of the weighted constraint satisfaction
problem with total weight wy finds a truth assignment which satisfies the
constraints whose weight is at least (p% (II) — €)wy. The running time of the
algorithm is, for a fixed set II, linear in the number of the input constraints
and 1/e. The algorithm is robust in the sense that if it fails to find the
desired truth assignment, then it outputs an inconsistent set of constraints
contained in the input whose size is bounded by the function of €. However,



oP)| P [I=1 1>2
1 z | 172 1
1 zAy | 1/4 1
2 |z&y 1/2
3 T Vy 3/4

Table 1: The values p;(P) for all non-isomorphic essentially unary and binary
Boolean predicates.

it might find a good truth assignment even if the input instance is not suffi-
ciently locally consistent (in particular, the algorithm does not determine the
local consistency of the input instance). Finally, the presented algorithm is
asymptotically optimal in the sense that the ratio of the weights of satisfied
constraints can be made arbitrarily close to p% (II) by choosing the input
parameter ¢ to be sufficiently small.

1.2 Single-element sets II

We determine the values of p;(P) for every [ > 1 and every Boolean predicate
P which has arity at most three (see Tables 1 and 2) or which is 1-extendable.
A predicate P is said to be 1-extendable if it has the following property: If
we fix one of its arguments, we can choose the remaining ones in such a way
that the predicate is satisfied. In particular, the 0-ary Boolean predicate
which is constantly true is 1-extendable. Let us remark that, in this case,
all our results hold both for the unweighted and weighted versions of the
studied problems, i.e., the instances witnessing the upper bounds contain
each constraint at most once and our lower bound proofs translate smoothly
for instances with weighted constraints. From the algorithmic point of view,
our results can be interpreted in the following way: The simplest probabilistic
algorithms (of the kind used in [11, 16, 19]) are approximation algorithms
for locally consistent CSPs with optimum worst-case performance.

Let us point out a somewhat exceptional case of the predicate P(z,y, 2) =
xA(yV z) which is not 1-extendable (fix z to be false). Therefore, our general
Theorem 3 does not apply. In Section 6, we show that the values p;(P) are
closely related to the corresponding values for 2-SATs. In order to analyze
this predicate, we develop a formula for the case of locally consistent 2-SAT's
in Section 5 (Corollary 3).



o(P) p l=11=21=3l=4l=5 1>6 [—
1 TANYANz 1/8 1 1 1 1 1 1
2| seyesr |14 1/4 1/4 1/4 1/4  1/4 1/4

A (yez) |1/4 8/27 1/2 1/2 1/2  1/2 1/2

3 exactly one 3/8 3/8 3/8 3/8 3/8 3/8 3/8
sA(yVz)  [3/8 BB 1/2 Y51 2/3 py(Mly_sar) 3/4
(zey)A(x=2)|3/8 3/8 3/8 3/8 3/8  3/8 3/8

4] z=y=2 o [1/2 1/2 1/2 1/2 1/2 12 1/2
@Ay) &2 |12 1/2 1/2 1/2 1/2  1/2 1/2

at most one | 1/2 1/2 1/2 1/2 1/2 1/2 1/2

one or three [1/2 1/2 1/2 1/2 1/2  1/2 1/2

5 | —exactlyone |5/8 5/8 5/8 5/8 5/8  5/8 5/8
sV (yAz) |5/8 5/8 5/8 5/8 5/8  5/8 5/8

(e y)V(zAz)|5/8 5/8 5/8 5/8 5/8  5/8 5/8

6 | (zeoyez) |3/4 3/4 3/4 3/4 3/4 3/4 3/4
2V (ye2) |3/4 3/4 3/4 3/4 3/4  3/4 3/4

7 aVyVe |7/8 T/8 T/8 T/8 /8  7/8 7/8

Table 2: The values p;(P) for all non-isomorphic essentially ternary Boolean
predicates.



1.3 Previous work

Constraint, satisfaction problems whose constraints are Boolean predicates
can be traced back to the late 1970’s. Schaefer [15] proved that the decision
problem whether a given set of predicates (with allowed negations in their
arguments) from a set II is satisfiable is NP-complete unless each predicate of
IT can be defined by a CNF formula consisting only of clauses of size at most
two or each predicate of IT can be described by a system of linear equations,
i.e., the truth assignment which satisfies it form an affine subspace over
GF(2). However, even if the decision problem can be solved in a polynomial
time, the problem to maximize the number of satisfied predicates can still be
hard, e.g., Hastad [8] showed that there is no (2—e¢)-approximation algorithm
for the case when the set II contains a single predicate P(x1, 29, x3) = (21 +
Ty + x3) mod 2 unless P = NP. Note that p(II) = 1/2 for every [ > 1 in
this case. In particular, p,(IT) = 1/2 and the algorithm from Theorem 1
achieves the best possible ratio.

One of the most studied variant of the constraint satisfaction problem
are locally consistent CNF formulas in which the clauses of a formula are
viewed as the given constraints. The corresponding set Ilsar of the predi-
cates is just the set of all the disjunctions. Similarly, II,_gsat denotes the set
{(21), (x1Vx2)} of the predicates corresponding to clauses of a 2-SAT formula.
The interest in this case is witnessed by a separate section (20.6) devoted to
this concept in a recent monograph on extremal combinatorics by Jukna [10].
The exact values of p}’(IIsar) and p}’(IIo_sar) are known only for small val-
ues of I: clearly, p¥(IIsat) = p¥(Ila_sat) = 1/2. Lieberherr and Specker [12]
showed that p¥ (IIsat) = p¥ (Ia_saT) = ‘/‘?’2’1 ~ 0.6180 and subsequently [13]
they showed that p¥ (Ilsat) = p¥ (Ila—sar) = 2/3. Later, these proofs have
been simplified by Yannakakis [19] using a probabilistic argument. The case
of 4-locally consistent CNF formulas somewhat surprisingly differs from the
previous ones: First, p¥ (IIsar) &~ 0.6992 but p¥ (II_gar) > 0.6992. Second,
the values p}’(Ilgat) for | = 1,2,3 coincide with the corresponding values
defined for a “fractional” version of the problem (which are known for all
[ > 1 [11] and are equal to so-called Usiskin’s numbers [17]) but the value
p¥ (Ilsat) differs from the value 0.6920 for the fractional version of the prob-
lem.

The asymptotic behavior of p}’(IIsar) was first addressed by Huang and
Lieberherr [9] who showed that p¥ (IIsat) < 3/4. The limit was settled by
Trevisan [16] who showed p¥ (IIsat) = 3/4. Trevisan’s result also yields that




pY (Ilsar) = 3/4. The latter result can be easily derived from our general
expression for p¥ (IT) as demonstrated in Examples 1 and 3.

2 Notation and preliminaries

Throughout this paper, we only deal with constraints which are Boolean
predicates and so we prefer to call them predicates to emphasize their kind.
For a fixed set IT of (types of) Boolean predicates, let 3 be a set of predicates
whose types are from the set II. The arguments of the predicates of X
may be both positive and negative literals, but a single variable cannot be
contained in two distinct arguments of the same predicate. If a single variable
is allowed to be contained in several distinct arguments of a single predicate,
it is possible to enhance the set II by Boolean predicates obtained from the
predicates of I by identifying some of their arguments. The goal is to find a
truth assignment which satisfies the largest fraction p(X) of the predicates of
Y. Hence, pi(IT) = inf p(X) where the infimum is taken over all [-consistent
sets ¥ of (unweighted) predicates whose types are from the set II. Similarly,
if ¥ is a set of weighted predicates, p(X) denotes the ratio between the
weights of the predicates which can be satisfied and the total weight of all
the predicates of ¥ and p{(II) = inf p(X) where the infimum is taken over all
[-consistent sets Y of weighted predicates. Note that in the unweighted case,
¥ is a set, not a multiset (otherwise, the ratios p,, and pZ would coincide).

If P is a Boolean predicate, o(P) denotes the number of combinations of
arguments which satisfy P. Two Boolean predicates P and P’ are isomorphic
if they differ only by a permutation of the arguments and negations of some
of them, e.g., if P(x1,23) = P'(x9,—x1), then the predicates P and P’ are
isomorphic. Clearly, if P and P’ are two isomorphic predicates, then p;(P) =
pi(P') for alll > 1. A k-ary predicate is essentially k-ary if it depends on all
its k arguments. If the predicate P is not essentially k-ary, it is isomorphic to
a predicate P’ such that P'(zy,...,zx) = P"(z1,...,2,-1) for some (k — 1)-
ary Boolean predicate P". It is not hard to see that p,(P) = p,(P’) = p(P")
for all [ > 1 in such case. Hence, in order to determine p;(P) for all unary,
binary and ternary Boolean predicates P, it is enough to compute the values
for representatives of isomorphism classes of essentially unary, binary and
ternary Boolean predicates. The following three simple observations will be
useful later:



Lemma 1 Let P be a k-ary Boolean predicate P. It holds that p(P) >
¥ (P) > a(P)/2* for alll > 1.

Proof: Let X be a set of NV predicates of type P whose arguments are
the variables x1,...,z,. Choose each of the variables x;, 1 < 7 < n, ran-
domly and independently to be true with the probability 1/2. Each predicate
of the set ¥ is satisfied by the constructed random truth assignment with
probability o(P)/2*. Hence, the expected number of satisfied predicates is
N - o(P)/2*. Consequently, there is a truth assignment which satisfies at
least N - o(P)/2F of 3 predicates and p(¥) > o(P)/2*.

O

Lemma 2 [t holds that p(P) = p¥(P) = o(P)/2* for each k-ary Boolean
predicate P.

Proof: By Lemma 1, p,(P) > p¥(P) > o(P)/2¥. We construct a set 3
of predicates of type P with variables z1, ...,z and with p(3) = o(P)/2".
It is enough to set ¥ to be the set consisting of all P(z{',...,z}*) where
(a1,...,a;) € {0,1}* and 2% is —z; and z} is z;. Clearly, each truth as-
signment satisfies exactly o(P) predicates out of all the 2 predicates of X.
Therefore, p(X) = o(P)/2*.

O

Lemma 3 If P be a k-ary predicate with o(P) = 1, then p;(P) = p¥(P) =
27% and py(P) = pP(P) =1 for every l > 2.

Proof: The equality p;(P) = 27* follows from Lemma 2. Let us consider a
2-consistent set Y of predicates of type P. Since o(P) = 1, each predicate
of X forces the values to all its arguments. However, all the predicates must
force the same value to a single variable because . is 2-consistent. Therefore,
the “forced” truth assignment satisfies all the predicates of ¥ and p(X) = 1.
This immediately yields that p;(P) = 1 for every | > 2.

O

A restriction of a predicate P is a predicate P’ obtained from P by fixing
values of some of its arguments, e.g., P'(x1,x2) = (21 A x2) is a restriction of
the predicate P(x1,x9,x3) = (z1Az2Az3)V (—23) obtained by fixing the value
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of z3 to be true. A restriction P’ of a k-ary predicate P can be described
by a vector 7 € {0,1,x}* where 0 and 1 denote an argument which is fixed
to be false and true, respectively, and x denotes an unfixed argument. Let
7p-(p) : (0,1) — (0,1) be equal to the probability that the k-ary predicate
P with arguments x4, ..., xy is satisfied if each z; is set to be true randomly
and independently with the probability 1 — p, p and 1/2, if 7; is 0, 1 and
%, respectively. Note that 7p.(p) is a polynomial in p of degree at most k.
For a set II of predicates, let 7(II) be the set of all the functions 7p, where
P € 1I and the restriction of P corresponding to 7 is 1-extendable.

Example 1 Let II be the set consisting of two predicates Py (x1) = (z1) and
Py(z1,29) = (x1V x2). There is a single restriction of the predicate Py which
is 1-extendable and this restriction corresponds to the vector 1. There are four
restrictions of the predicate P, which are 1-extendable, those corresponding
to 11, 1x, x1 and *x. Hence, the set w(I1) consists of the following four
functions:

7TP1,1(p) =D, 7TP2,11(p) :2p—p2 ’
TP 1x(P) = T (P) = (P+1)/2,  7r,(p) =3/4.

Example 2 Consider a set Il containing the predicate P(x1, To, T3, %4, T5) =
(x1 A (22 V 23 V 24 V x5)). There are several restrictions of P which are
1-extendable, but each such restriction is isomorphic to a restriction corre-
sponding to one of the following vectors: 1 x % %, 10 x xk, 11 % xk, 100 x *,
110%%, 111%%, 1100, 1100%, 1110%, 1111%, 11000, 11100, 11110 and 11111.

Let U be the functional which assigns a continuous function f : (0,1) —
(0,1) its maximum on the interval (0,1). If F is a finite family of functions
f:(0,1) — (0,1), then ¥(F) is defined to be the infimum ¥(f) where the
function f ranges over all convex combinations of the functions of F'. Note
that the infimum is attained if the set F' is a set of polynomials (which is
the case of 7(II) for any set of predicates II). As mentioned in Section 1,
one of our results is that the limit p(II) = lli)rélo pi(IT) is equal to W (n(II))

for any set II of Boolean predicates with arities at least two and p¥ (II) is
equal to ¥ (7 (II)) for any set II of Boolean predicates (see Corollary 2 and
Examples 3-6 after it). Let us draw the reader’s attention to Example 6
which shows that it is not enough to consider only the function of 7 (II), but
it is indeed necessary to consider their convex combinations.



3 Upper bound for the asymptotic case

Before we can design the algorithm for the asymptotic case, we first estab-
lish the following lemma on the derivatives of convex combinations of the
functions contained in 7 (II):

Lemma 4 Let II be a set of predicates of arity at most K and let f(p) be
any conver combination of functions contained in w(I1). The derivative of
the function f(p) for p € (0,1) takes values from the interval (—K,+K).

Proof: Since the derivative of a convex combination of some functions is a
convex combination of their derivatives, it is enough to prove the statement
of the lemma only for the functions contained in the set 7(II). Let f be a
function contained in 7(II) corresponding to a predicate P € II and a vector
7. Let k be the arity of P (which is also the length of 7) and £’ the number of
0’s and 1’s contained in 7. The function f can be expressed as the following
linear combination:

=YY o ,wazJ
11=0 ’Lkl =0

where 0 < i, < 1, fo(p) = (1 —p) and fi(p) = p. The derivative f’ of
f is the following:

1 1 K K
= Z ... Z Qi Z(_l)l—Hjo H fij (p)
i1=0 1y =0 Jo=1 J=1,j#jo

— Z Z (_1)1+ijo Z . Z Z . Z Qg H fij (p)

jo=11j,=0 i1=0  ijg—1=0jy41=0  ip=0 j=1,j#40

It remains to estimate the absolute value of f'(p) for p € (0,1):

k' 1 1 1 k'
|fl(p)| < Z Z(_l 1+Z] Z Z Z Z Qi ,oyig H fij(p)
Jo=1 |ij,=0 1=0 4io—1=0%50+1 1 =0 i=1,5#7%0
kl
< 21 =k < K.
Jo=1



In order to establish the middle inequality, observe first that

Z Z Z Z H fis(p) =1

ijo—1=04jo41=0 =0 j=1,j#jo

for all p € (0,1) and jo, = 1,...,k'. Since both the function f, and f; are
non-negative, the value of the function

Z Z Z ---Zail,...,z’k, H fij(p)

11=0 ij0_1:0 ij0+1:0 ikIZO 7j=1,7%j0

is always between 0 and 1 for p € (0,1), jo = 1,...,&" and ij, = 0,1. Since
the absolute value of the difference of two numbers between 0 and 1 does not
exceed 1, the inequality follows.

O

We are now ready to prove the main result of this section:

Theorem 1 Let II be a fized set of Boolean predicates and let K be the
mazimum arity of a predicate contained in II. There exists an algorithm
which given ¢ > 0 and a set of weighted predicates 3. of total weight wy
either finds a truth assignment which satisfies predicates of ¥ whose weight
is at least (VU(w(I1)) — e)wy or finds a set of at most 2K *K/¥1=1 inconsistent
predicates. Moreover, the algorithm runs in time linear in |X| and 1/e.

Proof: The algorithm consists of three steps:

1. Labeling variables according to the depth of “forcing” their values by
the input predicates (or finding an inconsistent set which contains at
most 2K 25/1=1 predicates).

2. Finding a probability distribution on truth assignments such that the
expected weight of the satisfied predicates is at least (U(7(II)) — &)wy.

3. Construction of a truth assignment which satisfies predicates whose
weight is at least (¥ (7 (II)) — &)wy.
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The third step is an easy application of a standard linear-time derandomiza-
tion technique proposed by Yannakakis [19] for locally consistent formulas
(see also [11]) nowadays known as the method of conditional expectations
(the reader is referred to [1, 2, 14| for additional details). So, we focus on
the first two steps of the algorithm in the rest of the proof.

In the first step, we construct a sequence of 1 + [2K/e| partial truth
assignments fi, ..., f[2x/s] and subsets ¥i,..., Yk of ¥. The partial
truth assignment p is the empty one, i.e., it sets no variables. Let ¢z be an
integer between 1 and [2K/e] and assume that the partial truth assignment
o, - - - hi—1 have been constructed. Let X; be the set of all the predicates of
>} whose restrictions with respect to p; 1 are not 1-extendable. If there is a
predicate whose restriction with respect to p; 1 is constantly false, we stop.
Otherwise, the partial truth assignment p;_; is extended to the partial truth
assignment u; by setting the values of the variables forced by the restrictions
of the predicates contained in ;. The value of a variable z is forced if there
exists a predicate which can be satisfied only if either x is false or x is true.
If the value of a single variable is forced to be both true and false, we also
stop.

Let us say few comments on the actual implementation of the first step of
the algorithm. Each variable z will be labeled by the smallest ¢ such that p;
assigns the value to x. The variables whose values are forced by previously
fixed variables are stored in a FIFO queue. When a variable is dequeued, the
algorithm checks whether there are some new variables forced after fixing the
value of the dequeued variable. If so, the newly forced variables are added
to the end of the queue. In addition, in order to be able to quickly find
inconsistent sets of clauses, we store for each variable which of the predicates
forced its value and include this predicate to the corresponding set ¥;. Note
that the labels of the variables correspond to “depths” of derivations forcing
their values and that each predicate is included to at most K of the sets
21, ceey E[QK/d.

If we stop because we find an unsatisfied predicate or a variable which
is forced to two different values, we can easily construct an inconsistent set
of at most 2(K?K/51=1 1 1) predicates as described in the following. If an
unsatisfied predicate is found, consider a set A consisting of this predicate,
all the (at most K) predicates forcing the values of the variables contained
in its arguments, all the (at most K(K — 1)) predicates forcing the values of
the variables contained in the “first-level” predicates, etc. Since there are at
most [2K/e] levels, the number of the predicates included to the set A does

11



not exceed:
1+ K+ KK —1)+---4+ K(K —1)?K/172 < g2

If we stop because there is a variable which is forced to two different values,
we include to the set A the two predicates which force it to have opposite
values, all the (at most 2(K —1)) predicates forcing the values of the variables
contained in their arguments, etc. The number of the predicates included to
the set A does not exceed in this case:

242K —1)+2(K —1)2 4 -+ -+ 2(K — 1)2K/e1=2 < g g [2K/e1-1,

In either of the cases, the number of the predicates contained in the set A
is at most 2K?%/¢1=1 and the set A can be constructed in time linear in
AIK < |Z]K.

If for each variable z, a list of predicates which contain z is formed at
the beginning of the computation (which can be simultaneously done for all
the variables in linear time), the entire first step of the algorithm can be
performed in time O(|X|K) including the construction of an inconsistent set.
Let us recall at this point that K is a constant since the set II is fixed.

We now focus on the second step of the algorithm. Since each predicate
of ¥ can be contained in at most K sets ¥1,. .., ¥2x/., the total weight of
all the predicates contained in the sets X1, ...,¥pk/ when counting mul-
tiplicities does not exceed Kwy. By an averaging argument, there exists
1 < i < [2K/e] for which the weight of the predicates of 3; is at most
ewp/2. Let w{ be the total weight of the predicates contained in ¥\ X;. Note
that wj > (1 — £/2)wy by the choice of i.

Let f(p) be the expected weight of the satisfied predicates of ¥\ X; divided
by wj where each of the variables fixed by p;_ gets the value assigned to
it by p;—; with the probability p and the remaining variables are set to be
true with the probability 1/2 (the values of all the variables are set mutually
independently). Clearly, the coefficients of the polynomial f(p) (of degree at
most K) can be computed in time linear in |X|. Since the restriction of each
predicate of ¥ \ ; with respect to y; ; is 1-extendable, the function f(p) is
a convex combination of the functions from 7 (II). In particular, the absolute
value of the derivative of f(p) does not exceed K by Lemma 4.

Compute the value of the function f(p) for each of the following values

of p: 0, %, 2—15, e LKJ =, 1. Let py be the value for which the maximum is

&

attained. Note that f(po) differs from the maximum of the function f(p) for
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p € (0,1) by at most €/2 because the absolute value of the derivative of f
does not exceed K for p € (0, 1). Since for each of the | K/e]| + 2 values of p,
the function f(p) can be evaluated in time O(K), the algorithm needs time
linear in O(1/¢) to determine py.

We claim that the probability distribution which assigns each of the vari-
ables fixed by p; 1 the value assigned by p; ; with the probability py and
the remaining variables are set to be true with the probability 1/2 is the
desired probability distribution. The expected weight of the satisfied clauses
is clearly at least f(po)wj. We further estimate this quantity:

P> (max 1)~ e/2) (= 2/2)u0 >

p€(0,1)
(U(m(I1)) — e/2)(1 = &/2)wo > (¥ (n (1)) — €)wp.

This finishes the second step of the algorithm. Let us point out that the
algorithm does not need to compute any estimate on ¥(w(II)) in order to
run correctly.

O
An immediate corollary of Theorem 1 is the following:

Corollary 1 Let Il be a set of Boolean predicates. For each € > 0, there
erists an integer | > 1 such that

pi(I1) = pp(T) = W (x(ID)) —e.

4 General lower bound

First, we introduce several concepts which are used throughout this section.
If ¥ is a set of predicates and p is a partial truth assignment, then the
restriction of ¥ with respect to u is the set ¥’ of the predicates obtained from
Y. by fixing the values of variables set by p. The dependence graph G(¥') of
a Y’ is the multigraph whose vertices are predicates of ¥’ and the number
of edges between two predicates P, and P, of ' is equal to the number
of variables which appear in arguments of both the predicates P, and P,
(regardless whether they appear as positive or negative literals). Note that
the predicates whose arguments contain only the variables fixed by u are
isolated vertices in G(X'). A semicycle of length | of ¥ with respect to p is

13



a set ' of [ predicates such that the vertices corresponding to the predicates
of T' form a cycle of length [ in G(X'). The following lemma relates the girth
of the graph G(X') and the local consistency of 3 for a suitable partial truth
assignment u:

Lemma 5 Let X be a set of predicates, j a partial truth assignment, Y’ the
restriction of X with respect to . and l > 2 an integer. If each predicate of X'
15 1-extendable and X contains no semicycle of length at most | with respect
to u, then the set X is l-consistent.

Proof: We prove by induction on ¢ that any ¢ = 1, ..., [ predicates of ¥ can
be simultaneously satisfied. This clearly implies the statement of the lemma
because a truth assignment for ¥’ can be viewed as an extension of the truth
assignment u to 2.

The claim trivially holds for # = 1. Assume now that 7 > 1 and let
Py, ..., P be any i predicates of ¥. Since G(X') contains no cycle of length
at most [, the vertices corresponding to Py,. .., P; induce a forest 7" in G(3').
We can assume without loss of generality that P; corresponds to a leaf or an
isolated vertex in the forest T. Let yi,...,y, be the variables contained in
the first 7 — 1 predicates which are not set by u. By the induction hypothesis,
there is a truth assignment for the variables ¥, ..., y, which satisfies all the
predicates P, ..., P;_1. Since P; is a leaf or an isolated vertex in 7°, it has at
most one variable in common with the predicates Pi,..., P,_;. Hence, the
truth assignment for y1,...,y, can be extended to a truth assignment which
satisfies all the predicates Py, ..., P; because the restriction of the predicate
P; with respect to p is 1-extendable.

O

In the proof of the lower bound, Markov’s inequality and Chernoff’s in-
equality are used to bound the probability of large deviations from the ex-
pected value. The reader is referred to [7] for a more detailed exposition:

Proposition 1 Let X be a non-negative random variable with the expected
value E. The following holds for every a > 1:

Prob(X > a) <

Q|
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Proposition 2 Let X be a random variable equal to the sum of N zero-one
independent random variables such that each of them is equal to 1 with the
probability p. Then, the following holds for every 0 < 6 < 1:

62pN

Prob(X > (1+§)pN) < e~ and Prob(X < (1—-§)pN) <e™ 2

We are now ready to prove our lower bounds on pZ (II) and pe(II):

Theorem 2 Let II be a set of Boolean predicates. For any integer | > 1
and any real € > 0, there exists an [-consistent set Xy of weighted predicates
whose types are from the set Il such that:

¥ (o) < U(n(I)) + &.

Moreover, if the arity of each predicate 11 is at least two, then there exists
such a set ¥y of unweighted predicates.

Proof: We assume without loss of generality that ¢ < 1 is the inverse of a
power of two. Let fi,..., fk be all the different functions contained in the
set w(IT) and let 3°X | a; f; be their convex combination with U(3°5 | o, fi) =
U (7 (IT)). Let further P* be a predicate of IT whose restriction with respect
to a vector 7° is l-extendable and 7piyi = f;. Observe that there are no
two indices i # ' such that P = P and 7' = 7*. Finally, let K, be the
maximum arity of a predicate contained in II.

We consider a random set ¥ of predicates whose arguments contain vari-
ables x1,...,x, and ¥y, ...,y, where n is a sufficiently large power of two
which will be fixed later in the proof. Fix an integer i = 1,..., K and let k
be the arity of P? and k' the number of stars contained in 7¢. At this point,
we abandon the condition that each variable can appear in at most one of the
arguments of the predicate and we allow to include to ¥ predicates which do
not satisfy this condition. Later, we prune the set ¥ to obey this constraint.

If k > 1, each of the n¥2* instances of the predicate P* whose j-th argu-

ment, 1 < 5 < k, is a positive literal containing one of the variables z1, ..., z,
if 7; =1, a negative literal containing one of the variables z1, ..., z, if 77 =0
and a positive or negative literal containing one of the variables y;, ..., ¥y, if

T]Zf = %, is included to ¥ randomly and independently of the other predicates
with the probability ;2% n~(*-D+1/21 The weights of all these predicates

are set to one.
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If k = 1, each instance of the predicate P® whose only argument is a

positive literal containing one of the variables z1, ..., z, if 7! = 1, a negative
literal containing one of the variables zy,...,z, if 7/ = 0 and a positive or
negative literal containing one of the variables yi, . .., y, if 7¥ = *, is included

to ¥ with the weight ;2 % n'/%. Note that if the arity of each predicate of
IT is at least two, the obtained set ¥ consists of unweighted predicates (more
precisely, all its predicates have the weight equal to one).

Let X be the predicates of ¥ corresponding to P* and 7. We prove the
following three statements (under the assumption that n is sufficiently large):

1. The total weight of the predicates of ¥’ is at least o;(1 — £)n'*/? with
the probability greater than 1 — 1/4K.

2. With the probability greater than 1 — 1/4K, each truth assignment
which assigns true to exactly n’ of the variables x1, ..., z, satisfies the
predicates of X whose total weight is at most a;(fi(n'/n) + £)n'+1/2

3. The total weight of the predicates whose arguments do not contain
different variables is at most a;En'*'/? with the probability greater
than 1 — 1/4K.

If the arity k of P! is one or o; = 0, then all the three statements hold with
the probability one. In the rest, we consider the case that the arity of P’ is
at least two, i.e., k > 2, and «; > 0.

The probability that the total weight of the predicates of Y is smaller
than a;(1—£)n' ™/ is bounded by Proposition 2 from above by the following:

(5/4)2(ai2—k’n—(k—1)+1/2l)(nk2k’) 20 nlH1/2
- 2 =e 128

e

Since €, «;, | and K do not depend on n, the probability that the total weight
of the predicates of X¢ exceeds a;(1 — £)n'*'/?! is smaller than 1/4K if n is
sufficiently large.

Let 1 be any of the 22" truth assignments for the variables z,, ..., z, and
Y1,--.,Yn; let n' be the number of variables x1, ..., z, which are set to be
true by u. A predicate which can be included to Xt is said to be good if it is
satisfied by . Note that there are exactly f;(n'/n)n*2* good predicates. If
fi(n'/n) < £, then mark additional predicates to be good so that the total
number of good predicates is %n’“Qk' (note that since ¢ is the inverse of a
power of two, then this expression is an integer if n is a sufficiently large
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power of two). Hence, the expected number of good predicates included to
¥ is exactly max{f;(n'/n), e /8 n*2* . qn=*k=D+1/29=K" Using the fact that
fi(n'/n) <1 and Proposition 2, we infer the following:

Prob(u satisfies more than o;(f;(n'/n) + ) 1+1/2 predicates of ¥F) <

Prob(X’ contains more than o;(fi(n'/n) + ) L+1/2 960d predicates) <

Prob(X¢ contains > (1+¢/8)a; max{f;(n'/n), 8/8}n1+1/21 good predicates) <

azai max{fi(n’/n),s/S}n1+1/2l esain1+1/2l
e 192 < e 1536

Since there are 22" possible truth assignment p, the probability that there

exists one which satisfies more than o;(f;(n'/n)+ £)n!*1/? clauses of X is at
Bainl¥l/2l
most 22" .e~— 156 . Since ¢, o; and K are fixed, this probability is smaller

than 1/4K if n is sufﬁciently large.

It remains to establish our third claim on ¥¥. At most (£)n*¥~12¥ out of
all the n¥2* predicates which can be included to ¥! contain one variable in
several of its arguments. Therefore, the expected number of such predicates
which are contained in the set ¥ is at most (12“)n’“_12’“'ai2_’“'n_(’“_1)+1/2l =
o (’2”) n/?. By Markov’s inequality (Proposition 1), the probability that the

1+1/21

number of such predicates in ¢ exceeds a;gn is at most the following

fraction:
az( Y/ k\ 8
a;Eni /2 - (2) en
Since ¢, k and K are independent of n, the probability of this event is smaller
than 1/4K if n is sufficiently large.
It can be concluded that with the probability greater than 1/4 the fol-

lowing three statements hold for the set ¥ and a sufficiently large n (recall
K
that E i=1 0 = 1)

1. The total weight of the predicates of ¥ is at least (1 — £)n'™/2,

2. Any truth assignment which assigns true to exactly n' of the variables
x1,...,%, satisfies the predicates of ¥ whose total weight does not

exceed (ZZ Laifi(n'/n) + )t/

3. The total weight of the predicates whose arguments do not contain
different variables is at most £n!*!/2.
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We now estimate the number of semicycles of length at most [ in > with re-
spect to the partial truth assignment i which sets all the variables z4,..., z,
to be true. Note that all the restrictions of the predicates contained in X
with respect to po are l-extendable. Let us consider a semicycle correspond-
ing to the predicates P{,..., P, 2 < I' < [, described by 7{,...,7,. Let
k; be the arity of the predicate P/ and k; the number of stars in 7;. The
number of all semicycles corresponding to the restrictions of the predicates
P,..., P, determined by 7/,...,7) is at most []._, n¥~Finki—12Kk! | (the
indices are taken modulo /', i.e., kj, = k};). The probability of including any
such particular sequence to X is [\, a/n=kithi=D+1/209-k] \where of is the
coefficient «; corresponding to P/ and 7;. Therefore, the expected number of
semicycles contained in ¥ which correspond to the restrictions of the pred-
icates P, ..., P} determined by 7{,..., 7, is at most Hilzl Kinl/2 < Kkn'/?
(recall that 0 < of <1 for all 1 <i <! and K, denotes the maximum arity
of a predicate in II).

Since there are at most K* ways how to choose the predicates Pl,...,P}
and 3% possible choices of the vectors T{,...,T;, the expected number of
semicycles of ¥ of length I’ does not exceed (KK 3%°)'n'/2. By Proposi-
tion 1, the probability that ¥ contains more than &n'*!/? semicycles of
length at most [ is at most the following:

I(KKy3%0)inl/2  8I2(K K,3%0)!

§n1+1/2l = enl/2

Since the numbers [, K, Ky and ¢ do not depend on n, this probability is
smaller than 1/4 if n is sufficiently large. Therefore with positive probability,
the set ¥ has the properties 1-3 stated above and the number of its semicycles
of length at most [ with respect to the partial truth assignment pq is at most
En'*1/2L For the rest of the proof, fix X' to be any such set of predicates.
Remove from the set X' all the predicates contained in semicycles of
length at most [ with respect to py and all the predicates which contains
the same variable in several of their arguments. Let Y, be the resulting set
of predicates. Note that there are at most at most [ - %n”lﬂl = §n1+1/2l
predicates contained in semicycles of length at most /. Since each of the
predicates of ¥’ which is contained in a semicycle must contain one of the
variables y1, . .., yn, its arity is at least two. Consequently, its weight is equal
to one. Hence, the total weight of the predicates removed from ¥’ is at most

Spltl/2l 4 eplFl/2l — epltl/2 and the total weight of the predicates of o
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is at least (1 — 35)n!*1/2. Clearly, the total weight of the predicates of ¥,
which can be simultaneously satisfied by a truth assignment does not exceed
the total weight of such predicates of ¥'. We can now conclude that the
following holds for each truth assignment which sets n' (0 < n’ < n) of the
variables x1,...,z, to be true:

(ZZI; i fi(n'/n) + i)nlﬂ/” - W(r(ID) + &

pw(EO) < (1 — 3_5)n1+1/2l > 1_ 3 <
Y () 1 < W(r()(1L+2) < B (ID) +<.

8
Since ¥ contains no semicycles of length at most [ with respect to py and
all the restrictions of the predicates of X3 with respect to g are 1-extendable,
the set X is l-consistent by Lemma 5. Consequently, pi’(II) < U (7 (II)) + €.
Moreover, if the arity of each predicate of II is at least two, the weights of
all the predicates of 3 are one and p;(IT) < ¥ (7 (II)) +«.
O

We immediately infer from Corollary 1 and Theorem 2 the following ex-
pressions for p., (II) and p¥ (II):

Corollary 2 LetI1 be a finite set of Boolean predicates. The following holds:

Moreover, if the arity of each predicate of Il is at least two, then the following
holds:

As an application of Corollary 2, we compute the values p% (II) for several
sets II:

Example 3 Let II be the set of predicates from Example 1. Since 7p, 4 (p)
equals to 3/4 for all 0 < p < 1, we infer ¥(n(I1)) < U(7p, ) = 3/4. On the
other hand, the value of each of the functions mp, 1, Tp, 11, TPy, 14 ANA Tp, 4 fOT
p = 3/4 is at least 3/4. Thus, the value of any conver combination of them
for p=3/4 is also at least 3/4 and ¥(n(II)) > 3/4. Hence, p¥ (II) = 3/4.
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Example 4 Let II be the set of predicates from Example 2. Since the func-
tion Tp100s (p) 78 p(1—p?/4), we infer that U(w (1)) < U(7p1004) = 3/4. On
the other hand, each of the functions wp, for all the vectors T from Example 2
is at least 3/4 for p = 1. Therefore, p¥ (II) = ¥(n(II)) = 3/4.

Example 5 Let TT* be the set containing a single predicate P(xy,...,z;) =
1N (29 V -+ -V xy) for an integer k > 7. Consider the vector 7 = 10---0x*.
Clearly, the restriction of P determined by 7 is 1-extendable. It is easy to

show that the mazimum of the function mp, is attained for py = */ ﬁ and
it is strictly larger than 3/4. Moreover, the value wp(po) is smaller or equal

to the value mp.(po) for any 7' corresponding to a l-extendable restriction
of P. We infer that p& (I1¥) = ¥ (x(11¥)) > ¥(np,) > 3/4.

In our final example, we show that it is necessary to consider convex
combinations of the polynomials of 7(II) in the expression for p¥ (II), i.e., we
present an example of a set II where the value of the functional ¥ for each
function from = (II) is stricly larger than W (7 (II)).

Example 6 Let I1 be a set consisting of two predicates Py(z1) = x1 and
Py(x1, 29, 3) = 21 V 29 V x3. It is straightforward to verify that V(f) > 7/8
for each polynomial f € n(I1). Consider the following polynomial fo:

4

1 4 P 4(1 p) 4
=z

folp) = gWPl,l(p) + 57TP2,0**(Z7) = 5 + 5

Clearly, fo is a conver combination of the polynomials of w(IT). Therefore,
U(m(IT)) < 4/5. On the other hand, the value of each polynomial of m(II)
for p =4/5 is at least 4/5. Consequently, ¥(w(I1)) > 4/5. Corollary 2 now
yields that p¥ (II) = 4/5.

Using Theorem 2, we are able to determine the values p;(P) for every
1-extendable Boolean predicate P and for every [ > 1:

Theorem 3 If P is a k-ary Boolean predicate which is 1-extendable, then
pi(P) = p(P) = o(P)/2* for each | > 1.

Proof: If | = 1, the statement follows from Lemma 2. Assume that ! > 2. By

Lemma 1, p;(P) > o(P)/2k. We show that ¥(n(Il)) = o(P)/2*. Since the
function 7p,(p) with 7 = x,...,* is constantly equal to o(P)/2F, the value
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of ¥(m(II)) does not exceed o(P)/2F. On the other hand, p(1/2) = o(P)/2F
for every polynomial p € w(II). Therefore, ¥(n(Il)) = o(P)/2* and the
inequality p;(P) < o(P)/2* now follows from Theorem 2 (note that the arity
of P is at least two unless it is constantly true).

0

5 2-CNF formulas

In this section, we study structure of 2-CNF formulas, i.e., CNF formulas
of clauses of sizes one and two. We first recall a well-known lemma about
unsatisfiable formulas with clauses of sizes two which can be found, e.g.,
in [3]. If ® is a 2-CNF formula with variables z1, ..., z,, then G(®) denotes
the directed graph of order 2n whose vertices correspond to literals z4, ..., z,
and —z1, ..., x, and whose edge set is the following: For each clause (aVb),
G(¢) contains an arc from the literal —a to the literal b and an arc from —b
to a (note that both a and b represent here literals, not variables). For each
clause (a) (which can also be viewed as a clause (a V a)), we include an arc
from the literal —a to a.

Lemma 6 Let ® be a 2-CNF formula with variables 1, ..., x,. The formula
& is satisfiable if and only if G(®) contains no directed cycle through both
the vertices x; and —x; for any i, 1 <1i < n.

An immediate corollary of Lemma 6 is the following:

Lemma 7 Fach minimal inconsistent set of clauses of a 2-CNF contains at
most two clauses of size one.

We now show that there exist extremal 2-CNF formulas in which each
small inconsistent set of clauses contains two clauses of sizes one:

Lemma 8 Let 2 < [ < L be any two integers. For each € > 0, there
exists a 2-CNF [-consistent formula ® with p(®) < p(Ila_sar) + € such that
each inconsistent set of L clauses contains at least two clauses of size one.
Moreover, ® contains each single clause of size two at most once.
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Proof: Fix integers [ > 2 and L > [ for the rest of the proof. Similarly,
0 < 1 is a positive real which will be chosen at the end of the proof. Fix an
[-consistent formula ®q with p(®¢) < p;(Ila—saT)(1 +0). We now classify the
variables contained in the formula ®q: The set A; is formed by variables x
contained in a clause of size one; we can assume without loss of generality
that each variable x € A; appears as a positive literal in the clause of size one.
The set A;, 2 < i < [/2, consists of variables z which are not contained in any
A;, 1< j <i-—1, and which are contained in a clause of the form (—-y V z)
for y € A;_1. Since ® is [-consistent, we can assume that all the occurrence
of x € A; in the clauses (—y V x), y € A;_1, are positive: Otherwise, there
would be a set of at most ¢ clauses which force z to be true as well as a
set, of at most ¢ clauses which force x to be false. The union of these two
sets of clauses consists of at most 2: clauses and it is clearly inconsistent.
Since ¢ < [/2, this is impossible. Finally, let Ay be the set of the remaining
variables of ®.

Let w;;, w;; and wy; be the number (sum of the weights) of the clauses of
the type (zVy), (mzVy) and (—zV—y), respectively, where z € A; and y € A;.
Similarly, let w; be the number (sum of the weights) of the clauses of the type
(x) where z € A;. We may assume that w; > 0. Otherwise, p(®g) > 3/4
and we can set ® to be an L-consistent set ¥ with P(z,y) = (z V y) with
p(X) < 3/4 + ¢ constructed in Theorem 3. Finally, W denotes the sum of
all wy, wij, wy; and wy; for 0 < 4,7 < [/2. By the definition of the sets
Ay Alyagy wy; =0forall 1 <45 < /2 with i+ 1 < j. In addition, since
@ is [-consistent, wz; = 0 for all 1 <d,j <1/2 with i +j+1 <1

We now define W), to be the maximum of the sum:

wipr + Z wij(pi + pj — Pips) + wi;(1 — pip;)
0<i<j<i/2
+ Y wy(l—pi+pipy) (1)

0<i,j<1/2

where the maximum is taken over all 0 < py, ..., p2) < 1. Clearly, W,/W <
p(®o): Consider the probabilities po, ..., p|;/2| for which the maximum in the
above expression is attained. If each of the variables of the set A;, 0 <1 <1/2,
is chosen to be true randomly and independently with the probability p;, then
the expected number (weight) of the satisfied clauses is W,. Therefore, there
is a truth assignment which satisfies at least this number of clauses and
consequently W,/W < p(®y).
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Let n be an integer which we fix later. Let X;, 0 < <1/2, be [I/2] +1
disjoint sets consisting of n variables each. We construct a 2-CNF formula
® with variables Xo U ---U X|j/5. The formula ® contains n'/?* copies of
a clause (x) for each z € X;. The other clauses are included to the formula
® randomly and independently as follows: The clauses (z V y), (—-z V )
and (—z V —y) where z € X; and y € X; with ¢ # j are included to ®
with the probability w;jn™"/2E fwy, wyn= /20 Jwy and win= 20 fwy,
respectively. The clauses (z V y), (-z V y) and (—z V —y) where z,y € X;
are included to @ with the probability 2w;jn /2 fwy, wyn /2L /w, and
2wzn "T/2L Jwy, respectively.

We claim that the number of clauses of ® is at least Wn!*1/2L(1 — §) /w,
and the number of clauses which can be simultaneously satisfied does not
exceed W,n'T/2E(1 + 6) /wy + 3Wn'T/2E§ /w, with the probability which
tends to 1 as n goes to infinity. We show that each of the complementary
events, i.e., the “bad” events, for each separate types of clauses occurs with
the probability which tends to 0. Since the number of bad events is finite
(and independent of n), this yields the claim. As an example, we present the
analysis only for a single type of clauses, e.g., clauses (z V y) for z € X; and
y € X, with ¢ # j for fixed integers ¢ and j. Namely, we aim to show that
the number of clauses of this type is smaller than w;;n'*Y/2L (1 — §) /w, with
probability tending to 0. In addition, the probability that there is a truth
assignment which assigns the true value to a fraction p;, p;, of the variables
of X;, X;, respectively, and which satisfies more than w;n'*/2L(1 — (1 —
pi)(L = pj)) (L + 6)/wi + Bwyn' 26 fwy = win! T (p; + pj — pips) (1 +
§)/wy + 3wyn*T/2E§ Jw, clauses of the considered type also tends to zero.

By Proposition 2, the probability that the number of clauses (z V y) with
z € X; and y € X; is smaller than w;;n*T/2E(1 — §) /w, is at most:

52wq;j Rl +1/2L 1y

_ _ 1+1/2L
e 3 = e O ) 0.

The second part of the statement is more difficult. We first prove the claim
for p; and p; where p; or p; is at least 6. Fix now a truth assignment for
X; U X; which assigns the true value to a fraction p;, p;, of the variables
Xi, Xj, respectively. By Proposition 2, the probability that the number of
clauses of the considered type satisfied by this fixed truth assignment exceeds

141/2L . )
win't /2L (p, +p; — pip;) (1 + ) /w; is at most:
0%y~ H2L g 02 i) 53y m 1 F1/2T oy
= ¥ 3 U B e ] S e ) 3 — e*@(nl*'l/ﬂ’) .
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Since there are at most 2" possible truth assignments the probability that
there exists a truth assignment with 6 < max{p;,p;}, which satisfy more
clauses than claimed is at most 27~ ©™'™/*") 5 0. We now show that if there
is no “bad” truth assignment with 6 < max{p;,p,}, then there is no “bad”
truth assignment with 0 < p;,p; < . Consider a truth assignment which
assigns the true value to at most dn variables of each X; and X; and modify it
to a truth assignment which assigns the true value to [dn] variables of each X;
and X;. This modification can only increase the number of satisfied clauses
of the considered type. Since both the modified p; and p; are now larger than
§, the assignment satisfies at most w;;n'+*/2L(264-2/n—6%)(146) /w; clauses.
If n is sufficiently large, then this expression is at most w;;n'*tY/2L35/w, as
desired. This finishes the proof of the claim.

The number of variables of the formula ® is at most N = ([I/2] + 1)n.
By Lemma 6, there are at most (2N)* minimal inconsistent sets of k clauses
such that the size of each clause is two and there are at most (2/N)*~! mini-
mal inconsistent sets of £ — 1 clauses such that the size of each clause is two
except for precisely one clause whose size is one. We omit the straightforward
but little technical argument yielding these upper bounds due to space lim-
itations. Since each clause of size two is included to ® with the probability
at most W,n~'*1/2L /i, the expected number of minimal inconsistent sets
of at most L clauses containing zero or one clause of size one is at most the
following:

i(2N)kwpn—k+k/2L (2N)k—lwpn—(k—1)+(k—1)/2L
+

k=1 w1 w1y
EL: (2([1/2] + D) Wynt/2E | (2(11/2] + 1) Wynbr2E
k=1 w1 wi -

ZL: (L+2) Wynk? (L) Wyn® D2 2L+ 1) Wy
1 w1 w1 w1 '

By Markov’s inequality, the probability that there are more than 4L(l +
1)XW,n'/2 /w, such minimal inconsistent sets of clauses is at most 1/2. There-
fore, if n is sufficiently large (with respect to a previously fixed § > 0), with
positive probability, the random formula ® has at least Wn'*'/2(1 — §) /w,
clauses, at most W,n'T/2E(1 + §) /wy + 3Wn*T1/2L§ Jw,; clauses of @ can be
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simultaneously satisfied and ® contains at most 4L(l + 1)XW,n'/?/w; in-
consistent sets of at most L clauses with no or a single clause of size one.
Fix such a formula ®. We obtain & from ® by removing all (at most)
4L2(L 4 1)!W,n'/? Jw; clauses of size two contained in an inconsistent set of
at most L clauses with no or a single clause of size one. This may decrease
the number of clauses of ® by at most 4L2(l + 1)XW,n/2 /w;. On the other
hand, the number of clauses which can be simultaneously satisfied cannot
increase.
We now estimate p(®’) (observe that W, > W/2):

(@) < Wont 2L (1 + 6) Jwy + 3WntTY2L5 fwy
P = Wt 1RL(1 = 6) Jw, — AL2(L+ 1) EWyni /2w,

W,(1 4 6) + 36W - W, (1 + 76)
W (I —0) — 4L2(l + 1)EW,n-1/2172L = W (1 = 6) — O(n-1/2-1/2L) -

Therefore, if n is sufficiently large, then:

Wo(1+78) _ o 1470 _ (1+ 6)(1 + 76)

N < 2T ) o _
) < Ja g5y S PRy S Aille-sar) 755

Hence, for each ¢ > 0, we can choose ¢ > 0 small enough that p(®') <
pi(Hy_gar) + €.

It remains to show that the formula &’ is [-consistent. By Lemma, 7, each
minimal inconsistent set of clauses of ®' contains at most two clauses of size
one. On the other hand, each inconsistent set of at most L clauses contains
at least two such clauses. Therefore, each minimal inconsistent set of at most
[ clauses of ®' contains precisely two clauses of size one. Fix such a set I' of
clauses of &' and let (z1) and (y;) be the two clauses of size one contained
in I'. Obviously, 1,9, € X;. By Lemma 6, I contains clauses of size two
in which z; and y; appear as negative literals. By the construction of @',
such clauses can be only (—z; V z9) and (—y; V y2) for some z5,y, € X5. By
Lemma 6, I' has to contain clauses of size two in which z, and ¥, appear
as negative literals. By the construction of ®’, such clauses can be only
(mxo V z3) and (—yo V y3) for some z3,y3 € X3. In this way, we continue
until we reach the set X|;/5;. By the minimality of the set I', x; # y; for
all 1 <4 < 1[/2. Therefore, if |I'| < 2[1/2] + 1, then T" contains the clauses
(21), (a1 Va2), .o, (5 pse) 1 Vo)), W), ((wrVe), - (Spy2-1 VY2
and (=@ |12V y|y/2)). Hence, [T > 1if lis even. If | is odd, then w751 =
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0 and thus @' cannot contain the clause (= ;2] V —y|1/2)). This yields [['| > [
in this case, too.
U

A close inspection of the proof of Lemma 8 yields that for any weights w,
w;j, wi; and wyz with wy; =0forall1 <7< j—1and w; =0forall1 <i4,j
with 74 j +1 < [. there is an [-consistent formula ® with p(®) < W,/W +¢
where W = w; + Zw(wz] + w;; + wy;) and W, is the maximum of the sum
(1) taken over all 0 < po,...,ppu2 < 1. Therefore, we have the following
formula for p;(Ilo_gar) for all I > 2:

Corollary 3 For each | > 2, the following holds:

pl(HZ—SAT) = min Wp
ngl,wij,ng Wiz
w1433, i (wij +wy; twgz)=1
where the minimum is taken over all combinations of weights with w;; = 0
for all1 <i<j—1andwg; =0 forall1 <4,j withi+j+1<1 and W), is
the mazimum of the sum (1) taken over all 0 < py,...,pp2 < 1.

6 Unary, binary and ternary Boolean predi-
cates

It is enough to determine the values p;(P) for representatives of isomorphism
classes of essentially unary, binary and ternary Boolean predicates. The case
of 1-extendable Boolean predicates was handled in Theorem 3. The only
essentially unary, binary and ternary Booleans predicates which are not 1-
extendable (up to isomorphism) are the following: P(z) = z, P(z,y) = z Ay,
P(z,y,2) =z ANyAz Plz,y,z) =2 A (y < 2) and P(z,y,2) =z A (y V 2).
The first three of these predicates satisfy that o(P) = 1 and the values p,(P)
are determined by Lemma 3. Therefore, we know the values p,(P) for all
essentially unary and binary Boolean predicates. Tables 1 and 2 summarize
our results. We focus on [-consistent sets of predicates for P(z,y,2) = z A
(y & z) and P(z,y,2) = x A (yV 2) in the rest of this section.

6.1 The predicate P(z,y,2) =z A (y < 2)

We first handle the case of 2-consistent sets:
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Lemma 9 It holds that pa(P) = p¥ (P) = 8/27 for P(z,y,z) = 2 A (y & 2).

Proof: We first show that py(P) > p¥(P) > 8/27. Let us consider a 2-
consistent set ¥ of weighted predicates. Since X is 2-consistent, ¥ does not
contain two predicates such that the first argument of one of them is z and
the first argument of the other is —x. Therefore, we may assume that the
first argument of each predicate is a positive literal.

Choose now each variable of ¥ randomly and independently to be true
with the probability p = 2/3. The probability that any single predicate of
Y is satisfied is either p(p? + (1 — p)?) = 10/27, if both the second and the
third argument of it are positive or negative literals, or 4p*(1 — p) = 8/27,
otherwise. Hence, the expected fraction of satisfied constraints is at least
8/27 and consequently p(X) > 8/27. Since the choice of a 2-consistent set
was arbitrary, we can conclude that po(P) > 8/27.

It remains to show that p¥(P) < po(P) < 8/27. For an integer n > 3, we
consider a set Y, of predicates of type P with the variables z1,...,x,. X, is
formed by all the n(n —1)(n — 2) predicates P(z;,z;, ~xy) for 1 < 4,5,k <n
where all 7, j and k£ are mutually distinct. The set X is clearly 2-consistent.
We now compute p(3,,). Consider a truth assignment which assigns the true
value to exactly n' variables of ¥,,. Then, the number of satisfied constraints
is precisely n'((n'—1)(n—n')+ (n—n')(n'—1)). Thus, we can conclude that
(set ¢ =n'/n):

gn((gn —1)(n —gn) + (n — gn)(gn — 1))

plEn) < 0<q<i n(n—1)(n — 2) -

1 8 1
201 _ R 1
max 2¢°(1—q)+ O <n> o7 +0 <n> .

Hence, po(P) < 8/27 as claimed.

O

We are now ready to fully analyze locally consistent sets of predicates for
P(z,y,z) =x A(y & 2):

Theorem 4 If P is the predicate P(x,y,z) = zA(y < z), then the following
holds for all 1 > 1:
14 ifl=1,
a(P)=pe(P)={ 8/27 ifi=2,
1/2  otherwise.
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Proof: It follows that p,(P) = p¥(P) = 1/4 and po(P) = p¥(P) = 8/27
from Lemmas 2 and 9, respectively. Hence, we can focus only on the case
[ > 3 in the rest. First, we show that pj"(P) < p(P) < 1/2. Consider an
[-consistent set X' of predicates P'(y, z) = (y < z) and with p(¥') < 1/2+e¢.
Such a set X' exists because p;(P') = 1/2 by Theorem 3. Let yy,...,y, be the
variables contained in Y¥'. We construct an [-consistent set ¥ of predicates
P with p(X) = p(X'). Introduce a new variable z and for each predicate
P'(yi,y;), P'(=9i,y;), P'(vi, ;) and P'(—y;, —y;) include to ¥ a predicate
P(x,vi,v;), P(x, i, y;), P(z,yi, ~y;) and P(z, —y;, —y;), respectively. Since
>’ is l-consistent, the set Y of predicates P is [-consistent, too. It is also not
hard to see that p(X) = p(X'). Therefore, p(X) < 1/2+¢ and p(P) < 1/2.
We now prove that p(P) > pi’(P) > 1/2 for [ > 3. Let ¥ be an -
consistent set of weighted predicates P. Let X be the set of variables which
appear as the first argument in some of the predicates of ¥ and Y the set
consisting of the remaining variables. Since X is 2-consistent, we can assume
that the first argument of each predicate is a positive literal. In addition,
since ¥ is 3-consistent it does contains neither a predicate P(z,z', —z") nor
a predicate P(z,—z',z") for some z,2' 2" € X. Therefore, if we set each
variable of X to be true, then each predicate of 3 is either satisfied (i.e.,
all its arguments are set and the predicate is true) or at least one of its
arguments contains a variable from the set Y. Choose now each variable of
Y randomly and independently to be true with the probability 1/2. Each
predicate, which was not satisfied by fixing the values of variables from the
set X, is now satisfied with the probability 1/2. Therefore, the expected
weight of satisfied predicates is equal to the half of their total weight. Hence,
p(X) > 1/2 and consequently p,(P) > p}*(P) > 1/2.
O

6.2 The predicate P(z,y,z) =z A (yV 2)

Before we analyze locally consistent sets of predicates for P(x,y,z) = = A
(y V z), we consider 2-consistent and 3-consistent such sets:

Lemma 10 It holds that py(P) = p¥(P) = /3/9 for P(z,y,2) = A (yV2).

Proof: We first show that po(P) > p%(P) > 2v/3/9. Let us consider a
2-consistent set Y of weighted predicates. Since X is 2-consistent, > does not
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contain two predicates such that the first argument of one of them is z and
the first argument of the other is —z. Therefore, we may assume that the
first argument of each predicate is a positive literal.

Choose now each variable of ¥ randomly and independently to be true
with the probability p = 37'/2 > 1/2. The probability that any single
predicate of ¥ is satisfied is at least p(1 —p?) = 2\/3/9. Hence, the expected
fraction of constraints which are satisfied is at least 2v/3 /9 and consequently
p(X) > 21/3/9. Since the choice of a 2-consistent set ¥ was arbitrary, we can
conclude that py(P) > p¥(P) > 2v/3/9.

It remains to show that p¥(P) < po(P) < 24/3/9. For an integer n > 3,
we consider a set Y, of the predicates P with the variables z1,...,z,. X,
is formed by all the n(n — 1)(n — 2)/2 constraints P(z;, ~z;, "xx) for 1 <
1,5,k <m,1# 7,1 # k and j < k. The set X is clearly 2-consistent. We now
compute p(X,). Consider a truth assignment which assigns the true value to
exactly n' variables z1,...,x,. Then, the number of satisfied constraints is
precisely the following n'((n — n')(n' — 1) + (n —n')(n —n' — 1)/2). We can
now conclude that (set ¢ = n'/n):

gn((n —gn)(gn — 1)+ (n — gn)(n — qn — 1)/2)

p(Zn) < gax n(n—1)(n—2)/2 =
g1 —q)g+ (1 —¢q)?/2 1\ 2V3 1
02021 1/2 +O(ﬁ) :T+O(;) -

Hence, p3(P) < 2v/3/9 as claimed.
O

Lemma 11 It holds that p§(P) < p3s(P) < 1/2 for P(z,y,z) =z A (y V 2).

Proof: For each € > 0, we construct a 3-consistent set ¥ with p(X) < 1/2+e.
Let n be an integer whose exact value will be chosen later. We construct a
set Y, of predicates P with variables x; for 1 < i < 2n+1 and yg“ forl1 <i;<
2n+ 1 where A ranges through all n-element subsets of {1,...,2n+1}\ {i}.
The set 3, consists of predicates P(x;, —x;,y!) for all 1 < 4,5 < 2n + 1,
i # j and j € A and predicates P(z;, ~x;, ;') for all 1 < 4,5 < 2n + 1,
1# j and j € A. In particular, the number of predicates contained in ¥, is
(2n+1)2n(*"). Clearly, £, is 3-consistent.

Let us consider a truth assignment which satisfies the most number of
predicates. Let n’ be the number of the variables z1,...,z9,,1 with the
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true value. By symmetry, we can assume that the values of the variables
Z1,...,%y are true and the values of z,,1,...,z, are false. Observe that
all the predicates whose first argument is one of the literals x, y1,..., 2y
are false. In particular, if n’ < n, then less than half of the predicates are
satisfied. We focus on the case n’ > n in the rest of the proof.

Consider now an integer i, 1 < ¢ < n’, and an n-element subset A of the
set {1,...,2n+1}\{i}. If |[AN({L,...,n"}\{i})| > (n'—1)/2, then the truth
assignment (because it is optimal) assigns y7* the true value and, otherwise, it
assigns y;! the false value. Hence, the number of predicates, which contain 3
and which are satisfied, is (2n —n' + 1) + max{|AN ({1,...,n'}\ {i})],n' —
AN ({1,...,n'} \ {i})|}. For a fixed integer i, the number of n-element
subsets A of {1,...,2n+1}\ {3} with max{|AN({L,...,n" }\{i})],n' —|AN
({1,...,n'}\ {i})| > (1 +¢)(n' —1)/2} is at most the following:

(1—e)(n' —1)

2 ! ! n'—1 ! !
n—1\/2n+1—n n—1\/2n+1—n
> + <
k n—=k k n—=k
k=0 k:(1+6)(n’—1)
2
Z TLI -1 !
227L+1*TL <

OSkS(l_E)gn’_l)

(1+5);",*1) SkSnl_l

2/ -1)/2 2 -1)
3 6

_ r_ .’
26 2n 122n+1 n' _ 22n+le

Hence, for a fixed 7, the number of satisfied predicates whose first argument
is x; is at most the following (recall that n + 1 < n'):

I _ 2(n! -
<2n -n'+1+ (L+e)(n 1)) <2n) +2n2% e = <

2 n -

,_
<2n _n-d + 2L€> (Qn) 4 ong?ntle 5 <

2 2 n

—1 2 e2n
<2n _r 5 +n£) ( n> + 2n22 e |
n

Consequently, the fraction of satisfied predicates of ¥,, does not exceed:

n' ((Qn — =14 ne) ") + 27122"“6’52”)
(2n+1)2n (") -
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E2n
((2n+ 1)n +nn'e) (*") + 2nn/22n+le= 5"

<
2 —
(2n 4+ 1)2n (")
2
1 & 9ntle %" 1 ¢ 2n
— 4 = < -4+ =422 l)e” & .
3Tty Satat (2n+1)e™%

EZn
We now choose n to be an integer such that 2(2n + 1)e” & < ¢/2. Then,
each truth assignment with n’ > n satisfies at most the fraction of 1/2 + ¢ of
the predicates of ¥,,. Hence, p(X,) < 1/2 4 ¢ as desired.
(]

We are now ready to determine the values p;(P) for P(z,y, z) = zA(yVz2):

Theorem 5 Let P be the predicate P(x,y,z) = x A (y V z). Then, the
following holds for all 1l > 1:

3/8 ifl=1,
a(P)= (P =4 2/3/9  ifl=2
pi—2(Ily_saT) otherwise.

Proof: The equalities p;(P) = p%(P) = 3/8 and py(P) = p¥(P) = 2v/3/9
follow from Lemmas 2 and 10, respectively. We first prove that p;(P) >
PP (P) > pi_o(Ily_gar) for I > 3. Let ¥ be an l-consistent set of weighted
predicates P and let X be the set of variables of 3 which appear as the first
argument in some predicates of X. Since X is 2-consistent, we can assume
that all the first arguments of the predicates of X are positive literals. Let Y
be the set of the remaining variables of .

We construct an auxiliary (I — 2)-consistent 2-CNF formula ® with the
variables Y as follows. Since X is 3-consistent, it does not contain a predicate
P(z,—z',—2") where 2/, 2" € X. We now construct the formula ®. For each
predicate P(x,—x',y) and each predicate P(z,y,—z') of X with 2’ € X,
we include the clause (y) to ®. Similarly, for each predicate P(x, ', —y)
and each predicate P(z,—y,-z') with ' € X, we include the clause (—y).
For each predicate P(z,y,y’) with y,3" ¢ X, we include the predicate y V
y' to ®. We proceed analogously for predicates P(z,—wy,y'), P(z,y,y')
and P(z,—y,—y'). The weights of the clauses are equal to the weights of
the corresponding predicates. If several same clauses are included to ®, we
replace them by a single clause whose weight is equal to the sum of the
weights.
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We claim that the formula ® is (I — 2)-consistent. If this is not the case,
let T' be the minimum inconsistent set of clauses of ®. By Lemma 7, I’
contains at most two clauses of size one. We now find an inconsistent set I"'
of at most |I'| + 2 predicates of ¥. For each clause of I' of size two, include
to I'' the predicate of ¥ corresponding to that clause. For each clause (y),
(—y), of T', include to I the predicate P(x,y, —x'), P(x, —y, —x'), respectively,
which corresponds to that clause, together with one of the predicates of X
whose first argument is z’. Since I' contains at most two clauses of size two,
'] < |T'| + 2 = I. Moreover, since I' is inconsistent, I’ is also inconsistent.
This contradicts the fact that X is [-consistent.

Since the formula @ is (I — 2)-consistent, there is a truth assignment
which satisfies the fraction of p(®) > p, o(Il_gaT) clauses of ®. Extend this
truth assignment to all the variables of 3 by assigning the true value to each
variable x € X. All the predicates of ¥ whose arguments contain solely the
variables from the set X are satisfied and, in addition, the fraction of p(®)
of the remaining predicates are also satisfied. Therefore, p(X) > p(®) >
p1—2(Ils_gat). Since the choice of a set ¥ was arbitrary, we can conclude that
pi(P) > p’(P) > pr—o(Ila—sar).

It remains to prove that pi’(P) < p(P) < p—o(Ilo_gar) for I > 3. If
[ = 3, the upper bound follows from Lemma 11. For [ > 4 and € > 0, fix an
(I — 2)-consistent 2-CNF formula ® with p(®) > p; o(Ily_gaT) + € such that
each minimal inconsistent set of at most [/ clauses contain two clauses of size
one. Such a formula ® exists by Lemma 8. Moreover, we can assume that
each clause of size two is contained in ® at most once. Let m' be the number
of clauses of ® of size one (counting multiplicities) and m the number of all
clauses of ®. Since ® is 2-consistent, m'/m < p(®). We now construct an
[-consistent set ¥ of predicates P with p(X) = p(®).

Let y1, ..., yn be the variables contained in the formula ®. The set X will
contain (m + 1)n variables ¢ for 1 <i<nand1<j<m+1and m+1
variables 27 for 1 < j <m+1. Let C,...,C,, be the clauses of ®. For each
clause C, = (y; Vyz), 1 < k < m, we include to X predicates P(x?,y;, y)
for 1 < j < m+ 1. Similarly, we proceed for clauses Cy = (y; V —yy) and
Cy = (—y; V —wyir). If the clause Cy is of size one, say Cy = (y;), we include
to ¥ predicates P(z7,y;, ~altk) mod (m+1)) for 1 < j < m + 1. Therefore, ¥
consists of k(m + 1) distinct predicates.

First, we show that X is [-consistent. Assume the opposite and let I’
be the minimum inconsistent set of predicates contained in ¥, i.e., |T'| < I.
Observe that if we set all the variables z', ..., 2" to be true, then ¥ reduces
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to m + 1 independent “copies” of the formula ®. Therefore, if I' is a set of [
inconsistent predicates, it must contain predicates contained in one of these
copies of ® which correspond to an inconsistent set I'g of clauses of ®. By
symmetry, we can assume that predicates corresponding to ' are contained
in the first copy of ®. Since ® is (I — 2)-consistent, |[['s| > [ — 1. On the
other hand, |I's| < |T'| < I. By the choice of ®, each inconsistent set of
at most [ clauses of ® contains two clauses of size one. Let Cy = (y;) and
Cr = (yr) be these two clauses of size one, i.e., I' contains the predicates
P(x', y;, ~aEt) mod (m+1)y and P(z!, yp, na®'+1) med (m+1)) " 1f [ is inconsis-
tent, it must contain a predicate whose first argument is (k41 mod (m+1) a4
well as a predicate whose first argument is ¢® 1) med (m+1)  Therefore, T
contains at least |I'g| + 2 > [ predicates. Hence, the set X is [-consistent.

It remains to show that p(X) = p(®). Since p(P) < p—2(Ily_saT) + € and
the choice of € was arbitrary, this would yield p;(P) < p—o(IIy_saT). Fix
a truth assignment such that the fraction of p(X) predicates of the set ¥ is
satisfied. We claim that there is a truth assignment which assigns all the
variables z', ..., 2™ the true value. Indeed, if 27 is false, then change of its
value to true. This causes at most m’ previously satisfied predicates to be
unsatisfied (precisely those which contain —z7 as the third argument) and, on
the other hand, we can choose values of ¥/, ..., y? so that at least the p(®)m
predicates whose first argument is 27 are satisfied. Note that none of these
p(®)m predicates could be satisfied before the change. Since p(®)m > m/
(recall that p(®) > m'/m), the number of satisfied predicates is not decreased
after the change. Hence, we assume that all the variables z,..., 2™ are
set, to be true by the considered truth assignment. Then, the set X is reduced
to m + 1 independent “copies” of the formula ® (substitute the true value
for all the variables z',...,2™"!). We can conclude that p(X) = p(®).

O

7 Conclusion

We studied instances of constraint satisfaction problems which are locally
consistent. The values of p;(P) have been determined for all predicates which
have arity at most three or which are 1-extendable. We were not able to fully
analyze non-1-extendable predicates. Already, the smallest two non-trivial
such predicates, namely P(z,y,2) =z A(y < z) and P(z,y,2) =z A (yV 2),

33



showed that the behavior of locally consistent P-systems for such predicates
P can be quite weird.

For the asymptotic behavior of ps (II), we settled almost completely the
case of finite sets II of predicates. The only case which remains open is to
determine p,(II) for sets of predicates II which contain a predicate of arity
one. The case of infinite sets I seems to be also interesting, but rather from
the theoretical point of view than the algorithmic one: in most cases, it might
be difficult to describe the input if the set II is not a “nice” set of predicates
as it is the case of, e.g., [Isar. For an infinite set of predicates II, one can
also define the set 7(IT) and then ¥(7(IT)) to be the infimum of ¥ taken over
all convex combinations of finite number of functions from = (II). It is not
hard to verify that the proof of Theorem 2 can be translated to this setting.
In particular, p% (II) > ¥(n(II)) for every infinite set II. However, the proof
of Theorem 1 cannot be adopted to this case since the arity of the predicates
of IT is not bounded. We suspect that the equality p¥ (II) = U(x(II)) does
not hold for all (infinite) sets II.
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