
Polylogarithmic Round Arthur-Merlin Games and

Random-Self-Reducibility

A. Pavan∗ N. V. Vinodchandran†

June 10, 2004

Abstract

We consider Arthur-Merlin proof systems where (a) Arthur is a probabilistic quasi-polynomial
time Turing machine, denoted AMqpoly, and (b) Arthur is a probabilistic exponential time Turing
machine, denoted AMexp . We prove two new results related to these classes.

- We show that if co-NP is in AMqpoly then the exponential hierarchy collapses to AMexp.

- We show that if SAT is polylogarithmic round adaptive random-self-reducible, then SAT
is in AMqpoly with a polynomial advice.

The first result improves a recent result of Selman and Sengupta (2004) who showed that the
hypothesis collapses the exponential hierarchy to Sexp

2
.PNP; a complexity class which contains

AMexp. The second result implies that if SAT is polylogarithmic round adaptive random-self-
reducible, then the exponential hierarchy collapses. This partially answers a question posed
by Feigenbaum and Fortnow (1993) who showed that if SAT is logarithmic round adaptive
random-self-reducible then the polynomial hierarchy collapses.

1 Introduction

Interactive proof systems and random-self-reducibility are some of the well studied notions in com-
plexity theory. Goldwasser, Micali, and Rackoff [GMR85] introduced interactive proof systems and
Babai [Bab85] introduced Arthur-Merlin games to study the interaction between randomness and
nondeterminism. Later Goldwasser and Sipser [GS89] showed that these two classes are indeed
the same. It is known that some problems in co-NP such as Graph Non isomorphism, that are
not known to be in NP, can be accepted by a two round Arthur-Merlin protocol [GMW86]. This
raised the obvious question of whether every language in co-NP can be accepted by a two round
Arthur-Merlin Protocol. Boppana, Hastad, and Zachos [BHZ87] showed that if every language in
co-NP has a constant Arthur-Merlin protocol, then the polynomial-time hierarchy collapses. Break-
through works by Lund et al. [LFKN90], and Shamir [Sha92] showed that entire PSPACE can be
accepted by an Arthur-Merlin protocol if we allow polynomially many rounds. This leaves the
question of what happens when the number of rounds are bounded below by constant and bounded
above by polynomial. Very recently Selman and Sengupta [SS04] showed that if co-NP has poly-
logarithmic round Arthur-Merlin protocol, then the exponential hierarchy collapses to Sexp

2 .PNP,

∗Department of Computer Science, Iowa State University, pavan@cs.iastate.edu.
†Department of Computer Science and Engineering, University of Nebraska-Lincoln, vinod@cse.unl.edu.

1

Electronic Colloquium on Computational Complexity, Report No. 53 (2004)

ISSN 1433-8092

where Sexp

2 is the exponential version of the class SP
2 introduced by Russell and Sundaram [RS98]

and Canetti [Can96].
Our first result improves Selman and Sengupta’s result. We show that if co-NP has polylog-

arithmic round Arthur-Merlin protocol then the exponential hierarchy in fact collapses to AMexp.
AMexp is the exponential version of AM and is contained in Sexp

2 .PNP. In addition to the improved
upperbound, our proof of this result is very simple. We observe that the proof of the implication
co-NP ⊆ AM ⇒ PH ⊆ AM due to Boppana, Hastad, and Zachos [BHZ87] also works for time
bounds other than the polynomial range. In particular, the same proof using quantifier switching
(with different parameters) shows that co-NP ⊆ AMqpoly ⇒ PHqpoly ⊆ AMqpoly, where PHqpoly de-
notes the quasi-polynomial time hierarchy and AMqpoly is the quasi-polynomial time version of AM.
By a standard padding argument we get PHqpoly ⊆ AMqpoly ⇒ EH ⊆ AMexp where EH denotes the
exponential hierarchy. The result follows from the fact that AMqpoly can simulate polylogarithmic
round Arthur-Merlin games [GVW01].

In the second part of the paper we study the notion of random-self-reducibility. Informally, a
function f is random-self-reducible, if the value of f at any x can be computed by knowing the value
of a few “random” instances y. Random-self-reducibility has played an important role in complexity
theory. If f is random-self-reducible, then the complexity of computing f at a point is equivalent
to computing the value of f on some randomly chosen points. This implies that the average-case
complexity of f is same as the worst-case complexity of f . For example, Lipton [Lip91] showed
that the Permanent function is random-self-reducible. From this it follows that the average-case
complexity of Permanent is same as the worst-case complexity of Permanent [Lip91, GS92, FL92,
CPS99, GRS00]. Random-self-reductions also play crucial role in program checkers [BK89, BLR90].
Ideas developed during the study of random-self-reducible functions were successfully used in the
results of Lund et al. and Shamir [LFKN90, Sha92].

Since Permanent is #P complete, it follows that all #P-complete functions are random-self-
reducible [FF93]. It is natural to ask whether NP-complete languages are random-self-reducible.
Feigenbaum and Fortnow [FF93] studied this question. They showed that if any NP-complete
language is nonadaptive random-self-reducible, then the polynomial-time hierarchy collapses to the
third level. They also obtained the same consequence under the hypothesis that NP-complete
languages are O(log n) adaptive random-self-reducible. They asked whether the result holds if we
consider random-self-reductions that make more than O(log n) adaptive queries. Our second results
gives a partial answer to their question.

We show, following Feigenbaum and Fortnow, that if a language L in NP is logO(1) n adaptive
random-self-reducible, then L is in AMpoly

qpoly. AMpoly
qpoly denotes the class of languages accepted by

a AMqpoly protocol when the Arthur has access to a polynomial advice string. Since AMpoly
qpoly ⊆

NP/2polylog, it follows that if NP-complete languages have polylog adaptive random-self-reductions,
then the exponential hierarchy collapses. Finally we consider the relationship between random-self-
reducibility and checkability [BK89]. We show that if SAT is nonadaptive random-self-reducible,
then SAT is checkable with advice.

2 Preliminaries

We assume the definitions of standard complexity classes. Please refer to [BDG88, Pap94] for
these and other standard complexity-theoretic definitions including the definitions of interactive
complexity class Arthur-Merlin games. In this paper we deal with complexity classes defined using

2

general parameter ranges. We present these notations first.
lin =

⋃

c≥1 cn denotes the set of linear functions, poly =
⋃

k≥1 nk denotes the set of poly-

nomials, qpoly =
⋃

c≥1 2(log n)c

denotes the set of quasi-polynomial functions, and polylog =
⋃

k≥1(log n)k denotes the set of polylogarithmic functions.

Definition. We call a time constructible function l(n) nice if (a) l(n) ≥ n, (b) l(l(n)) ≥ nl(n), and
(c) l(cn) ≥ cl(n) for any constant c > 1

Notice that polynomials, quasi-polynomials, and exponentials are all nice functions. We will be
dealing with only nice functions and use their properties implicitly in the proofs.

We consider several Arthur-Merlin classes for various parameter ranges.

- AM[m(n), l(n)] denotes the class of languages accepted by m(n) round Arthur-Merlin in-
teractive protocol with maximum message length l(n) by both Arthur and Merlin in each
round.

- We denote AM[2, l(n)] with AM[l(n)].

- We consider polynomial, quasi-polynomial, and exponential versions of AM which are defined
as follows.

AM = ∪kAM[nk], AMqpoly = ∪cAM[2logc n], and AMexp = ∪kAM[2nk

].

We also consider parameterized versions of the polynomial hierarchy.

- Σk[f(n)] denotes the class of languages accepted by a Σk-machine where running time within
a quantifier is bounded by f(n), Πk[f(n)] is defined analogously.

- Polynomial, quasi-polynomial and exponential versions are defines as follows.

ΣP
k = ∪cΣk[n

c], Σqpoly

k =
⋃

c Σk[2
(log n)c

], and Σexp

k = ∪cΣk[2
nc

]. These classes can also be

defined using oracle Turing machines. For example Σexp

k = NEXPΣP
k−1 .

PH =
⋃

k ΣP
k , PHqpoly =

⋃

k Σqpoly

k , and EH =
⋃

k Σexp

k where EH is the exponential hierarchy.

Finally, for a complexity class C, and a nice function l, let C[l(lin)] denotes
⋃

c≥1 C[l(cn)].

Random-self-reducibility

A function f is k(n)-nonadaptive random-self-reducible if there exist probabilistic polynomial-time
computable functions g and h such that

• ∀x, Pr[g[x, f(h(1, x)), f(h(2, x)), · · · f(h(k(|x|), x))] = f(x)] ≥ 3/4.]

• For every n, for every i, 1 ≤ i ≤ k(n), if |x| = |y| = n, the random variables h(i, x) and h(i, y)
are identically distributed.

A function f is k(n)-adaptive random-self-reducible if there exists a probabilistic polynomial-
time oracle Turing machine M such that, M makes k(n)-rounds of adaptive queries such that

• ∀x, Pr[M f (x) = f(x)] ≥ 3/4,

3

• Given x, let M f (i, x) denote the random-variable corresponding to the ith query generated
by Mf on x. For every n, and for every i, 1 ≤ i ≤ k(n), if |x| = |y| = n, then the random
variables M f (i, x) and M f (i, y) are identically distributed.

As usual, we can amplify the success probabilities to 1 − 1/2n.
Blum and Kannan [BK89] introduced the notion of checkability. A language L is checkable if

there exists a probabilistic polynomial-time oracle Turing machine M such that for every program
P

- If P (x) 6= L(x), then Pr[MP (x) = incorrect] ≥ 3/4.

- If ∀x, P (x) = L(x), then Pr[MP (x) = correct] ≥ 3/4.

We say a language L is checkable with advice if M has access to a polynomial amount of advice.

3 Polylogarithmic Round Arthur-Merlin Games and the Expo-

nential Hierarchy

In this section we show that if co-NP has polylogarithmic rounds Arthur-Merlin games then the
exponential hierarchy collapses to AMexp. Since AMexp ⊆ Sexp

2 .PNP, this improves a recent result
of Selman and Sengupta [SS04] who show that under the assumption exponential hierarchy col-
lapses to Sexp

2 .PNP. Our result is proved in two steps. First, under the assumption that co-NP
has polylogarithmic round Arthur-Merlin games we show that PHqpoly, the quasi-polynomial time
hierarchy, collapses to AMqpoly. Then we use simple padding to show that the lower collapse result
PHqpoly ⊆ AMqpoly implies the collapse of EH to AMexp. We first state a theorem which is proved
using standard padding technique. We omit the proof here.

Theorem 1. Let l(n) > n. If Σk[n] ⊆ AM[l(n)] then Σk[f(n)] ⊆ AM[l(f(n))].

Interactive proof systems with many rounds can be converted into proof systems with 2 rounds
at the expense of increasing the message complexity. The following theorem can be proved using
probability amplification and quantifier switching. In particular see Selman and Sengupta [SS04]
or Goldreich, Vadhan, and Wigderson [GVW01] for a proof.

Theorem 2. AM[m(n), l(n)] ⊆ AM[cm(n)l(n)m(n)] for some constant c independent of n.

As observed in [SS04], a corollary is that polylog rounds of Arthur-Merlin games, can be con-
verted into 2-round Arthur-Merlin games with quasi-polynomial message complexity at each round.

Corollary 3 ([SS04]). AM[polylog, poly] ⊆ AMqpoly.

Boppana, Hastad, and Zachos [BHZ87] showed that if every language in co-NP has a constant
round Arthur-Merlin protocol, then the polynomial-time hierarchy collapses to AM. We first extend
their proof to give a general result which also works for parameters other than the polynomial range.
The proof uses the standard technique of probability amplification followed by quantifier switching.
We present the proof so as to get the parameters more accurately. Then we apply this result to
quasi-polynomial range to show that if co-NP ⊆ AMqpoly then the polynomial hierarchy (or even
quasi-polynomial hierarchy) is in AMqpoly.

4

Theorem 4. Let l be a nice function. Then for any constant k,

co-NTIME[lin] ⊆ AM[l(lin)] ⇒ Σk[lin] ⊆ AM[l(2k)(lin)]

Here l(k)(n) denotes k compositions of l.

We first need the following lemma.

Lemma 5. If co-NTIME[lin] ⊆ AM[l(lin)] then co-AM[lin] ⊆ AM[l(lin)].

Proof. Let L ∈ co-AM[lin]. Then, (by amplifying the probability by a constant amount) there
exists a language A ∈ co-NTIME[lin] and a constant c1 so that for all x:

x ∈ L ⇒ Pry∈{0,1}c1n [〈x, y〉 ∈ A] ≥ 9
10

x 6∈ L ⇒ Pry∈{0,1}c1n(〈x, y〉 ∈ A) ≤ 1
10 .

Since A ∈ co-NTIME[lin], from the assumption we have A ∈ AM[l(lin)]. That is, (again by
amplifying the probability by a constant amount) there is a language B ∈ NTIME[lin] and a
constant c2 so that for all 〈x, y〉, y ∈ {0, 1}c1n:

〈x, y〉 ∈ A ⇒ Prz∈{0,1}l(c2n) [〈x, y, z〉 ∈ B] ≥ 9
10

〈x, y〉 6∈ A ⇒ Prz∈{0,1}l(c2n) [〈x, y, z〉 ∈ B] ≤ 1
10 .

We can combine the two probabilities to get that for a suitable constant c, for all x:

x ∈ L ⇒ Pr〈y, z〉∈{0,1}l(cn) [〈x, y, z〉 ∈ B] ≥ 8
10

x 6∈ L ⇒ Pr〈y, z〉∈{0,1}l(cn)(〈x, y, z〉 ∈ B) ≤ 2
10 .

Since B ∈ NTIME[lin], the overall protocol in an AM protocol which accepts L and has a message
complexity l(lin). Hence L ∈ AM[l(lin)].

Proof. (of Theorem 4) We can prove the theorem using induction. Assume that co-NTIME[lin] ⊆
AM[l(lin)]. Let L ∈ Σk[lin]. Then there exists a language A ∈ Πk−1[lin] and a constant c so
that for all x of length n:

x ∈ L ⇒ ∃y ∈ {0, 1}cn〈x, y〉 ∈ A
x 6∈ L ⇒ ∀y ∈ {0, 1}cn〈x, y〉 6∈ A.

Since A ∈ Πk−1[lin], from the induction hypothesis and the assumption, A ∈ co-AM[l(2k−2)(lin)].
From Lemma 5 and the assumption that co-NTIME[lin] ⊆ AM[l(lin)], we have co-AM[lin] ⊆
AM[l(lin)]. Using a padding argument, if co-AM[lin] ⊆ AM[l(lin)] then co-AM[l(2k−2)(lin)] ⊆
AM[l(l(2k−2)(lin))] = AM[l(2k−1)(lin)]. Therefore we have A ∈ AM[l(2k−1)(lin)].

Since A ∈ AM[l(2k−1)(lin)], there is a language B ∈ NTIME[lin] so that for all x:

x ∈ L ⇒ ∃y ∈ {0, 1}cn
[

Pr
z∈{0,1}l(2k−1)(cn) [〈x, y, z〉 ∈ B] ≥ 9

10

]

x 6∈ L ⇒ ∀y ∈ {0, 1}cn
[

Pr
z∈{0,1}l(2k−1)(cn) [〈x, y, z〉 ∈ B] ≤ 1

10

]

We can amplify the probability (inside the square brackets) by repeating on 10cn random zs and
taking a majority vote. This will yield that for a language B ′ ∈ NTIME[lin] (majority language
of B), for all x:

5

x ∈ L ⇒ ∃y ∈ {0, 1}cn
[

Pr
z∈{0,1}l(2k−1)(cn)×10cn

[〈x, y, z〉 ∈ B′] ≥ 1 − 1
2cn+2

]

x 6∈ L ⇒ ∀y ∈ {0, 1}cn
[

Pr
z∈{0,1}l(2k−1)(cn)×10cn

[〈x, y, z〉 ∈ B′] ≤ 1
2cn+2

]

With this amplified probabilities we can get that

x ∈ L ⇒ Pr
z∈{0,1}l(2k−1)(cn)×10cn

[∃y ∈ {0, 1}cn〈x, y, z〉 ∈ B′] ≥ 1 − 1
2cn+2

x 6∈ L ⇒ Pr
z∈{0,1}l(2k−1)(cn)×10cn

[∃y ∈ {0, 1}cn〈x, y, z〉 ∈ B′] ≤ 1
4

Now consider the language B ′′ = {〈x, z〉 | ∃y ∈ {0, 1}cn〈x, y, z〉 ∈ B′}. Then B′′ ∈ NTIME[lin].
Therefore we have that for all x:

x ∈ L ⇒ Pr
z∈{0,1}l(2k−1)(cn)×10cn

[〈x, z〉 ∈ B′′] ≥ 1 − 1
2cn+2

x 6∈ L ⇒ Pr
z∈{0,1}l(2k−1)(cn)×10cn

[〈x, z〉 ∈ B′′] ≤ 1
4

Thus L ∈ AM[l(2k−1)(cn)×10cn] ⊆ AM[l(2k)(dn)] for a suitable constant d, since l is a nice function.
Hence L ∈ AM[l(2k)(lin)].

An application of the above theorem gives the quasi-polynomial version of Boppana et al’s
theorem.

Theorem 6. If co-NP ⊆ AMqpoly then PHqpoly ⊆ AMqpoly.

Proof. Let L ∈ PHqpoly. Then L ∈ Σk[2
loga n] for some constants k and a. Under the assumption

that co-NP ⊆ AMqpoly we also have that co-NTIME[lin] ⊆ AM[2logb n], for a fixed constant b. This
is because since co-NP ⊆ AMqpoly, the co-NP complete problem TAUT (SAT complement) is in
AM[2logc n] for some fixed c. Now using Cook’s reduction, for any L ∈ co-NTIME[lin], an instance

of length n is reduced to O(n2) length formula. Hence L ∈ AM[2logc+1 n].

Now by the application of the Theorem 4 with l(n) = 2logb n, Σk[lin] ⊆ AM[2logd n] for a

constant d. Now by padding we have Σk[2
loga n] ⊆ AM[2logd′ n] for a constant d′.

The last step uses the fact that quasi-polynomial functions are closed under a finite number of
compositions: if f(n) = 2loga n and g(n) = 2logb n then f(g(n)) = 2logab n.

Theorem 7 (Main Result 1). If co-NP ⊆ AMqpoly then EH ⊆ AMexp.

Proof. By Theorem 6, if co-NP ⊆ AMqpoly then PHqpoly ⊆ AMqpoly. Therefore, for any constant
k, there is a constant c so that Σk[n] ⊆ AM[2logc n]. Now let L be a language in the exponential

hierarchy. That is L ∈ Σk[2
nk

] for some constant k. Substituting f(n) = 2nk

and l(n) = 2logc n in

Theorem 1, we get that L ∈ AM[2nkc

]. Hence the theorem.

Corollary 8. If co-NP has polylogarithmic round Arthur-Merlin games then EH ⊆ AMexp.

Proof. Under the assumption co-NP ⊆ AM[polylog, poly], by Theorem 2, co-NP ⊆ AMqpoly. Corol-
lary follows from the main theorem.

Theorem 9 ([SS04]). If co-NP ⊆ NP/qpoly then EH ⊆ Sexp

2 .PNP.

Since AMpoly
qpoly ⊆ NP/qpoly, we have the following theorem. We use this theorem in the next

section.

Theorem 10. If co-NP ⊆ AMpoly
qpoly then EH ⊆ Sexp

2 .PNP.

6

4 Polylogaritmic Round Adaptive Random-self-reducibility

Feigenbaum and Fortnow [FF93] showed that if SAT is O(log n)-adaptive random-self-reducible
then the polynomial hierarchy collapses. Their proof can be directly extended to show that if SAT
is logO(1) n-adaptive random-self-reducible then the exponential hierarchy collapses. For the sake
of completeness here we present a proof. We prove the following theorem from which the result
about SAT follows.

Theorem 11 (Main Result 2). If L is in NP and L is O(logk n)-adaptive random-self-reducible,
then L is in AMpoly

qpoly.

Proof. The proof follows Feigenbaum and Fortnow’s proof. Let n be any given length. Let R be
the random-self reduction for L that makes k = O(logc n) adaptive queries. Let with q1, · · · qk

be the k queries made by R. (We will consider the case where only one query is made at each
round. The proof can be extended to the case where there are polynomially many queries in each
round). We assume that the error probability of rsr R is at most 1/2n. This can be achieved using
standard methods. Note that each qi is a randomly generated query and the distribution of each
query qi depends only on the input length n, and is independent of the input x. Let pi denote the
probability that the ith query belongs to L. The verifier has p1, p2, · · · , pk as advice. Consider the
following protocol for L. In this protocol, the values of e and m will be set later.

1. Input: x, |x| = n.

2. Verifier randomly chooses m sequences r1, r2, · · · , rm and sends to the prover.

3. For 1 ≤ i ≤ m, the prover uses ri as random seed to the reduction R and generates queries
qi1, qi2, · · · qik along with answers bi1, bi2, · · · , bik for each query. If bij = 1 then the prover
also generates a witness wij to the fact that qij ∈ L. Prover sends (qij , bij , wij) for all
1 ≤ i ≤ m, 1 ≤ j ≤ k, to the verifier.

4. Verifier checks the following conditions.

(a) For each ri, verifier checks the consistency of the reduction assuming that the answers
to the queries are correct.

(b) For each bij = 1, verifier checks whether wij is a witness to the claim that qij ∈ L.

(c) For 1 ≤ i ≤ m, the reduction R rejects x when ri is used as random string and bij ’s as
answers to the queries.

(d) For 1 ≤ j ≤ k, let Sj = {q1j , q2j , · · · , qmj}. For 1 ≤ j ≤ k, the Verifier checks at least
pjm − 2j+2e strings from Sj are in L according to the prover.

If all of the above conditions are satisfied, then the verifier accepts x, else rejects x.

We claim that the above protocol correctly accepts L. We need the following lemma, which
easily follows from Chernoff’s bound.

Lemma 12. For 1 ≤ j ≤ k,

Pr[pjm − e ≤ |L ∩ Sj | ≤ pjm + e] > 1 − 2−ε

where ε = e2

4pjm
−1. i.e., number of qij’s that belong to L lie between pjm− ε and pjm+ ε with high

probability.

7

For the rest of the proof we will set e = 2
√

km. For this setting we will get that ε ≥ k.
Assume x is not in L, then we show that the honest prover causes the verifier to accept x with

high probability. The honest prover provides correct answers to all the queries qij . So Conditions 4a
and 4b are always satisfied. Recall that rsr R correctly decides x, when all the queries are answered
correctly, with probability bigger than 1 − 1/2n. The probability that the reduction R rejects x
for all random sequences r1, · · · , rm is at least (1 − m/2n). Thus Condition 4c is satisfied with
high probability. By Lemma 12, for each j, with high probability, at least pjm− e strings from Sj

belong L. Thus Condition 4d is satisfied with probability at least (1− k2−ε). Thus the probability
that the any of the conditions are not satisfied is at most m/2n + k2−ε. Thus the verifier accepts
x with high probability.

We now consider the case when the prover is dishonest. Assume x is in L. We show that
the verifier rejects x with high probability. For the verifier to accept x, all the four conditions in
the protocol must be satisfied. Since the optimal prover never violates Conditions 4a and 4b, we
concentrate on Conditions 4c, and 4d. There are two ways the verifier accepts x when x is in L.
In the first case, the verifier has chosen “bad” random strings, i.e, in this case the prover provides
all correct answers and yet the reduction R says x is not in L. However, this can happen with
probability at most m/2n.

In the second case, the prover provides wrong answers to some queries qij which cause the
reduction R to reject x. Note that if a query qij does not belong to L, then the prover can not
claim otherwise, since it will violate Condition 4b. So the prover can provide wrong answer to
a query qij only when qij belongs to L. This means the prover has to claim that the number of
queries that belong L are far less than they actually are. Condition 4d ensures that prover can do
this with only a small probability. We now give formal details for this case.

From now we assume that the verifier pricks “good” random strings, i.e, given correct answers
to the queries the reduction R produces correct answer. Thus for each 1 ≤ i ≤ m, the prover has
to provide at least one wrong answer to the queries among qi1, qi2, · · · qik. Thus in total, the prover
has to provide at least m wrong answers. Let Sj = {q1j , q2j , · · · , qmj}.
Lemma 13. The prover can provide at most 2j+1e wrong answers to the queries from Sj.

Proof. We prove the claim by induction. Consider the case j = 1. By Lemma 12, with high
probability, at most p1m + e queries from S1 belong to L. The verifier checks if at least p1m − e
queries from S1 belongs to L. Thus, with high probability, the prover can provide at most 2e wrong
answers to queries from S1.

Assume that the claim is true for all j < l − 1. Consider a query qil that belongs to Sl. This
query was produced by the reduction R with queries qi1, qi2, · · · qil−1 and the respective answers
bi1, b12, · · · bil−1. If all the answers are correct, then qil is “valid” query that R would have produced.
However, it is possible that the prover might have provided wrong answers to some of the queries
qi1, · · · qil−1. In this case we call qil “invalid” query. Partition Sl into “valid” queries and “invalid”
queries. Our goal is to estimate the number of queries from Sl for which the prover can provide
wrong answers. Recall that the prover can give a wrong answer only if a query belongs to L.
Consider the worst possible case; All the invalid queries actually belong to L.

We first put a bound on the number of invalid queries. A query is invalid only if one of the
preceding queries is answered wrong by the prover. By our induction hypothesis, the number
queries that are answered wrong is at most

∑l−1
1 2je < 2le. Thus the total number of invalid

queries is at most 2le.

8

Consider the set of valid queries. All of them are produced when given correct answers to the
previous queries. Thus, by Lemma 12, with high probability, at most plm+ e of these valid queries
belong to L. Thus, with high probability, at most pl + e + 2le queries from Sl belong to L. Since
the verifier checks whether at least plm − e queries from Sl belong to L, the prover can provide
wrong answers to at most 2l + e + e = 2l+1e queries from Sl.

Thus the total number of wrong answers that the prover can give is at most 2k+2e. However,
the prover has to provide at least m wrong answers to make the verifier accept x. If we choose
m > 2k+2e = 2k+2 × 2

√
km, then the probability that the prover can make the verifier accept x

is extremely small. Since k = logr n, we can choose a value for m which is quasi-polynomial in n.
Thus there is a AMpoly

qpoly proof system that accepts L.

We have the following corollary, partially answering a question by Feigenbaum and Fort-
now [FF93].

Corollary 14. If SAT is O(logk n)- adaptive random-self-reducible, then EH ⊆ Sexp

2 .PNP.

Next we consider the relation between random-self-reducibility and checkability. Program check-
ers for many languages use random-self-reducibility. This raises the question of whether random-
self-reducibility implies checkability. We observe that if SAT is k(n)-nonadaptive random-self-
reducible, then SAT is checkable with advice.

Theorem 15. If SAT is k(n)-nonadaptive random-self-reducible, then SAT is checkable with advice.

Proof. Blum and Kannan [BK89] characterized checkability using interactive proof systems. A lan-
guage L is in FRIP (short form for Function restricted Interactive Protocol) if there is a polynomial-
round AM protocol for L where the power of the prover is the complexity of L, i.e., the verifier
only asks questions of the form q ∈ L?. Blum and Kannan showed the following theorem.

Theorem 16 ([BK89]). A language L is checkable if and only if both L and L are in FRIP.

Their proof can be easily modified to show that a language L is checkable with advice if and
only if, L and L are in FRIPpoly, where FRIPpoly is similar to FRIP except that the verifier has
access to a polynomial advice.

Let SAT is k(n)-nonadaptive random-self-reducible. Feigenbaum and Fortnow [FF93] showed
that this implies SAT is in AMpoly. Moreover, the verifier asks only types of questions i) q ∈ SAT?,
and ii) if q ∈ SAT, then what is the witness?. Since search reduces to decision for SAT, all Type
(ii) questions can be converted into Type (i) questions. Thus SAT is in FRIPpoly. Note that SAT
is trivially in FRIP. Thus SAT is checkable with advice.

References

[Bab85] L. Babai. Trading group theory for randomness. In Proc. 17th Annual ACM Symp. on
Theory of Computing, pages 421–429, 1985.

[BDG88] J. Balcázar, J. Diaz, and J. Gabarró. Structural Complexity I. Springer-Verlag, Berlin,
1988.

9

[BHZ87] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25(2):127–132, 1987.

[BK89] M. Blum and S. Kannan. Designing programs that check their work. In Proc. 21st
Symp. ACM Symp. Theory of Computing, pages 86–97, 1989.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting programs with applications
to numerical problems. In STOC: ACM Symposium on Theory of Computing (STOC),
1990.

[Can96] R. Canetti. More on BPP and the Polynomial-time Hierarchy. Information Processing
Letters, 57(5):237–241, March 1996.

[CPS99] J. Cai, A. Pavan, and D. Sivakumar. On the hardness of permanent. In Proceedings of
the 16th Annual Symposium on Theoretical Aspects of Computer Science, volume LNCS,
1627, pages 90–99, 1999.

[FF93] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM Journal
on Computing, 22(5):994–1005, October 1993.

[FL92] U. Feige and C. Lund. On the hardness of computing permanent of random matrices. In
Proceedings of 24th Annual ACM Symposium on Theory of Computing, pages 643–654,
1992.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. In ACM Symposium on Theory of Computing (STOC ’85), pages 291–
304. ACM Press, May 1985.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. In 27th Annual Symposium on
Foundations of Computer Science (FOCS ’86), pages 174–187, Los Angeles, Ca., USA,
October 1986. IEEE Computer Society Press.

[GRS00] O. Goldreich, D. Ron, and M. Sudan. Chinese remaindering with errors. IEEE Trans-
actions on Information Theory, 46, 2000.

[GS89] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof
systems. In S. Micali, editor, Randomness and Computation, Advances in Computing
Research. Jai Press, 1989.

[GS92] P. Gemmel and M. Sudan. Higly resilient correctors for polynomials. Information
Processing Letters, 43:169–174, May 1992.

[GVW01] O. Goldreich, S. Vadhan, and A. Wigderson. On interactive proofs with laconic provers.
In Proceedings of the 28th International Colloquium on Automata, Languages, and Pro-
gramming, volume LNCS 2076, pages 334–345, 2001.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. In IEEE, editor, Proceedings: 31st Annual Symposium on Foundations
of Computer Science: October 22–24, 1990, St. Louis, Missouri, volume 1, pages 2–10.
IEEE Computer Society Press, 1990.

10

[Lip91] R. Lipton. New directions in testing. In Distributed Computing and Cryptography,
volume 2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 191–202. American Mathematics Society, 1991.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company,
1994.

[RS98] A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational
Complexity, 7(2):152–162, 1998.

[Sha92] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, October 1992.

[SS04] A. Selman and S. Sengupta. Polylogarithmic-round interactive proofs for CoNP collapses
the exponential hierarchy. In Proceedings of the 19th IEEE Conference on Computational
Complexity, 2004. To Appear. Also ECCC Technical Report TR04-007, 2004.

11

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

