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Abstract

Game theory has been used for a long time to study phenomena in
evolutionary biology, beginning systematically with the seminal work of
John Maynard Smith. A central concept in this connection has been the
notion of an evolutionarily stable strategy (ESS) in a symmetric two-player
strategic form game. A regular ESS is an important refinement of the ESS
concept which has also been studied extensively and is further motivated
by Harsanyi’s result that “almost all” strategic form games contain only
regular equilibria.

There is a substantial literature on computing evolutionarily stable
strategies, yet despite these efforts the precise computational complexity
of determining the existence of an ESS in a game has remained elusive,
although it has been speculated by some that the problem is NP-hard.

In this paper we show that determining the existence of an ESS is
both NP-hard and coNP-hard, and that it is contained in X5, the second
level of the polynomial time hierarchy. On the other hand, we show that
determining the existence of a regular ESS is indeed NP-complete. Our
upper bounds also yield algorithms for computing a (regular) ESS, if one
exists, with the same complexities.

Our upper bounds combine known criteria for the existence of an ESS
based on quadratic forms, together with known results about the com-
plexity of quadratic programming decision problems. Our lower bounds
employ, among other things, a classic characterization of maximum clique
size via quadratic programming.

1 Introduction

Game theoretic methods and tools have been applied for a long time to the study
of phenomena in evolutionary biology, most systematically since the pioneering
work of Maynard Smith in the 1970’s and 80’s ([SP73, Smi82]).

Since then “evolutionary game theory” has been used to explain and to
understand a diverse range of sometimes counter-intuitive phenomena in biology.
For a more recent overview of evolutionary game theory, and a sampling of its
many applications in zoology and botany, see the survey by Hammerstein and
Selten [HS94]. They mention, among others, the following applications: animal
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fighting, cooperation, and mating; conflict between the sexes, and offspring sex
ratios; plant seed dispersal, root competition, nectar production, and flower size.

A central concept in evolutionary game theory has been the notion of an
evolutionarily stable strategy (ESS) in a symmetric two-player strategic form
game, introduced by Maynard Smith and Price ([SP73]). An ESS is a particular
kind of mixed (randomized) strategy, where the probabilities in the mixed strat-
egy are now viewed as denoting percentages in a population exhibiting different
possible behaviors. To be an ESS, a mixed strategy s must first constitute a
Nash equilibrium (s, s) when played against itself. This means that s is a “best
response” to itself, i.e., that the expected payoff for a player who plays s against
s is the maximum possible payoff of any strategy against s.

Secondly, to be an ESS, s must in a precise sense be “impervious to invasion”
by other strategies. Specifically, it must be the case that if a different strategy
t is also a best response to s, then the expected payoff of playing s against ¢
must be strictly greater than the payoff of playing ¢ against ¢.

It was shown already by Nash [Nas51] that every symmetric strategic form
game contains a symmetric Nash equilibrium (s, s). However, not all symmetric
2-player games contain an ESS: rock-paper-scissors is a simple counter-example.

Thus, one may ask: what is the computational complexity of determining
whether an ESS exists in a 2-player strategic game (with, say, rational payoffs)?
And, if an ESS does exist, what is the complexity of actually computing one?

The computational complexity of computing an arbitrary Nash equilibrium
for a 2-player strategic form game is a well-known open problem (see [Pap01]).
It is neither known to be NP-hard, nor known to be computable in polynomial
time. However, NP-hardness is known for computing Nash equilibria that satisfy
any of several additional desirable conditions, such as equilibria that optimize
“social welfare”, and this is so even for symmetric games ([GZ89, CS03]). It
has thus been speculated that finding an ESS may also be NP-hard, but to the
best of our knowledge no proof was known.

There are at least two possible motivations for determining the precise com-
putational complexity of finding an ESS. The most direct motivation is, of
course, that when we model and analyze a biological system in an evolutionary
game setting, we will want to know the most efficient algorithm for finding ESSs
in our model.

A second, much more speculative motivation, is the following: let us con-
sider an evolutionarily stable strategy as an equilibrium of a biological system
viewed as a dynamical system (see, e.g., [HS88]). That is, the dynamical system
goes though a sequence of simple changes over time (i.e., “evolves”), perhaps
converging through evolution to an ESS state. Such a dynamic view is indeed
part of the original motivation for the definition of ESSs (see, e.g., [HS94, vD91]
for specific formulations of such dynamics. We assume here discrete rather
than continuous dynamics, but the two are coarsely related.) Thus, one may
ask: how many iterations of “simple evolutionary steps” involving small local
changes are required by the system to converge to an ESS? In other words, can
one perhaps learn something about “how long evolution must take” to reach
equilibrium, by studying the complexity of ESSs? Since convergence may occur
only in the limit, “(in)approximability” seems more appropriate here than exact
computation, and this raises questions about the approximability of ESSs. We
defer further discussion of these issues to the last section of the paper.

A regular ESS is a important refinement of the ESS concept. This is an ESS,
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s, where the “support set” of s, i.e., the set of those pure strategies that are
played with non-zero probability in s, already contains all pure strategies that
are best responses to s. There are several other equivalent definitions of regular
ESSs. Harsanyi [Har73b], introduced regular equilibria as a refinement of the
Nash equilibrium concept, and he showed the important result that “almost
all” strategic form games contain only regular equilibria, where “almost all”
here means that the games with irregular equilibria constitute a set of measure
zero in a suitably defined measure space on games. There are other, weaker re-
finements of Nash equilibria, such as “quasi-strict” equilibrium, also introduced
by Harsanyi [Har73a]. For symmetric 2-player games, it turns out that the
definition of a regular ESS coincides with that of an ESS that is a quasi-strict
Nash equilibrium. Other equivalent formulations of regular ESSs make the no-
tion rather robust (see, e.g., [vD91, Sel83, Bom86]). See van Damme’s excellent
book [vD91] for a comprehensive treatment of refinements of Nash equilibria,
and their ramifications for evolutionarily stable strategies.

In this paper, we show that determining the existence of an ESS is both
NP-hard and coNP-hard, and that it is contained in X%, the second level of the
polynomial time hierarchy. We show, moreover, that determining the existence
of a regular ESS is NP-complete. Our upper bounds also yield algorithms to
compute a (regular) ESS, if one exists, with the same complexities. From our
lower and upper bounds, it also follows easily that computing the number of
(regular) ESSs is #P-hard (#P-complete).

There is a substantial literature on algorithms for computing evolutionarily
stable strategies, and its connections to mathematical programming. (See, e.g.,
[Bom92, BP89, Bom02]. See also [MWC97] for a different computational per-
spective based on dynamics.) In particular Bomze ([Bom92]) developed criteria
for ESSs, based on “copositivity” of a matrix over a cone, and uses these to
provide an algorithm for enumerating all ESSs in a game. His criteria build on
earlier criteria for ESSs developed by Haigh ([Hai75]) and Abakuks ([Abag&0]).
Bomze’s enumeration algorithm uses a recursive elimination procedure that in-
volves some complications including possible numerical issues. We were thus
unable to deduce our X¥ upper bounds for ESSs directly from Bomze’s algo-
rithms. We instead provide a self-contained development of the criteria we need,
building directly on the Haigh-Abakuks criteria, and we then employ a result by
Vavasis [Vav90] on the computational complexity of the quadratic programming
decision problem to obtain our X5 upper bounds for ESSs. For regular ESSs,
our NP upper bound follows from simple modifications of the Haigh-Abakuks
criteria, together with basic facts from matrix theory.

Our NP-hardness result for ESSs provides a reduction from SAT that yields
a 1-1 correspondence between satisfying assignments of a CNF boolean formula
and the ESSs in the game to which it is reduced (this is reminiscent, but substan-
tially different from, the reduction of [CS03] for Nash equilibria). Furthermore,
these ESSs will all be regular, and therefore NP-hardness for regular ESSs also
follows. For our coNP-hardness result for ESSs, we provide a reduction from
coCLIQUE to the ESS problem. In doing so, we make use of a classic charac-
terization of maximum clique size via quadratic programs, due to Motzkin and
Straus [MS65].

An outline of the paper is as follows: In section 2 we provide necessary
definitions and background. In section 3 we provide our hardness results for
both ESS and regular ESS computation, and in section 4 we provide our upper
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bounds for both. We conclude with some discussion of open issues and future
directions in section 5.

2 Definitions and Notation

For a n x n-matrix A, and subsets I,J C {1,...,n}, let Ar ; denote the sub-
matrix of A defined by deleting the rows with indexes not in I and deleting the
columns with indexes not in J. Likewise, for (row) vector z, define z := x7 11y
(z{13,1), viewing = as a n x 1-matrix (1 x n-matrix, respectively).

By AT we denote the transpose of a matrix A. Likewise, 27 denotes the
transpose of a vector z. Unless stated otherwise, we assume that all vectors are
column vectors.

A real symmetric n X n-matrix A is positive definite if 27 Az > 0 for
all z € R* — {0}. Recall the determinant criterion for positive definiteness:
a symmetric matrix A is positive definite if and only if det(Ar ) > 0 for all
I =1{1,...,i}, 1 < i < n, where det denotes the determinant of a square
matrix (see, e.g., [LT85]). Thus, in particular, positive definiteness of a rational
symmetric matrix can be detected in polynomial time. A real symmetric matrix
A is called negative definite if (—A) is positive definite. Note that for any
matrix A and vector z, 7 Az = 27 A'z, where A’ := 1(A + AT) is a symmetric
matrix. We thus say a general n x n matrix A is positive (negative) definite if
A’ is positive (negative) definite, and we can use the determinant criterion on
A’ to detect this.

We now recall some basic definitions of game theory (see, e.g., [OR94]). A
finite two-person strategic form game I' = (51,52, u1, uz) is given by finite
sets of strategies S; and Sy and utility (or payoff) functions u; : S; X Sy = R
and uy : S1 X S2 — R for player one and two, respectively. Such a game is called
symmetric if S; = Sy =: S and w4 (4,5) = uz2(j,4) for all i,j € S. We write
(S,u1) as shorthand for (S, S,u1,us), with u2(j,4) = uy1(i,j) for i,5 € S. We
assume for simplicity that S = {1,...,n}. That is, the pure strategies in the
game are identified with an initial segment of the positive integers.

In what follows we only consider finite symmetric two-person strategic form
games. The payoff matrix Ar = (a;;) of I' = (S,u1) is given by a;; =
u1(i,j) for 4,5 € S. (Note that Ar is not necessarily symmetric, even if T is
a symmetric game.) A mixed strategy s = (s(1),...,s(n))T for T = (S,u;)
is a vector that defines a probability distribution on S. Thus, s € X, where
X = {s€Ry, : >, s(i) =1} denotes the set of mixed strategies in T. s is
called pure iff s(i) = 1 for some ¢ € S. In that case we identify s with ;. For
brevity, we generally use the word “strategy” to refer to a mixed strategy s, and
indicate otherwise when the strategy is pure.

In our notation, we alternatively view a mixed strategy s as either a vector
(51,...,5,)T of length n, or as a function s : S — R, depending on which is
more convenient in the context.

The expected payoff function, U; : X x X — R for player ¢ € {1,2} is
given by Ui(s,t) = 3, jes 8(0)t(4)us(i, j), for all s,¢ € X. Note that Uy (s,t) =
sTArt and Us(s,t) = sTALt. Let s be a strategy for I' = (S,u1). A strategy
t € X is a best response to s if Ui(t,s) = maxpcx U1(t',s). The support
supp(s) of s is the set {i € S: s(i) > 0} of pure strategies which are played
with non-zero probability. The extended support ext-supp(s) of s is the set
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{i € S:U1(i,s) = maxycx Ui (z, s)} of all pure best responses to s.

A pair of strategies (s, t) is a Nash equilibrium for IT" if s is a best response
to ¢t and ¢ is a best response to s. Note that (s, t) is a Nash equilibrium if and only
if supp(s) C ext-supp(t) and supp(t) C ext-supp(s). A Nash equilibrium (s, )
is symmetric if s = ¢. It was shown already in [Nas51] that every symmetric
game contains a symmetric Nash equilibrium.

Definition 1 A mized strategy s € X in a 2-player symmetric game I" is an
evolutionarily stable strategy (ESS) of T if:

1. (s,s) is a symmetric Nash equilibrium of T, and
2. ift € X is any best response to s and t # s, then Uy(s,t) > Ui(t,1).

An ESS s is regular if supp(s) = ext-supp(s).

Definition 2 Let ESS (REG-ESS) denote the decision problem of whether a
game I' = (S, u1) with rational payoff matriz Ar has at least one (regular) evo-
lutionarily stable strategy. Let #ESS (#REG-ESS) denote the counting problem
of how many (regular) ESSs a game I' = (S, u1) with rational payoff matriz Ap
has.

As usual, an undirected graph G = (V, E) has vertices V and a symmetric
edge set E C V x V where (i,j) € E = (j,i) € E, and (i,3) ¢ E, for all
i,j € V. Let Ag denote the (symmetric) adjacency matrix of undirected graph
G. A clique C CV of G = (V,E) is a subset of V such that (C x C) — E =
{(i,7) | © € C}. Let w(G) denote the clique number of G, i.e., the maximum
cardinality of a clique in G. Let coCLIQUE = {(G,¢) | ¢ € N and w(G) < c}.
Thus coCLIQUE denotes the decision problem of, given an undirected graph G
and ¢ € N, determining whether G does not have a clique of size c.

We omit formal definitions of the standard computational complexity classes
NP, coNP, X% and #P. For a comprehensive introduction to computational
complexity theory including these definitions see [Pap94].

3 Hardness results

We will show in this section that deciding whether a symmetric game I'" has an
ESS is both NP-hard and coNP-hard, and that deciding whether there exists a
regular ESS is NP-hard.

3.1 ESS is coNP-hard

We show that ESS is coNP-hard by reducing coCLIQUE to it. In doing so, we
make essential use of the following classic result due to Motzkin and Straus
[MS65).

Theorem 1 ([MS65]) Let G = (V, E) be an undirected graph with mazimum
clique size c. Let Ay = {x € ]Rlzvol : lezll T; = 1}. Then maxzea, o7 Agx =
c=1

—.
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Corollary 2 Let G = (V, E) be an undirected graph with mazimum clique size
candletl € Ryo. Let A} = {;U € R‘Zvol : ZLZ'I T; = l}. Then zT Agz < %F
for all x € A,.

Proof. Forl =0, Ag = {0} and thus 0T A0 = 0. So suppose | > 0. Let

x € A; and set y = %m Then y > 0 and ELZ; y; = 1, hence y € A;. Therefore

by Theorem 1 27 Agz = (ly)T Ag(ly) = Py Agy < 12%‘ "

Definition 3 Let G = (V,E) be an undirected graph. For k € N define the
game I't,(G) = (S,u1) where

e S=V U{a,b,c} are the strategies for the players where a,b,c ¢ V.
o The utilities are given by

— ui(i,j) =1 for alli,j € V with (i,j) € E.

— uy(i,7) =0 for alli,j € V with (i,j) ¢ E.
— ui(z,a) =1 for all z € S — {b,c}.

— ui(a,i) = &L for allie V.

— ui(y,%) =1 for ally € {b,c} and i € V.

— ui(y,a) =0 for all y € {b,c}.

— ui(z,y) =0 for all z € S and y € {b,c}.

Theorem 3 Let G = (V, E) be an undirected graph. The game T'y(G) has an
ESS if and only if G has no clique of size k.

Proof. Let G = (V,E) be an undirected graph with maximum clique size c.
We consider the game T'y(G). Suppose s is an ESS of T'x(G). Then supp(s) N
{b,c} = 0, because if not let t # s be a strategy with (i) = s(i) for i € V,
t(y) = s(b) + s(c) and t(y') = 0 where y,y’ € {b,c} such that y # y' and
s(y) = min {s(b), s(c)}. Since u;(b,z) = u;y(c,2) for all z € S,

Ui(t,s) = i(i)/ Us (i, s) + (£(b) + t(c)) Up (b, s) = Ui (s, s)
€V _ ) —s(b)+s(c)

and so t is a best response to s. An identical argument shows that also U (s,t) =
Ui (t,t), but this is a contradiction to s being an ESS.
Furthermore, supp(s) € V, because if not, by Theorem 1

-1
Ur(s,8) = Y s(i)s(i)ur(ig) = a7 Agw < “—— < 1=Ti(b,5)
i,jeV

where z = (s(v1),...,5(vjv|))T € Ay and so (s, s) is not a Nash equilibrium.

Thus s(a) > 0. Suppose for contradiction s(a) < 1. Since (s,s) is a
Nash equilibrium, a is a best response to s and a # s. Then Ui(s,a) =
> zesupp(s) 5(2)ua(s, a) = 1 = Ui (a, a) gives a contradiction. Therefore the only
possible ESS of 'y (G) is a. Note that (a,a) is a symmetric Nash equilibrium
because u1(z,a) <1 =ws(a,a) for all z € S.
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Suppose ¢ < k. Let t # a be a best response to a. Then supp(t) C V U {a}.
Let r =) ,cy t(i). Sor >0 and t(a) =1 —r. So using Corollary 2:

Ui(t,t) = Urla,t) = Y #(@)t(i)ur (i, §) +r - t(a)l +t(a) - 7 +t(a)"1

NI

v

~~
< c:1r2

—(r-%+t(a)-1)

—1 —1
cc T2——kk_ P4rl—-r)+1-r)?->1-r)

fe=1 k-1Y\ , r?
—( - )r—ck(c—k)<0

So a is an ESS.

Now suppose ¢ > k. Let C C V be a clique of G of size k. Then ¢ with
t(i) = % for i € C and t(j) = 0for j € S — C is a best response to a and t # a,
but Uy (t,t) = Ei,jEC t()t(f)u1 (i, ) = ki (k=-1k-1= % =Ui(a,t), so ais
not an ESS. [

Corollary 4 ESS is coNP-hard.

Proof. Theorem 3 shows a reduction from coCLIQUE to ESS. The game
T'x(G) has an ESS if and only if G has no clique of size k. Clearly, 'y (G) can
be constructed from G in polynomial time. ]

3.2 ESS and REG-ESS are both NP-hard

We now show that deciding whether a game with rational payoffs has an ESS is
NP-hard by reducing SAT to ESS. We will moreover see that the same reduction
shows that REG-ESS is NP-hard.

Lemma 5 Let n € N and k € R>o. Let A be the n X n-matriz where all
entries are 1 except diagonal entries which are all 0. Consider the mapping
f:R* > R, f(z) = 37 Az. Then, the only mazimum of f subjectto Y, x; =k
isz* = (£ & k)T with f(£,. .. By = n=1}2

nin’ T on 'n

Proof. Note f(z) =1 | ; Z]:;:é zj. Since )7 xj =k, f(z) = 20, wi(k—
;) =kY o xi— Yo @ =k =Y 7. Let (z,y) = 3, z;y; denote the

i=1 %5 -
standard inner product of vectors z and y. Let 1 = (1,...,1)T denote the all
1 vector of length n. We thus want to minimize (z,2) = > ., 27, subject to
(z,1) = k. It is well known that z* is the unique such minimum. For complete-
ness, we provide a proof. Suppose (y,1) = (z*,1) = k. Note, for any vector z,

(z,z*) = %(x,l). Now,

)~ (*sa?) = ) — @) + 2, 1) — 2y, 1)

= {(y,y) +{="2") —2y,z") = y—2*,y—2") >0
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Moreover, (y — z*,y — z*) = 0 if and only if y = z*. Thus, z* is the unique
minimum. [ |

Lemma 6 Letn € N and k € R>q. Let B be the 2n x 2n-matriz where

0 ifi=3j

-2 ifj=i+1andi=2k+1 for somek
-2 ifi=j5+1 andi =2k for some k

1 otherwise

bij =

In other words, B has the form

0 -2 1 1 1 1 1
-2 0 1 1 1 1 1
1 1 0 -2 1 1 1
1 1 -2 0 1 1 1
1 1 1 1 .- 0 1 1
1 1 1 1 .- 1 0 -2
1 1 1 1 .- 1 -2 0

Consider the mapping f : RQZ’E — R, f(z) = 2T Bx. Then, 2* = (z},25,...,25,) €
RZZ% is a global mazimum of f subject to 2321 z; = k if and only if it satis-
fies x5 + 2300 = & and a3, 23, = 0 for all 0 < i < n. In that case,
fat) = B2,

Proof. Note that

n—1 [ n—1
fz) = Z(w2i+1 + Z2i42)(T2j41 + T2j42) — T2 1T2i 42
i=0 7=0
J#i
Suppose, for contradiction, that z* is a global maximum but that for some
i €{0,...,n—1}, 23, >0 and 25;,, > 0. Let 2’ be identical to 2* except
that x5, = 25;,, +25;,,, and z5;,, = 0. Note that z' satisfies the constraints

2321 z; = k, and 2’ > 0. However, f(z') > f(z*), because (z3;,; + 25;,5) =
(23541 + 3,41) for all j = 0,...,n =1, but 4z3; 25,1 > 435;125;,5 = 0
Contradiction. Therefore at any global maximum z*, z3;,,23;,,, = 0, for all
i=0,...,n—1.

Consider such a vector z*. Let I be the set of indices such that for each
i=0,...,n—1, exactly one of 2i+ 1 and 2i + 2 is in I and such that z} = 0 for

every index j that is not in I. Note that for any such z*, f(z*) = (z*)Y Bz* =
(z*)¥ By rz}. Note that Br 1 has exactly the form of matrix A of Lemma 5, and

that (z},1) = k. Therefore, by Lemma 5 the unique maximum of (z)? By s,
subject to (z,1) = k, is z} = (%, ey %)T From this the statement of Lemma

6 follows. =
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Definition 4 Let ® be a Boolean formula in conjunctive normal form. Let V
be the set of its variables (|V| = n), L the set of literals over V, and C C 2L the
set of clauses of ®. The function v : L — V gives the variable corresponding to
a literal, e.g. v(x1) = v(—x1) = z1. Define the game T'(®) = (S, u1) where:

e S=LUC are the strategies for player 1 and 2 and
o the utilities are given by

— u1(l,l2) =1 for all l1,ls € L with v(lh) # v(l2).
u1(l,1) =0 for all l € L.
—ur(l,=l)=—-2 for alll € L.
—ui(l,e)=—=1foralll€ L and allc € C.

(

(

(

|
S

1(c,l) = ;1 forallce C and alll € L with I ¢ c.

—ui(e,)) =—=1for allc € C and all |l € L with I € c.

— uy(c1,c2) = =1 for all ¢1,c2 € C.

Theorem 7 Let & be a Boolean formula in conjunctive normal form with n
variables. If (11, ...,1,) is an assignment of literals satisfying ®, then the mized
strategy s with s(I;) = = for 1 <i <n and s(z) =0 forz € S — {l1,..., 1l } is
an ESS for the game T'(®). Conversely, if s is an ESS for T'(®), then s is of
the above form and (l1,...,1,) is a satisfying assignment of ®.

Proof. Let ® be a Boolean formula in conjunctive normal form with n
variables. We consider the strategic game I'(®).

Let s be an ESS. First, we show that supp(s) N C = (. Assume not. Then,
there is a clause ¢ € C such that s(c) > 0. If s(c) = 1, then any literal [ of ¢
is a best response to s since U1 (l,s) = ui(l,¢) = —1 = ui(c,¢) = Ui (s, s), but
Ur(l,]) = ui1(1,1) =0 > =1 = uy(¢,l) = Ui (c,1), a contradiction to s being an
ESS. So suppose 0 < s(¢) < 1. Since s is a NE, we know that ¢ # s is a best
response to s and

Ui(s,c) = Z s(x) ui(z,¢) = =1 =wui(c,c) = Ui(c,c)
es T
contradicting s being an ESS.

Next, we show that v(supp(s)) = V, i.e. for each variable at least one
corresponding literal is played. Assume not. Then, there is a literal [ € L
such that s(I) = 0 and s(=l) = 0. Enumerating the literals in such a way
that {2+ = x; and 22 = -x; for all 0 < 4 < n, let B = (bi,j)lgz’,j§2n be
the 2n x 2n-matrix where b; ; = u1(l%,19) and s’ = (s(I'),...,s(>"))T. Note
that B is the same matrix B as in Lemma 6. So we can apply Lemma 6 to
see that 2=1 > s'"Bs' = Z” 1 53bi ;) Z” 1 8(IHs(M)ur (14, 19) = Ui (s, s).
But, U1(l,s) = 1+ 3 jcqupp(s) S = 1 > 2l > Ui(s,s), so s is not a Nash
equilibrium.

Next, we show that if s is an ESS, then there are n pairwise different literals
(I1,...,1) such that s(l;) = L and I; # —l; for 1 < 4,j < n. Suppose not.
Since v(supp(s)) =V, we can pick n pairwise different literals (I1,...,1,,) such
that I; € supp(s) and I; # —l; for 1 < 4,5 < n. Set t(l}) = Lfor1<i<n
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and t(i) = 0 for all ¢ € S — {I},...,l,,}. Since (s,s) is a Nash equilibrium,
every | € supp(s) is a best response to s, i.e. Ui(l,s) = Ui(s,s). Hence

Ui(t,s) = 2ii tl) Xjes sGuiliyg) = 3 i Un(ly8) = Ui(s, ), so t is
a best response to s. Then

Ur(s,t) = Y sOtua(l, 1) = Y t(l")sua(l',1) = Un(t, s)

LI'eL U,leL (1)
n—1
Ul(S,S) <
and
Ur(t,t) =D (1) | tua (1, 1) + > t(l)un (15, 1)
i=1 i=1
7 2)
"1 _11 n—1
_ it Z.Z. —1) =
; - O+z = n(n ) -
J;éz

so Uy (s,t) < Ui(t,t), contradicting s being an ESS.

What remains to be shown is that if s is a mixed strategy such that s(l;) = 1
for n different I; € L with [; # —l; for all 1 < 4,5 < n then s is an ESS if and
only if (I1,...,1,) is a satisfying assignment for ®.

Suppose s is such a mixed strategy. First, we show that (s, s) is a symmetric

Nash equilibrium. We know from equation 2 that Uy(s,s) = 2-L. Let L* =
{l1,...,1n}. Playing any of the I € L* gives utility Uy (l,s) = £-0+=(n—1)-1=
n-1 Playmg any of the I € L—L* gives utility Uy (I,s) = £- (—2)+%(n—1)-1 <
n=1 . Playing any of the ¢ € C gives utility at most U;(c, s) = %n "T_l = "T_l
Therefore, (s,s) is a symmetric Nash equilibrium.

Suppose (l1,...,1,) is not a satisfying assignment. Then, there is a clause ¢
such that none of its literals is played. Therefore, U1 (c, s) = Zle 1 s(Dui (e, 1) =
EleL* s(l)2=t = 2=1 S0 c is a best response to s and ¢ # s. Then Ui(c,c) =

= > er- sl )ul(l c) Ui (s, c), so s is not an ESS.

Conversely, suppose (l1,...,l,) is a satisfying assignment. Then, every

clause contains a literal that is played. Hence,

Uile,s) = > s(Dur(e, 1) = (-1) Y s(l)+"; ! Y os() < n-tl_ Ui (s, s)

n
leL* leL*Nc leL*—c

for allc € C. So, suppose t is a best response to s. Then supp(t) C ext-supp(s) =
L*. Like in equation 1, we get Uy(s,t) = Ui(t,s) = Ui(s,s) = 2=1. Let
A = (ai,j)lsi,jsn be the n x n-matrix where a;j; = Ul(li,lj) and let t' =
(t(lh),...,t(ln))T. Note that A is the same matrix as A in Lemma 5, so we
can apply Lemma 5 to see that

n—

> tT At = Z thbi it = Z (1)t ur (15, 1) = U (t, t)

3,j=1 3,j=1

n

with equality holding only if ¢(l;) = % for all 1 < i < n. Hence, we have that
t # s implies Uy (s,t) > U1(t,t). Therefore, s is an ESS. [
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Corollary 8 ESS is NP-hard.

Proof. Theorem 7 shows a reduction from SAT to this problem: the game
I'(®) has an ESS if and only if ® has a satisfying assignment. Clearly, ['(®) can
be constructed from @ in polynomial time. Therefore ESS is NP-hard. ]

Corollary 9 REG-ESS is NP-hard.

Proof. In the proof of Theorem 7 we have shown that (Iy,...,l,) is an
assignment satisfying a boolean CNF-formula & if and only if s with s(l;) = %
for1<i<mnands(zx)=0forz e S—{l,...,l,}is an ESS for ['(®). In fact, it
can easily be seen from the definition of I'(®) that supp(s) = ext-supp(s), and

hence s is then a regular ESS. Therefore, REG-ESS is NP-hard. ]

Corollary 10 #ESS and #REG-ESS are #P-hard.

Proof.  The number of (regular) ESS in the game I'(®) is the number of
assignments to the variables satisfying ®. Counting the number of satisfying
assignments of a CNF boolean formula is #P-hard. ]

4 Upper bounds

4.1 REG-ESS is in NP

In [Hai75], Haigh claimed to show that a strategy s is an ESS for ' = (S, uy) if
and only if (s, s) is a Nash equilibrium and the (k—1) x (k—1)-matrix C' = (¢;,5)
is negative definite, where k = |ext-supp(s)| and ¢;; = u1(i,7) + ui(k, k) —
u1(i, k) — uy(k, j) for i,j € ext-supp(s) — {k} (where, w.l.o.g., ext-supp(s) =
{1,...,k}).

In [Aba80], Abakuks pointed out that there is an error in the “only if” part
of Haigh’s claim. Namely, Abakuks showed that the existence of an ESS only
implies the negative definiteness of the matrix C' if in addition s(k) > 0 and
| ext-supp(s)| — |supp(s)| < 1.

As we will see, the Haigh-Abakuks criteria can fairly easily be used to show
that REG-ESS is in NP. By a suitable modification of these criteria, we can
obtain necessary and sufficient conditions for the existence of arbitrary ESSs
which will allow us to show that ESS is in X5.

Essentially identical conditions, based on “copositivity” of matrices over a
cone, were developed by Bomze and used by him in an algorithm for enumerating
all ESSs of a game (compare Theorem 14 below with Theorem 3.2 of [Bom92],
whose proof depends also on the development in [BP89]). Bomze’s enumeration
algorithm uses a recursive elimination procedure that involves some compli-
cations including possible numerical issues. In particular, we could not make
certain that iterating the procedure outlined in Theorem 3.3 of [Bom92] will
not cause an exponential blow-up in numerical values. We were thus unable to
ascertain our desired complexity upper bounds for ESS directly from Bomze’s
algorithms.



The Complexity of ESSs: K. Etessami and A. Lochbihler 12

We will instead give here a self-contained and elementary development of the
criteria we shall use, based directly on the work of [Hai75] and [Aba80], and we
will then (in the case of ESS) rely on a well known result by Vavasis about the
complexity of the quadratic programming decision problem ([Vav90]) to obtain
our upper bounds.

Lemma 1 in [Aba80] says the following: if ¥ = {y € R’go : Ele Y = 1}
and Z = {z eERF:2#£0, Zle zi = 0} and B is a real k x k-matrix, then

o 2T Bz for all z € Z implies that (z — y)TB(z —y) < 0 for all y € Y with
y # x and

e if at most one component of x is zero then (z — y)TB(z — y) < 0 for all
y € Y with y # x implies that 27" Bz < 0 for all z € Z.

In the following, we provide a variation of Abakuks’ Lemma, 1:

Lemma 11 Let k € N and let z € RY, such that Sk zi=1. Let

k
Y$={y€R’£0:Zyi:1}—{x}

i=1
and
k
Z, = {zER’“ :Zzizo,(v@'e {1,.. .k} 12, =0 = z 20)} - {0}
i=1
and let B be a k x k-matriz. Then the following statements are equivalent:
e 2Bz <0 for all z € Z,.
e (y—2)TB(y—2) <0 for ally € Y,.

Proof. Suppose 2Bz < 0forall z € Z,. Let y € Y,. Theny — 2 # 0,

Zf:l (ys — ) = Zle Yi — Zle z; =1—1=0and for all 1 <4 < k with

z; =0 we get y; —x; =y; >0, hencey —x € Z, and so (y — )T B(y — z) < 0.
Conversely, suppose (y —z)TB(y —x) < 0 for all y € Y,. Let z € Z,. Set

,\=min{é—’_’|:1gigk,zi>0,zi;éo}
1

Then A > 0. Choose y =z + Az # . Then y > 0 because x > 0 and if z; < 0
then z; > 0 and y; = z; — Alz;| > z; — |§—||z,| =0 for 1 <4 < k. Note that

k k k
=1 i=1 i=1

Hence y € Y, and thus 27 Bz = (3 (y — m))T

z) < 320=0. n

>|=
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Lemma 12 ([Hai75]) Let C = (ci;), ; be a real mx m-matriz, m > 2. Let D =
(di,j)i,; be the (m—1)x (m—1)-matriz given by d; ; = ¢i j+Cm,m—Ci,m—Cm,j. Let
z € R™ such that 37" | x; = 0 and set ' = x{1, m—1}. Then 27 Cx = 2" Dz'.

Proof. A proof for this and the next lemma was given by Haigh in [Hai75].

For completeness, we provide it here. Let 2 € R™ such that Y ", z; = 0, i.e.
m—1

Tm =— ;—; *;. Then

m—1m-—1 m—1 m—1
TC _ P o . 2
xr Cx = TiCijTj + Tm Cm,j%; + TiCim | + TpCm,m
i=1 j j=1 =1

=1
m—1

3

(@icijTj + (—%i)em, ;T + Ticim(—2;) + (=) Cm,m(—25))

[l
i

3
L
i

_ T !
T (Cij + Cmm — Cmyj _cim)xj =z Dz
j=1

s
I
-

<
I

Lemma 13 ([Hai75]) Let (s,s) be a symmetric Nash equilibrium for the game
I'= (S,u1) and let M = ext-supp(s). Let x = sy and C = (Ar)y - Let Y,
be defined as in Lemma 11. s is an ESS if and only if (y —x)TC(y —z) < 0 for
aly €Y.

Proof. Let t be any best response to s. Consider

Ui(t,t) = Ui(s,t) =tT Art — sTApt = (t — )T Ar(t — s+ s)
=(t—s5)TAr(t—s)+ tTArs —sTArs = (t —s)TAp(t — s)
N— ————

=U1(t,5)=U1(s,5)=0

Note that t(z) = s(z) =0 for z € S— M. Let y = tps. Then (t—s)T Ap(t—s) =
(y—2)"Cy - o).

Suppose s is an ESS. Then for any y' € Y, let t' € X with t'(z) = ¢/'(2)
for € M and t'(z) = 0 for 2 € S — M. Then t' # s is a best response to s,
because supp(t) is contained in M = ext-supp(s). Thus, (y' — z)T7C(y’' — z) =
(t' —s)TAp(t' — s) = Uy (¢, t') — Uy (s,t') < 0.

Conversely, suppose (y — 2)TC(y —x) < 0 for all y € Y,. For any best
response t # s to s, set y' = tpy. Then y"” € Y, and so Uy (t,t) — Ui(s,t) =
" —2)TCW" —z) <0. u

Theorem 14 (c¢f. [Bom92], Theorem 3.2) Let (s, s) be a symmetric Nash equi-
librium for the game ' = (S,u1) with |ext-supp(s)| = m, and m > 2. Let
M = ext-supp(s) and identify M with {1,...,m} such that s(m) > 0 and let
z=3sy. Let C = (Ap)MvM and let D be defined as in Lemma 12. Let
We={weR"':(V1<i<m-1l:z;=0=w; >0)}— {0}

Then s is an ESS if and only if wT Dw < 0 for all w € W,.
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Proof. Let Y, and Z, be defined as in Lemma 11. From Lemma 13 we know
that Ui(t,t) — Ui(s,t) < 0 for all best responses ¢ # s to s is equivalent to
(y —2)TC(y — ) < 0 for y € Y, which itself is equivalent to 27Cz < 0 for all
2z € Zz by Lemma 11.
Now suppose that w"Dw < 0 for all w € W,. Let z € Z,. Set w' =
2{1,..,m—1}- Then w' € W, and so with Lemma 12, we get 27Cz = w'" Dw' < 0.
Conversely, suppose that 27Cz < 0 for all z € Z,. Let w € W,. Set z} = w;

forl1<i<m-—1landz = —Z;’;l w;. Then 2/ = (24,...,2!.)T € Z, because
s(m) > 0 and so with Lemma 12, we get w! Dw = 2'T'C2' < 0. [

Lemma 15 Let s be an ESS for T' = (S,u1). Then (s,s) is the only symmetric
Nash equilibrium (t,t) with supp(t) C ext-supp(s).

Proof. Suppose there was a symmetric Nash equilibrium (¢,¢) other than
(s, s) with supp(t) C ext-supp(s). Then t # s is a best response to s and since
(t,t) is a Nash equilibrium, Uy (s, t) < U;(t,t). Contradiction to s being an ESS.
|

Theorem 16 REG-ESS is in NP.

Proof. Given a game I’ = (S,u1) (n = |S|) with rational utilities, guess the
extended support set M C S of a (purported) regular ESS s for ' and let m =
|M|. Identify S with {1,...,n} such that M = {1,...,m}. Find a symmetric
Nash equilibrium (s, s) of T" with supp(s) C M by solving the following linear
system of constraints in variables si,..., s,,w, where s = (s1,...,5,)7:

e Ui(i,s) =wforalli e M.

Ui(i,s) <w forallie S — M.

o Y si=1
e 5; >0forallie M.
e 5;,=0forallieS— M.

A solution to this system can be found in polynomial time, via linear program-
ming. Let s be an arbitrary solution. By Lemma 15 if s is an ESS then s is
the only solution to the system above. Thus it doesn’t matter what solution
we find (if we don’t find any solution, then there is no Nash equilibrium and
hence no ESS with support set M). Check that supp(s) = ext-supp(s) = M.
This check can be done easily in polynomial time, by trying each pure strategy
outside supp(s) against s.

Note that if |[M| = 1 then the pure strategy s is the only best response to
itself, and thus s is a regular ESS. Suppose |M| > 2, and let z = sp;. Let D
and W, be defined as in Theorem 14. By Theorem 14, s is an ESS if and only
if w” (~D)w > 0 for all w € W,. Set D' = 1 (D + D”). D' is a symmetric
matrix, and note that w” D'w = wT Dw for all w.

Note that W, = R™~! — {0} because supp(s) = M. Hence s is an ESS
if and only if (—D') is positive definite. Positive definiteness of a symmetric
matrix can be checked in polynomial time via the determinant criterion (see
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section 2). Therefore checking whether there is an ESS s for I with supp(s) =
ext-supp(s) = M for the guessed set M can be done in polynomial time. Thus
REG-ESS is in NP. ]

Corollary 17 #REG-ESS is in #P.

Proof. In the proof of Theorem 16 we give a non-deterministic polynomial-
time algorithm for deciding whether a game has a regular ESS. Each accepting
computation yields a different support set and thus a different regular ESS.
Therefore, #REG-ESS is in #P. |

4.2 ESS is in X%

Definition 5 Let QP denote the following decision version of the quadratic
programming problem: Given a n X n-matriz H and a m X n-matriz A, both
with integer coefficients, K € Q, c € Z™, and b € Z™, is there a x € R™ with
Az > b such that tTHz + ¢Tx < K ?

Vavasis [Vav90] proved that the quadratic programming decision problem is
in NP (see also, e.g., [MK87]).

Theorem 18 ([Vav90]) QP is in NP.

Theorem 19 ESS is in 5.

Proof. Given a game I' = (S,uq) (n = |S|) with rational utilities, guess
the extended support set M C S for an ESS s for I' and set m = |[M|. As
in the proof of Theorem 16, compute a symmetric Nash equilibrium (s, s) with
supp(s) € M. Check that ext-supp(s) = M (this again, can be done easily
in polynomial time). Set I = m — |supp(s)|. If I = 0 then proceed as in the
algorithm in the proof of Theorem 16.

Suppose [ > 0, and thus m > 2. Let x = sps. Let D and W, be defined as
in Theorem 14. By Theorem 14, s is an ESS if and only if w? (—=D)w > 0 for
all w € W,. In other words, s is not an ESS iff there exists w € W, such that
w? (=D)w < 0. This is the case iff there exists w # 0 such that w; > 0 for all
i such that z; = 0. This in turn, we claim, is the case iff

there exists a w such that w; > 0 for all ¢ where z; = 0, and such

that for some j € {1,...,m — 1}, w; > 1 or —w; > 1.

To see the last claim, note that if w” (—D)w < 0, then for any constant ¢ > 0,
(cw)T (=D)(cw) = wT(—D)w < 0. Thus, for w # 0 where w”(—D)w < 0,
we can choose a constant ¢ > 0 large enough so that either for some positive
coefficient w;, cw; > 1 or for some negative coefficient w;, —(cw;) > 1. Thus
the vector (cw) will satisfy the desired conditions.

Now, it is easy to check these conditions by solving a sequence of 2(m — 1)
quadratic programming decision problems. Namely, we check for all 1 < j <
m — 1 and for each o € {+1,—1}, whether there exists a w € R™~! satisfying
wT(=D)w < 0, and satisfying the linear constraints: w; > 0 for each 4 such
that z; > 0, and ow; > 1.
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As described, the matrix (—D) is not necessarily an integer matrix but ratio-
nal, and the QP decision problem was formulated in terms of integer matrices.
However, we can easily “clear denominators” in (—D), finding the least common
multiple A > 0 of the denominators of all entries of D and setting H = —AD
(this can be done easily in P-time). Then H is a (m — 1) x (m — 1)-matrix with
integer entries, and w” Hw < 0 if and only if w” (—=D)w < 0, for any w € R™~1.

Thus, checking that s is not an ESS can be done in NP. Thus, to determine
the existence of an ESS involves existentially guessing a support set M, finding
s with support set M such that (s,s) is a Nash equilibrium (using linear pro-
gramming), and then checking that s is an ESS in coNP, by checking (in NP)
that s is not an ESS. This concludes the proof that ESS is in X¥%. ]

In summary, we have shown:

Corollary 20 REG-ESS is NP-complete and #REG-ESS is #P-complete.

Proof. This follows immediately from Corollary 9, Theorem 16 and Corollaries
10 and 17. ]

Corollary 21 ESS is not in NP unless NP = coNP.

Proof. By corollaries 4 and 8, ESS is NP-hard and coNP-hard. Thus, if ESS
in NP, then NP = coNP. ]

5 Concluding remarks

Our results leave open whether the general ESS problem is ¥%-complete or
belongs to some “intermediate” class above NP and coNP but below X3.

An issue not addressed directly by what we have said so far is whether an
ESS, if one exists, can be “approximated” efficiently. Here one has to be careful
about what it means to approximate an ESS, since indeed none may exist. One
formulation would be that there is a polynomial time algorithm that, given € > 0
and the game as input, outputs a mixed strategy s such that if there exists a
(regular) ESS, then there exists a (regular) ESS s* such that ||s* —s|| < €, under
some vector norm || - ||. For concreteness, let ||s|| = X, |s;| be the L; norm
(other norms like Lo, would work just as well). Let us call this a polynomial
time e-approximation of (regular) ESSs.

Based on this definition, we can easily conclude the following inappoxima-
bility statement from the results in Section 3.2.

Corollary 22 There is no polynomial time %—approximation algorithm for find-
ing an ESS in a game T = (S,u1) nor for finding a regular ESS in T, where
m = |S|, unless P = NP.

Proof. Suppose there was such an algorithm. For a boolean formula &, we
run that algorithm on the game I'(®) = (S,u;) with |S| = m = 2|V| + |C|,
where |V| = n is the number of variables of ®, and |C] is the number of clauses.
This would yield a strategy s such that if there exists a (regular) ESS in I'(®),
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then there exists s* with ||s* — s|| < L. Thus |s} —s;| < L forall 1 <i <m.
Note however that by Theorem 7, the only candidate (regular) ESSs s* in that
game has, in every coordinate, either probability |17‘ = % > % or probability
0. Thus if s; > L, then the only possible candidate for s} is s; = +, and if
s; < =, then the only possible candidate is s} = 0. If s; = -1 then neither is
a candidate and hence s is not within distance < L of any ESS, therefore no
ESS exists.

So, we can build the candidate s*, check that the probabilities in it sum to
1, and that it corresponds to a truth assignment to variables, meaning exactly
one of the two pure strategies corresponding to the two literals for each variable
has non-zero probability, and no strategy corresponding to a clause has non-zero
probability. We then check whether this is actually a satisfying assignment of
®. If so, ® is satisfiable, otherwise ® is not. Thus we would have solved SAT
in polynomial time using our purported approximation algorithm. ]

Other notions of approximation may be preferable. As described in the
introduction, a speculative motivation for considering inapproximability of ESSs
arises from the dynamical system view of evolutionary stability. Suppose the
biological system that our game intends to model does actually converge to
an evolutionarily stable strategy by some kind of dynamic process. Then one
way to interpret a hardness result for approximating an ESS is as a statement
that it must take a “long time”, starting from an arbitrary initial state, for
the system to converge to an ESS, under any dynamic process that is “locally
simple”, meaning each “iteration” is easy to compute. Since convergence may
only happen in the limit, inapproximability seems more appropriate here than
hardness of exact computation.
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