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Abstract

Isometries on formal power series over the finite field I, or on 2-adic
integers can be computed by invertible transducers on inputs from {0,1}°°.
We consider the structural complexity of an isometry f, measured as tree
complezity T(f,h), h the tree height [H. Niederreiter, M. Vielhaber, J. Cpz.,
12 (1996)] and the computational complexity, as number of bit operations
B(f,n) needed for the first n input / output symbols.

We introduce the shift commutator C(f) := o~ 'of~tooof (o the shift on
{0,1}°) and show that f + C(f) is a selfmap on the set of all isometries.
We obtain the polynomial bounds T(C(f),h) < T(f,h)?2 — T(f,h) + 2 and
B(f,n) <n-B(C(f),n)), by simulating f by n copies of C.

On the other hand, trying to bound T'(f, h) by T'(C(f), h) it turns out that
e.g. for the isometries connected to the continued fraction expansion and to
Collatz’ 3N+1 conjecture, the function f itself is structurally exponentially
more complex than its C(f). Hence simulating f by C(f) may yield sharper
upper bounds for the bit complexity as can be inferred from f alone.

We finish with some dynamical aspects of isometries like orbits, ergodicity,
preservation of measure.

Keywords: Isometry, transducer, shift commutator, tree complexity, bit com-
plexity, 3N+1 conjecture, formal power series, continued fraction expansion.

I. Introduction

This paper deals with aspects of the five isomorphic groups:
— functions on {0, 1}*° computable by bijective transducers,
— isometries of formal power series over Fy,

— isometries on the integer 2-adic numbers Zo,
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— the (graph) automorphism group of the rooted infinite binary tree, and
— the infinite wreath product of the symmetric group Sz, ((...S2)152)1.55.
We denote these isomorphic groups with P.

In section 2 we introduce these five equivalent views and define the con-
cepts isometry, transducer, and tree representation.

Section 3 treats the shift commutator [0, f] :== 0~ 'of~loogof ofan f € P,
where o is the shift on {0,1}*°. We shall see that C : P > f — C(f) :=
[o, f] € P is a selfmap on P.

Section 4 reviews the concepts of tree complezity T(f,h) [11] to measure
the structural complexity of isometries and bit complexity B(f,n) to measure
the computational (time) complexity.

It is known by a result of Christol et al. [5], that if T'(f,h) = O(1) for f € P
as a function of the tree height h € N, then f is computable by a transducer
with finite state space and hence the bit complexity is B(f,n) = O(n) with
growing input length n € N.

We show that going from f to C(f) the tree complexity may increase
only polynomially: T(C(f),h) < T(f,h)?> — T(f,h) + 2. Also we obtain
B(f,n) <n-B(C(f),n) by using n copies of C(f) as a simulator for f.

Things change when we go “backwards” from C(f) to f: In section 5
we present two examples, one, f = ¢ connected to Collatz” 3N + 1 con-
jecture, typically seen as an isometry on Zo, the other, f = k as isome-
try on formal power series, describing the expansion into their continued
fraction expansion. In remarkable contrast to the polynomial bound in sec-
tion 4 we here obtain T(f,h) = Q(exp(5T(C(f),h))) for f equal to c or
k (recall that the order of two functions z,y is: y(t) = [Q;O;o0](z(t)) if
limy_, 00 % = [oo; finite; 0]). Thus structural complexity may shrink dra-
matically when going from f to C(f). Applying C(f) as simulator for f
we hence obtain efficient procedures for calculating ¢ and k by means of
repeatedly invoking their shift commutators.

The last section 6 covers dynamical aspects of the elements of P. We obtain
the possible orbit lengths |{a, f(a), f(f(a)),-..}| and we show that all f € P
are measure—preserving, none is 2-mixing, and we characterize the ergodic
isometries by a property of their tree representation.

II. Five Isomorphic Groups

Definition 1 Sequences, Formal Power Series, Integer 2—adic Numbers
(1) Let A = {0, 1} be an alphabet with 2 elements. Let A®° = {(a1, a2, as,...) |
a; € A} be the infinite sequences over A.



(i5) Let S = {D 22, axz ™% | ar € B} C Fy[[z~!]] be the set of formal
power series in z~! with negative degree and coefficients in the finite field
Fy with two elements (S is a ring without unity).

(13i) Let Zo be the set of integer 2—adic numbers. These are sequences of
numbers z; € Z, (x;) = (x1,2,...) such that z;;; = x; mod 2° for all 4 in
N, and where two sequences (z;) and () are said to be equivalent, and thus
define the same 2-adic number a, if and only if z; = z} mod 2¢ for all 5 € N.

Zs is a ring with sum and product defined by the sequences (z; + y;) and
(z; - vi), and contains a copy of the ring Z of rational integers, since to each
n € Z corresponds the 2-adic number defined by the constant sequence
(n,m,...).

For each a € Zy we consider as representative the canonical sequence (z;),
where 0 < z; < 2¢ for all ¢ > 1. Since 0 < z; = z;_1 + a; - 201 < 2,
it follows 0 < a; < 2, and we obtain the base-2 representation of z; =
ai+as-2+a3-22+...+a;-271 with 0 < a; < 2 for all i > 1. We identify
a with the infinite series ) :°, a;2°~! and also write a = ajasas. .. € Zo.

(1v) We identify an element (a1, as2,as,...) in A* with the corresponding
2-adic number ) %, a; - 2= in base-2 representation and also with the
corresponding formal power series > 7, a; - z "in S.

For example, (1,1,0,0,0°) € A =z '+ 2€S=110° =3 € Z C Zo.

Definition 2 2-adic Distance, Isometry For a,b € A®, a = (a1, az,as,...),
b = (b1, bo,bs3,...), we define the 2-adic distance

_ 2716, a1 =bi,...,a5-1 =bg_1,a5 # b
d(a’b)_{ 0, a; =b;, Vi € N

The same distance is defined for S and Zs via the identification from 1(iv).

A selfmap f on A (S, or Zs, resp.) is called an isometry if Va,b € A%
(S, or Zo, resp.): d(a,b) = d(f(a), f(b))-

Definition 3 The Group of Isometries

(1) We denote as P (for permutation) the set of all isometries f: A% — A™.
Isometries are selfmaps, and for f,g € PP also g o f is an isometry, since
d(g(f(a)),g(f(b))) = d(f(a),f(b)) = d(a,b). Then the set (P,o) forms a
group with identity id : a — a for all a € A®.

(73) By the identification from Definition 1(iv), we may consider every
f € P also as isometry on S, and vice versa: Let f: A% — A%, (a;) — (b;)
be an isometry on A, then the induced selfmap f: S—S,> 2 a;- 7t
21921 b; - 7" is an isometry on S, and vice versa, since the same distance
applies.

(14) As in (i7) we also have (IP,0) isomorphic to the set of isometries on



Z9 with its composition as group operation, identifying A% with Z,.
These are three of the five groups isomorphic to (P, o).

Example 4 Some Isometries

(7) The identity id: A — A, a + a is an isometry.

(i) The addition of £ ! in S is an isometry which we denote as plusi.
On A it acts as plusi(a1,as9,as,...) = (1 —a1,a2,as,...) (note that in Fy,
a—1=a+1=1-a). On Zy, plusl behaves like

a+1, aeven

plusl : Zg — Zo, GH{ a—1, aodd

(where we say that a is even if a; = 0 and odd for a; = 1), emphasizing
that every isometry on A, Zo, or S is also an isometry on the other two
structures.

(731) The addition of 1 in Zo (with carry) is an isometry, the “odometer”
function which we denote with inc (“increment”), where inc(1%°) = 0% and
inc(1%0x>°) = (0F1x>) for k > 0. Here 1¥0%> means (a;) with a; = 1 for
1 <4<k, agy1 =0 and a; arbitrary for s > k + 2.

(tv) The inverse of inc is dec (“decrement”) with dec(0*°) = 1°° and
dec(0F1x>®) = (1%0%>) for k > 0.

We shall be interested in the complexity of computing isometries (on A%,
S, or Zs3) by means of transducers. We follow closely the definition in [1, 1.5]:

Definition 5 A Synchronous Invertible Binary Transducer is a 5—tuple
T= (Q, 4, qo, 0, T) where

(1) @ is a (possibly infinite) set, the set of states,

(2) A is the alphabet {0,1},

(3) g0 € Q is the initial state,

(4) o is the map 0:@Q x A — @, the transition function,

(5) 7 is the map 7: @Q x A — A, the output function, such that the induced
map 74: A — A obtained by fixing a state g is a permutation, that is a
selfmap of A, for all states ¢ € Q.

T is synchronous since the length of input and output coincide, invertible
by the condition on 7, and binary as A = {0,1}. In the case |Q| < oo, we
call T finite.

We call a selfmap f € P finite if there exists a finite transducer comput-

ing f.



Example 6 Transducers for our four ezample isometries, all finite

(1) Let T;q = ({1},4,1,0(1,a) = 1,71(a) = a). Then T;3 computes id,
since with 71(a) = a input and output coincide.

(1) Let Tpus1 = ({1,2},4,1,0(¢q,a) = 2,71(a) =1 — a,m(a) = a). Then
Tpius1 computes plusi, by inverting the first input symbol a; in state 1, and
leaving unchanged the further input in state 2.

(i) Let Time = ({1,2},4,1,0(1,0) = 2,0(1,1) = 1,0(2,a) = 2,71(a) =
1 — a,m(a) = a). Then Ty, computes inc, changing a prefix 1%0 into 0¥1
(and 1°° — 0%) in state 1, then leaving the further input unchanged in
state 2.

(tv) Let Tgee = ({1,2},4,1,0(1,0) = 1,0(1,1) = 2,0(2,a) = 2,71(a) =
1 —a,m9(a) =a). Then T4, computes dec (symmetrical to (#i7)).

Definition 7 Tree Representation of an Isometry

We visualize an isometry f: A% — A® by means of its tree representation
as the rooted infinite binary tree G with labels, whereby we obtain a further
isomorphism, P 2 Aut(G), the automorphism group of the graph G (compare
[1)):

(1) Let A* = {¢,0,1,00,01,10,11,000,...} be the finite words over the
alphabet A, including the empty word €.

Let + : A* — N be the bijection that associates to a finite word w the
natural number +(w) that corresponds to (1w)y, the base—2 representation
(from right to left) of the finite word lw.

Some values for w, (1w)y as number in base-2, and «(w) in N:

w  (lw)e (w) | w (Qw)2 v(w) | w (lw)s v(w)

€ 1. 1 01 101. 5 001 1001. 9
0 10. 2 10 110. 6 010 1010. 10
1 11. 3 11 111. 7 011 1011. 11
00 100. 4 000  1000. 8

(73) Let G be the infinite rooted binary tree. Let the nodes of G be labelled
as follows: The root has label ¢ with +(¢) = 1, the parent with label w € A*
has its left child labelled w0 and its right child labelled w1, with ¢(w0) =
2-1(w) and t(wl) =2 - 1(w) + 1 = ¢(w0) + 1, resp.

Graph automorphisms of G leave the root fixed, but may exchange, for
any node or subset of nodes, its two subtrees. We thus can represent every
automorphism by a function f: A* — {0,1}, where f(w) := 1 if the node
with label w exchanges its left with its right subtree, and f(w) := 0 if not.
An exchange at the label w amounts to exchange the node labelled w0a with
wla, for all a € A*.




(iii) Let f € P. We define a representation of f by a function f: A* — {0,1}
1 7 0, . 0,
with f(w) = { 1. if f(w0...)p41 = { 1

Since f is an isometry, we infer that for all w € A*, for all & € A and any
infinite suffix *°° € A%, f(wa*x>), 41 = { 1 f Viff f(w) = { (1) that is
fwax®) 11 = a+ f(w) (mod 2) (addition in Fy). Hence

~ ~ ~ ~

flai,a2,a3,...) = (f(e) + a1, f(a1) + a2, f(a1a2) + a3, f(a10203) + ay,...).

Using ¢, we shall write fl(w) := f(w) and thus have f(a1,as,as,...) = (fl(g)—l-
al,fl(al) + ag,fb(alw) + as,...). In this manner the tree representation of
f becomes just another infinite bit string ( f,) € A% where the term to
be added to a; comes from the i—th level of that tree representation (see
Example 9).

(iv) Identifying the two interpretations of a string (f;) € A% in (i) and
(31), we have a bijection between P and the automorphism group Aut(G).
Using composition (of isometries and automorphisms, resp.) as group oper-
ation, this turns out to be a group isomorphism (P, o) = (Aut(G),o) (see [1,
Chapter 1]).

Definition 8 Infinite Wreath Product of Sy
Let S2 be the symmetric group of permutations of 2 elements. Then So =
(F2,4). Then P is isomorphic to the infinite wreath product of Sy
limkﬁm(((SQ .. ) { SQ) l SQ)

~ J

k fa(;ors

which is the most abstract, group theoretic view of IP (see [1, 1.2, p.23]).

Remark In the sequel, we usually talk abstractly about f € P or give
an example for one structure (e.g. Zy) only. Keep in mind that everything
about P or elements of P now has five different, but equivalent valid inter-
pretations according to 3(3, 74,4i%), 7(iv), and 8.

Example 9 We consider the isometry inc. We shall denote the upper
four levels of the graph G, the infinite binary tree with root, with seven
different labellings (recall the details of Ty, from 6(7i7)):

— states ogjpe: the root (level 1) receives label ¢g, the childs of a node
labelled g receive labels o(q,0) (left child) and o(q,1) (right child), resp.



— output T, every node is labelled 7(¢,0) = 7(q,a) — a, with the ¢
from the previous tree. This labelling, read linearly level by level, states the
sequence (inc;)

0 0 0 0 0 0 0 1

— 4d, the numbering according to ¢
1le
20 31
400 501 6 10 711
8 000 9001 10010 11 o11 12 100 13 101 14 110 15111

— inc, the position of the nodes after the action of inc € Aut(G) that

switches subtrees at the nodes with 7 =1 i.e. at numbers 1,3,7,15,... :
1
3 2

15 14 12 13 8 9 10 11

— inc?, the nodes after one more action of inc that now switches subtrees
at the nodes 1,2,5,11,... (always the rightmost one at each level):
1
2 3

11 10 8 9 15 14 12 13

— T;ne2, the nodes whose subtrees have to be switched to obtain inc? start-
ing from id, receive a 1 :



— Oine2, States for inc?, every subtree of T;, .2 with a new pattern gets as-

signed another state number :

and we see (assuming regular development in the further levels) that apart
from the root there are now two copies of the inc-tree. Also, we can im-
mediately infer the transducer for inc®: T;,» = ({1,2,3},4,1,0(1,a) =
2,0(2,0) =3,0(2,1) =2,0(3,a) =3,71(a) = 13(a) = a,72(a )—1—a)
Example 10 We denote the tree representation of f, ( fz)z 1; in a lin-

earized form as ()32, = fi.fofs.fafsfofr-fsfofrofir frafisfiafis.fis ... (the

dots separate levels). Then

(i) (i) = 0.00.0000.00000000.0...
(i) (plusi;) = 1.00.0000.00000000.0...
(iid)  (ine;) = 1.01.0001.00000001.0. ..
(iv) (dec;) = 1.10.1000.10000000.10. ..
(v)  (inc%) = 0.11.0101.00010001.0...

ITI. The Shift Commutator

Definition 11 Shift and Inverse For a = (a1,a9,...) € A* and a € A let
o(a) = (ag,as, -..) be the one-sided shift on A% and o' (a) = (o, a1, as,...)
an inverse of o.

Definition 12 Given an isometry f € P, we define its shift commutator
C(f): A® — A* by

Va € A% : C(f)(a) := [0, fi(a) =05 o f 000 f(a)

where « := f(a); is the symbol shifted out by o.

C induces a map on A® as C: A® — A® f s é(f) = C(f)-

Remark More on shifts in the realm of Symbolic Dynamics can be found
in Lind and Marcus [8].

Theorem 13
(1) For every f € P, its shift commutator C(f) is an isometry.
(1) The map C is an isometry.



Proof.
(i) Let f, f L € P. Let a,b € A® with |a — b| = k.

For a = b, |C(f)(a) — C(f)(b)| = |a — b| = —oo trivially.

For a; # by we have k = —1 and C(f)(a)1 = f(a)1, C(f)(b)1 = f(b)1 from
the final 0! and thus |C(f)(a) — C(f)(b)| = |f(a) — f(b)| = —1.

Let now a,b € A® with —oo < |a — b = k < —1. Then
|f(a) — F(b)| = k, since f € P,
|(go f)(a) — (oo f)(b)] =k — 1, since both sides loose 1 symbol,
I(f~ 1ooof)( )= (ftooo f)(b)| =k —1,since f~! € P, and
|(o f(a oftooof)(a) — (0;&)1 o f~lo oo f)(b)| = k, since we join the
same symbol on both sides, and thus |C(f)(a) — C(f)(b)] = |a — b =1 and
C(f) eP.

(i1) Let f,g € P, let k = minjen{f; # 6} = —|f — §|- Let w = (k)
with  := |w|. Then for all v with |v| < |w| we have f(v) = g(v) and thus

f~1(v) = g~ (v), which we will use for “ pelow.

We first show @k # C/’(;)k. Let y = f(w0>®) and z = f~1(o(y)):

C(f)(wa)iap =(0" o f T ooo f)(wr... wa)iit

(0o f too)(yr-- ylfe + @)1t
= (05, o f71) (w2 yl(fk+04))1 d41

(o) (21 -2 1(fk+a+f y2 ) 1A+

(05" 09—1)(y cu(fe+ @t F ) F 9 )1t
= (04, 09 M)y i fr + Q)1.041
= (07 og o o)y i (fr + @)1

=(ocloglooog)(wi...w(fr+a— )it
(2) (0'71 o gil ogo g)(’w1 .. .wl(oz + 1))1..l+1
# (0 togtogog)(wy... w(a))1 111

where at (x fk and gy are distinct by assumptlon

Analogously, for all v with ¢(v) < ¢(w) at (e f and § are the same, and
also ) still holds, hence C'(f)(va):...|y|+1 ) C(g)(va)1...jp|+1-

Thus |C(f) — C(g)| = —k = |f — §| and € € P. 0

Example 14 Shift Commutators for our four toy examples:

(1) C(id) = id and id is the only fixpoint of C
Proof. f is fixpoint of C & Va € A®: f(a) = C(f)(a) = o lof tooof(a)
& Ve A®:b=c"loflog(h)= Vbe A®:0(b) = floo(b) & fl=
id & f=1d O



(#3) The isometries inc and dec form a 2-cycle under C.
Proof. We have inc™! = dec. Now we compute [o,inc] in 4 steps, distin-
guishing between even and odd numbers:

Let a € Z2 be even. Then For odd a € Zg, similarly
inc(a) = a + 1; odd inc(a) = a+ 1; even
ola+1)=%a=1 ola+1)=44a=0
incH($) =2 -1 inc”l(eH) = el —1 =1
ol (g -1 =1+2(5-1) oy (47) =25

2
=a—1=C(a) = dec(a) =a-1

(#4¢) Similarly C(dec) = inc.
() C(plusl)(a1,az,a3,a4,...) = (1 —ay,1 — as,as,ay,...) (see Proposi-
tion 42 with plusi= l1p).

Algorithm 15 Computing Transducers for f =1, go f, and C(f)

Let f,g be computed by the transducers 7y = (Qy, 4,qr0,0f,7f) and
Ty = (Qg, A, qg0,04,Ty), resp., with |Qyl, |Qg| < co. The constructions will
show that with f, g finite also f~!, g o f, and C(f) are finite.

— The inverse f ! is computed by the transducer Ti-1 = (Qy, A, g0, o', 1)
with o'(¢q,a) = 0(q,7(¢q,@)) and 7/ = 7. By symmetry (f ')~ = f the re-
duced (minimum number of states) transducers for f and f ! have the same
number of states and one is obtained from the other by this procedure.

— The composition g o f is computed by the transducer
Tgor = (Q(gof)s A A(gof)0: T(gos)> T(gor)) With
Q(gof) = Qg X Qy,
q(gof)0 ‘= (nganO)a
9(g05) (49, 45), @) = (09(qg, Tf (45, @), 04(qs, @), and
Tgor) (g, af), @) = 74(qq, Tf (a5, @)

This algorithm usually does not provide a reduced transducer, as can be
seen from ¢ := f ! with 1Qgor)| = 1Qr]+|Qql, but flof =id with |Q;q| = 1.

— The shift commutator C(f) is “almost” the composition of f with f L.
We thus again use as states of T¢(y) pairs of states (¢',q) with ¢’ € Q1
and ¢ € Q7. We denote Q-1 = Qy by Q. Let Ty = (Q, A,qy,0,7) with
9o = (an1L,950), aniz € Q, and @ = {go} U Q?, thus |Q = 1 +|QJ%.

In g,, we advance f, but not f !, in a first step, accounting for the shift:
6(607 a) = (qfoa U(QfO; a)) and ?(q()a Oé) = T(qfoa CY).

From then on, the last coordinate behaves like f, using o, 7, the first
coordinate behaves like f~!, using ¢’ and 7/ = 7:

o((4,9a),0) = (0'(a5,7(¢a; @), 0(qa, @)
= (o(av, (@, 7(¢a, @), 0(da, @),

10



expressing o’ by o. Also 7(qq, ) is the input to f~!, and

7((96,9a)) = 7(qb, 7(qa, @))-

Again, this transducer is not in reduced form. O

Lemma 16 For all isometries f € P, all a € A, and all k € N we
have

F(@* M a)) = C(f ) Haxlf (0" (a)))
(C(f~H~! is an isometry, and ay is the first coordinate of its argument,
with | the concatenation of words over A).

Proof. We have C(f))™' = (67 lofooof )t =fooloflon

and hence
C(f 1) Hak f(o*(a))) = foo tof  oa(a/f(o"(a)))
= foagg o f™ o f(d¥(a))
= f(d*(a) O
Theorem 17 For f € P, let C(f ') be finite. Then f maps ultimately
periodic sequences onto ultimately periodic ones.

Proof. With C(f !) also C(f !) ! is finite by Algorithm 15 (the func-
tions f and f~! € P are not necessarily computable by a finite transducer
which would make the theorem trivial). Let C(f !)~! be computable by a
transducer with state space Q, |Q| < co. Let a = a1...a5(a541 ... Gs4p)™
be an ultimately periodic sequence, the input to f.

We consider s 4+ p transducers. We assume that transducer k, 1 < k <
s + p operates on the input ax|f(c*(a)) and by Lemma 16 thus outputs
f(o*~1(a)). Hence transducer 1 will just output f(a).

For k < s + p, transducer k requires as input the symbol a;, followed by
the output of transducer k + 1.

At the first time step, all transducers (including number s + p) receive
ay, as their first input and they provide f(c*~!(a)); as the first output. All
except number s + p can now proceed with step 2. However, transducer
s + p requires f(o*tP(a)) = f(o°(a)) by the periodicity of a. Hence feeding
transducer s + p with asp, followed by f(c°(a)) as output from transducer
s+ 1 closes the now finite recursion.

By the “pigeonhole principle” some combination of all inputs and states
must repeat within the first 1 + (]{0,1}| - |Q|)*™ time-steps. From then
on the configurations, including b = f(a) as output of transducer 1, repeat
themselves and we have f(a) = b = b1...bs(bst1-..bs4p)*>° for some 5,p
withs > 0,5 > 1,5+p < 1+ (2|Q|)*™P. This shows closedness of the
rational sequences under f. O

11



IV. Tree Complexity and Bit Complexity

Definition 18 Tree Complezity

Let a = (a1, as,...) be an infinite sequence in A*°. We arrange this sequence
in “heap structure” as a rooted infinite binary tree with labels from A where
the node labelled w, according to Definition 6, receives as new label the
Symbol Qy(w)-

We consider now all subtrees of finite height h € N and define the tree
complexity T'(a, h) as the number of distinct labellings of subtrees of height
h. Formally let first P(a, h) be the set of all patterns (subtrees of height h),
P(a7 h) = {(a‘L(w)aL(wO)aL(wl)aL(wOO)7 s aab(wlh—l)) | w e A*}
= {(ak, a2k, G2k11; - - -, Qoiks Qgigg1s- - - Q2i (k1) —15 - - -1 Bon—1(k1)—1) | K € N}

Now T'(a,h) := |P(a,h)|.

For f € P with f € A, we also define T(f, k) := T(f, k) for all h € N.

Remark Tree complexity was introduced by Niederreiter and Vielhaber in
[11], see also [10]. A similar concept is automaticity, as defined by Shallit [16].

Example 19 From Example 9 we can immediately infer:

(1) T(id,h) = 1 for all h (the trees having only labels ’0’, of the resp. height).

(#3) T(inc,h) = T(dec,h) = 2 for all h. For every h, there is the allzero
tree and the other tree has 1’s just at the last (inc) resp. first (dec) position
in every level.

(731) T(plus1, h) = 2, for all h, the allzero tree and the tree with 1 as root,
0 everywhere else.

(iv) T(inc?, k) = 3 for h > 1, the subtrees as for inc and the first h levels
of the whole tree with root 1 as third pattern.

Note that all these f have limj,_,o, T'(f,h) = |Qy| for the state set @ of
the reduced transducer 7;.

Theorem 20 (Christol, Kamae, Mendés—France, Rauzy) The following
statements are equivalent:
- a sequence is algebraic over Fy[z],
— a sequence s obtained by a 2—substitution,
— a sequence is the tree representation of a finite isometry f.
Proof See [5]. O

Example 21 We have seen that 7;,. is finite. Hence we can obtain an
algebraic equation for G(inc) and a 2-substitution. Consider

12



where 27! -G =32 27 and 272 - G* = Y32y 1™
(over Fy, (a + b)? = a® + b?) lead to the equation G2 + zG +1 =0,
hence G is algebraic over Fy[z] of degree 2.

Its 2—substitution is given over the symbol set {A,B,C,D} as A — AB,
B— CB,Cw+— DD, D+ DD and then A,C — 1 and B, D + 0. The devel-
opment in the fixpoint A gives ABCBDDCBDDDD ... — 101000100000. ..

Theorem 22 Let f be an isometry, C(f) its shift commutator. Then for
every height h € N we have

T(C(f),h) <T(f,h)* = T(f) +2.

Proof. Let w # € be some nonempty word in A*. The subtree of C(f) at
w is the composition of the subtree of f at w with the subtree of f~! at
o(f(w)) (therefore we require w # ¢).

T(C(f),h) counts how many of these subtrees differ in their first A levels.
The further levels are of no interest and may be ignored.

There are T := T'(f, h) subtrees of f that differ on their first s levels and
also T such subtrees of f!. Hence, we never get more than T - T different
subtrees for C(f), differing on their & first levels.

Also, for every subtree of f there is a corresponding subtree of f~! that
cancels it to obtain identity, that is the allzero tree in the first h levels.
Hence of all the T - T combinations, T" are identically zero (on the first h
levels) and thus at most 72 — T + 1 of them are distinct.

Adding the special case w = ¢, we obtain the desired result. O

Corollary 23 Let f be finite with |Q| states. Then C(f) is finite with
at most |Q|? — |Q| + 2 states.

Proof. Follows from the preceeding theorem, since T'(f,h) < g for all h
implies T(C(f), h) < ¢>—q+2, hence C(f) finite (see also Algorithm 15). 0

Definition 24 We define subclasses of P according to the tree complexity:

T-FIN = {feP|3IneNVheNT(f,h) <n}
T-LIN = {feP|3IneNVheNT(f,h) <n-h}
T-POLY = {feP|3IneNVheNT(f,h) <h"+n}
T-EXP = {feP|3IneNVheNT(fh) <2}

Obviously T-FIN C T-LIN C T-POLY C T-EXP C P.

13



Proposition 25 The classes T-FIN, T-POLY, and T-EXP are closed
under (forward application of) C.

Proof. Let T'=T(f,h).

T-FIN: Let @ = n2 — n+ 2. Then with T < n we have T2 - T + 2 < 7.

T-POLY: For h =1, T(f,1) < 2. Let now h,n > 1 and 7 = 2n + 1. Then
withT < h"4+nwehave T2 — T +2 < A" 4+ 2nh" + n2 —h" —n+2 <
2.k 4?2 —n+2<h+7.

T-EXP: Let h,n > 1 and @ = 2n. Then with T' < 2" we have T? —T+2 <
22Im _ 2hn +2< 2hﬁ. O

Definition 26 Let B(f,n) denote the bit complexity of computing the
function f € P on its first n coordinates.

Theorem 27

An isometry f € T-FIN has bit complezity B(f,n) = O(n).

Proof. For every input bit ax, we have to compute the functions 7 (g, ax) =
by, and o(qk,ax) = qx+1. For f € T-FIN this can be done in constant time
per symbol by table-lookup. O

Note that any isometry f can be calculated by simulation via C(f), applying
Lemma 16. Thus we get an upper bound for the bit complexity B(f,n):

Theorem 28 Simulation of f by C(f)

The bit complezity of f € P is at most B(f,n) < n-B(C(f),n).

Proof. We use k copies of C(f) to compute a. Every new symbol ay
starts a new transducer to compute C(f)(¢*~!(a)) according to Lemma 16,
and all transducers make one additional step (similar to the reasoning in the
proof of Theorem 17, but now k is not limited).

We need a total of B(C(f),1) + ...+ B(C(f), k) steps to work through
all k copies up to input a, which is upper—bounded by k - B(C(f), k), and
in general B(f,n) <n-B(C(f),n). O

Corollary 29 Let f € P and let v exponents e1,...,&, € {—1,+1} be
given. If the isometry

C(...C(C(f)?)=...)%
is in T—FIN, then B(f,n) = O(n").

Proof. Let C() = f&1 and C%) = C(C*-Y)%* for 2 < k < r. By
Theorem 27 we have B(C("),n) = O(n). Applying Theorem 28 iteratively
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(using Algorithm 15, if e, = —1) we obtain B(C*), n) < n - B(C*+Y n) =
O(n™ k1) for k =7 — 1,7 — 2,...,1. For k = 1 this gives the result. O

V. Two Complex Isometries with Simple Shift Commutators

We shall now see as a converse to Theorem 22 that there are isometries f € P
with T'(f, h) = Q(exp(T(C(f), h))) for all h. We use as two case studies the
isometries in Zy and S connected with Collatz’ 3N+1 conjecture, and with
the continued fraction expansion of formal power series.

Case Study I: Collatz’ 3N+1 Conjecture

Collatz’ conjecture states that taking any positive integer n and repeatedly
applying the rule n +— n/2, if n is even, or n — (3-n + 1)/2, if n is odd,
one eventually hits the cycle 2,1,2,1,.... For example, n = 3 leads to the
sequence 3,5,8,4,2,1,2,1,.... The conjecture has been confirmed by Eric
Roosendaal [19] for n at least up to 2°%.

Definition 30 Collatz Function C and Isometry ¢ on Zo

(z7) We extend Collatz’ rule to Zg (see also [7], [17]). For a = ajazas... €
Zo, we say that a is even, if a; = 0, and in this case a/2 = azazas.... We
say that a is odd otherwise. Then let
Cla) = { a/2, a even (operation “0”)

(3-a+1)/2, aodd (operation “1”)

(1) We map every number a € Zjg, rational integer or not, onto the se-
quence of operations in {0,1}* induced by C. This is, given a = a(!) € Z,,
we iteratively define a(¥*t1) = C(a®) and c(a); = a') mod 2. This defines a
function ¢ on Zg = {0,1}*° via c(a) = c(a)i1c(a)2c(a)s ... € {0,1}>° = A®.
c is an isometry (see [7], [17]).

Then, we find
Proposition 31 The shift commutator [o,c] is the isometry
a, a even,

[ ¢}(a) = { 3-a+2, a odd.
Proof. Case a even: Here c(a) = 0|b, where b € A% is ¢(C(a)) = c(a/2).

_ -1
Thusa+i>0|bri>brc—l>a/2ni>a.
Case a odd: Here c(a) = 1|b, with b = ¢((3a + 1)/2).
-1

Thus @~ 16 % b < (3a +1)/2 75 3a + 2. O
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We now construct a transducer that calculates Collatz’ isometry ¢ € P by
simulation via its shift commutator C(c) = [o, c]:

Definition 32 Transducer Tc(c) Let Tg(c) be the transducer given by
Qc(e) = {5, 1,R0,R1,R2}, qo = S, and o, 7 as follows:

g a|o(ga) 7(ga)

S 0 1 0 S is the start state

S 1 R2 1

I 0 I 0 I computes the Identity
I 1 I 1

RO O RO 0 RO,R1,R2 multiply by 3,
RO 1 R1 1 leaving a rest of 0,1,2, resp.
R1 0 RO 1

R1 1 R2 0

R2 0 R1 0

R2 1 R2 1

Observe that 7(q,a) = a, except for state R1, where 7(q,a) =1 — a.

Remark More on automata can be found in Lothaire [9] and Perrin
[15]. There [15, fig. 26], the “division by 3” automaton, the inverse of the
(R2,R1,R0) part, is given (the I part is just the identity function).

Theorem 33

Tc(e) computes the shift commutator of the Collatz isometry c.

Proof. We show 7¢(c)(a) = [0, c|(a).

(i) Case a even: Let a = 0..., then Tg() starts in state S and then always
stays in state /. Thus input and output are identical and 7¢(c) (a) = a.

(44) Case a odd: Let a = lagaz... Then Tg() starts at time k£ = 1 in
state g1 = S = ¢p (index 1 = time step, index 0 = initial state), moving on
to g2 = 0(S,1) = R2 with output by = 7(5,1) = 1. Identifying the states
RO,R1,R2 with the numbers 0, 1,2, we claim for every time k € N:

3- (Ui e 27 +2= (S5 bi- 271 + gry - 28,

Proof by induction. For ¥k = 1 we have 3-1-20 42 =1-20 +2.2! with
g2 = R2=2. For k — 1 — k the left hand side changes by 3 - ay - 2¥~1. We
have by = 7(qx, ax) and gx+1 = o(qk, ax). Hence the expression on the right
changes by by - 2671 + g1 - 2% — i - 2571, By inspection of the 6 cases, we
obtain by + 2qx4+1 — qr = 3a or gx + 3ar = 2qx4+1 + bi:

16



gk ar Qe+ 30k | gky1 bk 2qkp1 + by
R2 0 2 R1 0 2
R2 1 5 R2 1 5
R1 0 1 RO 1 1
R1 1 4 R2 0 4
RO O 0 RO O 0
RO 1 3 R1 1 3

Hence the change on both sides is the same and we get T¢(c)(a) = [0, ¢|(a)
mod 2* for all k£ € N and the result follows.

Theorem 34

(@)  T(c,h)>h+1.
(i) T(C(c),h) < 5.
(i) T(c,h) = Qexp(T(C(c), h)).

Proof. (i) For a fixed k € Ny, let n = 22° — 1. Then ¢ (n) = 32" — 1
(all operations of type “17). We have 32" — 1 = 252 .y, with r; = 1 and
Top1 =75 - (28T -1 + 1), odd for all k£ € N, hence exactly k + 2 operations
“0” to obtain 02k+k+2(n) = 7 which is odd and thus the next operation has
to be a “1”. Hence c(12k0°°) = 12°0k+214% and the state after processing
2k +2 symbols has to map the further input 0% to the further output 0%1x>.

The subtrees of ¢ at 100,1100,111100,..., 12*00 are thus all distinct in
the first A levels and T'(c,h) > h + 1.

(4) Since T¢(c) has 5 states, its tree representation has at most 5 distinct
subtrees, for every height.

(i7) With T(C(c),h) < 5 = |{S,I,R0,R1,R2}| and exp(5) = const., the
claim is h + 1 = ©(0(1)), which is obviously true. O

Remark There is a countably infinite family of Collatz—like isometries. For
a/2, a even (operation “0”
odd m,n € Z, set Cmn(a) := { (m - a/—i— n)/2, aodd Eogeration “1”;
alk+l) .= Cm,n(a(k)), and cpp(a); == a™ mod 2. Then Cm,n again is an
a, a even,
m-a+n+1, aodd.
We have C3’1 = C and Cl’fl =0 (the Shift) with Ci,—1 = [0',01’71] = 1d.
Every shift commutator [0, ¢y, ] can be computed by a transducer with at

isometry with shift commutator [o, ¢pn](a) = {

most 3 + w states, thus finite. It remains to be shown whether (apart
from the cases m = £1) the isometry ¢, , € T-FIN in general. This would
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mean that a countable infinity of isometries behaves similar to ¢ as in The-
orem 34(7iz). Given that T-FIN itself is only countably infinite, this would
be best possible.

Case Study II:
Continued Fraction Expansions of Formal Power Series

The second example studies the isometry k € P that takes the coefficient
sequence of a formal power series Y a;z " € S and calculates an encoding of
the partial denominators of its continued fraction expansion. k and its shift
commutator have been treated in detail in [13] and [14].

Definition 35
(i) Let G: A® <  Tlz Y] .
(@) = 3 am
define the generating function of a = (a;), then G(A*°) =S (cf. Def. 1(37)).
(73) Every formal power series G(a) € S\{0} has a continued fraction
expansion

o0

y 1 1] 1] 1|
Ga:E a;z b= = + + 4+
(@) ~ p(z) + ———=— " |pi(z) [p2(z)  |p3(2)
=1 P2(2)+ pr ey

with p; € Fy[z]\F2 (nonconstant polynomials), and where the sequence (p;)
is finite iff the coefficient sequence a = (a;) is ultimately periodic, hence
G(a) € Fo(z). Let K:S — (Fa [z]\F2 )*U(F2 [z]\F2)*> be defined for ultimately
periodic sequences as K: (S N Fy (2))\{0} — (F2[z]\F2)*,

1], 1] 1|

7@ @ T )

K> aie ) = K( ) = (pi(2))izy
=1

and as K: S\ (z) — (F[z]\F2)%,

(" aia) = K( LI L S N S

M@ Te@ s

We further define (O°°)r£> 0 g, the empty sequence of (no) polynomials.
(741) Finally we encode nonconstant polynomials by sequences over Fy. Let
us define 7: (Fy[z]\F2) — 5 as

d
W(Z a;z’) = 09 lagag_1...a0 € B3¢ C T
=0
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i ®BENR) o B, )y )] (w0
*: (Fa[z]\F2)> — F°,  (p)2; — w(p1)lw(p2)l...
(where | indicates concatenation of elements from ).
(7v) We thus obtain a function k: A — A® as k:=71*oKoG.

Example 36
Let a = (a;) = 1(110)*° € A%, then G(a) =z l+r24+23 4275+
—6 -8 -9 _ -1 24 — 241 1

%4+ +zx 7 +... =1 —}—wlﬂgfs _wSﬁ»w2+x_ . , from

B3+ 22+z=(z+1)(z+1)+1. Thus K(G(a)) = (z + 1,22 + 1) € Fy[z]?
and k(a) = 7 o K o G(a) = 1101010 € A%, where 7(z + 1) = 11 and
m(z? + 1) = 0101.

Theorem 37
(i) The tree complezity T'(k,h) grows at least exponentially, T(k,h) > 2".
(12) The tree complezity T ([o, k], h) grows linearly,

T([o, k], H) = 8h + O(1).

(iii) T'(k, h) = Q(exp(5T([o, k], h))).

Proof. (i) Fix h € N, let w € A", the set of words of length h, and
consider the infinite input @ = w®. Then G(a) = (Zz o wizh _Z)/(wh -
1) € Fy(z) with a finite continued fraction expansion.The sum of the degrees
of all partial denominators will not exceed the degree h of " — 1 and hence
k(w™) = (¥?"0>°), that is zeroes after some prefix of length at most 2h. In
the theory of stream ciphers, one says that the linear complexity of w™ is at
most h and hence after 2k symbols the recursion (Zh 01 w178 /(zh - 1)
is completely determined.

The subtree of height A in the tree representation of k at the node ww
therefore maps (a third) w to 0” and the 2" subtrees at ww for all w € {0, 1}*
are thus distinct in their first h levels (see also [11]).

(7) It is known (see [11]) that

2, h=1
6, h=2
T([o,k],h) = { 11, h=3
16, h=4
8h — 17, h > 5,

where [0,k] can be calculated by a transducer with eight states plus an
up-down-counter.
(44i) follows from (i) and (i) with exp(8) < 2!2. O
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VI. Dynamical Aspects: Orbits and Ergodicity

Lemma 38 For all isometries f € P, all sequences a € {0,1}*° and all
k € N we have

@)k = a

Proof. We use induction on k£ = 1:
For k =1 the map f, restricted on a1, is a permutation from So, hence

Jo € S9,Vay € {0,1} : f(a1%x*)1 = o(aq).

Since |S2| = 2 we have 02 = id, and thus f2(a); = a;.
By induction hypothesis for some k£ > 1, we proceed with

Vw € {0,1}%,3 04 € S,V € {0,1} : 2 (wa)1. i1 = wou(a),

since 2" is invariant on {0,1}* by assumption and bijective on {0, 1}**! as
isometry. Thus we have ( f2k)2 = f2(k+l) invariant on {0, 1}**!, since again
(for all o, simultaneously !) we have o2, = id. O

Corollary 39 Orbit lengths under isometries

Let f € P be any isometry, a € A% any infinite binary sequence. If there
is a smallest number m > 0 with f™(a) = a, then m = 2! for some l € Ny.

Proof. If the orbit is finite, its order must be a divisor of 2* for some
sufficiently large k& by Lemma 38 and the result follows.

Thus the only periods possible are 1,2,4,8, ..., 00. O

Theorem 40 C acts on A®. We set TZFIN = {(feA° | feT-
FIN}. then the orbits of C in A are at most the following :

(i) Orbits of length 2% for some k € Ny, completely in T_ FIN.

(i3) Orbits of length 2F for some k € Ny, completely in A®°\T ZFIN..

(791) Infinite orbits, completely in TZ FIN.

(1v) Infinite orbits, completely in A°°\T—/F\IN.

(v) Infinite orbits, where for some f in the orbit we have ék(f) €cT_FIN &
k> 0.

Proof. In view of the preceeding theorem, these are all possible orbit

lengths. By Algorithm 15, with f € T-FIN also C(f) € T-FIN, thus an
orbit may enter 7' — FIN (from A®°\T — FIN), but never leave. O
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In order to obtain examples for these cases, we make the following defi-
nition:

Definition 41 Layered Isometries and their Differential and Integral
(7) Let b € {0,1}>°. We define the “layered” isometry I € P as ly(a) =
(a1 + b1,a9 + bo,a3 + b3, ...) with the sum + mod 2. “layered”, because,the
tree representation of I, has 20! copies of b; as its i-th layer.

(17) For a € {0,1}*° we define the “differential and integral”
dzﬁ(a) = (al, a; +az,a2 +as,...,a;—1 + Qi - - ) and
int(a) := (a1,a1 +az,a1 + a2 + a3, ..., > 41 Qk,--.).

Proposition 42 For all b € A, the shift commutator of I, is
C(ly) = ldiﬁ(b)‘

Proof.
C(lp)(a) = o lo lb_1 ocgolya = olo lb_1 oo((a; + b;)$°,)
= 0 0l (@ +0:)32) = (a4 by)l((@i + i+ bi1)iZy)
= (ai + diff(b)i)i21) = ldiﬁ(b) (a)

Example 43 We now show that cases (), (iii), (v) and one of (i) or (iv)
of Theorem 40 actually exist.

We have already seen that C(id) = id and C3(dec) = C2(inc) = C(dec) =
inc as examples for case ().

40(737) All functions [, with rational b have a bi-infinity C-trajectory,
completely in T-FIN. For b = 1°°, the orbit includes transducers of all
complexities (state counts) in N: Starting with b = 1° = [y~ and using

. 1, i=k
Proposition 42, we have diff(l;) = 10®° and diff*(l); = { 0 2 >k
the initial diff(ly)1 = 1 walks one place towards infinity with each application
of diff, leaving everything at higher coordinates at zero. Thus for all & > 0,
CkE(1%°) = l(xk-1100) which needs exactly k + 1 states, one for each layer
1...k + 1. Thus every state count in N is met. For any rational b, diff(b)
and int(b) are also rational, thus [ diffv) and ljny(p) are in T-FIN.

since

40(v) There is an infinite orbit partly in T~ FIN , partly in its comple-
ment: By Theorem 34, ¢ is in P\T-FIN, C(c) is in 7-FIN, and since there
is no transition from 7-FIN to P\T-FIN, we have
T-FIN, k>1,

P\T-FIN, k <0.

40(i1,iv) There are uncountably many points, whose orbits are entirely in

Ck(c) €
A®\T ~“FIN (the union of cases 40(i%, iv), by the usual counting argument:
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The cases 40(%, 4%, v) involve finite transducers. So there can be only a count-
able number of different such cases. Since P is uncountable, the claim follows.

Definition 44 (vgl. [6], [3])

Let (X, A, 1) be a measure space where A is the o—algebra of y—measurable
subsets of X. We consider a transformation F' on X. Let F' be measurable,
that is VM € A: F~1(M) := {z € X|F(z) € M} € A.

(i) A transformation F is called measure invariant, if u(M) = u(F~1(M))
is valid for all o-sets M € A.

(44) A transformation F is called ergodic, if M = F~!(M) already implies
u(M) =0 or u(M) = 1, that is apart from sets of measure zero and their
complements there exist no subsets of X invariant under F.

(141) A transformation F' is called 2-mizing, if for two measurable sets
M, N we always have lim,_,o p(M N F~"(N)) = u(M) - u(N).

(iv) We set X :={0,1}* and define 4 on A = {0,1} as pa(0) = pa(l) =
%. Let the infinite product Haar measure be p := p%. Hence a cylinder set
of the form {(a1,a2,as,...) € A%® | a; = b; for i < L} for some fixed prefix
with by, ...,br, € {0,1} has measure y = 2~L.

Theorem 45

(1) Every isometry is measure preserving.

(13) An isometry f is ergodic, if and only if the sums Efi;,lfl fi are odd
for all k € Ny (hence necessarily f1 =1).

(731) No isometry is 2-mizing.

Proof. (i) Every interval from [0,1] C R and thus every o-set can be
broken down into (at most countably infinitely many) 2-adic cylinder sets
of the form {a € Zs | a; = ¢; for i < k,¢; const.} C Zs. By definition, f as
isometry maps every such cylinder set bijectively onto some cylinder set of
the same measure 27%.

(i7) We assume that for some K € N (and this is valid at least for
K = 1) we have that for all & < K the 2*¥ words from {0,1}* are all
met by f in one orbit of length 2%, that is Va € {0,1}*,3 j(a) : 0 < j(a) <
2k and f7(@(0%) = a.

Now ol P

25 0K :{ 070 for S £ = 002),
05711 for Y7 ok fi =1(2),

since every word w from {0,1}%~! determines exactly once i := Indez(a) €
{2K=1 . 2K — 1} with f(ala)x = a + f;. The K-th symbol (initially 0
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from 0°) changes exactly for f; = 1.

Hence for Z?;_Kl_l fi = 0(2) the function f certainly is not ergodic, since
the union of the 2K~ cylinder sets to the prefixes f/(0X),0 < j < 2K-1is
a set closed under f of measure % #0,1.

On the other hand, if f is not ergodic, there are two sets M, {0,1}*°\ M,
with u(M) # 0,1, that are closed under f. Since f is an isometry, M (and
{0,1}°°\ M) can be represented as disjoint union of 2-adic cylinders sets of

a certain measure 2", If the sums fo;,lc_l f, were all odd for 1 < k < h,
starting in 0°° the sequence f, f2, etc. would meet every cylinder set {a €
A® | a; = ¢;yi < h} for all (¢;) € A" Since f(M) = M, this is not the
case. Hence one of the sums must be even. Part (ii) now follows from the
equivalence:
f not ergodic <— Fk €N : Z?i;_l fi =0 mod 2.

(iii) Let M = N = {a € A% | a; = 0}, thus u(M) - u(N) = L. By
Lemma 38 (for k = 1) we have Vj : f~2J9(N) = M, and thus lim,_,o (M N

f™MN)) = p(M) = % # i, if the limit exists at all. O
Corollary 46 The isometries inc and dec are ergodic. O
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