
Identifying Clusters from Positive Data?

John Case1, Sanjay Jain2, Eric Martin3, Arun Sharma4 and Frank Stephan4

1 Computer and Information Sciences Department, 101A Smith Hall, University of
Delaware, Newark, DE 19716-2586, United States of America, case@cis.udel.edu

2 School of Computing, National University of Singapore, Singapore 119260,
sanjay@comp.nus.edu.sg

3 School of Computer Science and Engeniering, UNSW Sydney NSW 2052,
Australia, emartin@cse.unsw.edu.au

4 National ICT Australia, Sydney Research Laboratory at Kensington, UNSW
Sydney NSW 2052, Australia, arun.sharma@nicta.com.au and

frank.stephan@nicta.com.au

Abstract. The present work studies clustering from an abstract point of view
and investigates its properties in the framework of inductive inference. Any class
S considered is given by a numbering A0, A1, . . . of nonempty subsets of N or Qk

which is used as a hypothesis space. A clustering task is a finite and nonempty
set of indices of pairwise disjoint sets. The class S is said to be clusterable if
there is an algorithm which, for every clustering task I , converges in the limit
on any text for ∪i∈IAi to a finite set J of indices of pairwise disjoint clusters
such that ∪j∈JAj = ∪i∈IAi. A class is called semiclusterable if there is such an
algorithm which finds a J with the last condition relaxed to ∪j∈JAj ⊇ ∪i∈IAi.

The relationship between natural topological properties and clusterability
is investigated. Topological properties can provide sufficient or necessary con-
ditions for clusterability but they cannot characterize it. On one hand, many
interesting conditions make use of both the topological structure of the class
and a well-chosen numbering. On the other hand, the clusterability of a class
does not depend on the decision which numbering of the class is used as a hy-
pothesis space for the clusterer.

These ideas are demonstrated in the context of geometrically defined classes.
Clustering of many of these classes requires besides the text for the cluster-
ing task some additional information: the class of convex hulls of finitely many
points in a rational vector space can be clustered with the number of clusters
as additional information. Interestingly, the class of polygons (together with
their interiors) is clusterable if the number of clusters and the overall number
of vertices of these clusters is given to the clusterer as additional information.
Intriguingly this additional information is not sufficient for classes including fig-

? J. Case is supported in part by NSF grant number CCR-0208616 and USDA IFAFS
grant number 01-04145. S. Jain is supported in part by NUS grant number R252-
000-127-112. A. Sharma and F. Stephan work at National ICT Australia which is
funded by the Australian Government’s Department of Communications, Informa-
tion Technology and the Arts and the Australian Research Council through Backing
Australia’s Ability and the ICT Centre of Excellence Program.

1

Electronic Colloquium on Computational Complexity, Report No. 58 (2004)

ISSN 1433-8092

ures with holes.
While some classes are unclusterable due to their topological structure, others

are only computationally intractable. Oracles can be used to distinguish between
both cases: the former cannot be clustered using any oracle while the latter can
be clustered using some oracle. It is shown that there are maximal oracles that
allow clustering of all problems that can be clustered with the help of some
oracle. In particular, E is maximal iff E ≥T K ∧ E′ ≥T K ′′. Furthermore, no
1-generic oracle below K and no 2-generic oracle permits to cluster any class
which is not clusterable without an oracle.

Keywords. Inductive inference, clustering, numbering, Turing degree, topolog-
ical and geometric properties of clusterable classes.

1 Introduction

The aim of the paper is to study the role of computation and topology in the
clustering process. To this aim, the following topics are investigated in an ab-
stract model of clustering:

1. necessary or sufficient topological conditions for clustering;
2. various relationships between clustering, learning and hypothesis spaces;
3. clusterability of many natural classes of geometrically defined objects;
4. oracles as a method to distinguish between topological and computational

aspects of clustering.

Clustering has been widely studied in several forms in the fields of machine
learning and statistics [2, 5, 17, 19]. However abstract treatments of the topic
are rare. Kleinberg [14] provides an axiomatic approach to clustering, but, in
his settings, computability per se is not an issue. In contrast, the present work
investigates clustering from the perspective of Gold style learning theory where
limitations stem from uncomputable phenomena.

The basic setting is that a class of potential clusters is given. This class is
recursively enumerable. A finite set I of (indices of) pairwise disjoint clusters
from the given class is called a clustering task. Given such a task, the clusterer –
which might be any algorithmic device – receives a text containing all the data
occurring in these clusters and is supposed to find in the limit a set J of (indices
of) pairwise disjoint clusters which cover all the data to be seen. There are two
variants with respect to a third condition: if one requires that the union of the
clusters given by I is the same as the union of the clusters given by J , then one
refers to this problem as clustering; if this condition is omitted, then one refers
to this problem as semiclustering.

Clustering might be in many cases more adequate than semiclustering: for
example the clustering tasks from the class Sconv,k defined in Definition 8.1
are collections of convex sets having a positive distance from each other. The
solution to such a clustering task is unique since each of these sets corresponds
to a cluster. A clusterer has to identify these sets while a semiclusterer can just

2

converge to the convex hull of all data to be seen. Such a solution is legitimate
for semiclustering since it is again a member of the class Sconv,k. But it fails to
meet the intuition behind clustering at all since it does not distinguish the data
from the various clearly different clusters.

Note that in the process of clustering, it is sufficient to find the set J of
indices mentioned above. From this J one can find for every data-item x in the
set ∪j∈JAj of all permitted data the unique cluster where x belongs to. One just
enumerates the sets with the indices in J until the data-item appears in one of
them and then uses the index of this set as a description for the cluster to which
this data-item belongs. So, from a recursion-theoretic point of view, finding the
set J is the relevant part of a given clustering problem.

For every indexed class of recursively enumerable sets there is a canonical
translation from these indices to type-0 grammars in the Chomsky hierarchy
which generate the corresponding sets. This links the current setting of clustering
to grammatical inference although there is no need herein to exploit the detailed
structure of the grammars obtained by such a translation.

1. A class has the Finite Containment Property iff any finite union of its members
contains only finitely many other members. In Section 5 it is shown that classes
satisfying this natural property separate the basic notions of clusterability, semi-
clusterability and learnability. There is no purely topological characterization of
clusterable classes: if a class contains an infinite set C and all singleton sets dis-
joint from C then the class is clusterable iff C is recursive. Proposition 6.1 gives a
further characterization which depends on the numbering: a class of disjoint sets
is clusterable iff it has a numbering where every set occurs only finitely often.
Section 6 provides some further sufficient criteria for clusterability which take
into account topological aspects as well as properties of the given hypothesis
space. These criteria are refinements of the Finite Containment Property.

2. Clusterable classes are learnable but not vice versa. Although clusterable
classes are by definition uniformly recursively enumerable, the set of clustering
tasks might fail to be. Proposition 3.2 shows that a clusterable class can be
clustered using any class preserving hypothesis space, that is, any hypothesis
space which enumerates the members of the class only. But by Example 3.3 a
clusterable class might not be clusterable with respect to some class comprising
hypothesis space, that is, some hypothesis space which enumerates the members
of a superclass.

3. In Sections 7 and 8 it is demonstrated how one can map down concrete
examples into this general framework. These concrete examples are geometrically
defined subsets of Qk: affine sets, classes of sets with distinct accumulation points
and convex hulls of finite sets. This third example is not clusterable but it turns
out to be clusterable if some additional information about the task given to the
clusterer is revealed. While there are several natural candidates for the additional
information in the case of convex hulls of finite sets, this approach becomes much
more difficult when dealing with clusters of other shapes. In the case of polygons

3

in the 2-dimensional space, the additional information provided might consist
of the number of clusters plus the overall number of vertices in the polygons
considered. Still this additional information is insufficient for clustering classes
of geometric object some of which have holes. But the k-dimensional area is a
sufficient additional information as long as one rules out that the symmetric
difference of two clusters has the k-dimensional area 0.

4. Oracles are a way to distinguish between topological and computational dif-
ficulty of a clustering problem. In Section 4 the relationship between an oracle
E and the classes clusterable relative to E is investigated. For example, every
1-generic oracle E which is Turing reducible to the halting problem is trivial:
every class which is clusterable relative to E is already clusterable without any
oracle. On the other hand, some classes are even not clusterable relative to any
oracle. Proposition 4.3 characterizes the maximal oracles which permit to cluster
any class which is clusterable relative to some oracle; in particular it is shown
that such oracles exist.

2 The Basic Model

Most of the notation follows [11, 18]. The next paragraph summarizes the most
important notions used in the present work.

Basic Notation 2.1. A class S is assumed to consist of recursively enumerable
subsets of a countable underlying set U where in Sections 3–6, U is the set of
natural numbers N and in Sections 7 and 8, U is a rational vector space of finite
positive dimension. Mostly, S is even required to be uniformly recursively enu-

merable which means that there is a sequence A0, A1, . . . of subsets of U such
that first S = {A0, A1, . . .} and second {(i, x) ∈ N × U : x ∈ Ai} is recursively
enumerable. Such a sequence A0, A1, . . . is called a numbering for S.

The letters I, J, H always range over finite subsets of N and furthermore
norm(I) =

∑

i∈I 2i is called the norm of I . Define AI as ∪i∈IAi. Let Ai,s denote
the set of elements enumerated into Ai within s steps and let AI,s = ∪i∈IAi,s.
Without loss of generality Ai,s ⊆ {0, 1, . . . , s} for all s. The sets Ai,s are uni-
formly recursive, that is, {(i, s, x) : x ∈ Ai,s} is recursive.

Let disj(S) contain all finite sets I such that Ai ∩ Aj = ∅ for all different
i, j ∈ I . The sets in disj(S) are called clustering tasks. There is an approxima-
tion disjs(S) to disj(S) such that I ∈ disjs(S) if Ai,s ∩ Aj,s = ∅ for all different
i, j ∈ I .

For any set A let |A| be the cardinality of A. Let A∗ be the set of all finite
sequences of members of A and |σ| be the length of a string σ ∈ A∗.

A text for a nonempty set A ⊆ U is any infinite sequence containing all
elements but no nonelements of A. Clusterers and semiclusterers are recursive
functions from U∗ to finite subsets of N, learners are recursive functions from
U∗ to N. Also mappings ME represented by a machine M having access to an
oracle E are considered. An element σ ∈ A∗ is called a stabilizing sequence (for

4

A and M) if M(στ) = M(σ) for all τ ∈ A∗.
The sequence W0, W1, . . . denotes an acceptable numbering of all recursively

enumerable sets and We can be interpreted as the domain of the e-th partial-
recursive function ϕe. The set K = {e : e ∈ We} is called the halting problem
and this notion can be generalized to computation relative to oracles: A′ is the
halting problem relative to A; in particular K ′ is the halting problem relative
to K and K ′′ the one relative to K ′. For more information on iterated halting
problems see [18, page 450].

Definition 2.2. A class S = {A0, A1, . . .} of clusters is called clusterable iff there
is a clusterer M which, for every I ∈ disj(S), converges on every text for AI to
a J ∈ disj(S) with AJ = AI . Such an M is called a clusterer for S.

S is called semiclusterable if one replaces AJ = AI by the weaker condition
that AJ ⊇ AI .

S is called learnable in the limit from positive data with respect to the hypo-

thesis space A0, A1, . . . iff there is a learner M which for every i ∈ N converges on
every text for Ai to a j ∈ N with Aj = Ai. In the following “learnable” stands for
“learnable in the limit from positive data with respect to the hypothesis space
A0, A1, . . .”.

Note that every learner, clusterer or semiclusterer M which succeeds on A has a
stabilizing sequence σ ∈ A∗. Furthermore, M(σ) is then also a correct hypothesis
for A.

Remark 2.3. A clusterer M for S = {A0, A1, . . .} might also use a different
hypothesis space instead of the default one. Here a numbering B0, B1, . . . is
called the hypothesis space of M iff for every clustering task I and any text
for AI , M converges on this text to a finite set J such that BJ = AI and
Bi ∩ Bj = ∅ for all different i, j ∈ J . The hypothesis space is class preserving if
S = {B0, B1, . . .} and class comprising if S ⊆ {B0, B1, . . .}. Nevertheless, in the
light of Proposition 3.2, it is assumed that a clusterer uses the default numbering
A0, A1, . . . as its hypothesis space unless explicitly stated otherwise.

Remark 2.4. Many learning criteria have analogous definitions for clustering.
For example, a machine M is confident iff it converges on every input to some
hypothesis. So one could consider the notion of confidently clusterable classes.
This notion is more restrictive, that is, there are classes which are clusterable
but not confidently clusterable. In many respects, the theory developed on the
basis of these notions is very similar to the corresponding one for learning due
to the following reason.

Many separations of different criteria C1 and C2 in learning from positive
data can be carried over to separations of the corresponding criteria C̃1 and C̃2

in clustering. Given a class S separating the learning criterion C1 from C2, one
can consider the class

S̃ = {Ã : A ∈ S} where Ã = {0} ∪ {x + 1 : x ∈ A}

5

to separate C̃1 from C̃2. The main idea is to use the 0 in order to avoid that any
two members of S̃ are disjoint. Then every clustering task and every reasonable
hypothesis is a singleton set. Learners for S and clusterers for S̃ can be trans-
lated into each other.

For example, there is a class S which is learnable but not confidently learn-
able. Then the class S̃ is clusterable but not confidently clusterable. That is,
S̃ witnesses that the notion of confident clustering is more restrictive than the
notion of clustering.

This explains some of the many similarities between learning and clustering.
Thus the present work is not focussing on the introduction and study of clus-
terability notions parallel to the many variants of learning in the limit. Instead
the emphasis is more given on the relations between clusterability on one side
and topological, recursion-theoretic and geometrical properties of classes under
consideration on the other side.

3 Numberings and Clustering

The main topic of this section is to investigate the role of numberings in cluster-
ing. A natural question is whether clustering is independent of the numbering
chosen as the hypothesis space. Another important issue is the relationship be-
tween numberings of the class of clusters and numberings of the class of finite
disjoint unions of clusters. The latter, which represents the clustering tasks,
might not have a numbering despite of the fact that the former does, as shown
in the next example. The class of sets representing the clustering tasks in this
example cannot be made recursively enumerable by changing the numbering of
the class of clusters.

Example 3.1. Let A0 = {0} and let, for every i ∈ N and j ∈ {1, 2},

A2i+j =

{

{2i + j} if i /∈ K;

{0, 2i + j} if i ∈ K.

The class S = {A0, A1, . . .} is uniformly recursively enumerable but the class

{AI : I ∈ disj(S)} is not since

i /∈ K ⇔ (∃I ∈ disj(S)) [{2i + 1, 2i + 2} ⊆ AI].

This connection holds for all numberings of S but fails for any numbering of the

superclass of all finite sets.

Thus there are clusterable classes where the corresponding class of all cluster-
ing tasks does not have a numbering. Nevertheless, the result of de Jongh and
Kanazawa [4] carries over to clustering: whenever a class is clusterable with re-
spect to a class comprising hypothesis space then the class is also clusterable
with respect to every class preserving hypothesis space. Actually the following
result is even a bit stronger since it does not require that the hypothesis space

6

B0, B1, . . . is class preserving but only that it satisfies the following more tech-
nical but also more general condition:

S ⊆ {BJ : (∀i, j ∈ J) [i = j ∨ Bi ∩ Bj = ∅]}.

An application of the next result is that every uniformly recursively enumerable
class consisting only of finite sets is clusterable.

Proposition 3.2. Let A0, A1, . . . be a numbering of a class S and B0, B1, . . . be

another numbering such that for every I ∈ disj(S) there is a J with AI = BJ .

If there is a clusterer for S using the hypothesis space B0, B1, . . . then there is

another clusterer that uses the original numbering A0, A1, . . . as its hypothesis

space.

Proof. Assume that M is a clusterer for S using the numbering B0, B1, . . . as
its hypothesis space. Note that M is required to be correct only on tasks from
S, whereas the superclass {B0, B1, . . .} is not required to be clusterable.

The clusterer M has on every AI with I ∈ disj(S) a stabilizing sequence
σI which can be found in the limit: σI = lims σI,s with σI , σI,t ∈ A∗

I and
M(σIτ) = M(σI) for all I, t and all τ ∈ A∗

I .

Then the following clusterer N uses A0, A1, . . . as its hypothesis space.

Algorithm N. On input of length s, N computes the output J of M fed with
the same input and searches for the set H ⊆ {0, 1, . . . , s} of least norm satisfying
the following conditions:

– H ∈ disjs(S);

– σH,s ∈ B∗
J,s;

– M(σH,sτ) = M(σH,s) for all τ ∈ B∗
J,s of length up to s.

If H is found then output H else output ∅.

Verification. Given a task and a text for this task, let J be the hypothesis
to which M converges. Let I be the set of least norm such that AI = BJ and
I ∈ disj(S). Note that for all H with norm(H) < norm(I), either H /∈ disj(S) or
range(σH) 6⊆ BJ or there is a τ ∈ B∗

J such that M(σHτ) 6= M(σH). Thus, if the
length s of the part of the text fed into N is sufficiently large, then the following
properties hold:

– I ⊆ {0, 1, . . . , s};
– for all H with norm(H) ≤ norm(I), H ∈ disjs(S) ⇔ H ∈ disj(S);

– for all H ∈ disj(S) with norm(H) ≤ norm(I), σH,s = σH ;

– M outputs J and σI ∈ B∗
J,s;

– for all H ∈ disj(S) with norm(H) < norm(I), either σH /∈ B∗
J or there is a

τ ∈ B∗
J,s of length up to s with M(σHτ) 6= M(σH).

7

Hence I satisfies the search conditions of N but no H with norm(H) < norm(I)
does. Thus N converges on a text for BJ to the set I and N witnesses that S is
clusterable using the hypothesis space A0, A1, . . . for S.

Example 3.3. The converse of Proposition 3.2 does not hold: there is a clus-

terable class S and a numbering of a superclass such that no clusterer for S can

use this numbering as a hypothesis space.

Proof. For every i let Ai = {〈i, x〉 : x ≤ |Wi|} and let S = {A0, A1, . . .}. It is
easy to see that S is clusterable using the numbering A0, A1, . . . as the hypothesis
space: on input σ the clusterer just outputs {i : 〈i, 0〉 ∈ range(σ)}.

For better readability, the second numbering has two indices. One defines
that Bi,j = {〈i, x〉 : min({j, x}) ≤ |Wi|}. Note that Bi,j = {〈i, 0〉, 〈i, 1〉, . . .} iff
either Wi is infinite or j ≤ |Wi|.

Assume by way of contradiction that M is a clusterer for S using the second
numbering as its hypothesis space. Given any i, M converges on every text for
Ai to a singleton {(i, j)} with Ai = Bi,j . If Wi is finite then j > |Wi|. Thus one
can compute relative to K whether Wi is finite:

1. taking a default enumeration of Ai, one can use K to determine the j such
that M – using this enumeration as a text for Ai – converges to {(i, j)};

2. one can use K to determine whether |Wi| > j;
3. if so, Wi is infinite, if not, Wi is finite.

This K-recursive algorithm contradicts to the fact that the set {i : Wi is finite}
has the same Turing degree as K ′ and gives the desired contradiction.

Although there are classes S = {A0, A1, . . .} such that {AI : I ∈ disj(S)} is
not uniformly recursively enumerable, the superclass {AI : I ⊆ N ∧ |I | is finite}
is uniformly recursively enumerable. A clusterer is at the same time a learner
for S using the hypothesis space given by the numbering B0, B1, . . . which sat-
isfies Bnorm(I)−1 = AI for all nonempty sets I . But learnability of uniformly
recursively enumerable classes does not depend on the hypothesis space; follow-
ing a result of de Jongh and Kanazawa [4] there is also a learner for S which
uses A0, A1, . . . as its hypothesis space. So every clusterable class is learnable
although the converse direction does not hold.

Property 3.4. Every clusterable class is learnable.

Examples 3.5. 1. The class Sgold consisting of N and all its finite subsets is

neither learnable nor clusterable. But Sgold is semiclusterable.

2. The class Ssing consisting of all singletons {x} and the set N is learnable

and semiclusterable but not clusterable.

3. Let C be infinite and recursively enumerable. The class SC consisting of C
and all singletons {x} disjoint from C is learnable. Furthermore, SC is clusterable

iff SC is semiclusterable iff C is recursive.

8

Proof. 1. Gold [9] observed that Sgold is not learnable. By Property 3.4, the
class Sgold is also not clusterable. But Sgold is semiclusterable by the trivial
algorithm which always conjectures an index for N.

2. The class Ssing is learnable by the algorithm which conjectures an index for
range(σ) if |range(σ)| = 1 and an index for N if |range(σ)| 6= 1. Since every finite
set belongs to a clustering task from Ssing, the structure of the clustering tasks of
Ssing is equal to the one of Sgold. So Ssing is semiclusterable but not clusterable.

3. Note that the class SC has a numbering by taking Ai = C if i ∈ C and
Ai = {i} otherwise. One first enumerates i into Ai and whenever i shows up in
C, then one enumerates also the other elements of C into Ai.

The class SC can be learned by conjecturing the cluster Ai for the first
number i occurring in the text; once selected, the output is kept forever.

If C is recursive, then SC is clusterable: on input σ, one outputs range(σ) if
range(σ)∩C = ∅ and {min(C)}∪(range(σ)−C) otherwise. What this algorithm
does is that it outputs the set containing the minimal indeces of the clusters
which intersect the set of data items seen so far. Note that every clusterer is also
a semiclusterer. So SC is semiclusterable as well.

It remains to show that C is recursive whenever there is a semiclusterer M
for SC . The set C has a stabilizing sequence σ with respect to M . Now let
J = M(σ). There is a finite and possibly empty set D disjoint from C such that
AJ = C ∪ D. So one has that

x /∈ C ⇔ x ∈ D ∨ (∃τ ∈ C∗) [M(σxτ) 6= M(σ)].

These formulas witness that C is recursively enumerable. Since C itself is also
recursively enumerable, the set C is actually recursive.

The classes Ssing and SC where C is nonrecursive are learnable but not cluster-
able. Both have the property that they are not closed under disjoint union. The
next result shows that this property is essential for getting examples which are
learnable but not clusterable.

Property 3.6. Let the class S be closed under disjoint union, that is, A∪B ∈ S
for all disjoint A, B ∈ S. Then S is clusterable iff S is learnable.

A learner M for a class S is called prudent if it only outputs indices of sets it
learns. One can enumerate all possible hypotheses e0, e1, . . . of M and so obtain
a numbering B0, B1, . . . with Bi = Wei

of a learnable superclass of S. Fulk [8]
showed that every learnable class has a prudent learner. Therefore, it is sufficient
to consider only uniformly recursively enumerable classes for learning. So Fulk’s
result can be stated as follows.

Property 3.7 [11, Proposition 5.20]. Every learnable class has a prudent learner.

In particular, every learnable class is contained in some learnable and uniformly

recursively enumerable class.

9

So every learnable class can be extended to one which is learnable and uni-
formly recursively enumerable. But in contrast to learning in the limit, this
requirement turns out to be restrictive for clustering. Indeed, Proposition 3.9
below gives for every {0, 1}-valued function F 6≤T K ′′ a clusterable class which
is not contained in any uniformly recursively enumerable clusterable class. Fur-
thermore, the union of any two such classes, given by different functions F, F ′, is
no longer clusterable. So one cannot cover these classes by countably many clus-
terable superclasses. Most interesting results are based on Definition 2.2 with the
consequence that only countably many classes are clusterable. The more general
notion below expands the collection of clusterable classes to an uncountable one.
Although the latter collection contains many irregular classes of limited inter-
est, it still gives some fundamental insights. In this case one uses the acceptable
numbering W0, W1, . . . of all recursively enumerable sets as the hypothesis space
for the clusterer.

Definition 3.8. A class S of recursively enumerable sets is clusterable in the

general sense iff there is a machine M which converges on every text for the
union of finitely many disjoint sets L0, L1, . . . , Ln ∈ S to a finite set J of indices
of pairwise disjoint members of S such that L0 ∪ L1 ∪ . . . ∪ Ln = ∪e∈JWe.

Proposition 3.9. Let F be a {0, 1}-valued function which is not computable

relative to the oracle K ′′. For all x, y ∈ N and z ∈ {0, 1} let Ax,z, Bx,y be defined

as

Ax,z = {〈x, 0, z〉, 〈x, 1, z〉, 〈x, 2, z〉, . . .};

Bx,y = {〈x, y, 0〉, 〈x, y, 1〉}.

Then the class S containing all sets Ax,z and Bx,y with x, y ∈ N and z = F (x)
is clusterable but not contained in any clusterable class which is uniformly re-

cursively enumerable.

Proof. A clustering algorithm outputs on input σ a set J which contains indices
of the following sets:

– Ax,z whenever 〈x, 0, z〉 ∈ range(σ) but 〈x, 0, 1 − z〉 /∈ range(σ);
– Bx,y whenever Bx,y ⊆ range(σ).

The verification of the correctness of this algorithm can be carried out by taking
into account that for every x the following holds: S contains exactly one of the
sets Ax,0, Ax,1; every clustering task never contains both Ax,z and Bx,y.

Assume by way of contradiction that C0, C1, . . . is a numbering of a clus-
terable superclass of S. This numbering contains exactly only one of the sets
Ax,0, Ax,1 since Ax,F (x) ∈ S and every class containing both Ax,0, Ax,1 together
with the sets Bx,y for all y ∈ N is not clusterable. The class of all Ax,0, Ax,1 and
Bx,y has a basic principle with the class Ssing from Examples 3.5 in common: the
set Ax,0 ∪ Ax,1 is the disjoint union of the subsets Bx,0, Bx,1, . . . and therefore

10

no clusterable superclass of S contains both sets Ax,0 and Ax,1. Thus one can
get F from the numbering C0, C1, . . . as follows:

F (x) = z ⇔ (∃i) [Ci = Ax,z].

Since the equality of two recursively enumerable sets can be tested relative to the
oracle K ′, the function F would be computable relative to K ′′ in contradiction
to the choice of F .

4 Clustering and Oracles

Oracles are a method to measure the complexity of a problem. Some classes are
clusterable with a suitable oracle while others cannot be clustered with any ora-
cle. So the use of oracles permits to distinguish between problems caused by the
computational difficulty of the class involved from those which are unclusterable
for topological reasons. This is illustrated in the following remark.

Remark 4.1. Recall the classes SC and Sgold from Examples 3.5. The class SC

is clusterable iff the set C in its definition is recursive. It is easy to see that
supplying C as an oracle to the clusterer resolves all computational problems in
the case that C is not recursive. But the class Sgold is unclusterable because of
its topological structure and remains unclusterable relative to every oracle.

Oracles have been extensively studied in the context of inductive inference [1,
6, 13, 16]. These studies considered arbitrary classes and not uniformly recur-
sively enumerable ones. The results for arbitrary classes carry over directly from
learning to clustering in the general sense.

Remark 4.2. Fortnow and coworkers [6] investigated the question which oracles
are maximal for learning in the sense that they enable to solve all principally
solvable learning problems. Jain and Sharma [13] showed that there is no max-
imal oracle. The same holds for clustering: for every oracle E the class SE

jump

consisting of all sets {2x, 2x + 1} with x ∈ E ′ and {2x}, {2x + 1} with x /∈ E ′ is
clusterable in the general sense relative to oracle F iff E ′ ≤T F ′. The reason is
that a clusterer MF on a text for {2x, 2x + 1} can figure out in the limit how
many clusters of SE

jump are needed to cover {2x, 2x + 1}:

x ∈ E′ ⇔ MF converges on 2x (2x + 1) (2x + 1) . . . to I with |I | = 1;

x /∈ E′ ⇔ MF converges on 2x (2x + 1) (2x + 1) . . . to I with |I | = 2.

Thus there is no oracle E which is maximal for clustering in the general sense,
meaning that every class which is clusterable in the general sense relative to
some oracle is also clusterable in the general sense relative to E.

An oracle is called trivial for clustering in the general sense iff every class
which is clusterable in the general sense relative to this oracle is also clusterable
in the general sense without it. Now it is shown that a nonrecursive oracle E is

11

trivial for clustering in the general sense iff it has 1-generic degree and is Turing
reducible to the halting problem, that is, Case 1 below is satisfied.

Case 1: E ≤T G for a 1-generic set G ≤T K. Let S be any class which is
clusterable in the general sense relative to E. By [6, Lemma 4.19] there is a
clusterer ME which asks on every text belonging to any clustering task from S
only finitely many queries to E. The answers to these queries can be successfully
figured out in the limit and thus there is a recursive clusterer for S which con-
verges on every text of any finite disjoint union of sets in S to exactly the same
output as ME . In particular, E is trivial for clustering in the general sense.

Case 2: E 6≤T G for any 1-generic set G ≤T K. Kummer and Stephan [16,
Theorem 10.5] showed that there is a class SE

func which is learnable relative to
E but not without any oracle. This class SE

func consists of graphs of recursive
functions and following Remark 2.4, one can assume without loss of generality
that f(0) = 0 for every function whose graph is in SE

func. The class SE
func is on

one hand clusterable in the general sense relative to E and on the other hand not
clusterable in the general sense without any oracle. In particular, SE

func witnesses
that E is not trivial for clustering in the general sense.

The previous remark completes the investigation of clustering in the general
sense within the present work. From now on, S denotes again a uniformly re-
cursively enumerable family of clusters. That is, S = {A0, A1, . . .} and the set
{(i, x) ∈ N2 : x ∈ Ai} is recursively enumerable.

The usefulness of oracles with respect to clustering differs much from the
case of clustering in the general sense. Dealing only with uniformly recursively
enumerable classes reduces the ability to separate oracles by suitable classes.
The definitions for maximal and trivial oracles for clustering are the following
ones.

Call an oracle E maximal for clustering if every uniformly recursively enu-
merable class which is clusterable relative to some oracle is already clusterable
relative to E. Call an oracle E trivial for clustering if every uniformly recursively
enumerable class which is clusterable relative to E is already clusterable without
any oracle.

Here the word “maximal” instead of “omniscient” is used since by Remark 4.1
some classes are not clusterable with any oracle. In contrast, omniscient oracles
for learning functions permit to learn the class of all recursive functions [1] and
do not leave any function learning problem unsolved.

The next result shows that in contrast to the case of clustering in the general
sense there are maximal oracles for clustering. The characterization for trivial
oracles for function learning [6] can be carried over to clustering with respect to
oracles below K.

Proposition 4.3. For every oracle E the following statements are equivalent:

(a) E ≥T K and E′ ≥T K ′′;
(b) the oracle E is maximal for learning from positive data – every uniformly re-

cursively enumerable class is either not learnable with any oracle or learnable

with oracle E;

12

(c) the oracle E is maximal for clustering – every uniformly recursively enu-

merable class is either not clusterable with any oracle or clusterable with

oracle E.

Proof. Assume that E satisfies E ≥T K and E′ ≥T K ′′ and assume that
S = {A0, A1, . . .} is clusterable relative to some oracle. Then S satisfies Angluin’s
telltale condition below and one can actually give an algorithm which succeeds
with the oracle E.

Angluin’s Condition [3]. The class S is clusterable with the help of some
oracle iff for every I ∈ disj(S), there is a finite set D, called a telltale set for I ,
such that D ⊆ AI and no J ∈ disj(S) satisfies D ⊆ AJ ⊂ AI .

Note that one can test with oracle K ′′ whether the telltale condition holds for
given I, D: F (D, I) = 1 ⇔ (∀J ∈ disj(S)) [D 6⊆ AJ ∨ AJ 6⊂ AI]. This condition
has an E-recursive approximation Fs(D, I) which converges for s → ∞ to 1 if
F (D, I) = 1 holds and to 0 otherwise.

Algorithm M. Given an E-recursive enumeration of {(D, J) : D is a finite
subset of N and J ∈ disj(S)}, M(σ) outputs J from the first pair (D, J) satisfying
the following conditions:

– D ⊆ range(σ) ⊆ AJ ;
– F|σ|(D, J) = 1.

In order to guarantee that M is total, the search is limited to the first |σ| pairs
and M(σ) outputs ∅ if none of the first |σ| pairs qualifies.

Verification. Since every clustering task I ∈ disj(S) has a telltale set D′ such
that D′ ⊆ AI and F (D′, I) = 1, the algorithm converges to some pair (D, J)
with F (D, J) = 1. One has that D ⊆ AI ⊆ AJ and it then follows from Angluin’s
condition that AI = AJ .

Complete Class. It remains to show that Condition (a) on E is necessary. The
class Scomp considered here consists of the sets Ai,D defined below where i ∈ N

and D is a finite subset of N. Note that below the entry for ∅ is given explicitly
and therefore D 6= ∅ in the second entry; in particular max(D) is defined there.

Ai,∅ = {〈i, x〉 : x ∈ Wi ∪ {0}};

Ai,D = {〈i, x〉 : x ∈ D ∪ {0}

∨ (x > max(D) ∧ {z : max(D) ≤ z < x} ⊆ Wi)

∨ (x ≤ max(D) ∧ {z : x ≤ z ≤ max(D)} ⊆ Wi)}.

Clusterer N with oracle K′′. Given input σ, NK′′

determines the sets

Bi = range(σ) ∩ {〈i, 0〉, 〈i, 1〉, . . .}.

13

Then J consists of the pairs (i, D) where Bi 6= ∅ and D is a finite set of least
norm satisfying one of the following conditions:

1. Ai,D = Bi;
2. D = ∅, Bi ⊆ Ai,∅ and Wi coinfinite;
3. Ai,D = Bi ∪ {〈i, x〉 : x ≥ max(D)}.

Then NK′′

outputs J .

Verification. Given a task I , the clusterer obviously finds all i where (i, C) ∈ I
for some C. Furthermore, there is at most one C with (i, C) ∈ I since Ai,C

always contains 〈i, 0〉. It is easy to see that all three cases are disjoint and that
NK′′

converges syntactically whenever NK′′

converges semantically.

– If Ai,C is finite then eventually all elements show up and NK′′

outputs an
index for this set.

– If Ai,C is infinite and Wi coinfinite then C = ∅ and no finite subset of Ai,∅ is

in S. Thus the first case does not apply and NK′′

puts (i, ∅) into J according
to the second case.

– If Ai,C is infinite and Wi cofinite, then let ai be the first number such that
all x ≥ ai are in Wi. In particular, the set D = {x ≤ ai : 〈i, x〉 ∈ Ai,C}
satisfies Ai,D = Ai,C and therefore (i, D) or some equivalent index goes into
J whenever Bi contains all 〈i, x〉 ∈ Ai,C with x ≤ ai.

This completes the verification of the clusterer NK′′

. It is easy to see that S is
also learnable relative to K ′′. Furthermore, S is clusterable and learnable relative
to any oracle which is maximal for clustering.

Hardness of S. It is sufficient to show that learning is hard since no member
of S is the disjoint finite union of more than two other members of S and every
clusterer therefore has to find for every L ∈ S a singleton {(i, D)} such that
Ai,D = L. In the following assume that an oracle E and a learner OE using the
oracle E are given. Note that every set Ai,∅ has a stabilizing sequence. Let σi be
the first stabilizing sequence found by a search applying the oracle E ′. Note that
OE(σi) has to be an index for Ai,∅ since OE(σiτ) = OE(σi) for all τ ∈ (Ai,∅)

∗

by the definition of a stabilizing sequence. Let bi be the maximum of all y with
〈i, y〉 ∈ range(σi).

There is an index i such that Wi = N ⊕ K. Then Ai,∅ = {〈i, y〉 : y ∈ Wi}.
Now consider any x with 2x > bi and Ai,D where D consists of 2x and all y with
〈i, y〉 ∈ range(σi). If x ∈ K then range(σi) ∪ {〈i, 2x + 1〉} ⊆ Ai,∅. If x /∈ K then
Ai,D − Ai,∅ = {〈i, 2x + 1〉}. Therefore,

x ∈ K ⇔ 2x + 1 ∈ Wi;

x /∈ K ⇔ (∃τ ∈ (Ai,∅)
∗) [OE(σi〈i, 2x + 1〉τ) 6= OE(σi)].

A finite modification of the above formula takes care of the x with 2x ≤ bi and
shows that K is computable relative to E.

Assume that the set Wi is cofinite and ai is as above the minimum of all

14

x with {x, x + 1, . . .} ⊆ Wi. Now consider any y < ai with y ∈ Wi. Then
Ai,∅−{〈i, y〉} is in Scomp. Since σi is a stabilizing sequence for Ai,∅, 〈i, y〉 occurs
in σi. Thus there are no elements of Wi strictly between bi and ai. In particular,
Wi is cofinite iff every x > bi with x ∈ Wi actually satisfies {x, x + 1, . . .} ⊆ Wi.
As it is already known that K ≤T E, one has that K ′ ≤ E′ and the following
algorithm decides relative to E ′ whether Wi is cofinite.

Given i, compute relative to E ′ the sequence σi and the number bi. Check
whether there is an x > bi with x ∈ Wi. If not, then Wi is finite and thus
coinfinite. If so, one can find such an x with oracle E. Then Wi is cofinite iff
{x, x + 1, . . .} ⊆ Wi, which can again be checked with oracle E ′.

So exploiting that E ≥T K and E′ ≥T K ′, one can derive that E ′ ≥T K ′′

since K ′′ and the index-set {i : Wi is cofinite} have the same Turing degree.
This completes the proof.

An oracle G is k-generic if for every Σ0
k-set T of strings there is a prefix η � G

such that either η ∈ T or η′ /∈ T for all η′ � η. There are 1-generic sets but no
2-generic sets below K. Nevertheless, k-generic sets exist for all k ∈ {1, 2, . . .}.

Proposition 4.4. Let E be a nonrecursive oracle with E ≤T K.

(a) If E has 1-generic degree then E is trivial and permits only to cluster classes

which can already be clustered without any oracle.

(b) If E does not have 1-generic degree then there is a uniformly recursively

enumerable class which can be clustered using the oracle E but not without

any oracle.

The same characterizations hold for learning in place of clustering.

Proof (a). Clustering S and learning S̃ = {AI : I ∈ disj(S)} have the same
difficulty if one does not require the use of the hypothesis space {A0, A1, . . .}.
Therefore, if one can cluster S with the help of oracle E, then one can also
learn S̃ with the help of the same oracle. Kummer and Stephan [16, Theorem
10.5] showed that S̃ can be learned without any oracle. This learner can be inter-
preted as a clusterer which outputs only singleton classes and uses an acceptable
numbering of all recursively enumerable sets as its hypothesis space. By Propo-
sition 3.2 one can translate this learner into a clusterer using A0, A1, . . . as its
hypothesis space.

(b). By [16, Theorem 10.5] there is a class SE
func of graphs of recursive functions

which can be learned relative to oracle E but not without any oracle. The main
task it to build a uniformly recursively enumerable superclass which still can be
learned with oracle E. Without loss of generality all functions f with a graph
in SE

func satisfy that f(0) = 0. Therefore 〈0, 0〉 is in all members of SE
func and the

superclass S to be constructed and S is clusterable iff S is learnable.
Since E ≤T K the oracle E has a recursive approximation E0, E1, . . . and

besides ME also the approximations MEs working with some Es instead of E
are defined and uniformly recursive.

15

The Class S. For every given i, j, k ∈ N, let Ai,j,k contain all pairs 〈x, y〉 which
satisfy one of the conditions (1), (2), (3) below. The class S consists of all Ai,j,k

with i, j, k ∈ N.

Condition 1. The pair 〈x, y〉 is just 〈0, 0〉.

Condition 2. There is a number s ≥ max({i, j, k, x}) such that the following
statements hold:

– ϕi(z) is defined for all z ≤ max({j, x}), ϕi(0) = 0 and ϕi(x) = y;
– for all t with k ≤ t ≤ s, MEt(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j, ϕi(j)〉) = {i};
– for z = j, j+1, . . . , max({j, x}), MEs(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈z, ϕi(z)〉) = {i};
– either j = 0 or MEs(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j − 1, ϕi(j − 1)〉) 6= {i}.

Condition 3. This condition does not depend on 〈x, y〉 since it covers the case
where the parameters do not permit to construct a desired set but might already
have caused the enumeration of pairs different from 〈0, 0〉:

– ϕi is defined on 0, 1, . . . , j;
– MEs(η) 6= MEk(η) for some s > k and η � 〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j, ϕi(j)〉.

It is easy to see that this class is uniformly recursively enumerable. The intuition
behind the conditions is the following. Condition 1 makes the set Ai,j,k nonempty
and enforces that S is clusterable relative to E iff S is learnable relative to E.
Condition 2 tries to put information on the graph of ϕi into Ai,j,k where j, k
serve as additional information. Condition 3 takes care of the class when the
choice of the parameters j, k is inadequate. Note that whenever ME converges
for a total function f to {i} such that ϕi = graph(f), then there is a position
j from which on ME has converged to {i}. In particular, Ai,j,k = graph(f)
where k is the least number such that MEs(η) = ME(η) for all s ≥ k and η �
〈0, f(0)〉〈1, f(1)〉 . . . 〈j, f(j)〉. Let (i0, j0, k0) be an index of {〈0, 0〉} and (i1, j1, k1)
of {〈x, y〉 : x, y ∈ N}.

Algorithm N with Oracle E. On input σ, NE does the following steps:

1. let f(m) be the least number y such that 〈m, y〉 is in range(σ);
2. if f(0) or f(1) cannot be recovered from range(σ) then output (i0, j0, k0)

and halt;
3. if there is 〈m, z〉 ∈ range(σ) with z > f(m) then output (i1, j1, k1) and halt;
4. find largest n such that f(0), f(1), . . . , f(n) can be recovered from range(σ);
5. compute for m = 0, 1, . . . , n the indices im such that

ME(〈0, f(0)〉〈1, f(1)〉 . . . 〈m, f(m)〉) = {im}

and let km,|σ| be the least number o such that 〈0, 1〉 is not enumerated into
Aim,m,o within |σ| − o steps;

16

6. determine all numbers m ∈ {1, 2, . . . , n} such that either range(σ) consists
of the elements enumerated into Aim,m,km,|σ|

within |σ| steps or m is the
least number with im = im+1 = . . . = in;

7. output {(im, m, km,|σ|}) for the least m that was selected in Step 6 and halt.

Verification. Let L be any set in S. It is easy to see that NE identifies the
sets Ai0,j0,k0

and Ai1,j1,k1
. Thus one can consider any set L ∈ S which is of the

form {〈x, f(x)〉 : x < b} where b ∈ {2, 3, . . . ,∞} and f is a recursive function.
It is obvious that any 〈x, y〉 ∈ range(σ) satisfies f(x) = y, thus f is correctly
recovered by NE and n is the largest integer such that all pairs 〈x, f(x)〉 with
x ≤ n occur in σ.

In the following let j be the least number such that j < b and there is a k
with Aij ,j,k = L. Now fix this k to be the minimal one with Aij ,j,k = L. Then
Aij ,j,o 6= L for all o < k; indeed Aij ,j,o = Ai1,j1,k1

for these o. Note that km,t

converges for t → ∞ to k from below and that k is the first integer such that
the m, f(0), f(1), . . . , f(m) chosen by the algorithm satisfy

(∀m′ ≤ m) (∀s ≥ k) [MEs(〈0, f(0)〉〈1, f(1)〉 . . . 〈m′, f(m′)〉)

= ME(〈0, f(0)〉〈1, f(1)〉 . . . 〈m′, f(m′)〉)].

Given any text for L, assume that σ is so long that the following statements
hold:

1. all pairs 〈m, f(m)〉 with m ≤ j have occurred in σ and thus NE knows
f(0), f(1), . . . , f(j);

2. if L is finite then L = range(σ) and all elements of L are enumerated into
Aij ,j,k within |σ| steps;

3. for all m ≤ j and t > |σ|, km,t = km,|σ|;
4. an element of Aim,m,km,|σ|

− L is enumerated into Aim,m,km,|σ|
within |σ|

steps whenever this difference is not empty and m ≤ j;
5. an element of L− Aim,m,km,|σ|

has occurred in σ whenever this difference is
not empty and m ≤ j.

The first statement implies that NE can recover the relevant part of f . The
second statement implies that whenever L is finite then its elements and the
finitely many elements of Aij ,j,k are explicitly known to the learner. The third
statement enforces that kj,|σ| = k and thus k is known to the learner. The
fourth and fifth statement guarantee for all m ≤ j that NE does not output
{(im, m, km,|σ|)} whenever Aim,m,km,|σ|

6= L. By the choice of j, this holds for

all m ≤ j and NE outputs {(ij , j, k)} on input σ. Thus NE identifies L.

The following example shows that there is a difference between the trivial or-
acles for clustering in the general sense and clustering of uniformly recursively
enumerable classes.

Example 4.5. Every 2-generic oracle is trivial for clustering.

17

Proof. Assume that G is 2-generic and S = {A0, A1, . . .} is clusterable relative
to G via an oracle machine MG. Without loss of generality, ME is total for every
oracle E. Now consider the following sets of strings.

T = {η : (∃I, J) (∃x, t) (∃σ ∈ A∗
I) (∀τ ∈ A∗

I) (∀E � η) (∀s ≥ t)

[(J /∈ disjs(S) ∨ AI,s(x) 6= AJ,s(x)) ∧ I ∈ disjs(S) ∧ ME(στ) = J]};

UI,σ = {ϑ : (∃τ ∈ A∗
I) (∀E � ϑ) [ME(στ) 6= ME(σ)]}.

The oracles quantified in the definitions above are only evaluated up to a certain
point. Thus one can make the definitions of the sets to be Σ0

2 .
Given any I ∈ disj(S), MG has a stabilizing sequence σ for AI . If σ is not

also a stabilizing sequence for ME then there is a τ and a prefix ϑ � E with
ME(στ) 6= ME(σ) where all queries to E while computing these two values only
target the domain of ϑ. Thus ϑ ∈ UI,σ. Since G is 2-generic and σ is a stabilizing
sequence for MG, there is a prefix η � G such that no extension ϑ � η is in UI,σ.
In particular, σ is a stabilizing sequence for AI and ME whenever the oracle E
satisfies E � η. So the stabilizing sequence σ is uniform for all ME with E � η.

The set T contains now all η such that there is for some I ∈ disj(S) and a
uniform stabilizing sequence for AI with respect to η such that ME(σ) outputs
for all E � η a J such that either J /∈ disj(S) or AJ 6= AI . It follows again that
η 6� G for all η ∈ T . Thus there is a prefix θ � G such that no extension of θ is
in T .

Algorithm N. The clusterer N is a variant of the locking sequence hunting
construction and searches simultaneously for an η � θ and σ built from the data
and a J such that ME(στ) = J for all E � η and τ obtained from data seen so
far. That is, if at stage s the set D is the range of all data seen so far, N searches
the first pair (σ, η) in an enumeration of N∗ × {0, 1}∗ such that

– σ ∈ D∗ and η ∈ θ · {0, 1}∗;
– for all τ ∈ D∗ with |τ | ≤ s − |σ| and all E, F � η, ME(στ) = MF (σ).

Let J = MF (σ) for the set F = {x : η(x) ↓= 1} N outputs J .

Verification. First one has to note that the search always terminates. The
reason is that if σ is longer than s then the second search condition becomes
void. Furthermore, there is a pair (σ, η) which is a uniform stabilizing sequence
for AI satisfying η � θ and N finds such a sequence in the limit. Since G strongly
avoids T in the sense that no extension of the prefix θ is in T , any pair (σ, η)
considered by N infinitely often is a correct uniform stabilizing sequence and
thus N converges to an index J ∈ disj(S) of AI .

5 The Finite Containment Property

The main topic of this section is to investigate the relationship between the
topological structure of the class S and the question whether S is clusterable.

18

Recall that the classes Sgold and Ssing are not clusterable for topological reasons:
they contain a cluster which is the disjoint infinite union of further clusters. So
one might impose the following natural condition in order to overcome this
problem.

Definition 5.1. A class S = {A0, A1, . . .} has the Finite Containment Property

if every finite union of clusters contains only finitely many clusters. That is, for
all i there are only finitely many sets B ∈ S with B ⊆ A{0,1,...,i}.

Note that the Finite Containment Property is not necessary for clusterability.
The class { {i, i+1, . . .} : i ∈ N} is learnable and clusterable but does not satisfy
the Finite Containment Property.

It is easy to see that the Finite Containment Property implies Angluin’s
condition: for every set AI there are only finitely many sets AJ with AJ ⊂ AI . If
one takes D to be a set which contains for each AJ with AJ ⊂ AI the minimum
of AI − AJ , then D is finite and there is no AJ left with D ⊆ AJ ⊂ AI .

Property 5.2. If S = {A0, A1, . . .} has the Finite Containment Property then

S is clusterable relative to every oracle E with E ≥T K and E′ ≥T K ′′.

Although the Finite Containment Property guarantees clusterability from the
topological point of view, it fails to guarantee clusterability from the recursion-
theoretic point of view. Indeed the class Scomp given in the proof of Proposi-
tion 4.3 satisfies the Finite Containment Property. If Wi is cofinite then there
are only finitely many subsets of {〈i, 0〉, 〈i, 1〉, . . .} in Scomp. If Wi is coinfinite
then Ai,∅ is the only infinite subset of {〈i, 0〉, 〈i, 1〉, . . .} in Scomp and all further
subsets of {〈i, 0〉, 〈i, 1〉, . . .} are finite sets which are not contained in Ai,∅.

Note that the class SC from Examples 3.5 is, for the case that C is nonre-
cursive, a witness for a class satsifying the Finite Containment Property which
is learnable but not semiclusterable.

Property 5.3. There is a class satisfying the Finite Containment Property

which is learnable but neither clusterable nor semiclusterable.

Since the topological structure of SC is the same whenever C is infinite, cluster-
ability of the class SC is not determined by its topological structure.

Property 5.4. Clusterability cannot be characterized in topological terms only.

If one takes C to be the halting problem K then SC witnesses that the oracle
K is necessary for semiclustering, even in the case where classes have to satisfy
the Finite Containment Property. Proposition 5.5 below shows that semiclus-
tering is much easier than clustering: every uniformly recursively enumerable
class is semiclusterable using the halting problem as an oracle. In particular, no
topological condition can make semiclustering impossible, only computational

19

conditions can.
Furthermore, every uniformly recursive class is semiclusterable. But this con-

dition is not necessary, neither for semiclusterable nor for clusterable classes. For
example the class { {x : ϕx(x) ↓= i} : i ∈ N} is clusterable but consists of pair-
wise disjoint and recursively inseparable sets.

Proposition 5.5. Every class has a semiclusterer using the halting problem as

an oracle. Furthermore, a class S = {A1, A2, . . .} is semiclusterable without any

oracle if the representation of the class is a uniformly recursive family, that is,

if {(i, x) ∈ N2 : x ∈ Ai} is recursive and not only recursively enumerable.

Proof. It is sufficient to assume that M can check whether some x is in Ai. This
can either be done by using the halting problem as an oracle or by assuming
that the sequence A0, A1, . . . is uniformly recursive.

Now M on input σ determines all J ⊆ {0, 1, . . . , |σ|} such that J ∈ disj|σ|(S)
and range(σ) ⊆ AJ . If there are several such sets, M outputs the one with the
least norm. If there are none, M outputs ∅.

Note that all J which either do not represent disjoint sets or do not con-
tain all data showing up in the limit are eventually disqualified. On the other
hand, the set I representing the clustering task is among the determined sets
whenever |σ| ≥ max(I). So M converges in the limit to some J such that
norm(J) ≤ norm(I), J ∈ disj(S) and AI ⊆ AJ . Therefore M witnesses that
S is semiclusterable.

By Property 5.3 one can separate learnability from clusterability and semiclus-
terability by a class satisfying the Finite Containment Property. The next results
show that there are no implications between the notions of learnability, cluster-
ability and semiclusterability except the following two: “clusterable ⇒ semiclus-
terable” and “clusterable ⇒ learnable”. All nonimplications are witnessed by
classes satisfying the Finite Containment Property.

Proposition 5.6. There is a class with the Finite Containment Property which

is semiclusterable and learnable but not clusterable.

Proof. Let S consist of the clusters

A3i = {〈i, x〉 : x ∈ N};

A3i+1 = {〈i, x〉 : x is even and x < 2 + |Wi|};

A3i+2 = {〈i, x〉 : x is odd and x < 2 + |Wi|}.

If Wi is infinite then A3i+1 consists of the 〈i, x〉 where x is even and W3i+2

consists of those 〈i, x〉 where x is odd. Since the union A0 ∪A1 ∪ . . .∪A3i+2 only
contains the clusters A0, A1, . . . , A3i+2, the class S has the Finite Containment
Property. Furthermore, S is semiclusterable by assigning to every input σ the
set

{3i : (∃x ∈ N) [〈i, x〉 ∈ range(σ)]}.

20

Now it is shown that S is not clusterable. So assume by way of contradiction
that a recursive M witnesses S to be clusterable.

For each A3i one finds using the oracle K a stabilizing sequence σi ∈ (A3i)
∗.

One can reduce the question whether Wi is infinite to the question whether
range(σi) ⊆ A{3i+1,3i+2}, which is decidable relative to K: if Wi is infinite then
range(σi) ⊆ A{3i+1,3i+2}; if Wi is finite then range(σi) 6⊆ A{3i+1,3i+2}. The lat-
ter holds since otherwise σi would also be a stabilizing sequence for A{3i+1,3i+2}

and M cannot have the same stabilizing sequence for two different sets with one
being a subset of the other. The reduction of {i : Wi is infinite} to the oracle K
contradicts the fact that {i : Wi is infinite} is Turing equivalent to K ′.

It remains to show that the class S is learnable. This can be done by consid-
ering the following learner N .

Algorithm N. On input σ, let i be the least number such that a pair of the
form 〈i, x〉 occurs in range(σ). Then

N(σ) =







3i if there are even and odd y with 〈i, y〉 ∈ range(σ);
3i + 1 if there are only even y with 〈i, y〉 ∈ range(σ);
3i + 2 if there are only odd y with 〈i, y〉 ∈ range(σ).

Verification. N converges in the limit to 3i + j for the least i such that a pair
〈i, x〉 appears in the text and j ∈ {0, 1, 2}. It can easily be verified that the
parameters i, j are chosen correctly whenever the text is for one of the sets A3i,
A3i+1 or A3i+2.

Example 5.7. The class containing all sets A3i, A3i+1, A3i+2, A{3i+1,3i+2} from

the numbering A0, A1, . . . in the proof of Proposition 5.6 is neither learnable nor

clusterable. But it satisfies the Finite Containment Property and is semicluster-

able.

A natural variant of the Finite Containment Property is the Finite Meet Prop-

erty which says that each member of the class meets only finitely many other
members. The class SC witnesses that for C = K one might need the oracle K
to cluster a class satisfying the Finite Meet Property. Since the class given in
the proof of Proposition 4.3 satisfies the Finite Containment Property and can
be clustered only relative to maximal oracles, the next result shows that classes
satisfying the Finite Meet Property are easier and require only the oracle K.

Proposition 5.8. If a class satisfies the Finite Meet Property then it is cluster-

able with the halting-problem oracle K.

Proof. Let S = {A0, A1, . . .} satisfy the Finite Meet Property. Let {b0, b1, . . .}
be a text for AI with I ∈ disj(S); without loss of generality I consists of minimal
indices, that is, for all i ∈ I and for all j, if Ai = Aj then i ≤ j. Relative to K
and the text, one can enumerate the set

H = {h : Ah ∩ {b0, b1, . . .} 6= ∅ ∧ (∀j < h) [Aj 6= Ah] }.

21

Now one considers all subsets J ⊆ H with J ∈ disj(S). Note that I ⊆ H
and I ∈ disj(S), thus I is among the considered sets. Due to the Finite Meet
Property, H is finite and only finitely many J are considered. Since these sets
are uniformly recursive relative to K, one can find in the limit a considered set
J which satisfies AJ = {b0, b1, . . .}, that is, AJ = AI . Thus S is clusterable using
the oracle K.

6 Numbering-Based Properties

Every uniformly recursively enumerable class of pairwise disjoint sets is learn-
able: the learner just waits until it finds that some x ∈ range(σ) is in Ai,|σ| for
some i ≤ |σ| and from then on outputs the index i. But for nonrecursive sets C,
the class SC witnesses that such a class is not clusterable. So one has to consider
not only properties of the class but also properties of some of its numberings. A
class {A0, A1, . . .} has the Numbering-Based Finite Containment Property if for
every I there are only finitely many j with Aj ⊆ AI .

Proposition 6.1. A class of pairwise disjoint sets has the Numbering-Based

Finite Containment Property iff it is clusterable.

Proof. Let S = {A0, A1, . . .} be a class of pairwise disjoint sets. Due to the
Numbering-Based Finite Containment Property there are, for every i, only finite-
ly many j with Aj = Ai. Now consider the following clusterer.

Algorithm M. On input σ, find the J of the largest norm which satisfies the
following three conditions.

1. J ⊆ {0, 1, . . . , |σ|};
2. J ∈ disj|σ|(S);
3. Aj ∩ range(σ) 6= ∅ for all j ∈ J .

Then output this J .

Verification. Note that the algorithm always terminates since ∅ satisfies the
search conditions. Fix a clustering task I . The set H = {h : Ah ∩ AI 6= ∅} is
finite. Since M outputs always subsets of H , it follows that M converges to some
J ⊆ H . This J is among the subsets of H the one with the largest norm which
in addition also belongs to disj(S). Since the members of S are pairwise disjoint,
it holds for every j ∈ J that Aj not only meets AI but moreover is contained in
AI . Furthermore, if i ∈ I then Ai ∩ AJ is not empty since otherwise J ∪ {i} is
also a subset of H , is in disj(S) and has a norm larger than the one of J . Thus
Ai ⊆ AJ . Since this holds for all i ∈ I , AJ = AI and M is a clusterer for S.

Converse direction. Assume that N is a clusterer for S and consider the set

E = {i : (∀j < i) (∀σ ∈ A∗
j,i, |σ| ≤ i) (∃τ ∈ A∗

{i,j}) [N(στ) 6= N(σ)]}.

22

The set E is recursively enumerable since the universal quantifiers are bounded
and the second one runs over strings of the finite set Aj,i of all elements enu-
merated into Aj during i steps. Given any set in S, let i be its minimal index.
Let j < i. Since Aj 6= Ai, Aj is disjoint from Ai, {j, i} ∈ disj(S) and A{i,j}

is a proper superset of Ai. The clusterer N must converge on texts for Aj and
A{i,j} to different outputs. Thus there is no σ ∈ A∗

j with N(σ) = N(στ) for
all τ ∈ A∗

{i,j}. The index i is eventually enumerated into E. The set Ai has a
stabilizing sequence σ. For all sufficiently large j with Ai = Aj , the length of σ
is shorter than j and its range enumerated into Ai within j steps. It follows that
σ prevents j from being enumerated into E and E contains only finitely many
indices of Ai. The set E has a recursive enumeration e0, e1, . . . which defines by
Bh = Aeh

a new numbering B0, B1, . . . of S having the desired properties.

Remark 6.2. Proposition 5.6 gives a class which satisfies the Numbering-Based
Finite Containment Property but is not clusterable. A variant of the class given
in the proof of Proposition 4.3 satisfies the Enumeration-Based Finite Contain-
ment Property but is clusterable only relative to maximal oracles.

Let the Numbering-Based Finite Meet Property denote that every Ai meets
Aj only for finitely many j. It follows from Proposition 5.8 that a class satisfying
the Numbering-Based Finite Meet Property is clusterable with the oracle K. But
even this property is not sufficient for clustering without oracles. Example 5.7
satisfies actually the Numbering-Based Finite Meet Property but is not cluster-
able.

A further example of a class which satisfies the Numbering-Based Finite Meet
Property but is not clusterable can be constructed using the following result of
Jain and Sharma [12]: there is no learner which identifies all recursively enumer-
able sets from any text for the set plus an upper bound on its least index. The
class

{{〈i, x〉 : x ∈ Wj} : j ≤ i ∧ Wj 6= ∅}

has a numbering witnessing that it satisfies the Numbering-Based Finite Meet
Property. But it consists of copies of sets Wj having coded an upper bound of an
index of Wj into its first coordinate. This class cannot be learnable or clusterable
because one would get a contradiction to the result of Jain and Sharma otherwise.

In the following two conditions are presented which are more restrictive than
the Numbering-Based Finite Containment Property and guarantee that a class
is clusterable.

Proposition 6.3. Assume that Ai 6⊆ ∪j 6=iAj for all i and that it is decidable

whether two sets Ai, Aj intersect. Then S = {A0, A1, . . .} is clusterable.

Proof. The clusterer M uses the fact that one can check disjointness effectively,
that is, that disj(S) is recursive.

Algorithm M. On input b0b1 . . . bs, M considers all J ⊆ {0, 1 . . . , s} satisfying
the following conditions:

23

1. Ai,s ∩ {b0, b1, . . . , bs} 6= ∅ for all i ∈ J ;
2. J ∈ disj(S);
3. there is no j ∈ {0, 1, . . . , s} − J such that Aj,s ∩ {b0, b1, . . . , bs} 6= ∅ and

J ∪ {j} ∈ disj(S).

If there are several sets J1, J2, . . . , Jn ⊆ {0, 1, . . . , s} which satisfy all three con-
ditions then M computes for these sets the number

cm = max{h ≤ s + 1 : {bj : j < h} ⊆ Jm,s}

and outputs that set Jm for which cm is maximal; if there are still several options,
M outputs the one with the least norm.

Verification. Assume that a task I ∈ disj(S) is given and that b0b1 . . . is a text
for AI . Let s be so large that there is a c satisfying the following conditions:

– s ≥ max(I);
– for any i ∈ I there exists a h ≤ c with bh ∈ Ai − ∪j 6=iAj ;
– {b0, b1, . . . , bc} ⊆ AI .

Then I clearly satisfies the first two search conditions of M . The third is also
satisfied since whenever Aj∩AI = ∅ then Aj does not contain any of the elements
b0, b1, . . . , bs. Thus, any set J 6= I satisfying all three conditions is not a superset
of I . In particular there is an i ∈ I − J and a h ≤ c such that bh ∈ Ai − AJ .
Since {b0, b1, . . . , bc} ⊆ AI,s and {b0, b1, . . . , bc} 6⊆ AJ , M outputs I and not J .
So M converges on a text for AI to I and M is a clusterer for S.

Proposition 6.4. Assume that S = {A0, A1, . . .} satisfies the following three

conditions:

1. every Ai is infinite;

2. if i 6= j then Ai ∩ Aj is finite;

3. S is uniformly recursive, that is, {(i, x) : x ∈ Ai} is recursive.

Then S is clusterable. But no two of these three conditions are sufficient for

being clusterable.

Proof. On input σ, the clusterer M searches for the J of the least norm satisfying
the following properties:

– J ⊆ {0, 1, . . . , |σ|};
– range(σ) ⊆ AJ ;
– J ∈ disj|σ|(S).

If such a J is found then M outputs J else M outputs ∅.
First, one can easily see that M is recursive since the search space is limited

to 2|σ|+1 candidate sets. Second one considers any task I and any text for it.
Every sufficiently long prefix σ of the text satisfies i ≤ |σ| and Ai ∩ range(σ) 6= ∅
for all i ∈ I . Thus I satisfies for all sufficiently long σ the three search conditions

24

and M converges to a set J with norm(J) ≤ norm(I). For every i ∈ I , the set
Ai is not a subset of AJ−{i} since Ai is infinite and Ai ∩ AJ−{i} is finite. Thus
I ⊆ J and I = J by norm(J) ≤ norm(I).

The class {A × N : A ∈ SC} for a nonrecursive parameter-set C satisfies
Conditions 1 and 2 but is not clusterable. The class of all cofinite sets satisfies
Conditions 1 and 3 but is neither learnable [11, Section 3.6.2] nor clusterable.
The class Sgold satisfies Conditions 2 and 3 but is not clusterable.

7 Geometric Examples

The major topic of the last two sections is to look at sets of clusters which are
characterized by basic geometric properties. Therefore the underlying set is no
longer N but the k-dimensional rational vector space Qk, where k ∈ {1, 2, . . .}
is fixed. The classes considered consist of natural subsets of Qk. Except for the
class Saccu,k in Definition 7.2 below, the following holds: the clusters are built
from finitely many parameter-points in Qk; the clusters are connected sets; every
task consists of clusters having a positive distance from each other. So the way
how to break down a task into clusters is natural and unique.

Recall that a subset U ⊆ Qk is affine iff for every fixed x ∈ U the set
V = {y ∈ Qk : x + y ∈ U} is a rational vector space, that is, closed under
scalar multiplication and addition. The dimension of U is the dimension of V as
a vector space, it is independent on the choice of x.

Example 7.1. Let Saff,k be the class of all affine subspaces of Qk which have

dimension k− 1. The class Saff,k is clusterable but the class Saff,k ∪{Qk} is not.

Proof. If one considers a one-one numbering A0, A1, . . . of Saff,k, one can easily
verify the following properties:

1. every Ai has dimension k − 1;
2. if i 6= j then Ai ∩ Aj is either empty or an affine subspace of dimension up

to k − 2;
3. the set {(i, x) : x ∈ Ai} is recursive.

Conditions 1 and 2 enforce that Ai 6⊆ AJ−{i} for every finite set J . Thus one
can adapt the clusterer for the class in Proposition 6.4 to a clusterer for Saff,k.
The verification can also easily be transferred.

The class Saff,k ∪ {Qk} is just the geometric version of the class Ssing from
Examples 3.5. Let V be a (k-1)-dimensional and W be a 1-dimensional vector
space with V + W = Qk. Furthermore let Ux = {x + y : y ∈ U}. Since every
Ux is in Saff,k and Qk is the disjoint union of all Ux with x ∈ W it follows that
Saff,k ∪ {Qk} is not clusterable.

Definition 7.2. Let k be a positive natural number and Saccu,k be a class
{A0, A1, . . .} of subsets of Qk such that

25

1. every Ai is bounded and has exactly one accumulation point ai which is
in Qk;

2. whenever q is an accumulation point of {a0, a1, . . .} then q /∈ {a0, a1, . . .};
3. the sequence a0, a1, . . . is recursive and one-one.

Comment. Every set Ai ∪ {ai} is compact, but it is not required that ai ∈ Ai

and therefore the set Ai itself might fail to be compact.

Proposition 7.3. The class Saccu,k is clusterable.

Proof. The following machine M witnesses that Saccu,k is clusterable.

Algorithm M. On input b0b1 . . . bs, let

Hs = {i ≤ s : (∃h ≤ s) (∀j ≤ h, j 6= i)

[bh /∈ {b0, b1, . . . , bi} ∧ d(ai, bh) < d(aj , bh)]};

Js = {i ∈ Hs : (∃h) (∀j ∈ Hs − {i}) [bh ∈ Ai,s − Aj,s]}.

and output Js.

Verification. Since ai is an accumulation point of Ai but not of {a0, a1, . . .}
and since ai 6= aj whenever i 6= j, there is for every i a threshold εi > 0 such
that

– for all q ∈ Qk there is at most one i with d(ai, q) < εi;
– for almost all q ∈ Ai, d(ai, q) < εi.

Consider now a text b0b1 . . . for a set AI with I ∈ disj(Saccu,k). Let H = ∪sHs

where Hs, Js are the sets constructed by the algorithm with input b0b1 . . . bs.
There are only finitely many q ∈ AI which do not satisfy d(ai, q) < εi for an
i ∈ I and there is a stage t ≥ max(I) such that {b0, b1, . . . , bt} contains all
these q. It follows that H ⊆ {0, 1, . . . , t}. Note that the intersection Ai ∩ Aj is
finite for any different i, j since the sets Ai, Aj are bounded and have different
accumulation points. So all sufficiently large s satisfy the following conditions:

– H = Hs;
– for all different i, j ∈ H , Ai ∩ Aj = Ai,s ∩ Aj,s;
– for all i ∈ I there is a h ≤ s such that bh ∈ Ai − (∪j∈HAj ∪ {b0, b1, . . . , bi})

and d(bh, ai) < εi.

It follows that on one hand I ⊆ Hs and on the other hand that every j ∈ Hs − I
satisfies AI ∩ Aj ⊆ AI,s. Since b0b1 . . . is a text for AI , it follows that Js = I
and M is a clusterer for Saccu,k.

The class Saccu,k is clusterable but the machine M makes use of the sequence
a0, a1, . . . as an auxiliary source of information. Nevertheless, this information
is implicit. One can build a program for it into the machine M which simulates
this program in order to get some further information on Saccu,k.

26

8 Clustering with Additional Information

Freivalds and Wiehagen [7] introduced a learning model where the learner re-
ceives in addition to the graph of the function to be learned an upper bound on
the size of some program for this function – this additional information increases
the learning power and enables to learn the class of all recursive functions.

Similarly, the machine M receiving adequate additional information can solve
every clustering task for the class Sconv,k defined below. But without that addi-
tional information, Sconv,k is not clusterable. So the main goal of this section is to
determine which pieces of additional information are sufficient to cluster certain
geometrically defined classes where clustering without additional information is
impossible.

Definition 8.1. For a given positive natural number k, the class Sconv,k contains
all subsets of Qk which are the rational points in the convex hull of a finite subset
of Qk.

Note that Sconv,k has the following nice properties which will be used in the
proofs implicitly: every cluster is ε-connected for all ε > 0; any two clusters Ai, Aj

have either a point in common or have a positive distance from each other where
the distance is defined as d(Ai, Aj) = inf{d(x, y) : x ∈ Ai, y ∈ Aj}. Furthermore,
note that every set Ai ∈ Sconv,k has a finite subset D = {x0, x1, . . . , xn} such
that

Ai = {q0x0 + q1x1 + . . . + qnxn : q0, q1, . . . , qn ∈ Q ∧

q0, q1, . . . , qn ≥ 0 ∧ q0 + q1 + . . . + qn = 1}.

The set D is unique if one takes for n the smallest possible value. The set
Ai generated from D as above is called the rational convex hull of D, written
hull(D).

Proposition 8.2. The class Sconv,k is semiclusterable but not clusterable.

Proof. A semiclusterer M for Sconv,k works as follows.

Algorithm M. On input σ, M searches for the first i ∈ {0, 1, . . . , |σ|} such that
range(σ) ⊆ hull(Ai,|σ|). If this i is found, then M outputs {i} else M outputs ∅.

Verification. Let I be the clustering task and i be the least index of a set
with AI ⊆ Ai. Given any text for AI , every sufficiently long prefix σ of the text
satisfies the following three conditions.

– |σ| ≥ i;
– range(σ) 6⊆ Aj for all j < i;
– hull(Ai,|σ|) = Ai.

27

It is easy to see that M(σ) = {i} for the input σ. Therefore, M converges to i
and Sconv,k is semiclusterable.

Gold’s Condition. Note that every singleton in Qk belongs to Sconv,k and
that there are also infinite clusters. Then given an M and an infinite Ai, M
has a stabilizing sequence σ ∈ (Ai)

∗. So M either fails on the clustering task I
representing all singletons {x} with x ∈ range(σ) or M fails on the clustering
task {i} representing Ai.

Proposition 8.3. The class Sconv,k is clusterable with additional information if

for any task I one of the following pieces of information is also provided to the

machine M :

– the number |I | of clusters of the task;

– a positive lower bound ε for γ = min({1} ∪ {d(Ai, Aj) : i, j ∈ I ∧ i 6= j});
– the minimal number p of points which are needed to generate all the convex

sets Ai with i ∈ I.

Proof. The algorithm tries to identify in the limit the following pieces of infor-
mation:

– finite sets E0, E1, . . . , Em;
– for each l ∈ {0, 1, . . . , m} an index jl such that Ajl

= hull(El).

The final conjecture of the algorithm will then be the set J = {j0, j1, . . . , jm}.
The algorithm uses the notion of ε-component. Given ε > 0, a subset E ⊆ U

is an ε-component of U if the following two conditions hold:

– for any x, y ∈ E there is a sequence z0, z1, . . . , zh of elements of E such that
x = z1, y = zh and d(zl, zl+1) < ε for all l with 1 ≤ l < m;

– d(x, y) ≥ ε for any x ∈ E and y ∈ U − E.

Note that for every ε and finite set U , the partition of U into ε-components is
unique.

Algorithm M. On input σ, the clusterer goes into the first case applicable.

– If |I | is given and there is a maximal ε ∈ { 1
|σ| ,

2
|σ| , . . .} such that range(σ)

has exactly |I | ε-components then let m = |I | and F0, F1, . . . , Fm−1 be these
components. For l = 0, 1, . . . , m − 1, let El be the smallest subset of Fl with
hull(El) = hull(Fl).

– If ε is given then let m be the number of ε-components F0, F1, . . . , Fm−1 of
range(σ). For l = 0, 1, . . . , m − 1, let El be the smallest subset of Fl with
hull(El) = hull(Fl).

– If p is given and there are a number m ∈ {0, 1, . . . , p−1}, an ε ∈ { 1
|σ| ,

2
|σ| , . . .}

and E0, E1, . . . , Em−1 ⊆ range(σ) such that
− p = |E0| + |E1| + . . . + |Em−1| and

28

− the sets hull(El) ∩ range(σ) are the ε-components of range(σ),
then fix m and the sets E0, E1, . . . , Em−1.

– If none of the previous cases hold then let m = |σ| and E0, E1, . . . , Em−1 be
the m singleton subsets of range(σ).

Now find for each l ∈ {0, 1, . . . , m − 1} the least s ≥ |σ| such that there is a
jl with hull(El) = hull(Ajl,s); if there are several candidates for this jl, then
choose the least one. Having found m and j0, j1, . . . , jm−1, the output is the set
J = {j0, j1, . . . , jm−1}.

Verification. It is easy to verify that M is computable and is defined on every
σ. Fix a task I ∈ disj(Sconv,k) and a text for AI . In case of additional information
of the second type, let δ be the given lower bound ε for γ; otherwise let δ = 1 if
|I | = 1 and δ = min{d(Ai, Aj) : i, j ∈ I ∧ i 6= j} if |I | > 1. Assume that a prefix
σ of the given text is so long that for each i ∈ I , the following conditions hold:

– for all j ∈ {0, 1, . . . , i}, hull(Aj,|σ|) = Ai iff Aj = Ai;
– hull(range(σ) ∩ Ai,|σ|) = Ai;
– for all x ∈ Ai there is a y ∈ range(σ) such that d(x, y) < 0.1 · δ;
– 1

|σ| < 0.1 · δ.

Then one can verify that the algorithm will come up with a lower bound ε for
δ such that the ε-components of range(σ) coincide with the δ-components. Fur-
thermore, the parameter m is the cardinality |I | and the sets E0, E1, . . . , Em−1

are sets of minimal cardinality such that

{hull(E0), hull(E1), . . . , hull(Em−1)} = {Ai : i ∈ I}.

Since σ is a sufficiently long prefix of the text, the output of the algorithm is
a finite set J with {Aj : j ∈ J} = {Ai : i ∈ I}. It follows that M solves the
clustering task I .

The last results of the present work deal with conditions under which nonconvex
geometrical objects can be clustered. The first approach is to look at unions of
convex objects which are still connected. For k = 1, this class is the same as
Sconv,1. But for k = 2, this class is larger. There the type of additional informa-
tion used for clustering Sconv,k is no longer sufficient. Given both the number of
clusters and the number of vertices as additional information, it is possible to
cluster the natural subclass Spolygon,2 of all classes considered. But if one permits
holes inside the clusters, this additional information is no longer sufficient. An
alternative parameter is the k-dimensional area covered by a geometric object.
In Example 8.8 a natural class Sarea,k is introduced which can be clustered with
the area of a clustering task given as additional information. The class Sarea,2

contains Spolygon,2 and the class from Example 8.7 as subclasses.

Definition 8.4. A polygon p is given by n vertices q1, q2, . . . , qn ∈ Q2 and is the
union of n sides which are the convex hulls of {q1, q2}, {q2, q3}, . . . , {qn, q1}. The

29

sides do not cross each other and exactly two sides contain one vertex. Every side
has positive length and the angle between the two sides meeting at a vertex is
never 0, 180 or 360 degrees. Let p0, p1, . . . be an enumeration of the polygons and
let Pi be the set of all points in Q2 which are on the polygon pi or in its interior.
Let ni denote the minimum number of vertices to define the i-th polygon pi and
Spolygon,2 be the class {P0, P1, . . .}.

Remark 8.5. Note that every polygon has the same number of sides as vertices.
The length 0 of sides and the angle of 180 degrees are forbidden in order to make
the representation unique up to some permutation of the vertices. The angles of
0 and 360 degrees are forbidden in order to avoid irregularities.

The following fact will be used below. Assume that Pi ⊆ Pj , ni ≤ nj and
every side of pj contains at least nj + 2 points of Pi. Then Pi = Pj . To see
this, consider any side T of pj . Let c0, c1, . . . , cnj

, cnj+1 be nj + 2 points on
T ∩ Pi. These points are all on pi since they are on pj and Pi ⊆ Pj . There is
a u ∈ {0, 1, . . . , nj} such that no vertex of pi is properly between cu and cu+1.
Then the convex hull of {cu, cu+1} is part of a side UT of Pi. So every side T of
pj has with some side UT of pi at least two points in common. The only way to

have Pi 6= Pj is to assume that there are two sides T, T̃ of Pj such that UT = UT̃ .

Let d1 ∈ T ∩ UT and d2 ∈ T̃ ∩ UT̃ . Then UT contains hull({d1, d2}) and is a
subset of Pj although not a side of Pj . Since UT touches two sides of Pj and
goes through the interior of Pj , UT splits Pj into two halves each of them having
some sides different from UT . On these sides are points of pi∩pj and so Pi would
also be split into two halves, a contradiction. Thus UT 6= UT̃ ; UT and UT̃ have

at most one point in common for different sides T, T̃ of Pj . In particular, if T, T̃
are neighbouring then the vertex between them is also in UT ∩ UT̃ . It follows

that UT = T , UT̃ = T̃ , pi = pj and ni = nj .
Note that this property no longer holds if one permits a set of polygons

instead of a single polygon. So there is a polygon pj such that one can find, for any
finite subset F ⊆ Pj , a set {i1, i2} ∈ disj(Spolygon,2) with F ⊆ P{i1 ,i2} ⊆ Pj . More
precisely, let pj be given by (0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (3, 1), (3, 0) and
F be any finite subset of Pj . Then take q = min({y : (∃x) [(x, y) ∈ F ∧ y > 1]})
and take i1, i2 representing the rectangles given by (0, 0), (0, 1), (3, 1), (3, 0) and
(1, q), (1, 2), (2, 2), (2, q).

Figure 1 illustrates the last counterexample. More information on polygons
can be found in textbooks on geometry like [15].

Proposition 8.6. The class Spolygon,2 = {P0, P1, . . .} is clusterable with addi-

tional information in the sense that it is clusterable from the following input

provided to a clusterer for task I in addition to a text for PI : the cardinality |I |
and the number

∑

i∈I ni. Clustering is impossible if only one of these two pieces

of information is available.

Proof. Assume that the algorithm M knows |I | and
∑

i∈I ni and receives as
input a prefix σ of a text for AI . Then M searches for the J ⊆ {0, 1, . . . , |σ|} of
least norm which satisfies the following conditions:

30

Fig. 1. Two clusters with 8 vertices and 8 sides.

1. J ∈ disj(Spolygon,2);

2. |J | = |I |;
3.

∑

j∈J nj =
∑

i∈I ni;

4. range(σ) ⊆ PJ ;

5. the vertices of the pj with j ∈ J are in range(σ);

6. if T is a side of pj and j ∈ J then |T ∩ range(σ)| ≥
∑

i∈I ni + 2.

M outputs J if J is found and ∅ otherwise.
For the verification, it is easy to see that M is recursive. Now consider any

clustering task I ∈ disj(Spolygon,2). Since I satisfies the search conditions for
all sufficiently long prefixes σ of the text, the clusterer converges to a J with
norm(J) ≤ norm(I), PI ⊆ PJ , |J | = |I | and

∑

j∈J nj =
∑

i∈I ni. If i ∈ I then
Pi ⊆ PJ . If Pi 6⊆ Pj for any single j ∈ J then the Pj with j ∈ J intersecting Pi

would have a positive distance from each other; but since Pi is connected some
points of Pi would not be in any Pj with j ∈ J . Thus this case cannot happen.
Furthermore, if Pj is disjoint from PI then the vertices of Pj do never show up
in the input and thus j /∈ J . It follows that there is a one-one correspondence
between the i ∈ I and j ∈ J such that Pi ⊆ Pj . Since

∑

j∈J nj =
∑

i∈I ni there
are i ∈ I and j ∈ J with Pi ⊆ Pj and ni ≤ nj . Furthermore Pj ∩ PI−{i} = ∅,
thus all points of Pj which have shown up in the input are actually from Pi. It
follows for every side T of pj that nj + 2 ≤ |T ∩ range(σ)| ≤ |T ∩ Pi|. Thus, by
Remark 8.5, Pi = Pj and ni = nj . In particular, there are no i ∈ I , j ∈ J with
Pi ⊆ Pj and ni < nj . Since |I | = |J | and

∑

j∈J nj =
∑

i∈I ni, one can conclude
that there are also no i ∈ I , j ∈ J with Pi ⊆ Pj and ni > nj . So ni = nj

whenever i ∈ I, j ∈ J, Pi ⊆ Pj . This gives by the previous considerations that
Pi = Pj whenever i ∈ I, j ∈ J, Pi ⊆ Pj . In particular PJ = PI and M is a
clusterer for Spolygon,2 which succeeds whenever it receives on the input, besides
a text for PI , also the numbers |I | and

∑

i∈I ni.
Now it is shown that besides the text also the other two pieces of information

given to M are needed. That is, M cannot succeed while receiving only one of
them.

If only the additional information |I | is given, then consider a stabilizing
sequence σ for the rectangle Pi with vertices (0, 0), (0, 2), (1, 2), (1, 0). Since
range(σ) is finite, there are rationals q1, q2 with 0 < q1 < q2 < 1 such that
no point of the form (q, r) with q1 < q < q2 is in range(σ). Thus σ is also
a stabilizing sequence for the Pj given by the polygon through the vertices

31

Fig. 2. Opening a hole while preserving 10 vertices and 10 sides.

(0, 0), (0, 2), (q1, 2), (q1, 1), (q2, 1), (q2, 2), (1, 2), (1, 0) and Pj ⊂ Pi. So the clus-
terer fails to identify either the task {i} or the task {j}.

If only the additional information
∑

i∈I ni is given, one can take I = {i}
such that pi, Pi is given by (0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (3, 1), (3, 0) and
ni = 8 as done at the third paragraph of Remark 8.5. Now let σ ∈ P ∗

i be a
stabilizing sequence for Pi and q = min({y : (∃x) [(x, y) ∈ range(σ) ∧ y > 1]}).
Then σ is also a stabilizing sequence for a cluster consisting of the two rectan-
gles which are given as (0, 0), (0, 1), (3, 1), (3, 0) and (1, q), (1, 2), (2, 2), (2, q). See
Figure 1 for an illustration.

Example 8.7. Let Bi,j = pj ∪ (Pi − Pj) and mi,j = ni + nj if Pj ⊆ Pi − pi;

otherwise let Bi,j = Pi and mi,j = ni. Let Shole,2 consist of all sets Bi,j . Then

it is impossible to cluster Shole,2 if besides a text the only pieces of additional

information supplied are |I | and
∑

(i,j)∈I mi,j .

Proof. The counterexample here is an adaptation of the counterexample from
Proposition 8.6. The idea is just to connect the two parts by a bridge and only
to cut out the lower connection.

Now take i, j such that the polygons pi, pj are given by (0, 0), (0, 1), (1, 1),
(1, 3), (4, 3), (4, 0) and (1, 2), (2, 2), (2, 3), (1, 3). Note that mi,j = 10. Let σ ∈ B∗

i,j

be a stabilizing sequence for Bi,j and

q = min({y : (∃x) [(x, y) ∈ range(σ) ∧ y > 1]}).

Then σ is also a stabilizing sequence for a polygon Ph ⊆ Bi,j given by (0, 0), (0, 1),
(1, 3), (2, 3), (2, 2), (2, q), (1, q), (1, 3), (4, 3), (4, 0). The polygon Ph has also 10
vertices and is obtained by connecting the hole with the outside world. Figure 2
illustrates this counterexample.

Alternatively one might not restrict the dimension but require that the class
under consideration is the union of convex hulls of finite sets which have a
positive k-dimensional area. Then this area is a natural parameter for clustering
with additional information.

32

Example 8.8. Let Sarea,k = {A0, A1, . . .} be the class of finite unions of members

of Sconv,k which are connected and have a positive k-dimensional area. Without

loss of generality the set {(i, x) : x ∈ Ai} and the function mapping i to the

area of Ai are recursive. Then there is a clusterer for Sarea,k which uses the

area of the members of a cluster as additional information. But Sarea,k cannot

be clustered without additional information.

Proof. Assume that AI ⊂ AJ and let x ∈ AJ −AI be given. The point x has a
positive distance r from AI . But the area of AJ ∩R where R is the k-dimensional
cube of side-length 0.1 · r/k with center x is positive. It follows that the area
of AJ is at least the sum of the areas of AI and R ∩ AJ . So whenever two sets
AI , AJ have the same area, they are either equal or incomparable. Thus one can
use the following algorithm.

For any given task I , M receives the additional information q and a prefix
σ of a text for AI . Then M outputs the first J such that J ∈ disj|σ|(Sarea,k),
range(σ) ⊆ AJ and AJ has the k-dimensional area q.

It is easy to see that M is recursive and total. Furthermore, M converges to
the least J with norm(J) = norm(I), AJ having the area q and AI ⊆ AJ . It
follows from the arguments above that AI = AJ and M satisfies the required
properties.

9 Conclusion

Clustering is a process which makes important use of prior assumptions. Indeed,
not every set of points in an underlying space is a potential cluster; geometric
conditions for instance play an important role in the definition of the class of
admissible clusters. Whereas such conditions have been taken into account in
previous studies, none of those has investigated the consequences of the more
fundamental requirement that clustering is a computable process. This paper
shows that recursion-theoretic and geometric conditions can both yield substan-
tial insights on whether or not clustering is possible. It also explores to which
extent clustering depends on computational properties, by characterizing the
power of oracles for clustering. It is expected that further studies of the inter-
action between topological, recursion-theoretic and geometrical properties will
turn out to be fruitful.

References

1. Leonard Adleman and Manuel Blum. Inductive inference and unsolvability. Journal

of Symbolic Logic, 56:891–900, 1991.
2. Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
3. Dana Angluin. Inductive inference of formal languages from positive data. Infor-

mation and Control, 45:117–135, 1980.
4. Dick de Jongh and Makoto Kanazawa. Angluin’s theorem for indexed families of

r.e. sets and applications. In Proceedings 9th Annual Confeference on Computa-

tional Learning Theory, pages 193–204. ACM Press, New York, NY, 1996.

33

5. Richard Duda, Peter Hart and David Stork. Pattern Classification. Wiley, second
edition, 2001.

6. Lance Fortnow, William Gasarch, Sanjay Jain, Efim Kinber, Martin Kummer,
Stuart A. Kurtz, Mark Pleszkoch, Theodore A. Slaman, Robert Solovay and Frank
Stephan. Extremes in the degrees of inferability. Annals of Pure and Applied Logic,
66:231–276, 1994.

7. Rūsiņš Freivalds and Rolf Wiehagen. Inductive inference with additional informa-
tion. Elektronische Informationsverarbeitung und Kybernetik 15:179–185, 1979.

8. Mark Fulk. Prudence and other conditions on formal language learning. Informa-

tion and Computation, 85:1–11, 1990.
9. E. Mark Gold. Language identification in the limit. Information and Control,

10:447–474, 1967.
10. Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall,

1988.
11. Sanjay Jain, Daniel Osherson, James Royer and Arun Sharma. Systems that Learn:

An Introduction to Learning Theory. MIT Press, Cambridge, Mass., second edition,
1999.

12. Sanjay Jain and Arun Sharma. Learning with the knowledge of an upper bound
on program size. Information and Computation, 102:118–166, 1993.

13. Sanjay Jain and Arun Sharma. On the non-existence of maximal inference degrees
for language identification. Information Processing Letters, 47:81–88, 1993.

14. Jon Kleinberg. An impossibility theorem for clustering. Advances in Neural In-

formation Processing Systems 15 (NIPS 2002), MIT Press, Cambridge, 446–453,
2003.

15. Friedhelm Kürpig and Oliver Niewiadomski. Grundlehre Geometrie. Begriffe,

Lehrsätze, Grundkonstruktionen. Vieweg, Braunschweig, 1992.
16. Martin Kummer and Frank Stephan. On the structure of the degrees of inferability.

Journal of Computer and System Sciences, (Special Issue COLT 1993), 52:214–238,
1996.

17. Pitu B. Mirchandani and Richard L. Francis (editors). Discrete Location Theory.
Wiley, 1990.

18. Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam,
1989.

19. Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Aca-
demic Press, 1998.

34

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

