
Randomized Quicksort and the Entropy of the

Random Number Generator

Beatrice List, Markus Maucher, Uwe Schöning and Rainer Schuler

Abt. Theoretische Informatik, Universität Ulm, 89069 Ulm, Germany

June 21, 2004

Abstract

The worst-case complexity of an implementation of Quicksort depends on the random
number generator that is used to select the pivot elements. In this paper we estimate the ex-
pected number of comparisons of Quicksort as a function in the entropy of the random source.
We give upper and lower bounds and show that the expected number of comparisons increases
from n log n to n2, if the entropy of the random source is bounded. As examples we show ex-
plicit bounds for distributions with bounded min-entropy, the geometrical distribution and the
δ-random source.

1 Introduction

Randomized QuickSort is the well known version of QuickSort (invented by Hoare [Ho]) where
the array element for splitting the array in two parts (the ”pivot” element) is selected at random.
It is also well known that the expected number of comparisons (for every input permutation of
the array elements) is (2 ln 2) · n log2 n − Θ(n). Here, the expectation is taken over the random
choices done in the algorithm. This analysis assumes random numbers which are independent and
uniformly distributed.

Here we analyze randomized QuickSort without assuming such an ”high entropy” of the un-
derlying random source. Using a random number generator with a low entropy can result in a
worst-case behavior that can go up to Θ(n2). An extreme example is a ”very bad” random number
generator that produces only ”1” as output. That is, in each recursive call of QuickSort the first
array element is selected as pivot element. A worst case input in this case is the already sorted
array.

Related work has been done by Karloff and Raghavan [KR] (see also [To]) where the special
case of a linear congruence generator is considered and a worst-case behavior of Ω(n2) is shown.

Recursion for expected number of comparisons

Let Tπ(n) be the expected number of comparisons done by randomized QuickSort, when operating
on an input array (a[1], . . . , a[n]) whose elements are permuted according to π ∈ Sn, that is,

a[π(1)] < a[π(2)] < · · · < a[π(n)],

where Sn is the set of all permutations on {1, . . . , n}.
Let X be a random variable taking values between 1 and n (not necessarily under uniform

distribution) which models the random number generator that is used to pick out a pivot element
a[X].

1

Electronic Colloquium on Computational Complexity, Report No. 59 (2004)

ISSN 1433-8092

We obtain the following recursion for the expected complexity (i.e. number of comparisons)
T (n) = maxπ∈Sn Tπ(n). We have T (n) = 0 for n ≤ 1; and for n > 1 we get

T (n) = max
π∈Sn

Tπ(n)

= (n − 1) + max
π∈Sn

n
∑

i=1

pi · (Tπ(i − 1) + Tπ(n − i))

≤ (n − 1) + max
π∈Sn

n
∑

i=1

pi ·
(

max
Φ∈Si−1

TΦ(i − 1) + max
Ψ∈Sn−i

TΨ(n − i)

)

= (n − 1) + max
π∈Sn

n
∑

i=1

pi · (T (i − 1) + T (n − i))

That is, there are n−1 comparisons with the selected pivot element, and depending on the rank
i of the pivot element within the array, there are T (i − 1) and T (n − i) additional comparisons.
Here pi is the probability that the pivot element has rank i within the ordering of the array, that
is, pi = Pr(π(X) = i). If the rank is not uniformly distributed among the numbers 1 to n, a
worst case input permutation can be constructed such that the middle ranks receive relatively low
probability and the extreme ranks (close to 1 or close to n) get relatively high probability, resulting
in a large expected number of comparisons.

We give upper and lower bounds on the expected number T (n) of comparisons. Lower bounds
are given with respect to a fixed input sequence (the already sorted list of elements).

We can show (see Theorem 1) that T (n) ≤ g(n) · n · log2 n for any function g(n)
greater than 1/ (minπ

∑n
i=1 piH (i/n)), where H (i/n) is the binary entropy function. Note that

minπ
∑n

i=1 piH (i/n) is independent of the permutation of the elements, i.e. is identical for all
distributions p and q such that pi = qπ(i) for all i and some permutation π.

The lower bound (see Theorem 3 and 4) is derived for a fixed permutation (the sorted list of
elements), where we can assume that the order is preserved in all recursive calls of QuickSort.
Therefore the lower bound T (n) ≥ n · g(n) (Theorem 4) is w.r.t. any function g(n) less than
1/
∑n

i=1 piH (i/(n + 1)), where pi is the probability of selecting a[i] as a pivot element.

2 Upper bound on the number of expected comparisons

Let (Pn) denote a sequence of probability distributions where Pn = (p1,n, . . . , pn,n) is a distribu-
tion on (1, . . . , n). In the following we use pi to denote pi,n, since n is determined by the size of
the array.

Theorem 1 We have T (n) ≤ g(n)n log2 n for any monotone increasing function g with the prop-
erty

g(n) ≥
(

min
π∈Sn

n
∑

i=1

pi · H
(

i

n

)

)−1

where H(x) = −x log2 x− (1−x) log2(1−x) is the binary entropy function (Shannon entropy).

2

Proof. Using the above recursion for T (n) we obtain

T (n) = (n − 1) + max
π∈Sn

n
∑

i=1

pi · (T (i − 1) + T (n − i))

≤ n + max
π

n
∑

i=1

pi · (g(i − 1)(i − 1) log2(i − 1) + g(n − i)(n − i) log2(n − i))

≤ n + g(n)n max
π∈Sn

n
∑

i=1

pi ·
(

i

n
log2 i +

(

1 − i

n

)

log2(n − i)

)

= n + g(n)n max
π∈Sn

n
∑

i=1

pi ·
(

i

n
log2

i

n
+

(

1 − i

n

)

log2

(

1 − i

n

)

+ log2 n

)

= n + g(n)n log2 n − g(n)n min
π∈Sn

n
∑

i=1

pi · H
(

i

n

)

To finish the induction proof, this last expression should be at most g(n)n log2 n. This holds if and
only if

g(n) ≥
(

min
π∈Sn

n
∑

i=1

pi · H
(

i

n

)

)−1

as claimed. 2

Example: In the standard case of a uniform distribution pi = 1
n we obtain:

g(n) ≥
(

1

n
·

n
∑

i=1

H

(

i

n

)

)−1

.

This is asymptotically equal to

(∫ 1

0
H(x)dx

)−1

= 2 ln 2 ≈ 1.38 .

Another Example: In the median-of-3 version of QuickSort (cf. [Kn,SF]), 3 different elements are
picked uniformly at random and the median of the 3 is used as the pivot element. In this case
pi = 6(i−1)(n−i)

n(n−1)(n−2) . Here the constant factor of the n log n-term can be asymptotically estimated by

(

6

∫ 1

0
x(1 − x)H(x)dx

)−1

=
12 ln 2

7
≈ 1.18

We ignore here the additional number of comparisons between the 3 elements to find out their
median – but this does not have an influence asymptotically.

Sorting the probabilities

Using the symmetry of the function H around 1
2 and its monotonicity, we get:

min
π∈Sn

n
∑

i=1

pi · H
(

i

n

)

≥ min
π∈Sn

n−1
∑

j=0

qj · H
(

j

2n

)

.

3

Here, the qj are a reordering of the pi in the following way (assuming n is even):

q0 = pn q1 = p1

q2 = pn−1 q3 = p2
...

...
qn−2 = pn/2 qn−1 = pn/2−1

This new representation has the advantage that the H-values in the sum are in increasing order,
and we can determine which permutation π ∈ Sn actually achieves the minimum. Namely, the
minimum is achieved if the qj are ordered in decreasing order. (This is in accordance with the
statement in the introduction that the worst case is associated with the situation that the extreme
ranks occur with higher probability than the middle ranks.)

Lemma 2 Given a sum of the following form

n
∑

j=1

ajbπ(j), aj , bj ≥ 0

where the aj are sorted in strictly increasing order and the permutation π can be chosen arbitrar-
ily, the minimum value of the sum occurs when the permutation π is such that the bπ(j) are sorted
in decreasing order.

Proof. Suppose that two elements b, b′ are in the ”wrong” order, i.e. b < b′. We compare the
situation before and after exchanging b and b′:

(aib + ajb
′) − (aib

′ + ajb) = (ai − aj)(b − b′) < 0

This means, interchanging b and b′ this way strictly decreases the value of the sum. Furthermore, it
is easy to see that the decreasingly sorted order can always be achieved by swapping two elements
which are in the ”wrong” order (e.g. like in the BubbleSort algorithm). 2

3 A lower bound

As we saw in Section 1, the running time of QuickSort is given by the recursion

T (n) = n − 1 +

n
∑

i=1

pi · (T (i − 1) + T (n − i)),

where pi is the probability of choosing the element with rank i as pivot element.
To estimate a lower bound for the worst-case running time of QuickSort, we consider as input

the already sorted array of numbers. Further we assume that the partitioning step of QuickSort
leaves the elements of the two sub-arrays in the same relative order as in the input array.

Recall that pivot-elements are chosen according to a sequence of probability distributions (P i),
where distribution Pi defines the probabilities on arrays of size i, i.e. Pi = (pi,1, . . . , pi,i). Note
that if the pi,j are sorted in decreasing order, then a worst-case input is the already sorted sequence
of numbers. In fact, if the sequence of probability distributions (Pi) is sufficiently uniform, it
should be possible to construct a worst-case input by sorting probabilities as described in Section
2.

4

Theorem 3 For any sequence of probability distributions (Pn) it holds that T (n) ≥ c · g(n) · n,
for some constant c > 0, if for all n > n0, g satisfies the two conditions

g(n) ≤
(

n

n − 1
·

n
∑

i=1

pi,n

(

1 − (i − 1)2

n2
− (n − i)2

n2

)

)−1

and

g(i)

g(n)
≥ i

n
for all 0 ≤ i ≤ n.

Proof. Let P = (p1, . . . , pn) be a distribution where pi is the probability that we choose as a pivot
element the element with rank i. For n > 2, it holds

T (i − 1) + T (n − i) ≥ (i − 1) · g(i − 1) + (n − i) · g(n − i)

= n · g(n) ·
(

(i − 1) · g(i − 1)

n · g(n)
+

(n − i) · g(n − i)

n · g(n)

)

≥ n · g(n) ·
(

(i − 1)2

n2
+

(n − i)2

n2

)

= n · g(n) − n · g(n) ·
(

1 − (i − 1)2

n2
− (n − i)2

n2

)

.

Therefore,

T (n) = n − 1 +

n
∑

i=1

pi(T (i − 1) + T (n − i))

≥ n − 1 + n · g(n) − n · g(n) ·
n
∑

i=1

pi(1 − (i − 1)2

n2
− (n − i)2

n2
)

The induction hypothesis follows if g(n) ≤
(

n
n−1 ·∑n

i=1 pi(1 − (i−1)2

n2 − (n−i)2

n2)
)−1

2

The lower bound, Theorem 3, can be given using the entropy function. This shows that up to a
logarithmic factor we yield matching upper and lower bounds.

Theorem 4 For any sequence of probability distributions (Pn) it holds that T (n) ≥ c · g(n) · n,
for some constant c > 0, if g satisfies the two conditions

g(n) ≤
(

n

n − 1

n
∑

i=1

pi,nH

(

i

n + 1

)

)−1

and
g(i)

g(n)
≥ i

n
for 0 ≤ i ≤ n.

Proof. We follow the proof of Theorem 3. For n ≥ 2

T (i − 1) + T (n − i) ≥ n · g(n) ·
(

(i − 1)2

n2
+

(n − i)2

n2

)

= n · g(n) ·
(

(i − 1)2

n2
+

(n − i)2

n2
+ H

(

i

n + 1

))

− n · g(n) · H
(

i

n + 1

)

≥ n · g(n) − n · g(n) · H
(

i

n + 1

)

.

5

The last inequality follows from Lemma 5 below. Therefore,

T (n) = n − 1 +
n
∑

i=1

pi,n(T (i − 1) + T (n − i))

≥ n − 1 + n · g(n) − n · g(n) ·
n
∑

i=1

pi,nH

(

i

n + 1

)

.

Then the induction hypothesis follows if g(n) ≤
(

n

n − 1

n
∑

i=1

pi,nH

(

i

n + 1

)

)−1

. 2

Lemma 5 For integers n ≥ 5 and i with 0 ≤ i ≤ n,

(i − 1)2

n2
+

(n − i)2

n2
+ H

(

i

n + 1

)

≥ 1.

Proof. We use the known inequalities − ln(1 − x) ≥ x resp. − log2(1 − x) ≥ x
ln 2 , that hold for

0 ≤ x ≤ 1. So we get

(i − 1)2

n2
+

(n − i)2

n2
+ H

(

i

n + 1

)

=
i2 − 2i + 1 + n2 − 2in + i2

n2
− i

n + 1
log2

i

n + 1
−
(

1 − i

n + 1

)

log2

(

1 − i

n + 1

)

=
2i2 − 2i + 1 + n2 − 2in

n2
− i

n + 1
log2

(

1 − n − i + 1

n + 1

)

− n − i + 1

n + 1
log2

(

1 − i

n + 1

)

≥ 2i2 − 2i + 1 + n2 − 2in

n2
+

(

i

n + 1
· n − i + 1

n + 1
+

n − i + 1

n + 1
· i

n + 1

)

/ ln 2

≥ 2i2 − 2i + 1 + n2 − 2in + 2in − 2i2 + 2i

n2
=

n2 + 1

n2
≥ 1

For the second last inequality, we use that (n + 1)2 ln 2 ≤ n2 for n ≥ 5 and set n0 = 5. 2

Remark: Actually, the Lemma holds for n ≥ 1, not only for n ≥ 5. The remaining 14 cases
(n, i) = (1, 0), (1, 1), . . . , (4, 4) can be checked by computer.

4 Distributions with bounded entropy

The uniform distribution on [1, n] = {1, . . . , n} has maximal entropy. In this section we consider
distributions which have bounded entropy.

Uniform distributions on a subset of {1, . . . , n}
First we consider distributions with positive probability on subsets of [1, n]. Let t(n) = o(n) be
a time constructible monotone (increasing) function. Define a distribution P = (p1, . . . , pn) such
that

pi =











1/t(n), if rank ai ≤ t(n)/2

1/t(n), if rank ai > n − t(n)/2

0, otherwise

6

That is, we choose the pivot element randomly using a uniform distribution among only the worst
t(n) array elements.
Now

∑n
i=1 piH (i/(n + 1)) resp.

∑n
i=1 pi · H(i/n) are bounded as follows:

n
∑

i=1

piH

(

i

n + 1

)

≤ t(n)

2n
log (n + 1) ,

n
∑

i=1

piH

(

i

n

)

≥ t(n)

4n
log

(

2n

t(n)

)

This gives T (n) ≤ n log(n) · 4n
t(n) as an upper bound and T (n) ≥ 2n2

t(n) log n as a lower bound.
Proof. An upper bound T (n) ≤ g(n) · n · log2 n can be estimated as follows.

n
∑

i=1

pi · H
(

i

n

)

= 2

t(n)/2
∑

i=1

1

t(n)
· H

(

i

n

)

=
2

t(n)

t(n)/2
∑

i=1

H

(

i

n

)

=
2

t(n)

t(n)/2
∑

i=1

−
(

i

n
log

(

i

n

)

+
n − i

n
log

(

n − i

n

))

≥ 2

t(n)

t(n)/2
∑

i=1

i

n
log
(n

i

)

≥ 2

n · t(n)
log

(

2n

t(n)

) t(n)/2
∑

i=1

i

≥ 2

n · t(n)
log

(

2n

t(n)

)

(t(n)/2) · (t(n)/2 + 1)

2

≥ t(n)

4n
log

(

2n

t(n)

)

.

With

g(n) =
4n

t(n) log(2n/t(n))

it follows from Theorem 1 that

T (n) ≤ 4n2

t(n)
· log2 n

log2(2n/t(n))

7

In the same way the lower bound can be calculated:

n
∑

i=1

pi · H
(

i

n + 1

)

= 2

t(n)/2
∑

i=1

1

t(n)
· H

(

i

n + 1

)

=
2

t(n)

t(n)/2
∑

i=1

H

(

i

n + 1

)

=
2

t(n)

t(n)/2
∑

i=1

−
(

i

n + 1
log

(

i

n + 1

)

+
n − i + 1

n + 1
log

(

n − i + 1

n + 1

))

≤ 2

t(n)

t(n)/2
∑

i=1

2 · i

n + 1
log

(

n + 1

i

)

=
4

(n + 1)t(n)

t(n)/2
∑

i=1

i log

(

n + 1

i

)

=
4

(n + 1)t(n)





t(n)/2
∑

i=1

i log (n + 1) −
t(n)/2
∑

i=1

i log i





≤ 4

(n + 1)t(n)





t(n)/2
∑

i=1

i log (n + 1) −
t(n)/2
∑

i=1

i(log(t(n)/2) − 1)





≤ t(n) + 1

2(n + 1)
(log (n + 1) − log t(n) + 2))

≤ t(n) + 2

2(n + 1)
log

(

4(n + 1)

t(n)

)

where we use that
∑t(n)/2

i=1 i log i ≤∑t(n)/2
i=1 i(log(t(n)/2) − 1) (see Appendix, Lemma 10).

With the function

g(n) =
2(n + 1)

(t(n) + 1) log
(

4(n+1)
t(n)

) ,

we receive a lower bound of

T (n) ≥ 2n(n + 1)

(t(n) + 1) log
(

4(n+1)
t(n)

) = Ω





n2

t(n) log
(

4n
t(n)

)



 .

2

Min-Entropy

A distribution (p1, . . . , pn) has min-entropy k (cf. [Lu]) if pi ≤ 2−k for all i. Let P = (p1, . . . , pn)
be a distribution with min-entropy k. Then we get

T (n) ≤ 4n2

2k as an upper bound and T (n) ≥ 2n2

2k log n
as a lower bound.

Proof.

n
∑

i=1

pi · H(i/n) ≥ 2

2k/2
∑

i=1

1

2k
· H(i/n)

≥ . . . (same as above, with t(n) = 2k)

≥ 2k

4n
log

(

2n

2k

)

,

8

and

n
∑

i=1

pi · H
(

i

n + 1

)

≤ 2

2k/2
∑

i=1

1

2k
· H
(

i

n + 1

)

≤ 2k + 1

2(n + 1)
log

(

2(n + 1)

2k

)

and thus

T (n) ≤ 4n2

2k
· log2 n

log2(2n/2k)

and

T (n) ≥ 2n(n + 1)

(2k + 1) log
(

2(n+1)
2k

)

2

So, for min-entropy 0 (this includes the deterministic case) we get

T (n) ≤ 4n2

1
· log2 n

log2(2n)
= 4n2 log2 n

log2 n + 1
≤ 4n2

and

T (n) ≥ n(n + 1)

log (2(n + 1))
≥ n2

log (n + 1) + 1

and for min-entropy log2 n (all pivot elements are equally distributed), we have

T (n) ≤ 4n2

n
· log2 n

log2 2
= 4n log2 n .

Bounds for geometric distributions

We consider the case that pivot elements are selected using a geometric distribution. The proba-
bility of picking an element with rank i as pivot is given by pi = qi−1(1 − q). More generally,
we allow the geometric distribution to depend on the size n of the array, i.e., we define (Pi) using
q := 1 − 1

f(i) for some (time constructible monotone) function f .
To estimate a lower bound on the number of comparisons, we use Theorem 3 and estimate

n
∑

i=1
pi

(

1 − (i−1)2

n2 − (n−i)2

n2

)

≤ cf(n)
n , for a constant c.

Proof. Using the fact that

qi =

(

1 − 1

f(n)

)i

=

(

1 − 1

f(n)

)f(n)· i
f(n)

≤ e
− i

f(n) ,

9

it follows that
n
∑

i=1

pi

(

1 − (i − 1)2

n2
− (n − i)2

n2

)

=
1

q

n
∑

i=1

qi(1 − q)

(

1 − (i − 1)2

n2
− (n − i)2

n2

)

=
1

qn2

n
∑

i=1

qi(1 − q)
(

2ni + 2i − 2i2 − 1
)

≤ 1

qn2

n
∑

i=1

qi(1 − q) (2ni + 2i)

=
1

(

1 − 1
f(n)

)

n2

n
∑

i=1

(

1 − 1

f(n)

)i 1

f(n)
(2ni + 2i)

=
(2n + 2)f(n)

n2(f(n) − 1)

n
∑

i=1

(

1 − 1

f(n)

)i i

f(n)

We split the sum and see that for k = 0, 1, 2, . . .

(k+1)f(n)
∑

i=kf(n)+1

(

1 − 1

f(n)

)i i

f(n)

≤
(k+1)f(n)
∑

i=kf(n)+1

e
− i

f(n)
+ln i

f(n) =

f(n)
∑

j=1

e
−

kf(n)+j

f(n)
+ln

kf(n)+j

f(n)

≤
f(n)
∑

j=1

e
−k− j

f(n)
+ln(k+1)

= e−k+ln(k+1)

f(n)
∑

j=1

e
− j

f(n)

≤ e−k+ln(k+1) · f(n).

Then we get

(2n + 2)f(n)

n2(f(n) − 1)

n
∑

i=1

(

1 − 1

f(n)

)i i

f(n)

=
(2n + 2)f(n)

n2(f(n) − 1)

dn/f(n)e
∑

k=0

(k+1)f(n)
∑

i=kf(n)+1

(

1 +
1

f(n)

)i
· i

f(n)

≤ (2n + 2)f(n)

n2(f(n) − 1)

dn/f(n)e
∑

k=0

e−k+ln(k+1) · f(n)

≤ (2n + 2)f(n)2

n2(f(n) − 1)

∞
∑

k=0

k + 1

ek

≈ cf(n)

n
for a constant c.

Using Theorem 3, we get a lower bound of c′n2/f(n) for the running time of QuickSort. 2

To get an upper bound for geometric distributions we estimate
n
∑

i=1

piH

(

i

n

)

≥ log n · (f(n) − n · e−n/f(n))

n

10

which gives T (n) ≤ n2

f(n) as upper bound, if f(n) = o(n).
Proof.

n
∑

i=1

piH

(

i

n

)

=
1 − q

q

n
∑

i=1

qiH

(

i

n

)

=
1 − q

q

n
∑

i=1

qi

(

i

n
log

n

i
+

n − i

n
log

n

n − i

)

≥ 1 − q

q

n
∑

i=1

qi

(

i

n
log

n

i

)

≥ 1 − q

qn
log n

n−1
∑

i=1

qi · i

=
1 − q

qn
log n

(

qn(nq − n − q)

(1 − q)2
+

q

(1 − q)2

)

=
log n

n

(

qn−1(nq − n − q)

1 − q
+

1

1 − q

)

We again set q := 1 − 1
f(n) to obtain

n
∑

i=1

piH

(

i

n

)

=
log n

n







(

1 − 1
f(n)

)n−1 (

n
(

1 − 1
f(n)

)

− n − 1 + 1
f(n)

)

1
f(n)

+
1
1

f(n)







=
log nf(n)

n

(

(n − 1)

(

1 − 1

f(n)

)n

− n

(

1 − 1

f(n)

)n−1

+ 1

)

=
log nf(n)

n

(

(

1 − 1

f(n)

)n−1(

(n − 1)

(

1 − 1

f(n)

)

− n

)

+ 1

)

=
log nf(n)

n

(

(

1 − 1

f(n)

)n−1(

−1 − n − 1

f(n)

)

+ 1

)

=
log nf(n)

n

(

1 −
(

1 − 1

f(n)

)n−1 (

1 +
n − 1

f(n)

)

)

≥ log nf(n)

n

(

1 − e
− n−1

f(n) · 2n

f(n)

)

≥ c log nf(n)

n
for some constant c > 0 if f(n) = o(n)

So we have an upper bound for the worst-case running time of T (n) ≤ cn2

f(n) for some constant
c > 0.

5 The δ-random source

A general model of a random bit generator is the δ-random-source. Since the bias of each bit is
a function of the previous output, it can be applied as an adversary argument and is particularly
suited for worst-case analysis. See also [Pa, SV, AR].

11

Definition 6 (See [AR]) A δ-random-source is a random bit generator. Its bias may depend on
the bits it has previously output, but the probability to output “1” must be in the range [δ, 1 − δ].
Therefore, it has an internal state ω ∈ {0, 1}∗ , denoting its previously output bits.

To obtain a random number X in the range 1, . . . , n from the δ-random-source, we output
dlog ne bits and interpret them as a number Y . Then, we set X := (Y mod n) + 1.

Lemma 7 (See [As]) For each p with 0 < p < 1
2 , there exists a constant c, such that for all

n ∈ IN :

c(p) · 2H(p)·n

√
n

≤
bnpc
∑

j=0

(

n

j

)

≤ 2H(p)·n .

Lemma 8 (deMoivre-Laplace Limit Theorem) For each p, 0 < p < 1,

lim
n→∞

bpnc
∑

k=0

(

n

k

)

pk(1 − p)n−k =
1

2

Proof. Let Sn,p be a binomially distributed random variable with parameters n and p. The nor-
malized binomial distribution can be approximated by the normal distribution Φ, so

lim
n→∞

bpnc
∑

k=0

(

n

k

)

pk(1 − p)n−k = lim
n→∞

Pr[Sn,p ≤ pn]

= lim
n→∞

Pr

[

Sn,p − np
√

np(1 − p)
≤ 0

]

= Φ(0)

=
1

2

Theorem 9 For each δ-random-source, 0 < δ < 1
2 , there exists n0 ∈ IN, such that for each

n > n0, and each permutation π, Theorem 1 can be applied with

g(n) = c(δ) · 1√
log n

· n1−H(δ),

where the random bits are produced by a δ-random-source (modulo n) and c(δ) is a constant that
depends on δ.

Proof. From the symmetry and monotony of the entropy function it follows that for each s

n
∑

i=1

pi · H
(

i

n

)

≥



1 − sup
π,ω̃

s−1
∑

j=1

pj



 · H
(s

2n

)

, (1)

where pj depends on π and on the internal state ω̃ of the random source.
Now we examine the two factors on the righthand side of (1) separately. We set

k := dlog ne

and

s :=
1

2

bδkc
∑

j=0

(

k

j

)

.

12

Since

pj =

{

Pr[Y = π(j)], n + π(j) ≥ 2k

Pr[Y = π(j)] + Pr[Y = π(j) + n] otherwise
,

we get for the first factor of (1)

sup
π,ω̃

s−1
∑

j=1

pj ≤ sup
ω̃

max
M⊆{0,1}k,|M |=2s

Pr[Y ∈ M]

≤
bδkc
∑

j=0

(

k

j

)

δj(1 − δ)k−j .

Here we use the result from [AR], that the maximum probability of hitting a set of a certain size
can be achieved by an “extreme” δ-random-source that always outputs “0” with probability δ.

Since by Lemma 8

lim
k→∞

bδkc
∑

j=0

(

k

j

)

δj(1 − δ)k−j =
1

2
,

there exists some constant c′(δ), so that

sup
π,ω̃

s−1
∑

j=1

pj ≤ c′(δ).

Now we consider the right factor of the equation above. We use the monotony of H(x) on the
intervall [0, 1

2] and Lemma 7:

H
(s

2n

)

≥ H
(s

2k+1

)

≥ H

(

c1(δ) ·
2(H(δ)−1)k

4
√

k

)

We consider δ < 1
2 (so that H(δ) < 1) and use that H(x) ≥ −x log x. So we get

H
(s

2n

)

≥ c1(δ) ·
2(H(δ)−1)k

4
√

k
·
[

(1 − H(δ))k − log
c1(δ)

4
√

k

]

.

For k big enough (k > k0 corresponds to n > n0), there is a constant c′′(δ) so that

H
(s

2n

)

≥ c′′(δ) ·
√

k · 2(H(δ)−1)k .

Combining the results, there is a n0 ∈ IN and a c∗(δ), such that for all n ≥ n0, and all
permutations π on {0, . . . , n − i} and all states ω̃ ∈ {0, 1}∗ of the generator the following holds:

n
∑

i=1

pi · H
(

i

n

)

≥ c∗(δ) ·
√

dlog ne · 2(H(δ)−1)dlog ne

≥ 1

c(δ)
·
√

log n · nH(δ)−1 ,

which leads to the expected running time of T (n) ≤ c(δ) · n2−H(δ) ·
√

log n. 2

13

References

[AR] Noga Alon, Michael O. Rabin: Biased coins and randomized algorithms. In: F.P. Preparata,
S. Micali (eds): Advances in Computing Research 5. JAI Press, 1989, pages 499–507.

[As] R.B. Ash: Information Theory. Dover 1965.

[Ho] C.A.R. Hoare: Quicksort. Computer Journal, 5(1): 10–15, 1962.

[Kn] Donald Knuth: The Art of Computer Programming. Vol 3: Sorting and Searching. Addison-
Wesley, 1973.

[KR] H.J. Karloff, P. Raghavan: Randomized algorithms and pseudorandom numbers. Journal of
the Association for Computing Machinery 40 (1993) 454–476.

[Li] Beatrice List: Probabilistische Algorithmen und schlechte Zufallszahlen. Doctoral Disserta-
tion, Universit ät Ulm, 1999.

[Lu] Michael Luby: Pseudorandomness and Cryptographic Applications. Princeton University
Press, 1996.

[Pa] C. H. Papadimitriou: Computational Complexity. Addison-Wesley, 1994 (pages 259ff)

[SF] Robert Sedgewick, Philippe Flajolet: Analysis of Algorithms. Addison-Wesley, 1996.

[SV] M. Santha, U. V. Vazirani: Generating quasi-random sequences from slightly random
sources. Proceedings of the 25th IEEE

[To] Martin Tompa: Probabilistic Algorithms and Pseudorandom Generators. Lecture Notes,
1991.

14

Appendix

Lemma 10 For 0 ≤ i ≤ n

n
∑

i=1

i log2 i ≥
n
∑

i=1

i(log2 n − 1) .

Proof. Let S(n) :=
∑n

i=1 i log1 i. We prove the lemma by induction.

S(n) =

n/2
∑

i=1

i log2 i +
n
∑

i=n/2+1

i(log2 n − 1 + 1 + log2 (i/n))

≥
n/2
∑

i=1

i(log2(n/2) − 1) +
n
∑

i=n/2+1

i(log2 n − 1) +
n
∑

i=n/2+1

i(1 + log2 (i/n))

=

n
∑

i=1

i(log2 n − 1) −
n/2
∑

i=1

i +

n
∑

i=n/2+1

i(1 + log2 (i/n))

≥
n
∑

i=1

i(log2 n − 1) −
n/2
∑

i=1

i +

n
∑

i=n/2+1

i(2i/n − 1)

=
n
∑

i=1

i(log2 n − 1) −
n
∑

i=1

i + 2
n
∑

i=n/2+1

i2/n

=
n
∑

i=1

i(log2 n − 1) +
1

n

n/2
∑

i=1

(

2(n/2 + i)2 − ni − n(n/2 + i)
)

=

n
∑

i=1

i(log2 n − 1) +
1

n

n/2
∑

i=1

2i2

≥
n
∑

i=1

i(log2 n − 1)

2

15

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

