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Abstract

We give constructions of PCPs of length n - poly(logn) (with respect to circuits of size n)
that can be verified by making poly(logn) queries to bits of the proof. These PCPs are not
only shorter than previous ones, but also simpler. Our (only) building blocks are Reed-Solomon
codes and the bivariate low degree test of Polischuk and Spielman [27].

First, we present a new reduction from the verification of SAT to the following verification
problem. Given oracle access to a function on a domain of size n’ = n - poly(logn), verify
whether it is close to being an evaluation of a univariate polynomial of degree n'/10. While such
reductions, from SAT-verification to verification of algebraic properties, have been extensively
used in previous PCP constructions, our new reduction favors over them in its simplicity.

The reduction however does not seem to make the task of SAT-verification any easier. The
degree of the polynomial to be tested is larger than the size of the original SAT problem. Thus,
testing low degree of this string seems to cost more queries than required for reading the original
satisfying assignment in its entirety! To overcome this, we present a short “PCP of Proximity”
for certain Reed-Solomon codes. Specifically, we design a verifier that makes oracle access to
the function (on the domain of size n') and an auxiliary “proof oracle” and accepts polynomials
of degree n'/10 (when they are accompanied with the right auxiliary information) and rejects
functions that are far from any polynomial of degree n'/10. The verifier makes only poly (logn')
queries into two oracles (the function and the auxiliary proof).

Using these results over appropriately chosen fields translates our results into PCP verifiers
whose query complexity is a poly-logarithmic number of bits. Our PCPs of proximity for Reed-
Solomon codes also yields a new class of locally testable codes with poly-logarithmic rate and
query complexity.

1 Introduction

Probabilistically Checkable Proofs [16, 3, 2] (a.k.a. Holographic Proofs [6]) are NP witnesses that
allow efficient probabilistic verification based on probing few bits of the NP witness. The celebrated
PCP Theorem [3, 2] asserts that probing a constant number of bits suffices, and it turned out that
three bits suffice for rejecting false assertions with probability almost 1/2 (cf. [22, 20]). Although
most famous for their applications to non-approximability results (see for example [10, 9, 22, 20, 30]),
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PCPs have several other uses in cryptography (e.g., CS-proofs [23, 26] and their applications [7, 13])
and coding theory [19, 12, 11].

Optimizing the length of the new NP witness was the focus of [6, 27, 21, 19, 12, 11], and in
this work we continue this research direction. Our main result is a PCP construction that blows
up the NP-witness length by a poly-logarithmic factor and can be verified by making a poly-
logarithmic number of bit-size queries into the proof. An additional benefit of our constructions
is their simplicity. Simplifying PCP constructions ought to be regarded an important problem in
its own right, and we hope this paper makes a step in this direction (a combinatorial approach
to simplify PCP constructions is given by [15]). The simplicity of our PCPs also means that the
”hidden constants” in the construction seem to be relatively small and the few building blocks we
use can be implemented with relative ease.

At the core of our new PCPs is a short ”proof of proximity” (as defined by [11]) for the Reed-
Solomon code (denoted the RS-code). This proof (of nearly linear size) allows one to test efficiently
(with poly-logarithmic query complexity) whether a function is close to a low-degree (univariate)
polynomial. Our new PCPPs are self-contained and rely only on the bivariate axis-parallel low
degree test of [27].

Using the PCPPs for the RS-code our PCP construction becomes much simpler. We show a straight-
forward reduction of SAT to an algebraic constraint satisfaction problem, such that NP-witnesses
for this problem correspond to a pair of Reed-Solomon codewords. Moreover, testing that such a
pair corresponds to a good witness (implying satisfiability of the original SAT instance) becomes
almost trivial as long as proximity to the RS-code can be guaranteed.

Our PCPPs can be extended to the multivariate case (Reed-Muller Codes) given the extensive
literature on testing multivariate polynomials using axis parallel lines [5, 6, 16, 3, 27, 17]. In
particular, we show an even simpler PCP construction for graph-3-colorability (albeit of quadratic
length), based only on bivariate and uni-variate polynomials.

Related Results Optimizing the query complexity of PCPs has attracted a lot of attention,
motivated in part by the significance of query complexity for non-approximability results (see, for
example, [10, 9, 22, 20, 30]). However, these works only guarantee that the new NP witness (i.e.,
the PCP) is of length that is upper-bounded by a polynomial in the length of the original NP
witness.! In some of these constructions the exponent of the resulting polynomial is too large to
allow encoding of any circuit of size larger than one (!). (E.g. the exponent of [22] is = 1,000, 000).

As mentioned above, the question of proof length was the focus of [6, 27, 21, 19, 12, 11] and a
comparison of our result to that of the most recent such research [11] is illuminating. [11] gives a
spectrum of PCP constructions. At one end the proof length incurs a quasi-poly-logarithmic blow-
up and has query complexity O(loglogn) and at the other end the query complexity is constant,
and the proof size is slightly larger (blow-up factor of 2'°6°™). Our proof length is shorter than
both of these constructions, but its query complexity is larger. We stress that our constructions
and analysis seem simpler than that of [11] (and our "hidden constants” are smaller).

!We stress that in all the above works as well as in the current work, the new NP witness can be computed in
polynomial-time from the original NP witness.



2 Definitions and Main Results

Proofs of Proximity We measure distance between z,y € 3" using the normalized Hamming
distance, i.e. A(zr,y) 2 Pricin)[i # yil. Let C be a subset of ¥". (Often, but not always, in this
paper ¥ will be a field and C a linear error correcting code.) The distance of z from C (denoted
A(z,C)) is the minimal distance between z and a member of C. We say that z is §-far from
C if A(z,C) > §, and otherwise z is d-close to C. Our next notion considers the task of proving
efficiently verifiable proofs of the statement “z € C”, while making few queries into z and the proof.
Such a verification task is necessarily probabilistic, and can only guarantee (upon acceptance) that
z is d-close to C. This notion was introduced in [11, Definition 2.3] as “Probabilistically Checkable
Proofs of Proximity” (PCPP). Our definition below is a slight variant.?

Definition 1 (PCPP) A set C C X" is said to have a Probabilistically Checkable Proof of Prox-
imity (PCPP) over alphabet ¥ of length £(n), with query complexity g(n), randomness r(n), (per-
fect completeness) and soundness s(-,n), if there exists a polynomial time randomized verifier with
oracle access to a pair (z,m) € ") such that,

Operation Verifier tosses r(n) coins, makes q(n) queries into (o, m) and outputs accept or reject.

Perfect Completeness If z € C then 3r € L4 such that verifier accepts (z, ) with probability
1.

Soundness If A(z,C) > § then for any m € )| the verifier rejects (x,m) with probability at
least s(d,n).

PCPPs for the RS-Code Our first main result is that certain Reed-Solomon codes have proofs
of proximity with £(n) = O(n) and ¢(n) = poly(logn). For P(z) a polynomial over a field F and
S C T define its evaluation table over S to be (P(2)),..s = (P(s) : s € S). The Reed-Solomon code
of degree d over F, evaluated at S is defined as

d—1
RS(F, S,d) = {{P(2))scs : P(z) = Z a;?',a; € F}

The fractional degree of such a code is d/|S|. Let F* denote the cyclic multiplicative group of F.
Let the order of an element w € F* be the smallest positive integer n such that w™ = 1. We refer
to an integer n as a power of two if n = 2* for integer k. The multiplicative group generated by w
is (w) £ {0 w!,...,w" 1}

Theorem 1 (RS PCP of Proximity) There exist universal constant ¢ > 1 such that the follow-
ing holds. Let w € F* be an element of order n in the field F, where n is a power of two and let
d < n be an integer. The Reed-Solomon code RS(F, (w),d) has a PCPP over alphabet F with the
following parameters,

Proof length /(n) < nlogn.

2Qur definition is slightly stronger than that of [11]. We require the soundness be a function of the proximity,
whereas [11] only needed the soundness to be large whenever the distance is large. Inspection reveals that the results
of [11] also hold for the stronger definition of PCPPs.



Randomness 7(n) < logn + cloglogn.
Query complexity ¢(n) = O(1).

Soundness s(d,n) > 6/logn.

Examination of the proof of Theorem 1 shows it can be derived for any (w) of size n that is
poly(log n)-smooth, i.e. all prime factors of n are at most poly(logn). However, we don’t need the
stronger statement for our PCPs so opt for the simpler analysis of a 2-smooth n.

The soundness stated above is quite low (at best, it is inverse poly-log). However, randomness
efficient repetition can boost it to a constant by mildly increasing the query complexity. In partic-
ular, we can test proximity to the RS-code of length n (with essentially the same proof length and
randomness as stated above), rejecting with constant probability words that are 1/ poly(logn)-far
from the code and making poly(logn) queries into the codeword and its proof (see Section 3.7 for
details).

Going from PCPs of proximity to locally testable codes is straightforward, using the techniques
of [11, Section 4.1]. Thus we obtain locally testable codes (LTCs) with poly-logarithmic rate and
query complexity (see Section 3.7 for definition of LTCs and more details).

Algebraic Constraint Satisfaction Problems In order to obtain length-efficient PCPs we
reduce 3-SAT to an NP-complete algebraic constraint satisfaction problem. Whereas a witness for
the satisfiability of a 3-CNF is a string of bits, an allowable witness for the algebraic problem is a
low-degree (univariate) polynomial A, called the witness polynomial. A 3-CNF ¢ with n variables
and m clauses can be viewed as a mapping ¢ : {0,1}" — {0,1}™, sending an assignment to the
characteristic vector of the set of clauses satisfied by it. In our algebraic problem, an input A
is mapped to a univariate output polynomial P of slightly larger degree. The mapping ¢ has the
property that any output bit (which is an evaluation of a clause on the assignment) can be computed
by making three queries into the input. Similarly, in our algebraic setting, the evaluation of the
output polynomial P at xy can be computed by examining the witness polynomial A at the set
of points (a1zg,...,azo) where ; is a constant and ¢ = O(logn). Thus, to evaluate a P; at a
random z, requires making O(logn) random queries to A. Moreover, the computation of P(xg)
is given by a polynomial of low degree in its inputs. Finally, a witness is good for a 3-CNF (i.e.
testifies to its satisfiability) iff it is mapped to 1™. In our algebraic problem, a witness polynomial
A is good iff it is mapped to a polynomial P that evaluates to zero on a predefined set H C F
that is independent of A. In the following definition and Theorem, we assume an infinite sequence
of pairs {(F,,wp) : wp € By, [(wp)| > n}nen is polynomial time computable (i.e., given n we can
compute a description of F,, and wy,).

Definition 2 (Univariate Algebraic CSP) The language Luacsp has as its space of instances,

tuples of the form (m,ai,...,q4, C), where a1,...,04 € {wy) , C : Fetl — F, is a polynomial
of degree at most n in its first variable and degree at most three in the remaining variables. An
instance (n,aq,...,a, C) € Lyacsp if there exists a polynomial A : B, — T, of degree at most n

such that for every x € {w% w!, ..., w" 1}, C(z, Al 1), ..., A(yz)) = 0.
Theorem 2 For every polynomial time computable sequence {(Fp,wn) : wy € Fp, [{wn)| > n}nen,
there exists a polynomial time reduction from 3-SAT to Luacsp reducing 3-CNF formulas of length

n to instances of the form (n',a1,..., a4, C), where n' = O(nlogn) and t = O(logn).
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Notice the previous Theorem only requires a field with a large enough multiplicative group. But in
order to obtain efficient PCPs we will also need to use proximity testers for RS-codes, thus putting
further restrictions on the field structure.

Very similar algebraic reductions are prevalent in many previous PCPs [6, 3, 2, 12, 11], starting with
[6]. All previous reductions used multivariate polynomials in order to perform degree reduction.
Namely, a message (or assignment) of length n is encoded by an m-variate polynomial of degree
~ m - n'/™ (allowing proximity testing with n!/™ queries). Our reduction does not reduce the
degree at all, in fact it slightly increases it. The PCPPs for the RS code allow us to tolerate this
and verify proximity to high-degree polynomials with very small query complexity (logarithmic in
the degree).

Verifying Zeros of a Polynomial To complete our PCP constructions we will need to verify
that a univariate function f : S — F is close to a low degree polynomial that evaluates to zero on
H C F. This motivates the definition of the code RSy (F, S,d) C RS(F, S,d) which is the set of all
RS-codewords that evaluate to zero on H. Formally,

RSH(F, S,d) = {(P(2)):cs : deg(P) < d,Vh € H, P(h) =0}

Notice we do not require H to be a subset of S. It turns out that if RS(F, S, d) has efficient PCPPs,
so does RSy (F, S, d).

Lemma 3 Suppose RS(F, S,d) has a PCP of proximity with length £, query complezity q, ran-
domness r and soundness s(8). Then for any H C F, RSy (F,S,d) has a PCP of prozimity with
length |S| +2¢, query complezity 2(q+ 1), soundness > min{s(d),1— (26 +d/|S|)} and randomness
max{r,log |S|}.

Nearly-Linear PCPs Theorems 1, 2 and Lemma 3 give nearly-linear length PCPs. Indeed,
given a 3-CNF formula of size n, our verifier reduces it to an instance of Lyacsp via Theorem
2. The field F, used in the reduction will have a root of unity w of order O(nlogn) that is
a power of two.® As a proof, the verifier expects the evaluation of the polynomials A(z) and
P(z) £ C(z, A(a1z), ..., A(oyz)) over (w). The first evaluation table is accompanied by a PCP
of proximity to the Reed-Solomon code of degree n', and the second evaluation is accompanied
by a proof of proximity to RSy, where H = {9, ... ,w"’}. The verifier tests proximity of each
polynomial to the proper code, using poly(logn) queries to be able to reject with probability 1/2
any string that is 1/O(log n)-far from the proper code. If both proximity tests accept, verifier checks
consistency by picking a random S € (w) and accepting iff P(8) = C (8, A(a18),...,A(af3)). This
construction gives our main Theorem (the formal proof appears in Section 5).

Theorem 4 (Efficient PCPs) SAT is in PCP, 1[logy(n poly logn), poly logn]. In other words,
o)

SAT has a PCP verifier that on inputs of length n tosses logy(n poly logn) coins, makes poly(logn)
queries to a proof oracle of length n poly(logn) and has perfect completeness and soundness at most
1

5

This ends the survey of our main new results. However, our techniques can also be used to simplify
the sum-check in previous PCP constructions, as discussed below.

3Such fields can be found in deterministic polynomial time, by Linnik’s Theorem 18. See Section 5 for more
details.



Multivariate Zero Testing and PCPs We point out a generalization of Lemma 3 to multi-
variate polynomials that can replace the sum-check based protocols in previous PCP constructions
[6, 3,2, 27, 21, 19, 12, 11]. In the multivariate problem we are given sets S, H C F and oracle access
to a multivariate function f : ™ — F. We are asked to verify f is close to a polynomial of degree
< d in each variable that evaluates to zero on H™ (once again, we do not need to assume H C S).
We denote by RM(F, S, d, m) the m-variate Reed-Muller code of individual degree d, evaluated over
S™ and by RMy (F, S,d, m) its sub-code consisting of all (evaluations of) polynomials that vanish
on H™.

Lemma 5 Suppose RM(F, S,d, m) has a PCPP with length £, query complexity q, randomness r
and soundness s(6). Then for any H C F, RMg(F, S,d, m) has a PCPP with length m-|S|™+ (m+
m

1)¢, query complezity (m+1)(¢+1), soundness > min{s,1—((m+1)d + (ﬁ) )} and randomness
max{r, mlog|S|}.

Notice that the query complexity of previous solutions to this problem depended also on the size
of H. Our simpler solution has query complexity that depends only on m and is based on a
straightforward characterization of RM g (similar to Alon’s Combinatorial Nullstellensatz [1]).

To illustrate the power of Lemma 5, we apply it to a bivariate algebraic constraint satisfaction
problem arising from an algebraic version of the graph-3-colorability problem. This leads to PCPs
with poly(logn) queries and proof length n? - poly(logn) (Theorem 24). Although this PCP does
not obtain the nearly linear length of Theorem 4, its simplicity can de-mystify the magic of PCP
Theorems.

Paper Organization Section 3 presents PCPs of Proximity for the Reed-Solomon code, proving
Theorem 1. Section 4 gives the reduction of 3-SAT to Algebraic Constraint Satisfaction problem,
leading to Theorem 2. The proof of the efficient PCP Theorem 4 appears in Section 5, followed by
the simpler (and longer) bivariate based PCP (Section 6). We conclude with a brief discussion of
implementation issues (Section 7).

3 Short PCPs of Proximity for Reed-Solomon Codes

In this section we give a PCP of Proximity for Reed-Solomon codes. The PCPP is essentially
built from first principles: At a high level, we attempt an elementary reduction from the task of
testing a univariate polynomial to the task of testing (a few) bivariate polynomials of significantly
smaller degree. We then invoke an analysis of a “bivariate low-degree test” by Polishchuk and
Spielman [27], which reduces the task of testing bivariate polynomials back to the task of testing
univariate polynomials, of much smaller degree than the original. Recursing on this idea leads
to the full test. The main catch in this outline is that the reduction reduces the original testing
task to a stronger task of testing a few polynomials and verifying some consistency between them.
To capture this consistency testing, we define a stronger problem and show that our reduction
reduces this problem to itself with smaller parameters. (A related self-reduction in the context of
multivariate low-degree testing appears in [14].)

In Section 3.1 we elaborate on our approach and introduce the stronger testing problem informally.
In Section 3.2 we formally introduce the Shifted Reed-Solomon (SRS) code and describe our testing



result for this code. In Section 3.3 we describe the tester for the SRS code. In Section 3.4 we
analyze the simple properties of this tester (query complexity, randomness, completeness etc.). In
Section 3.5 we analyze the soundness of this tester.

3.1 Introducing the Shifted Reed-Solomon Code
We start by considering a polynomial P(z) = Z?:/ 3_1 a;2", evaluated at some set W C F of
cardinality n, and consider the task of “testing it. Our main idea is that we can define the
bivariate polynomial Q(z,y) = E‘/_/ 21 E N=0 Ya, o/t kY’ 2%, and this polynomial has degree only
n, while “capturing” all the 1nformat10n of P. (Spec1ﬁcally, we can reconstruct P from () using
the identity P(z) = Q(z,2Y™).) Furthermore, testing of bivariate polynomials reduces to testing of
univariate polynomials of roughly the same degree using well-known “low-degree tests” and their
analysis (cf. [27]). This leads us to the hope that the polynomial Q might provide, or at least lead
to, a good “proof” that P is of low-degree. Specifically, to prove that a table of evaluations of
P corresponds to the evaluations of a polynomial of low-degree, the prover can provide a table of
evaluations of a bivariate polynomial @, prove that @) has degree /n in each variable, and then
prove that ) is consistent with the table of evaluations of P.

To completely describe the above approach, all we need to do is describe which set of points we
will specify @ on, so as to achieve both tasks: (1) verifying that @ has low-degree, and (2) that
it is consistent with P. However this part leads to conflicting goals. In order to test that @ has
low-degree, using a bivariate tester, we need to know its values on some subset X X Y where
X,Y C F. To make this efficient, we need to make |X|,|Y| = y/n. On the other hand to test its
consistency with P, the natural approach is to ask for its values on the set Z = {(z, z\/ﬁ)|z e W}
Unfortunately the set Z is far from being of the form X x Y. (For starters, the projection of Z
onto its first coordinate has cardinality n while we would like this projection to be of cardinality
O(v/n).)

This discrepancy (between Z and cross-product sets) seems to kill this approach entirely, however
it turns out it can be salvaged. To do so, we choose W to be special, and let W = (w) for some
element w of order n in F. We also assume 7 is a square, so that +/n is an integer. Figure 1 plots Z
on F* x F*, where the elements of F* are enumerated as powers of a generator of the multiplicative
group. While Z does not form a product set, it does have some nice features. The elements of Z
lie on a “lattice” in this representation and it turns out this can be exploited to our advantage.*

The first observation we make about the set Z in Figure 1 is that its points lie on y/n horizontal
lines, with y-coordinates given by the set Y = {w/V™|j € {0,...,/n — 1} = (wV"). This motivates
us to consider (as supporting a proof that P is a low-degree polynomial) the restriction of @) onto
Y xY for Y = (wV™).

A minor hitch with this suggestion is that Q(z,yg) for yo € Y is a degree y/n polynomial in z and
its value is only given at y/n places on this horizontal line. To get around this degree problem, we

reduce the z-degree of Q by expressing it as a sum of two polynomials. Specifically, let Q(©) (z,y) =

Z}/joﬂ_l ,\9/552_1 aj.ﬁ+kijk, and let QD (z,y) = Z‘/_/2 ! ‘/Z_éQ ! j.\/ﬁ+k+\/ﬁ/2yj$k. We get

Q©, QM) have degree less than \/n/2 in each variable and Q(z,v) = Q) (z,y) + zV™/2QW (z,y).
We now amend our proposal and suggest that the restriction of Q(® and QW to X x Y, for

*We stress that Q restricted to a (non-axis-parallel) line in this layout is not a polynomial of degree O(y/n), since
this grid is an “exponential” one.
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Figure 1: In this case, F = Zo;. Let o generate F* and w = o* be an element of order n = 25. The

elements on each axis are ordered by increasing powers of ¢ and the figure shows the set of points
Z = {(w',w"VP)|i} C F* x F*.

X =Y = (wV"), as well as their values on Z, can be used to prove that P is a low-degree
polynomial.

To verify such a proof, a verifier picks a random choice of @ € X and verifies that Q(©) as specified
by its values on X x Y, restricted to the line parallel to the second axis (with the first argument
set to ) is a polynomial of degree at most v/n/2 — 1 in the second variable. Similarly it tests QO
for a random setting of its second argument, and does similar tests for Q1) restricted to X x Y.
Finally it tests, on a random point of (z,7y) € Z, that P(z) = QO (z,y) +2V™"2Q(")(z,y). The key
ingredient missing in all the above is the consistency of Q) (and Q")) on X xY with its evaluations
on Z. Restricted to a random line parallel to the first axis with second argument set to (3, this
reduces to the task of checking the consistency of Q(® (-, 3) on the points in §; = {wj\/ﬁ}j with
the points of the form Sy = {z € W\:v‘/ﬁ = [}. Thus, our consistency problem can be abstracted
as the task of testing if two tables, giving the value of two functions at S and S5, correspond to
the evaluations of the same univariate polynomial at sets S; and S3. We don’t know how to solve
this problem for general S; and S3, but in our case the sets S; and Ss have a special form (see
Figure 2). The set S is of the form (w') where w' = wV™. And the lattice picture clarifies that
the set So is also well-behaved: It is of the form {x - wj\/ﬁ}j = K- 51, where K € W is such that
KV = B.

This motivates us to define the Shifted Reed Solomon (SRS) code, whose codewords are the evalu-
ations of a polynomial P at a cyclic subgroup of a field, and its coset (shifted by k). We investigate
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Figure 2: Z and X x Y plotted on the same grid (as in Figure 1. Note the points lie on five (1/n)

rows. On each row the points correspond to the evaluations of a degree v/n/2 polynomial evaluated
on the fifth roots of unity and their multiplicative shifts, where the shift is fixed for a given row.

the testing of this code, along the same ideas as we proposed for testing the Reed-Solomon code
above, and fortunately for us, things fall into place. We can define bivariate polynomials Q, Q(©),
Q) as above. The evaluations of P on the sets W = (w) and W = & - (w), translate to the
evaluations of Q on Z and Z, = {(kw', sV"w"V")}i € {0,...,n — 1}}. Figure 3 shows Z and
Z,. pictorially. To ease the testing we add the values of Q®’s on X x Y and X x (Ys), where
Y. ={x-yly € Y}. (See Figure 4.) The testing of these tables and their consistency, reduces to
the testing of consistency of Q()’s on three sets of lines: (1) on vertical lines with first coordinate
being a point of X (for X XY vs. X x Y), (2) on horizontal lines through points of Y (for X xY
vs. Z) and (3) on horizontal lines through points of Y,; (for X x Y}, vs. Z,). Additionally, we need
to test that the Q(®)’s, on their values at Z and Z,, are consistent with the tables of values of P on
W and its coset given by k- W. The last tests can be carried out with constant query complexity,
while the tests (1)-(3) above can be solved recursively. This leads to the verifier described in the
next section.

From Intuition to Proof Our rigorous analysis will follow the intuition laid so far, with two

technical differences. So far we assumed +/n to be an integer. Applying the same assumption
. . . ok . . .

recursively implies n = 2" (for some integer k), and the set of such integers is very sparse. But

for our purposes, we only need to factor n into mg,n; such that each is = y/n. We will use

n = 28, ng = 2Mk/21 p, = 2lk/2] and notice the construction still follows. In fact, for obtaining
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Figure 3: In this example x = o2 (recall o generates F* and w = o%).

short PCPs a polylog(n)-smooth® n would suffice. Fortunately, Linnik’s Theorem (see Theorem 18
and the references therein) assures us of the abundance of small prime fields with a multiplicative
sub-group of size 2¥ for any k, so we only deal with these codes.

The second technical difference is that in what follows we will consider polynomials of degree at
most n/c (evaluated over a domain of size n), for some large constant ¢ as opposed to 2. This
is because the bivariate low-degree testing theorem of [27] requires the ratio of the degree to the
domain to be this small. (See statement of Theorem 25 for the exact constraints.) This fractional
degree forces us to break our polynomial P(z) into eight® bivariate polynomials {Q(‘q)}ge{o,___,ﬂ
(rather than two as discussed above) of degree = 4/n/8 in each variable.

Finally, a few words explaining the notation: In what follows we will describe an SRS verifier that
will access several oracles which are supposed to correspond to some of the functions described
above (though it will be the verifier’s task to verify this correspondence). In particular, we use
oracles p, p, to describe the two parts of an oracle describing a supposed SRS codeword. We use
oracles £ and ¢ to describe the restriction of the function Q¥ to Z, and X x Y. Elements of X
and Y are described in the natural way, i.e., X = {a"'|a € (w)} and Y = {p™|5 € (w)}. We use a
slightly unnatural (but eventually convenient) way to describe elements of Z: we describe the set
by pairs {(&,8)|@ € X,8 € (w)n, }, where (w)p, = {1,w,w?,...,w™ 1}. Notice that the elements

5

n is said to be k-smooth if all its prime factor are < k.
SInspection of [27] shows we can use fractional degree that is larger than 1/8. However, for the sake of simplicity
of exposition we do not optimize our construction thus.
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Figure 4: Z and X X Y share the same rows. So do Z, and X X Y. Finally, X X Y and X X Y,
share columns. Thus, SRS-proximity of size n is reduced to SRS-proximity of size y/n.

& - B are in one to one correspondence with the first coordinates of Z. We use oracles f,g) and g,g)
to describe the restriction of Q¥ to Z, and X x Y}, however we shift their inputs appropriately
(by some function of k) so that they are described also as functions on Z (represented as above)
and X x Y. The tests then correspond to verifying consistency of the f(©’s and the f,ge)’s with p
and p,, as well as recursive tests to check SRS consistency of f® vs. ¢(® on horizontal lines, of

(£) (£)

g vs. gv’ on vertical lines, and of g’ vs. f,gé) on horizontal lines.

3.2 Definitions and Main result

We now formally define the Shifted Reed Solomon (SRS) code, which was introduced informally in
the last section.

Definition 3 (Shifted Reed Solomon Code) For w of order n in F, integer d < n and k € F*,

the degree d shifted Reed Solomon code (SRS code) over (w) with shift x, denoted SRS(F, d, w, k),
is the map C : F¢ — F2" given by

Clag, ... a4-1) = <P(z))z<—(w)’ <P(’€z)>z<—(w)>

11



If k € (w) then (P(kz2)), () is merely a permutation of (P(2)),« (). But when k ¢ (w), the more
interesting case, (P(k2)),« () is an evaluation of P(z) on a coset of (w) within F*.

The shifted Reed Solomon code (SRS-code) is a generalization of the standard RS-code. In par-
ticular, taking k = 1 gives the RS-code (repeated twice), so the distance and rate of the SRS-code
match that of the RS-code up to a multiplicative constant of two. Thus, from here on we will focus
on presenting a PCP of proximity for the SRS code, noticing Theorem 1 is a special case of the
following theorem, the proof of which occupies the rest of the section.

Theorem 6 (SRS PCP of Proximity) There erists a universal constant ¢ > 1 such that the
following holds. Let w be an element of order n in the field F, where n is a power of two, let k € F*
and d < n. Then the corresponding SRS-code has a PCPP over alphabet F with the following
parameters,

Proof length /(n) < nlog‘n,
Randomness 7(n) < logn + cloglogn,
Query complexity ¢(n) = O(1), and

Soundness s(d,n) > 6/logn,

where the proof length and query complezity specify the number of elements of F written (or read).

Our proof will focus on the special case of degree d = n/8. Generalizing to arbitrary degree is
deferred to Section 3.7.

3.3 The SRS Proximity Tester

In this section we describe the SRS Proximity tester. We start by recalling some notation. The
order of an element o € F, denoted ord(e), is the smallest positive integer i such that o = 1.
Recall that we have an element w of order n, where n = 2¥ for some integer k. Let ng = 2[%/21 and
ny = 2Lk/2] | Note that n = ng - nq1 and \/m < nyg < ng <2n. Throughout (@) denotes the set
{a® ot ... ,a°"d(@)—1 For ¢ < ord(e), we use (), to denote the set {a®al,... a1},

We are now ready to describe the inputs to the SRS Proximity tester. Its explicit inputs are the field
F, the degree parameter d (set to n/8 in our case), the shift x and the element w of order n. The
more important inputs are the implicit ones, or the oracles accessed by the SRS Proximity Tester.
As expected it accesses two “input” oracles denoted (p,py), where p,p, : (w) — F. Additionally
it accesses a proof oracle w. If n < 16, the proof oracle is empty, else it is of the form 7 =

{59, 79,90, 68, {n (20, 2280V 5y AnBED} s myYeeqo,.. 1), where fO, 1191 (wm) x

(W)n, = F, g(‘f),g,(f) : (w™) x (w™) — F, and the 7(>0’s are proof oracles as needed by recursive
calls to SRS Proximity testers. (Informally, the four functions f ©, f,ﬁ‘), g(g),g,(f) correspond in
Figure 4 to the evaluation of the bivariate polynomial Q(¥)(z, %) on the four sets of points: Z, Z,, X x

Y, X x Y, respectively.)

Finally, before describing the Proximity tester we need some new notation. For general sets A, B, C,
a “bivariate” function h : A x B — C, and elements a € A and 8 € B we denote the S-row of h

12



by hlg" : A — C and define it to be the function h[g’ (/) = h(c/, 8). Similarly, the a-column is

denoted h|(¢)Z : B — C and defined as h|£(ﬂ') = h(a, 8). We are now ready to describe the proximity
tester.

Definition 4 (Verifier for SRS-Code) The verifier for prozimity to SRS(F, ddéfn/&w, K) Te-
ceives as input the parameters F,w, k as defined in the statement of Theorem 6. It has oracle access
to a purported codeword (p,px) and its purported proof

— 3@ £ O O J (LB (2,8 (3,8,¢)
™ {f S99k ,{ﬂ , T },Be«u)nl’{ﬂ }aewl)}

and is denoted Vé(ﬁg)"“)’”) (F,n,w,k). If n <16 (in which case m = (), the verifier reads p and p,
in entirety and accepts iff (p,px) € SRS(F, 2,w, k). Otherwise, it computes ng = 21%/21 pn; = 21%/2]
(recall n = 2¥) and performs one of the following four tests with probability 1/4 each.

7
¢€{0,...,7}

Outer: Pick & € (w™), € (w)pn, uniformly at random; Query p(& - B), pe(é- B) and (&, B),
1@, B) for every £ € {0,...,T}; Accept iff p(G - B) = Lj_o(@- B)™/* - (&, B) and
pr(i- f) = Li_g(ka- f)o/s . 19, ).

(g® |EH"0 ’f(l)|ﬂ<—>7ﬂ-(1,ﬁ,l))

Inner: Pick ¢ € {0,...,7}, 8 € (w)n, at random and run Vggq (F,ng,w™, B).

(987 |5 oS0 7 m (22800

Inner.: Pick € {0,...,7},8 € (w)n, at random and run Vggq (F, ng,w", kp).
(90 5,0k 5w )
Inner.: Pick? € {0,...,7},a& € (w™) at random and run Vgpg 7" ' (F,nqy,w™, k™).

The remaining subsections analyze the performance of this verifier, thus yielding Theorem 1. Specif-
ically, the next subsection analyzes the simple properties including the query complexity, the ran-
domness/size complexity, and the completeness. The hard part, the soundness analysis is addressed
in Section 3.5. Throughout this analysis we assume degree d = n/8, and Section 3.6 generalizes
this to arbitrary degree, thus proving Theorems 6 and 1. We conclude with some corollaries in
Section 3.7.

3.4 Basic properties

Proposition 7 Vé(ﬁ’sp“)’ﬂ(F,n,w,/ﬂ) makes at most 32 queries into p,pe,w. It tosses at most
log, n + O(loglogn) random coins. The size of the oracle © accessed by Vé(ﬁ’sp")’ﬂ(]F,n,w,m) is

O(n - polylogn).

Proof: The proof is straightforward from the definition. The query complexity is easy to verify.
In the base case, the verifier reads 32 field elements. In the inductive case, if the verifier chooses
Q

to execute the Outer step, then it makes 18 < 32 queries, else it makes a recursive query to Vgrg
which makes 32 queries by induction.

The randomness complexity is similar. In the base case the verifier tosses 0 coins. In the inductive
case, the verifier tosses O(1) coins to determine which step to perform. If it chooses the outer
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test, it picks & and 8 at random with logn + O(1) coins. If it chooses one of the inner tests, it
tosses logy/n + O(1) coins to determine the inner call, and then log+/n + O(loglog+/n) coins in
the recursive call. Adding up, we get a total of logn + O(loglogn) coins in all.

The size of the oracle can be similarly analyzed (or bounded by 2randomness 4 get the same bound).

Next we move to the completeness part of the proof. This part is straightforward given the intuition
developed in Section 3.1. We first abstract the notion of expressing a univariate polynomial by
bivariate polynomials of low degree in the following proposition. We then use this as described in

Section 3.1 to describe a proof 7 that is accepted with probability one by Vé(f;’sp )om) (F,n,w, k,0)
when the input oracles correspond to an SRS codeword.

Proposition 8 Given positive integers di,ds, L, and d such that di - do - L > d, the following
holds: For every univariate polynomial P(x) of degree less than d there exists a sequence of L
bivariate polynomial Q0 (y,2),...,QE "V (y,2), of degree less than di in y and dy in z such that
P(z) = 252—01 zth QU (g, zl'd). Furthermore, such a sequence is unique if dy - do - L = d.

Proof: Let a;’s be the coefficients of P, i.e., P(z) = Zg:_ol a;z'. Now let

di—1dsa—1

Q(Z)(yaz) = Z Z ai+é-d1+j-d1-Lyizja

i=0 j=0
where a; is defined to be 0 if 4 > d. It can be verified by inspection that we have

L-1

P(z) = Y a" QO (z,a" ™).

£=0

Furthermore, the uniqueness follows from a counting argument: the set of sequences of polynomials
QO, ..., QLY form a vector space of dimension L - d; - dy = d, the dimension of the space of
polynomials of degree less than d. I

Proposition 9 If (p,px) equal the SRS encoding of some polynomial P of degree less than n/8,
then there ezists a proof oracle that causes the SRS Prozimity tester to accept with probability one.

Proof: We prove the proposition by induction on n.

Let QO ..., Q" be the polynomials as given by Proposition 8 applied to P with integers di = ng/8,
dy =n1/8, L =8 and d = n/8. (Note that we have d; - d2 - L = d, since ngy - n; = n.) For every
¢ €{0,...,7}, we let fO(a,8) = QUO@B,A™), fi(aB) = QO (rap, k™pm™), g (@ fm) =
QY (&, ™), and g,(f) (&, ™) = QY (&, k™0 ™), for every & € (w™), B € (w)n,, and ™0 € (W™0).
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Note that the above choice of table f() f , gl Ef) are such that the Quter test accepts with
probability one. Specifically, we have

pa-p) = P(a-p)
= > (@ p™rQU@Ep, ampm)

£€40,...,7}
= Y (@-p™BQas,pm)
£€{0,...,7}

- B)fro/8 1O, B)

Il
g
=

£€0,...,7}

Similarly we get px (k- 8) = S21_o (k- B)mo/8 . 19 (&, B).
Now we describe how to set up the rest of the proof oracles 7(") such that the inner tests

accept. For this part, note that the recursive calls to the SRS proximity testers are oracles

that satisfy the completeness condition on smaller inputs. Consider, for example, the invocation
@) f(e) (1,8,£)
VégRS| 5 >(]F ng,w™, 3), by Inner for some £ € {0 ,7} and B € (w)n,. We may re-

late the oracles to the polynomial Q(® as follows: We have g |ﬁn0( a) = g (a, gm) = QWY (a, o),
f® 15 (& ( ) = fO(a,8) = Q(a- B, ™). Thus, if we let P'(&@) = QO (&, ™), and w' = w™, then the
pair f( |‘_’,g(£ |4no 18 a codeword of the SRS code SRS(F, ng /8, w’, 8) corresponding to the encod-

ing of P', and thus (by induction) there exists a proof n(15:0) that causes the recursive verifier to
accept with probability one. Similar reasoning shows that the verifier also accepts with probability
one when invoking Inner, or Inner,.

3.5 Soundness

Finally we argue the soundness of the SRS tester. The main idea of the analysis is a simple

T we OF d

|da g |[3’"05 9k |da an

g,(f)wlo are close to polynomials of degree roughly y/n. We then apply the Polishchuk-Spielman
(€)

analysis of the “axis-parallel lines bivariate test” to conclude that g¢) and gy’ are very close to some

induction. By induction, we argue that for most & and 8, the functions g(¥

low-degree bivariate polynomials Q® and Q,(f). Furthermore, we show that these polynomials are
appropriate shifts of each other. Next, we claim that the function f © (z,2™) is close to the function
Q¥ (z,2™) and similarly for f,ﬁ‘). Finally, we claim that p(z) is close to ZZ:O Ztno/8 . QW) (7, z10)
which is a low-degree polynomial in z. We argue similarly for p, and the consistency of the nearest
polynomials to p and p, follows from the consistency of Q and Q). We elaborate on the details
below. But first, we present a version of the Polishchuk-Spielman analysis of the bivariate test, in
the form we will need it.

For set S,T C F, function f : § x T'— F, and non-negative integers dy,dy define §(41:92)(f) to be
the fractional distance of f from a polynomial of degree d; in its first variable and ds in its second.
Formally,

5(d1,d2)(f) 2 min {0(f,Q)}

{QSXT—)F| degz (Q)Sdl adegy (Q)SdQ}

Let 6@*)(f) = §@T=1(f) and 69 (f) = 61519 (f) denote the fractional distances when the
degree in one of the variables is unrestricted.
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Lemma 10 (Essentially from [27]) There exists a universal constant cy such that the following
holds. For every S,T CF and integers d < |S|/8,e < |T'|/8 and function f : S x T — F, it is the
case that

64 (f) < co- (84(f) +5¢4(f)).

A formal proof showing how this lemma follows from [27] is included in Appendix A.

We now analyze the soundness of the SRS tester.

Lemma 11 There ezists a constant ¢ such that for every n and e, if the SRS tester rejects (p, py, ™)

with probability at most €, then (p,p,) is within a distance of c'°81°8™ ¢ from some codewords (P, Py)
of the SRS code.

Proof: Let ¢y be as in Lemma 10. Let ¢; = 128 - ¢y, co = (320 + 2¢;), and c3 = 8co + 4. We
prove the lemma for ¢ = c3, which is (a large) constant. (Note the conditions imply ¢ > 1 and
c > (2-(256 + 4c1))? as will be used later.)

We assume the lemma is true by induction for smaller n (and in particular for the recursive calls
to the Inner, tests), and now prove it for n. Assume c'°81°6™ . ¢ < 1 or else the claim is vacuously

1
true. We use below the fact that c°8logno < clog log v2n < lo8lo8n—5 for every ¢ > 1 and n > 16.

Let m = ({f(e),f,ge),g(é),g,(f), {w(l’ﬂ’e),w(%ﬁ’e)}g, {n(3&01.1,) be such that (p,p., ™) is rejected by
the SRS tester with probability at most e. We show below that (p, p.) are within distance c'°81°8™.¢
of some SRS codeword.

Denote by ep(@,3) the probability that the Outer verifier rejects (p,pg, ) on random choice &
and 3. Let ep denote the expectation of eo(é, 8) over the choice of @ and 3. Similarly let e7(¢, 5),
€x(£,B), and €.(¢,&) denote the probability that Inner, Inner,, and Inner., reject on random
choice 4, 8, and &. Let €;(£), €,(£) and e.(£) denote the expectations of these quantities over 5 and
@, and Let €7, ¢, and €. denote the expectations over 3, &, and £. By definition of the tester, we
have € = i - (€0 + €1 + €, + €¢). Since these quantities are non-negative, we get €op, €1, €4, €. < 4e.
Similarly, we have eo(£),er(£), €x(£), e.(£) < 32¢, for every £ € {0,...,7}.

For ¢ € {0,...,7}, denote by Q) (z,y) the polynomial of degree at most n¢/8 in z and n;/8
in y that is closest to g (on the domain (w"™) x (w™)), where ties may be broken arbitrarily.
Similarly let QY be the closest polynomial to g{. Let P(z) = S7_ zmo/8 . Q) (z, 2™) and let
Po(z) = S5 2tmo/8. Q,(f)(/ﬁz, z"0). We show below that (p,ps) is close to the SRS encoding of the
polynomial P. (Among other facts, we also show that P.(z) = P(k - z).)

Step 1: The functions Q¥ (and Q,(f)) By the inductive hypothesis applied to Inner(Z, 3),
we have (g(e)\ﬂ‘_ﬁo,fw”ﬁ"’) is (cloalogmo . ¢;(¢, B))-close to the SRS encoding of some degree mg/8
polynomial. Thus g(®) 5o is at most (2- clo8losmo . ¢/ (¢, B))-close to the RS encoding of some degree
ng/8 polynomial. Averaging over 3, we get g(¥) is (2 - 1819870 . ¢;(¢))-close to some bivariate
polynomial of degree my/8 in z (and arbitrary degree in y). A similar argument based on the
Inner, tests yields that ¢® is (2 - ¢l°818™1 . ¢ (¢))-close to some bivariate polynomial of degree

16



n1/8 in y (and arbitrary degree in z). Now applying Lemma 10, we get that g9 is close to some
polynomial of degree ng/8 in z and n1/8 in y. More specifically, we have:

§(no/8.m1/8)(4(£)) co - (5(no/8,*) (g9) 4 §tma/8) (g(ﬁ)))

IA

IN

co - (2 . Cloglogno . 6[(6) +92. Cloglogm 'ec(@)

IN

64 - o (cloglogno +Clog10gn1) €

128 - ¢ - cloglogmo . ¢,

IN

Letting cld§f128 - ¢, we have that §(g(, QW) < ¢; - ¢1°8198m0 . ¢ A similar argument shows that
6(9(6) (Z)) <e¢- cloglogng - €.

K K

Step 2: The functions ) and f,ﬁ“) Next we move to the functions f() (for any £ € {0,...,7})
and show that for most &, 8 f© (&, B) = QW (&- B,8™) (and similarly for most &, B, £ (&, B) =
D¢, . = n

Qr’ (k- a- B, ).

We first describe the argument informally. Consider a 8 such that g(£)|§20 and f (£)|ﬂ‘_’ pass the
Inner test with high probability and the SRS codeword correspond to the encoding of Q(-,3™).
For such 3, we have f(£)|ﬂ‘_’(6¢,ﬂ) = Q(a- B,B™) for most & It remains to make this argument
quantitative and we do so below.

Define a 3 to be good if the fractional distance between (g(©) 5o A |§”) and the SRS(F, no /8, w™, B)
encoding of QW (-,4) is at most 1/8. Let §(3) denote the relative distance of f(€)|ﬂ“’ to the

projection of the SRS codeword nearest to (g(9 o f © 5”) (onto the second half of the coordinates).
Note that

Prif9(a,p) # QU . ™)
< Eg[o(B)|B is good] - Pﬁr[ﬂ is good] + Pﬂr[ﬁ is not good|
< Eglé(B)] + I;r[ﬂ is not good]

Note that the first term above is easily estimated as in Step 1. We get Eg[d(8)] < (2 - closlosmo .
€r(£)) < 64 - closlosno . ¢

Next we describe two sets that cover the case where 8 is not good. Let S; be the set of all g8
such that the distance of (g(Z)WLO, f (Z)\ﬂ‘_’) from every SRS codeword is more than . For every
B € Si1 note that the e;(¢,5) > m. Thus, the probability that 8 € S is at most § - clo8logno .

er(f) < 256 - 81980 . ¢ Next, let So be the set of 3 for which (g(z)\ffno,f@w) is g-close to an
SRS codeword, but the SRS codeword is not the encoding of le)-,ﬂno). For every B € Sy, we
have QW (&, 8™) and ¢ (&, ™) disagree for at least g fraction of the &’s (since Q{9 (-, ™) and
the other SRS codeword can agree on at most ng/8 values of &@’s). Since the distance between
g and QW is at most ¢; - 181870 . ¢ we get that the probability that 8 € S, is at most
g .1 - closlogno L ¢ < 9¢, . cloglogno . ¢ Finally, we note that if 8 is not good, then 8 € S1 U S3. Thus
we get Prg[f is not good] < (256 + 2c1) - 081080 . ¢,

Putting the above together, and recalling co = (320 + 2¢;), we get Prs g[f¥(a,8) # Q¥ (a -
B, 8™)] < co-cl°818™0. ¢ Similarly we also get Pr&,g[f,ge)(d,ﬂ) # Q,(f)(n-d-ﬁ,,@”(’)] < ¢g-closlogmo ¢,
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Step 3: The functions p and p, Next we move to the functions p and show that p(z) usually
equals P(z) = ZLO 2tm/8QM0 (7, 2m0), for z € (w). Note that (w) is in one-to-one correspondence
with {& - 8} where & € (w™!) and ﬂ € (w)n, and so we are interested in estimating the probability
that p(a- B) # Sr_o (@)t /8QW (aB, ™). We consider the following events: For £ € {0,...,7},
let Eg be the event that fO (&, 8) # Q¥ (aB, ™). Further, let E' be the event that p(a - ) #
Z —olap B)eno/8 f(6) (a3, B0). For any £, we have E, happens with probability at most cy-clo8108m0. ¢,
Further E' happens with probability at most ep < 4¢ < 4-l°61°870 . ¢ (using ¢ > 1).. Furthermore,
if none of the events E', { Ey}; occur, then we do have p(a-3) = Zzzo(dﬁ)e'"o/sQ(@ (aB, ™). Thus
recalling c3 = 8cy+4, we get that §(p, P) < c3-c°8198™0.¢. Similarly, we get §(p,, P..) < c3-clo810870.¢,
Combining, we get that §((p,px), (P, Px)) < c3 - cl°818m0 . ¢. By the definition of ¢ = ¢3 and the
condition cl8logno < og log”’%, we get that the final proximity above is at most cl°8187 . ¢ as
desired.

All that remains to be shown is that P and P, are consistent, i.e., that P,(z) = P(k - 2).

Step 4: Consistency of the « shifts We prove this part by showing that for every ¢, @ and
Q. are consistent, i.e., Q,(f) (z,y) = QY (x,k™y). This suffices, since we will then have P(z) =
D, zenO/SQEf)(fﬁz,z”O) =3, 208Q0) (K2, k™0 2™0) = P(kz).

Fix £ € {0,...,7}. Define & € (w™) to be good if (g |a,gn |$) is 1/8 close to some SRS codeword
and g(e)ﬁ& )|
Q,(f) (@,-), It is straightforward to see that if & is good, then Q,e (&,1) = QY (a, k™). Furthermore,

if the fraction of good &’s is more than 1/8, then we will have Q,(f) (z,y) = QW (z, k"y) as desired.
So it suffices to bound the probability of @ being not good (to be less than 7/8).

is 1/4 close to the evaluations of Q)(&,-), and g is 1/4 close to the evaluations of

The three conditions above can be analyzed in a manner similar to the analy31s of the probability
of B not being good in Step 2. Specifically, we have: The probability that (g(©) | . g,~i |$) is not 1/8
close to some SRS codeword is at most 8 - cl%8108™1 . ¢ (¢) < 256 - ¢l°81°8™0 . ¢ The probability that

O
most 2 - ¢; - 819870 . ¢ Finally, the probability that g,(f)% is 1/8 close to some SRS codeword and
not 1/4 close to the evaluations of Q,(f) (&,-) is at most 2 - ¢y - ¢l°81°8m0 . ¢, Combining the above
we get that the probability that & is not good is at most (256 + 4 - ¢;) - c°819870 . ¢, Tn turn the
final quantity is at most (256 +4 - ¢1) - coglogn—3 . ¢ < zcloglosn . e < 1 < T a5 desired. (The first
inequality follows from the fact that we have ¢ > (2- (256 +4-c1))?.) This concludes the proof that
Q@ and @, and hence P and P, are consistent. Combined with Step 3, this concludes the soundness
analysis.

is 1/8 close to some SRS codeword and not 1/4 close to the evaluations of QU)(a,-) is at

3.6 Proof of Main Theorems for RS and SRS Code

Proof of Theorem 6 (for special case of d = n/8): The verifier is given in Section 3.3. Its
query complexity, randomness and proof length are given by Proposition 7. Its completeness is
asserted by Proposition 9. Its soundness is analyzed in Lemma, 11.

Proof of Theorem 1: Follows from Theorem 6 by setting x = 1. |
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We now generalize to the case of arbitrary degree d < n, completing the proof of Theorems 6 and
1.

Proposition 12 Suppose SRS(F,d,w, k) has a PCPP with length £, query complezity q, random-
ness r and soundness s(6). Then,

1. For any d' < d the corresponding code SRS(F,d',w, k) has a PCPP with the same parameters.

2. For any d" < b-d the corresponding code SRS(F,d",w, k) has a PCPP with length b- (|S|+¢),
query complexity b- q, randomness v and soundness > s(0/b).

Proof: For d' < d we fix a polynomial R(z) of degree d — d', and given oracle access to p,py :
(w) — F, we test proximity of (p'(2),p/.(2)) = (p(z) - R(2),px(2) - R(kz)) to SRS(F, d,w, k). Verifier
can compute R(z) independently of p(z). The distance of (p',pl,) from SRS(F,d,w, k) equals the
distance of (p, px) from SRS(F,d’,w, ). This proves part 1.

For d" < b-d, we think of a polynomial P(z) of degree d" as a sum of at most b polynomials P(?)(z)
of degree < d,

b—1
P(z) =) 2% . Pl(z)
=0

A proof for the degree d” code will be composed of b proofs, one for each P The verifier for
this code will test each pair (p®, p,(f )) individually (using the same random coins) and then test
consistency by picking a random o € (w) and accepting iff

plo) = Z oPp (o) and  px(o) = o”'pY(0) (1)

Proof length, completeness, randomness and query complexity follow from construction. As to
soundness, if (p,px) is 0-far from SRS(F,d”,w,«) then at least one p{) must be §/b-far from
SRS(F,d,w, k).

3.7 Corollaries
3.7.1 Boosting Soundness to half

Theorem 1 gives very weak soundness, that is at best 1/ poly(logn). However, using randomness
efficient samplers we can boost the soundness up to any constant, paying only a small price in
query complexity and randomness. The following proposition follows from [18, Corollary C.5].

Proposition 13 Assume S C X" has a PCPP with length £, randomness r, query complexity ¢ and
soundness s for prozimity parameter § (i.e. inputs that are 6-far from S are rejected with probability
at least s). Then for any s’ € (0,1) it has a PCPP with length £, soundness s', randomness

log —
r + O(log 1%5,) and query complezity O (h>

S
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Proof: We use the definition of a hitter [18, Definition C.1]. Assume a € " is é-far from S. For
any proof 7 € Xf, let f = fa;m +{0,1}" — {0, 1} be the function that specifies whether the verifier
accepts (one) or rejects (zero) the pair (o, 7) on random coins R. By assumption |[{R : f(R) =
0}| > s-2". Thus, using the notation of [18, Definition C.1] we get n = r,e = 5,6 = 1 — s'. [18,

log —L
Corollary C.5] gives explicit constructions of such hitters with sample complexity O (h> and

8

randomness r + O(log 1%3,), completing our proof. |

The previous proposition shows that soundness 1/2 can be achieved for proximity as small as
d =1/ poly(logn) with only poly(logn) queries. In following statement, we say RS(F, (w),d) has a
PCPP with soundness half for proximity parameter ¢, if every word that is § far from the code is
rejected with probability at least half (the choice of half is arbitrary and could be replaced by any
constant smaller than one).

Corollary 14 There exists a universal constant ¢ > 1 such that for any § € (0,1) the following
holds. For F,w,d,n be as in the statement of Theorem 1, the Reed-Solomon code RS(F, (w),d) has
a PCPP over alphabet F with,

Proof length /(n) < nlog‘n.
Randomness 7(n) < logn + cloglogn.
Query complexity ¢(n) =logn/é.

Soundness half for proxzimity parameter 9.

3.7.2 Locally Testable Codes

Using [11, Section 4.1] we obtain locally testable codes (LTCs) with poly-logarithmic rate and query
complexity (over alphabet F). A code is said to be locally testable with query complexity ¢ and
proximity parameter ¢ if it has a tester (randomized oracle access machine) that accepts with
probability one every code-word and rejects with probability 1/2 every word that is é-far from it.
We refer the reader to [11, Section 4.1] for a proof of the following Lemma.

Lemma 15 If RS(F, S,d) has a PCPP of length ¢, query complezity q and soundness s(8), then
for any 6 € (0,1), there exists a locally testable code over alphabet F of length L = O(£/4), rate
d/L, query complezity O(q/s(8)) and proximity parameter .

Codes with poly-log rate and query complexity are obtained by picking d = €(|S|/ poly(log|S]))
and proximity parameter § = Q(1/ poly(log|S|)).

Corollary 16 There exists an explicitly constructible family of codes of arbitrarily large size n that
have rate 1/ poly(logn) over an alphabet of size n and are locally testable with poly(logn) queries
and prozimity parameter 1/ poly(logn).
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4 Algebraic NP-Complete Problems

In this section we develop two algebraically posed problems that are NP-complete. We start with a
simple problem that searches for a univariate polynomial of low-degree such that a related bivariate
polynomial is zero over an appropriate subset of its inputs. The bivariate problems leads to PCPs
with quadratic proof length (Theorem 24). Next, we prove Theorem 2 by showing a somewhat more
complicated problem to be NP-complete, where both the solution being sought and the constraint
to be satisfied are expressed as univariate polynomials. Furthermore, the final reduction yields
a problem that is NP-hard under nearly-linear length reductions from SAT, which is crucial in
establishing nearly linear length PCPs.

4.1 Warmup - An NP-complete bivariate problem

In what follows we assume {F, },en is a infinite sequence of fields, |F,,| > n, and {V,, C F, },en is
a sequence of subsets, |V;,| = n.

Definition 5 (Arithmetized Graph 3-Coloring) Instances of the language Lagc are pairs of
the form (n,C : Bt — F,), where C(z,y,v,w) is a polynomial of degree at most n in x,y and of
degree at most 6 in v,w. An instance (n,C) € Lagc if there exists a polynomial x : F, — F, of
degree at most n such that Vx,y € V,, X V,,, it is the case that C(z,y, x(z), x(y)) = 0.

Proposition 17 The language Lagc s NP-hard. Namely, for any polynomial time computable
sequence {(Fpn,Vy) : Viy CFp, |Vi| > n}nen, there ezists a polynomial time reduction from 3-Col to
Lagc reducing graphs with n vertices to instances of the form (n,C).

Proof: We show a reduction from Graph 3-colorability (3-Col). Given a graph G = (V, E) on n
vertices, we will produce an instance (n,C) such that G € 3-Col & (n,C) € Lagc- To define the
polynomial C(z,y,v,w), we first define two intermediate polynomials Pgqge(z,y) and Pgq(z,y),
where Pgrgge will encode the graph G, while Py is fixed given V;,.

We identify the vertex set V with V,, and thus the edges maybe viewed as a function E' : V,, x V,, —
{0,1} (where E'(z,y) = 1 iff (z,y) € E; and E'(x,z) = 0). Now we extend’ E'(z,y) to a bivariate
polynomial Prgge : F2 — T, of degree at most n — 1 in each variable. This gives us the first of the
two intermediate polynomials. The second polynomial Pgq is obtained by extending the equality
function. Let I(z,y) be the function that is 1 if z =y € V,, and 0 if z,y € V,, are distinct. We
obtain Pgy(z,y) by extending I to F,, x I,,. Again P, is of degree at most n — 1 in each variable.

Now, we are ready to define the polynomial C. Fix a canonical set S C [F,, containing three distinct
elements in [F,, (representing the three colors), and let T' = {a — Bla, f € S}. We let

C(x,y,v,w) = Prage(w,y) [[ (v—w—0a) + Paglz,y) [[(u—5).

aeT—{0} BeS

(Roughly, the first term is zero if the coloring is legal, while the second term is zero if the coloring
uses one of the three colors (from S).) Note that C(z,y,v,w) is of degree at most n in z,y and of

"For S,T C F, the low degree extension of a function f: S x T — F is the polynomial f :F xF — F that agrees
with f on § x T. It is easy to verify deg,(f) < [S| —1,deg,(f) <|T| - 1.
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degree at most |T'| —1 < 6 in v, w. (To verify the cardinality of 7'— {0}, note that it size is at most
|S] -S| —1.) We claim G € 3-Col & (n,C) € Lagc.

In the forward direction, assume there exists a 3-coloring of G. W.lo.g., we may think of the
coloring as a function x : V;, — S. The fact that the coloring takes on values from S implies that

for every x € V,,, Hﬁes(x(a:) —B) =0. Thus Pgy(z,y) - Hﬁes(x(a:) — B) =0 every pair z,y € V,.
Furthermore, the validity of the coloring implies, for z # y € V,,, that if Pggge(z,y) = 1, then

x(z) # x(y) and so x(z) — x(y) € T — {0}, and thus we get,

Va,y € Vo, Padge(,9)- [ (x(2) = x(y) — @) =0.
acT—{0}

Extending x to a polynomial of degree at most n we get a polynomial x : F, — F, such that
C(=z,y,x(x),x(y)) = 0 for every z,y € V.

In the reverse direction, now assume there exists a function x : F,, — I, such that it satisfies
C(z,y,x(z),x(y)) = 0 for every z,y € V,2. We first claim that for every = € V,,, x(z) € S. We get
this by looking at ¢(z,z) = Prdge(®,7)(-*+) + Prq(z,7) - [[ges(x(z) — B). Since Prage(z,z) =0
and Pgq(z,7) = 1, we get ¢(z,7) = [[5c5(x(z) — B) = 0 which implies x(z) € S. Thus x restricted
to V,, gives a function x’ : V,, — S, a 3-coloring of the vertices of G. To verify that this is a legal 3-
coloring (leaves no edge monochromatic), we now consider any edge (z,y) € E. By construction, we
have Prgge(2,y) = 1 and Pgq(z,y) = 0 and so we have 0 = ¢(z,y) = Prgge(z,y) - HaeTf{O} (x(z) —
Xx(y) — «) implying thus that x(z) # x(y) # 0. This implies that G is 3-colorable, as desired.

4.2 An NP-Complete univariate problem

While the reduction above is sufficient to get moderately simple PCPs, to get an even simpler PCP
verifier, it would be nicer if the final condition were a “univariate” condition. Furthermore, the
natural PCP for the problem described requires proofs that are quadratic in length of the original
proof (the original proof being a 3-coloring has size linear in the number of vertices, while the new
proof would be quadratic.) To get shorter proofs, a univariate problem seems essential and this
motivates the next problem. Such a problem is the UNIVARIATE ALGEBRAIC CSP of Definition 2.
Before showing a reduction of 3-SAT to this problem, thus proving Theorem 2, we compare it to
the bivariate problem.

In arithmetized graph coloring, each constraint C(z,y, x(z), x(y)) on the witness x is indexed by
an element (z,y) € V,, x V,,. Furthermore, given the index (z,y), the values of x needed in order
to verify the constraint are given by a linear map applied to the index. Finally, the predicate
applied to the inputs (z,y, v, w) is a moderately low-degree polynomial in the constraint index, and
a very low (constant) degree polynomial in the remaining variables. The same holds for the Lyacsp
given in Definition 2. Namely, a constraint on the witness A is indexed by z € {w°,...,w" 1}.
Furthermore, given index z, the values of A needed to verify the constraint are given by a linear
map applied to z (as specified by the constants «i,...,a;). Finally, the predicate applied has
degree n in the constraint index, and constant degree in the remaining variables.

Proof (of Theorem 2): We reduce 3-SAT-4 (3-SAT where every variable appears in at most 4
clauses) to Lyacsp. We first give an overview of the reduction. Given an instance ¢ of 3-SAT-4
of length n, we “embed” the instance on a hypercube of size n’ = O(nlogn). In other words, we
associate vertices of the cube with the variables and constraints of ¢ and establish vertex disjoint

22



paths between vertices corresponding to constraints and the variables appearing in them. This
allows us to pose the constraint satisfaction problem as one of finding an assignment to the vertices
of the cube that satisfies a collection of “local constraints” (vertex variables should be 0/1, internal
path variables should propagate values correctly, while clause vertices should verify that the three
paths emanating from them lead to vertices have an assignment that satisfies the constraint).
We then arithmetize the hypercube, so that (local) constraint names, and the (local) variables
participating in them are related by simple linear relations (as one would expect from neighbors
in a hypercube). The catch here is to ensure that even though the hypercube is k-dimensional for
some k > 1, the arithmetization only needs one variable. Here is where we use the fact that our
field F,y contains a large cyclic subgroup (w,) in its multiplicative group, and we use the exponent
of the generator of this cyclic group (wy,) to represent the k-bit vectors that label the vertices of
the hypercube. Finally, we arithmetize the constraints, in a standard way to get an instance of the
univariate algebraic constraint satisfaction problem. Details below.

Assume we are given an instance ¢ of the 3-SAT-4 problem on n variables and m < 4n clauses.
Let n' be such that n' > 2¥ and there exists a hypercube with vertex set {0,1}* with disjoint
sets S,T C {0,1}* of size |S| > n, |T| > 4n such that every 4-to-3 relation R C S x T can be
“routed with vertex disjoint paths” on the hypercube on {0, 1}* in polynomial time. (Specifically,
given any relation R C T x § such that any element of S is related to at most 4 elements of T
and any element of T is related to at most 4 elements of S, the algorithm finds vertex disjoint
paths between every pair (i,7) € R.) Such a routing can be found in deterministic polynomial time
provided n' = Q(nlogn) (see [24] for several solutions to this problem).

Embedding on a hypercube: We use the routing algorithm to embed the 3-SAT instance onto
a hypercube, where constraints and vertices are associated with vertices of the hypercube and a
constraint only applies to the variables in its neighborhood. In particular, let Var C S be any
subset of size n. Associate Var with the variables of ¢. Similarly let Clause C T be any set of
size m. Associate Clause with the set of clauses of ¢ and let R denote the relation that relates
1 € Var to j € Clause if the jth clause depends on variable i. Let p be a routing of R. We use p
to define some new subsets of {0,1}* and to refine the set Clause. For £ € [k] and b € {0,1}, let
Eyp be the set of vertices {i € {0,1}* — Clause} such that i, = b and the edge i + e, — 4 is used
in the routing p. Finally, for every tuple 7 = (¢1,¢3,¢3,b1,bo, b3, c1,ca,c3) with £1,45,¢5 € [k] and
b1, ba,bs,c1,c2,c3 € {0,1}, we define the set Clause, to be the set of all vertices i € Clause such
that for every t € {1,2,3}, it holds that i;,, = b; and i + ey, — ¢ € p and this edge routes a variable
i to clause j where the variable 7 is negated iff ¢; = 1. Notice that the formula ¢ (or the routing p)
is completely specified by the sets Var, {E;p}¢p and {Clause;}, and these sets are disjoint. Indeed
the satisfiability problem can be reformulated as the task of finding an assignment A of the vertices
of {0,1}* (to an arbitrary universe that includes 0 and 1) such that the following conditions hold.

e For every vertex i € Var, A(i) € {0,1}.
e For every vertex i € Eyyp, A(i + erp) = A(i) (for every £,D).
e For every vertex ¢ € Clause, where 7 = (41,42, 43, b1, b2, b3, c1, 2, ¢3), there exists a t € {1,2,3}

such that A(i +ep,) = ct.

Arithmetizing the hypercube: Let F=TF, and w = w, € F generate a multiplicative group
of size > n’ (recall we assume IF and w can be found in polynomial time). We embed the hypercube

23



on a Cayley graph G over vertex set (w). The generators of the (edges of the) graph will be the set
of elements {8y }re[k]pefo,1} Where Bep = w(1"2" In other words, vertices = and y are adjacent
in G iff there exists £, b such that x = B¢ - y. To see that this graph embeds the hypercube on
{0,1}* let [i] € {0,...,2% — 1} denote the integer with binary representation i € {0,1}*. Associate
with i the element wl!! € (w). We claim that the elements associated with i and i + e; are adjacent
in G. Let x be the vertex of G associated with ¢ and let 3, = b. Then ¢ + e; is associated with
w12 = Bep - wll, and thus the corresponding vertices are adjacent in G.

Arithmetizing the constraints: Notice that under the association from the previous paragraph,
the sets Var, Eyp, and Clause, can be thought of as (disjoint) subsets of the vertices of G. In fact,
with some abuse of notation, we’ll let Var denote the function from H = {w’ w!,... ,w"lfl} to
{0,1} serving as the indicator of the set Var (so Var(wl’l) = 1 iff i € Var). Similarly for Ep,
and Clause;. Now we extend the functions Var, Eyj and Clause; to get polynomials \//'a\r, Eg’b and
@eT from F to FF of degree at most |H| — 1 = n’ — 1. The satisfiability of ¢ now reduces to the
question of the existence of a function A : F — F such that the following conditions hold:

1. For every z € H, Var(z) - A(z) - (A(z) — 1) = 0.
2. For every £,b and for every z € H, E\gyb(ﬂi) (A(z) — A(Beyp - ) = 0.

3. For every 7 = (1, £2,¢3,b1,b2,b3,c1,C2,c3), and for every x € H, C/lz;EeT(w) 'Hte{1,2,3}(A(i+
eg,) —c) =0.

The reduced instance: These conditions motivate the following definition of the clause poly-
nomial (which is the sum of the three classes of constraints above):

Var(z) - yo - (yo — 1)
C(z, 90, {yeptep) = + 2opLes(x) - (yo — yep) -
+ Z’T:(fl W2,€3,b1,b2,b3,¢1,¢2,¢3) Clause'r ('T) : Ht€{1,2,3} (yft,bt - Ct)

Notice that C is indeed a polynomial of degree at most n’ — 1 in the first variable and of total
degree at most 3 in the remaining variables. For the function C' as above, we claim that the
instance (n',1,{Bes}ep, C) is a member of Lyacsp iff ¢ is satisfiable. Notice the number of inputs
to the constraint polynomial C' is t =1+ [{Bep}es| = 1 + 2k = O(logn), as claimed.

Completeness: In the forward direction, note that if ¢ is satisfiable, then there exists a partial
function A’ : H — F that satisfies conditions (1)-(3) enumerated above. (In particular, note that
whenever Ey(z) # 0 for z € H, then -z € H, and similarly for the arguments of A’ considered
in condition (3). So the values of A’ on the domain H are all that determine satisfiability.) Taking
A to be the low degree extension of A’ to the entire domain F gives us a polynomial of degree n' — 1
that satisfies conditions (1)-(3), and thus satisfies the condition C'(z, A(z), {A(Bep - ) }ep) = 0 for
every x € H.
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Soundness: In the reverse direction, suppose A is a polynomial satisfying C(z, A(z), {A(Bep -
z)}ep) = 0 for every z € H. We claim that A also satisfies conditions (1)-(3). To see this, consider
an arbitrary £ € H. Recall that at most one of the polynomials \//'a\r, E\g’b, @eT is non-zero
for this choice of z. Assume, for simplicity, that \//'a\r(x) # 0. Then since C(z,---) = 0, we have
\//'a\r(:c) - A(z) - (1 — A(x)) = 0 and thus condition (1) is satisfied for this z. But so are conditions
(2) and (3), since Eg’b and CTaEeT are also zero. The other cases are similar. Thus A satisfies
conditions (1)-(3) and this is equivalent to finding a satisfying assignment for ¢ (in particular the
assignment to elements in Var is Boolean, and forms a satisfying assignment to ¢). This concludes
proof of the soundness of the reduction. |

5 PCPs for Univariate Algebraic CSPs

We now provide efficient PCPs for Lyacsp and prove Theorem 4. Before we do so we attend to
remaining problems. We prove Lemma 3 and discuss the abundance of prime fields with 2-smooth
multiplicative sub-groups (necessary for our efficient PCPPs for the RS code).

5.1 Proof of Lemma 3

Recall a polynomial P(z) is zero on H iff the polynomial g (z) £ [],cpu(z — h) divides it, i.e.
P(z) = gu(z) - P(z) for some polynomial P,deg(P) < d — |H|. The verifier for RSy (F, S,d) has
oracle access to the purported codeword p € F® and its proof, combined of three parts: (i)p: S — F
a supposed evaluation of P on S; (i) A proof of proximity for p to RS(F, S,d) and (i) A proof of
proximity for p to RS(F, S,d — |H|). Proof length is as claimed. The verifier operates as follows.
First, proximity of p (to degree d) and p (to degree d — |H|) are tested. Then, a random « € S is
selected and verifier accepts iff p(a) = gu(«) - p(a). Notice gy (@) can be computed by the verifier
as long as H is known in advance. The query complexity is as claimed. Completeness follows by
our previous discussion (taking p to be the evaluation of 15) As to the soundness and proximity
parameter, if p is -far from RS(F, S, d) or p is d-far from RS(F, S,d — |H|) the verifier rejects with
probability > s. Otherwise, the polynomial P closest to p does not divide P (because p is far
from RSy (F, S,d)), so gi - P is a polynomial of degree d that is not equivalent to P. The two
polynomials can agree on at most d inputs. Thus, our verifier accepts with probability < 2§+d/|S]|.
Randomness can be reused across different tests, completing the proof.

5.2 Linnik’s Theorem

Recall that our efficient PCPPs are constructed only for Reed-Solomon codes RS(F, (w),d) where
|(w)| is a power of two (the reduction from SAT to Lyacsp only needs (w) to be large enough). The
following (special case of a) Theorem due to Linnik shows there is a polynomial time computable
sequence {F,, }nen such that n < |F, | < n°") and F,, has an element w € F% such that |(w)| = O(n)
is a power of two.® Notice that w can be found in polynomial time once [, is known, by exhaustively
searching F%. Additionally, each element of IF,, is represented by O(logn) bits.

8The general statement of Linnik’s Theorem says there exists a universal constant L such that for every pair of
integers 0 < a < n, there exists a prime p < n” such that n|(p —a). Our case is derived by setting a = 1. For more
details, see http://mathworld.wolfram.com/LinniksTheorem.html
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Theorem 18 (Linnik’s Theorem) [25] There exists a constant 1 < L < 6 such that for any
sufficiently large d, there exists a prime of size < d¥ such that d|(p — 1)

Let d be a power of two such that n < d < O(n). Let F, be the prime field Z, for p as in Linnik’s
Theorem. p can be found in polynomial time (and its primality verified) by exhaustive search.
|F*| =p—1=k-d. Let o be a generator of F*. It is easy to verify n < |[(¢*)| < O(n) is a power
of two.

5.3 Proof of PCP Theorem 4

Let {(F,,wn) : wp € Ff }nen be a polynomial time computable sequence where 16n < |(w)| < 32n
and |(w)| is a power of two. Such a sequence is guaranteed by Linnik’s Theorem 18. Assume w.l.o.g.
we are given a 3-SAT-4 instance ¢ with n variables and < 4n clauses (recall there is a nearly linear
size reduction from SAT to 3-SAT-4). Our verifier reduces ¢ to an instance (n', a1,...,a, C) of
Lyacsp using Theorem 2. Recall n' = O(nlogn),t = O(logn) and ay, ..., @ € (w,y). Additionally,
C: Ffjl — T,y has degree n’ in its first variable and degree 3 in the remaining ones. Let F =
Fp,w = wy and H = {u°, ... ,w”lfl}.

The PCP Construction Verifier has oracle access to two purported Reed-Solomon codewords
and their PCPPs. These are the assignment oracle py € F“) and its proof of proximity to
RS(F, (w),n') (denoted m4) and the constraint oracle pp € F“) and its proof of proximity to
RSy (F, (w),4n') (denoted 7). The length of each polynomial is O(nlogn) and that of its PCPP
is npoly(logn), as claimed. The total proof length is n - poly(logn) even when measured in bits,
because every element of F can be written using O(logn) bits.

Verifier’s Operation Fix § = 1/4(¢ + 1). Verifier tests proximity of each polynomial to its
respective code using the proofs of proximity. Each test makes O(J) queries, as to reject with
probability 1/2 if the table is o-far from the respective code (as guaranteed by Corollary 14). If
any test rejects, the Verifier rejects. Otherwise, Verifier selects a random S € (w), and queries pp
at B and pa at values (8,010,...,a83). Verifier accepts iff pg(8) = C(B,010,...,3). Query
complexity is as claimed, and so is the randomness that can be reused across different tests.

Completeness By Theorem 2, if ¢ is satisfiable, there exists an assignment polynomial P4 of
degree n' such that Pg(z) 2 C(z,Ps(c1),...,Pa(asr)) is zero on every z € H. The proof for
satisfiability of ¢ is the evaluation of P4, Pg on (w) (with their proofs of proximity). This proof is

accepted with probability one, as implied by Theorem 1 and Lemma 3.

Soundness Suppose ¢ is unsatisfiable. There are several cases to consider. If one of pa,pp is
d-far from the corresponding RS-code, Corollary 14 implies Verifier rejects with probability 1/2,
and we are done.

Otherwise, let P4 be the unique degree n' polynomial that is J-close to p4 and let Pg be the unique
polynomial of degree 4n’ that is d-close to pg and vanishes on H. Since ¢ is unsatisfiable, Theorem
2 implies Pg(z) # C(z, Pa(o1%),. .., Pa(oyz)), so the two polynomials agree on at most 4n' values.
Thus, by a union bound, Verifier accepts with probability < (t +1)§ + 15) = 1/2.
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Randomness The rejection of any one test makes Verifier reject. Thus, we can reuse random
coins across different tests. The randomness of the proximity test is logn + O(loglogn) as claimed
in Theorem 1, and the randomness required by the other tests is log |(w)| = logn + O(loglogn).
The proof of Theorem 4 is complete.

6 PCPs for Multivariate Algebraic CSPs

6.1 PCPPs for Reed-Muller Codes

It is easy to extend the PCPP for the RS-code into one for the Reed-Muller code (based on
multivariate polynomials), given the extensive literature on testing multivariate polynomials using
axis parallel lines [5, 6, 16, 3, 27, 17]. Let RM(F, S, d, m) be the m-variate Reed-Muller code with
degree bound d, evaluated at S™,

RM(]Fa Sa da m) = {<Q(I1a s 7mm)>w1<~5,...,wm<~5 1 Vi€ [m]7 degwl (Q) S d}

For a set S C F and m-variate function f : S™ — T, let 62 (f) be the fractional distance of f from
RM(F, S,d, m). Let 5;1”,1.( f) denote the fractional distance of f from a polynomial of degree d in the
ith variable, and unbounded degree in all other variables. Finally, let ]E[dgn’i (f)] be the expectation
of 6fn’i over random 7 € [m]. The following Lemma is a rephrasing of [3, Lemma 5.2.1]. Notice
Lemma 10 is a special case of it (with tighter parameters).

Lemma 19 [3] There exists a universal constant ¢ such that for every S C F such that |S| >
poly(m, d),
O (f) < - Eloh i ()]

This Lemma together with Theorem 1 imply efficient PCPPs for Reed-Muller codes.

Lemma 20 (RM PCP of Proximity) Let S C F and d, m be integers such that |S| > poly(m, d)
for the polynomial of Lemma 19. If RS(F,S,d) has a PCPP with length £, query complezity q,
randomness T and soundness s(0), then the Reed-Muller Code RM(F, S,d, m) has a PCPP with
length < m-n™"1 .4, query complexity q, randomness log(m -n™ 1) +r and soundness > s(8)/m.

Proof: The proof for a purported RM-codeword is the collection of proofs of proximity for each
axis parallel line (to the RS code). (A line parallel to the ith axis is {(b1,...,bi—1,Zi, bit1,...,bm) :
z; € S} where by,...,by, € S.) The verifier selects a random axis parallel line and invokes the
RS-verifier of Definition 4 on the line and its proof. The proof follows from Lemma 19. |

Remark 21 A more query efficient test can be constructed when (w) = F*. Instead of azis parallel
lines, we use an e-biased set of directions as in [12]. This results in proofs of similar length and
query complexity and slightly larger randomness, but the soundness query complezity is as large as

Q(s(6)) (and independent of m ).
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6.2 Multivariate Zero Testing and Proof of Lemma 5

The following generalization of the univariate zero testing (Section 5.1) is crucial in many PCP
constructions, starting with [6]. We are given H, S C F and oracle access to a function f : S™ — F.
Our task is to verify that f is close to a low-degree multivariate polynomial that evaluates to zero
on H™. In other words, we are interested in testing proximity to the code RMg(TF, S,d,m) C
RM(F, S,d, m) corresponding to low degree polynomials that vanish on H™ (as in the univariate
case, we do not require H to be a subset of S). The catch in immediately extending the univariate
tester of Lemma 3 to even the bivariate case is that the “factoring” concept does not extend
immediately. Specifically, if we are given that a bivariate polynomial Q(z,y) has a zero at («, )
this does not imply that Q(z,y) has some nice factors. However, one can abstract a nice property
about @ from this zero. Specifically, we can say that there exist polynomials A(z,y), B(z,y) (of
the right degree) such that Q(z,y) = A(z,y) - (z — @) + B(z,y) - (z — ). Thus to prove that
Q(a, 8) = 0, we may ask the prover to give oracles for Q(z,y). A(z,y) and B(z,y). We can then
test that ), A and B are of low-degree and that they satisfy the identity above. Extending this
idea to m-variate polynomials that are zero on an entire generalized rectangle is straightforward.
The technical lemma giving the identity is included below. (The lemma is also a key ingredient in
Alon’s “Combinatorial Nullstellensatz” [1]. We include a proof for completeness.)

Lemma 22 Let Q(z1,...,%m) be a polynomial over Fg of degree d in each of m variables. Let

H CFg and let gH(z)déf [lgcu(z — B). Then Q evaluates to zero on H™ iff there exist m-variate
polynomials Ai, ..., Am of individual degree at most d such that Q(Z) = Y ;% Ai(Z) - g ().

Remark 23 The lemma above is intentionally sloppy with degree bounds. While tighter degree
bounds on A;’s can be obtained, this won’t be needed for our PCPs.

Proof: One direction is immediate. If Q(Z) = > 1", Ai(Z) - gu(z;) then Q(@) = 0 for every
@ € H™. The other direction is proved in three steps. First, we show that for any polynomial
P(z1,...,zy) of degree dj in z;, and any 7 € {1,...,m}, there exist polynomials B(z1, ..., Zy,) and
C(z1,...,Tm) of degree at most d; in z;, with the degree of C in z; being at most min{d;, |[H| -1},
such that P(Z) = B(%) - gu(z;) + C(Z). Second, we show that there exist polynomials A;,..., 4,
and R with the A;’s having degree at most d in each variable and R having degree at most |H| —1
in each variable such that Q(Z) = Y /%, Ai(Z) - gu(zi) + R(Z) (where Q is the polynomial from the
lemma statement). In the final step, we show that R(Z) = 0, concluding the proof.

STEP 1: Recall that any polynomial f(z;) can be written as ¢(z;)-gu (z;) +r(x;) where r has degree
less than |H|. Applying this fact to the monomials 2P (for non-negative D) we find that there exist
polynomials gp(z;) and rp(x;), with degree of gp being at most D and degree of rp being less
than |H|, such that 2P = gp(z;) - gu (i) + rp(z;). Now consider any polynomial P(z1,...,Zy) of
degree d; in z;. Suppose P(%) = Z%:o Py(z")-zP, where @ = (1,...,%i 1,Tit1,---,Tm). Writing
the monomials =P in terms of the gp’s and rp’s, we get: P(Z) = (Z%:o Pi(:i")qD(a:i)) g (zi) +
(S50 B@)ro(e:). Letting B@) = Y55 Bi(@)an(w:) and C(@) = (Th_, P(@)ro(a)),

yields the polynomials as claimed. (In particular the degrees of B and C in any variable are no
more than of P, and the degree of C in z; is smaller than |H|.)

STEP 2: We now claim that there exist polynomials A1, ..., Ay, and Ry, ..., Ry, such that for every
7 €A{0,....m}, Q) = Y1, Ai(Z) - gu(zi) + R;(Z), with A;’s being of degree at most d in each
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variable and R; being of degree less than |H| in z1,...,z; and of degree at most d in the remaining
variables. The proof is straightforward by induction on j, with the induction step using Step 1 on
the polynomial P() = R;() and the variable ;. The final polynomials Ai,..., A, and R = R,
are the polynomials as required to yield the sub-claim of this step.

STEP 3: Finally we note that for every @ € H™, we have R(&) = Q(@) — Y1~ Ai(@) - gu(e;) =
0—>",0=0. But R is a polynomial of degree less than |H| in each variable and is zero on the
entire box H™. This can only happen if R = 0. Thus we get that Q(Z) = >_1" | Ai(Z) - g (;), with
A;’s being of degree at most d in each variable, as required in the completeness condition.

The lemma above, combined with the multivariate polynomial tester from Lemma 20 prove Lemma,
5.

Proof (of Lemma 5): As a proof of the proximity of ¢ € F¥" to RMy(F, S,d,m) our verifier
expects (i) the evaluations of Ai,..., Ay, from Lemma 22 on S™ (denoted ay,...,an) and (i) for
each of ¢, a1, ...,am, a proof of proximity of A; to RM(F, S, d, m). Proof length is as claimed. The
verifier operates as follows. First, it tests proximity of each of ¢,aq,...,an to (F,S,d,m). Then,
a random (ai,...,qm,) € S™ is selected and verifier accepts iff ¢(&@) = Y ;v gu () - ai(@). The
query complexity is as claimed. Completeness follows from Lemma 22. As to the soundness, if
any of g,a1,...,ay is é-far from (F,S,d, m) Verifier rejects with probability s(d). Otherwise, g is
0 close to a polynomial () that doesn’t vanish on H™. If A4,..., Ay, are the polynomials closest
to a1, ..., an, respectively, then by Lemma 22 we get Q(Z) # >, Ai(Z) - gu(z;) and @Q has degree
at most 2d in each variable. Thus, the two polynomials agree on < (2d)™ points so the acceptance

probability of Verifier is < (m + 1)d + (%)m as claimed. |

6.3 PCPs for LAGC

For completeness, and to illustrate the use of the multivariate polynomial zero tester, we now
describe a PCP for the algebraic graph coloring problem. While the parameters of the following
theorem are strictly weaker than those of Theorem 4 (the randomness is twice as large and the
proof length is quadratically bigger), its proof is simpler.

Theorem 24 NP C PCP, 1[2logn + O(loglogn),poly log n].
2

Proof: First we reduce 3-COL to Lagc as in Proposition 17. Given graph G on n vertices we pick
our field F = F,, to have an element w € F* such that |(w)| is a power of two and 16n < [(w)| < 32n.
Let (n,C) be the resulting Algebraic CSP.

Proof Oracle Our verifier expects oracle access to: (i) An evaluation of a degree n polynomial p €
F“) (supposedly encoding the three coloring), together with its proof of proximity to RS(F, (w), n),
denoted m,; And (4) An evaluation of a bivariate polynomial ¢ € F«)*{®) together with its proof
of proximity to RMy, (F, (w),4n, 2), denoted .

Operation Verifier tests proximity of p to RS(F, (w),n) (using 7,) and of ¢ to RMy,, (F, (w),4n, 2)
(using 7,). Both tests make poly(logn) queries as to guarantee rejection probability 1/2 for prox-
imity parameter 6 = 1/16. If either test rejects then verifier rejects. Otherwise, verifier chooses
random (z,y) € (w) X (w) and accepts iff ¢(z,y) = C(z,y,p(z),p(y)). Proof length is as claimed.
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Completeness If G has a three coloring, the low-degree extension of a non-monochromatic three-
coloring x has the property that C(z,y, x(z), x(y)) = 0 for all (z,y) € V,, xV,,. Thus, the evaluation
of these two polynomials (with their proofs of proximity) pass the verifier’s test with probability
one.

Soundness Suppose G is not three-colorable. If either of p, g is not d-close to the desired code,
verifier rejects with probability 1/2. Otherwise, by the soundness of Proposition 17, if P, () are the
polynomials closest to p, g respectively, then Q(z,y) # C(z,y, P(z), P(y)), because @ evaluates to
zero on V,, x V,, and G is not three colorable. Thus, the two polynomials can agree on < (4n)?
entries. In this case, the acceptance probability is at most 2§ + (Ki—””)2 <1/2. |

7 Implementation Considerations

We briefly discuss the issues arising when implementing our PCP constructions. We start by noting
that most constants discussed above can be further optimized and we leave this issue for future
research.

Fields Our PCPs of proximity for the RS code require fields with multiplicative groups of size
that is a power of two. While such a field can be found in polynomial time by brute force given
a circuit of size n (as guaranteed by Linnik’s Theorem 18), we can also envision a short list that
would good enough to deal with all "small” circuits (say, smaller than the number of atoms in the
universe). Such a list would have less than a thousand entries (using conservative estimates of the
size of the universe). An alternative solution would be to find explicit fields with multiplicative
sub-groups that are poly(logn)-smooth (noticing Theorem 1 can be extended to such groups).

Routing The most time-consuming part of our computations (both for proof construction and
for the Verifiers operation) is computing a good embedding of the SAT instance into a hypercube.
Efficient (nearly-linear running time) algorithms for this problem exist [24]. However, to obtain a
poly-logarithmic running time Verifier for uniform computations as in [6], we need to compute an
edge of the embedding in poly-logarithmic time. We leave this problem for future investigation.
Notice the efficient routing problem does not arise in the longer (quadratic length) bivariate PCPs
of Section 6.2.

Consistency Tests Most of the tests the verifier makes (assuming the routing is known) require
poly-logarithmic running time. The only exception is the computation of the degree n' = O(n -
poly(logn)) polynomial g (z) = [][,cp(x — h). There is a simple fix to this problem, suggested
by Salil Vadhan [Personal Communication]. Namely, if we take H = (w') for some w' € F* then
gu(z) = /¥l — 1 (both sides of the equation are of degree |H| and vanish on H). This polynomial
can be computed in poly-logarithmic time. It can be readily verified that we can use such an H
for our PCP constructions (e.g., if w generates the multiplicative group needed for the RS-testing
to work, and |(w)| is a power of two, we may take w’ = w?* for some small constant k, such that
the size of (w') is still larger than n').
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A Proof of Lemma 10

The lemma, is an immediate corollary of the Bivariate Testing Theorem of Polischuk and Spielman
[27, Theorem 9]. We use here the general version of it appearing in Spielman’s Thesis [31, Theorem
4.2.19).

Theorem 25 [31, Bivariate Testing] Let F be a field, S,T C F. Let R(z,y) be a polynomial over
F of degree (d,|T| — 1) and let C(z,y) be a polynomial over F of degree (|S| —1,e). If

d e
P R C 2 d 2(— + — 1

then there exists a polynomial Q(x,y) of degree (d,e) such that

Pr [R(z,y) # Q(z,y) or C(z,y) # Q(=z,y)] < 27
(z,y)eSXT

Proof (of Lemma 10): We prove the contra-positive form for ¢y = 128 (we don’t try to optimize
constants). We may assume w.l.o.g. §(%*) §(¢) < 1/¢;, otherwise the claim is trivial. Correct each
row of f to its closest RS-codeword (breaking ties arbitrarily), obtaining a bivariate polynomial
R(z,y) of degree (d, |T|—1). By definition, A(R(z, ), f) = 6(4*)(f). Similarly, correct the columns
of f to obtain the polynomial C(z,y) of degree (|S| —1,e) that is within fractional distance §*¢ (f)
of f. We get
Pr [R# C) <84 (f)+6%9(f) =" <1/64
(z,y)eSXT

Since v < 1/8,d < |S]/8,e < |T|/8, both conditions of Theorem 25 hold, allowing us to conclude
R(z,y) is (2y?)-close to RM(F, S x T, (d,e)). The triangle inequality completes the proof:

6 (f) < A(f, R) + A(RRM(F, S x T, (d, ) < 36 (f) +20(f)
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